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Abstract

Medical imaging represents the organs, tissues and structures underneath the outer layers of skin and

bones etc. and stores information on normal anatomical structures for abnormality detection and diagnosis.

In this thesis, tools and techniques are used to automate the analysis of medical images, emphasizing the

detection of brain tumor anomalies from brain MRIs, Covid infections from lung CT images and pancreatic

tumor from pancreatic CT images. Image processing methods such as filtering and thresholding models,

geometry models, graph models, region-based analysis, connected component analysis, machine learning

models, and recent deep learning models are used. The following problems for medical images : abnormality

detection, abnormal region segmentation, interactive user interface to represent the results of detection and

segmentation while receiving feedbacks from healthcare professionals to improve the analysis procedure, and

finally report generation, are considered in this research. Complete interactive systems containing conven-

tional models, machine learning, and deep learning methods for different types of medical abnormalities have

been proposed and developed in this thesis. The experimental results show promising outcomes that has led

to the incorporation of the methods for the proposed solutions based on the observations of the performance

metrics and their comparisons. Although currently separate systems have been developed for brain tumor,

Covid and pancreatic cancer, the success of the developed systems show a promising potential to combine

them to form a generalized system for analyzing medical imaging of different types collected from any organs

to detect any type of abnormalities.
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Arab Journal of Information Technology (IAJIT). 2023 May” [6].
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Chapter 1

Introduction

The past four decades have witnessed major developments in the technology as well as in various domains

of knowledge, including automated medical image capturing, artificial intelligence, and machine learning.

Medical scanners of the body which rapidly gained popularity since 1980’s, e.g., magnetic resonance imaging

(MRI), computed tomography (CT), positron emission tomography (PET) provided the scopes for these

developments. The captured images contain all abundances of detail which can be analyzed by domain

experts who are medical professionals capable of reading the content of the captured images and produce

associated reports which guide the medical doctors or specialists who are diagnosing the case of the scanned

patient. This development in image capturing and the availability of the associated technology to store these

images combined with the realized benefit of these images in guiding the diagnosis process have led to the

capturing and storing of a huge number of images. This raised the need for more professionals who are

capable of thoroughly analyzing these images to reveal their contents which might highlight the concerns

associated with the investigated case and may pinpoint an effective treatment plan. Realizing the limited

availability of professionals who could read medical images for knowledge discovery and to avoid any errors

which may be attributed to a variety of factors, including level of expertise of the professional, their mental

state, etc., researchers in the computing field started to develop automated systems which could act as

decision support systems to help and guide the professionals in the image analysis process.

A number of techniques from machine learning and artificial intelligence have been integrated in the

process to address various aspects of the problem. Each group of researchers concentrated on images related

to a specific organ of the body, including heart, liver, chest, brain, etc. However, yet there is no comprehensive

system capable of successfully handling all types of images related to a specific organ. Motivated by this, the

work described in this thesis tackles a number of problems associated with image analysis to reveal essential
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knowledge related to some vital diseases which seriously threat human health. These include COVID19,

brain tumor and pancreas cancer. To cope with the study and produce unique solutions, comprehensive

literature reviews for each of the handled disease was conducted. Two web-based interactive self-tuning

systems based on feedback from users have been developed as decision support systems to help and guide

healthcare professionals in taking informative decisions related to COVID19 and brain tumor, respectively.

Additionally, a web-based application has been developed to help in identifying pancreas cancer.

The rest of the chapter is organized as follows- a brief summary on medical image analysis is discussed

in Section 1.1. Section 1.2, Section 1.3, and Section 1.4 summarizes Covid-19 medical image analysis,

brain tumor medical image analysis and pancreatic cancer medical image analysis respectively. Section 1.5

discusses the research summary for this thesis and finally Section 1.6 mentions the organization of the rest

of the thesis.

1.1 Medical Image Analysis

Medical imaging consists of imaging and visualizing organs or tissues and their functionalities for both

clinical and physiological analysis. It does not only reveal the interior of a body and structures of internal

organs/tissues, but it also enables diagnosis and treatment of diseases [24]. Medical image analysis in more

detail is the research area that processes the medical images (which are represented in a pixelated, digital

form) to extract meaningful information about organs and possible abnormalities or lesions with a non-

invasive approach. It analyzes medical images acquired using MRI, CT, PET, ultrasound etc. to identify the

possible abnormalities based on image properties (i.e., intensity, shape, texture, contour, etc.) of different

body parts or organs. Image segmentation might be performed on the images where image segmentation is

defined as is the process of partitioning a digital image into multiple image segments, also known as image

regions or image objects (sets of pixels) [25]. Hence, researchers from various fields have been trying to

develop automated systems to analyze the medical images to assist healthcare professionals in their patient

diagnosis. Medical image analysis tasks can be divided into three main categories- i) abnormality detection,

ii) abnormal region segmentation, and iii) abnormal region properties classification. These tasks have been

approached by researchers using different methods such as conventional and artificial intelligence (AI) based

approaches. Due to the variations in human organs and their abnormalities, and the requirement of high

accuracy and precision, developing automated systems to detect, segment and classify health issues from

medical images have been a research area where researchers have been trying different types of existing and

novel models to improve the performances of the systems and the current usage of deep learning (DL) models

have been showing an immense improvement compared to the other methods. This research is an attempt to
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contribute to the improvements of automated systems for medical image analysis to detect, segment, classify

abnormalities and generate comprehensive reports on them focusing on brain tumors, Covid infections, and

pancreatic tumors.

1.2 Covid Medical Images

The novel coronavirus named Severe Acute Respiratory Syndrome Corona-Virus 2 (SARS-CoV-2) was re-

ported in Wuhan, China for the first time in December 2019 where it appeared as pneumonia cases with

unknown cause [26, 27]. The virus spread rapidly causing a large disease outbreak. Due to the severity of the

outbreak caused by this virus the World Health Organization (WHO) declared it a ‘Public Health Emergency

of International Concern (PHEIC)’ on January 30 2020. After the cases outside of China increased almost

13-fold compared to the initial numbers and the number of infected countries trippled with 118,000 cases

in 114 countries, and 4,291 deaths, WHO finally declared Covid-19 to be a ‘Global Pandemic’ on March 11

2020 [28]. On August 02 2021, the number of cases was 199,558,118 with 4,247,970 deaths and 180,027,978

people recovered [29]. The number of active cases was 15,282,170 where 99.4% were mildly critical and 0.6%

were very critical cases. The number of closed cases that had an outcome was 184,275,948 and 4,247,970 (i.e.

2%) died whereas 180,027,978 (i.e. 98%) were discharged after recovery. On January 22 2020, the number of

detected cases was 987 which increased the total to 199,085,178 (almost 200 million) by August 01 2021. A

more recent statistics on November 06 2022 listed 6,605,691 deaths and 617,384,409 recovered cases among

637,767,096 Covid infected cases worldwide.

On February 25, 2022, WHO reported 430,257,564 confirmed cases of COVID-19, including 5,922,049

deaths [30]. The SARS-CoV-2 virus have mutated over time like any other viruses. The mutations have

impacted the various virus properties like disease severity, the speed and ease of spread, diagnostic tools,

vaccine performance, etc. creating new variants of the disease. Generally, nucleic acid-based test approaches

like reverse transcriptase-PCR (RT-PCR) is considered as the ‘gold standard’ for SARS-CoV-2 virus detection

[31]. Chest imaging approaches can also be a helpful alternative for faster Covid-19 detection. Various chest

imaging tools such as chest X-rays, chest CT scans and lung ultrasounds can be used for Covid-19 detection,

severity analysis and diagnosis [32]. Various imaging techniques like X-rays, ultrasounds, CT images, etc. are

used as Covid medical images. Figure 1.1 shows CXR, CT and lung ultrasound sample images of Covid-19

patients.

Similar to other medical image analysis, Covid medical image analysis also focuses on detecting if the

patient has Covid or not as part of abnormality detection. Segmenting the infectious regions from the images

and classifying them based on the infection type or location or other characteristics are part of the Covid
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Figure 1.1: Sample CXR, CT and lung ultrasound of Covid-19 patients [7].

image segmentation task.

1.3 Brain Tumor Medical Images

The brain is one of the major organs of human body. It controls most of the nervous system and it is

responsible for managing most of the functions of our body [33]. The brain weighs about 3 pounds and it

contains soft tissues, fat, protein, carbohydrate, water and salts [34]. The soft tissues (i.e. gray matter and

white matter) contain neurons, blood vessels and other cells. The gray matter is the outer part of the brain

having darker colors and the white matter is the inner part with lighter colors. This sequence is opposite for

the other major organ of the nervous system, the spinal cord. A tumor, “an abnormal mass of tissue” [35]

may occur due to the deviation of regular cell life cycle or growth or both, may occur in the brain. Although

the normal life cycle of a cell is that they grow, then are divided to two cells and eventually die, this cycle

may be disrupted and some cells are divided into multiple cells uncontrollably and if they do not die they

create a mass which is the tumor.

Brain tumors are tumors that starts in the brain or in the spinal cord [36]. They are called primary brain

tumors if the origin of the tumor is the brain or the spinal cord. But, if the tumor originated in another

part or organ and then spread to the brain then they are called secondary brain tumors or brain metastases.

Figure 1.2 shows a sample of normal and abnormal cell growth for a brain tumor. Brain cancer, independent

of how it originated, is one of the 10 deadliest cancers with a quite low 5 year relative survival rate of 32.5%

[37]. 308,102 new brain cancer cases were documented in 2020 and 251,329 people died that year due to

brain cancer worldwide [38]. More recent 2022 statistics for USA patients show that 700,000 people in USA

are already suffering from brain cancer including 88,970 new primary brain tumor cases diagnosed and with

the possibility of 18,200 deaths due to malignant tumors makes the relative survival rate only 36% [39, 40].

A brain tumor diagnosis includes different types of physical exams, blood tests, urine tests, medical

images, biopsies and spinal taps [41]. Medical images are very popular non-invasive diagnosis tools that
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Figure 1.2: Sample image of brain tumor.

may include CT, PET, and MRI scans. Although each type of imaging has its’ own benefits, MRI images

are generally preferred for brain tumor imaging as they are less risky and produce clearer images. Medical

professionals can asses the brain tumor, tumor location, tumor size, tumor area and other tumor proper-

ties from MRI images. Researchers have, however, been trying to automate those tasks due to the high

cost of having this done by the medical professionals. Initially various conventional methods like threshold-

ing/filtering, morphology-based models, geometry-based models, contouring, region-based models etc. were

used for brain tumor detection and segmentation for automated brain tumor image analysis [21]. Once ma-

chine learning (ML) models became popular and showed higher efficiency in classification and image analysis

tasks, researchers started to focus more on ML-based tumor detection and segmentation models using super-

vised, unsupervised and hybrid models [42]. With the emergence of more advanced artificial neural networks

(ANN), deep neural networks (DNN) became more popular for the brain medical image analysis with DL

models due to the high performance and accuracy of the outputs [43]. More recent transfer learning (TL)

models and hybrid or ensemble models have also become quite popular in this research field [44].

Brain medical image analysis aims at detecting abnormalities from brain images and then extracting

the abnormal region from the images. The first task in brain tumor analysis from brain medical images is

therefore called ‘brain tumor detection’. The task is to detect if brain tumor is present in a brain medical

image or not [45]. It can also be represented as an image classification problem where the input image can

be classified as either a healthy image/non-tumor image or a tumor image. The second task of the major

brain medical image analysis task is similarly ‘brain tumor segmentation’. After having identified that there

is a tumor in the brain medical images, the next task is to divide the image into multiple segments or
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objects based on the similarity and dissimilarity between the different regions of the image. Brain tumor

segmentation therefore focuses on segmenting or extracting only the tumor regions from the rest of the image

for further analysis of tumor properties [46]. Other than these two major tasks, there are some tasks like

finding the tumor type, and other tumor properties which have been explored in a limited scale in some of

the brain image analysis researches.

1.4 Pancreatic Cancer Medical Images

Pancreas cancer is a disease that occurs as a result of malignant tumor formation in the pancreas. According

to the reports, Pancreatic Ductal Adenocarcinoma, PDAC, is the most common type of this disease. This

tumor accounts for 90 percent of all pancreatic cancer cases, and 95 percent according to some sources.

Although this disease is not in the top ranks in terms of the frequency of its occurrence, it is in the top ranks

in terms of lethality [47, 48]. In ranks, USA is third in terms of cancer deaths. It ranks 10th among cancer

types in terms of its incidence. The pancreas is an organ that has a very important place in metabolic and

digestive activities, so sudden weight loss, loss of appetite and fatigue are observed among the symptoms of

cancer. Some vital body activities may be disrupted as a result of the endocrine and exocrine glands in the

pancreas being affected by the tumor. The part of the pancreas where PDAC occurs most is the pancreatic

head, with a rate of about 66 percent. The most basic reason for the lethality of pancreatic cancer is its

insidious progression, since the fact that the patients who are diagnosed generally show metastatic symptoms,

therefore the treatment to be applied against the disease is started late with an increased death rate. CT,

one of the medical imaging techniques, is a method frequently used for PDAC diagnosis. The detection

sensitivity of the method is high, but the technique used and the experience of the radiologists are also

important factors. One study found that 19 percent of cases were misinformed by medical professionals that

they did not have cancer, despite having the disease as a result of the images and examinations obtained.

PDAC is a disease whose lethality can be reduced if detected early and the treatment process can be applied

more successfully [49]. Pancreatic cancer image analysis also follows the same pattern as other medical

image analyses. Cancer detection task classifies the images into cancerous or healthy classes, and the cancer

segmentation task extracts the tumor/cancer region from the cancerous image. Figure 1.3 shows examples

of CT images with and without pancreatic tumor.
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Figure 1.3: Sample CT images of (a) pancreatic tumor and (b)non-tumor [26]

1.5 Research Summary

This research focuses on all three medical image analysis tasks mentioned earlier - detection, segmentation,

classification and includes a novel idea for report generation. The abnormality detection from medical images

(i.e., brain MRIs, chest CTs, and pancreatic CTs) applied simple DL models using various image features

for classifying the images into ‘healthy’ or ‘abnormal’ classes. The abnormal region segmentation task used

geometric models and complex DL models to extract the abnormal region (i.e., tumor or infection) with high

precision. Both detection and segmentation tasks provide multiple options for the users to choose image

types (i.e., 2D or 3D), image file types (i.e., dicom, jpeg, nifti, png, etc.), and models to show how the

differences affect the outputs. The developed interactive frameworks for brain tumor and Covid also provide

the option to insert feedbacks from professionals on detection and segmentation outputs to fine tune the

systems for future training. Various thresholding, morphological operations, basic pre-processing and post-

processing operations, conventional methods for image processing, clustering models, machine learning and

deep learning models were tested before finalizing the models mentioned in this thesis to ensure ensembling

the best set of features and methods to provide high performance scores.

The major contributions of this thesis can be summarized as follows -

• providing a detailed literature review on existing medical image analysis researches for brain tumor and

Covid, and summarizing the current contributions, limitations, research challenges and future research

scopes,

7



• designing DL-based classifiers for abnormality detection (i.e., existence of tumor in brain MRIs, pres-

ence of infections in lung CT, and existence of tumor in pancreatic CT),

• designing DL-based segmentation models for abnormal region segmentation (i.e., segmenting brain

tumor, and segmenting Covid infections),

• developing interactive user interface framework to help healthcare professionals to detect, segment and

generate reports from medical images (i.e., brain MRIs, and lung CTs), and providing a feedback

process to accept feedbacks from the professionals on the generated output to refine future detection

and segmentation,

• creating a basic report generation system for brain tumor image analysis to show the basic properties

of detected tumors, and

• discussing the current challenges and future possibilities in medical image analysis research domain.

1.6 Thesis Organization

The rest of this thesis is outlined as follows. A survey on Covid-19 based medical image analysis is presented

in Chapter 2. Chapter 3 discusses an interactive framework for deep learning based Covid-19 detection

and segmentation. Chapter 4 includes a survey on brain tumor medical image analysis. Chapter 5 shows

a Convex hull based brain tumor segmentation model. Chapter 6 explains an interactive system for brain

tumor detection and segmentation from 2D and 3D brain MRIs. Chapter 7 discusses a deep learning approach

for pancreatic tumor detection from CT images. Chapter 8 explains a comparative analysis of three deep

learning models for pancreatic cancer detection. Chapter 9 shows the process of generating comprehensive

reports on brain tumor properties. Chapter 10 concludes the thesis and outlines the scopes and challenges

of the research.
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Chapter 2

A survey of machine learning-based

methods for COVID-19 medical image

analysis

2.1 Introduction

SARS-CoV-2 is a positive-sense single stranded RNA virus that can cause respiratory, neurological, hepatic

and other diseases [50]. It is the 7th human coronavirus that causes severe pneumonia similar to two

other human coronaviruses - SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV)

[51]. OC43, NL63, HKU1 and 229E are the four other human coronaviruses that have mild symptoms.

Through multiple mutations new variants of SARS-CoV-2 have evolved that are more transmissible having

new symptoms and being more likely to have fatal consequences. The current variants of concern (VOC)

are Alpha, Beta, Gamma, Delta, and Omicron that first appeared in United Kingdom, South Africa, Brazil,

India, and South Africa respectively [52]. Alpha and Beta variants were named on December 18 2020 whereas

the Gamma variant was named on January 11 2021, Delta on May 11 2021 and Omicron on November 24

2021. The subvariants of these variants are due to some descendant lineages of the mutations.

Due to the severity of the disease, early and accurate detection is essential for managing a Covid-19

infection. This requires rapid tests for diagnosing the infection. As nucleic acid-based test approaches are

among the most reliable for virus detection, the polymerase chain reaction (PCR) method is one of the most

popular viral detection methods that achieved higher sensitivity and specificity within minimum time. The
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reverse transcriptase-PCR (RT-PCR) is the ‘gold standard’ for SARS-CoV-2 detection [31]. The RT-PCR

tests the nucleic acids from the upper and lower respiratory specimens like nasopharyngeal or oropharyngeal

swabs, sputum etc. There are not enough RT-PCR testing kits available worldwide and the test itself is

time-consuming. Optionally chest imaging techniques can instead be helpful for rapid Covid-19 detection,

severity assessment and patient management since SARS-CoV-2 normally infects the lung. The imaging

techniques of chest radiography (i.e. CXR), chest CT and lung ultrasounds can therefore be used for chest

imaging and diagnosis of Covid-19 patients [32].

Figure 2.1: Sample CXRs of healthy, pneumonia and Covid-19 patients. [8].

CXRs have been widely used for medical imaging for Covid-19 since X-ray scanners are available in almost

every healthcare facility in every country. The cost for CXR is generally lower than for RT-PCR and other

testing kits and it requires less processing time [53] compared to the kits. Figure 2.1 shows sample CXRs

of healthy, bacterial pneumonia patient, viral pneumonia patient and Covid-19 patient. Chest CT produces

images with a bit higher sensitivity level than CXR [54]. Most of the experiments using both techniques

showed that there are no significant differences between them for Covid-19 diagnosis. CXR and CT also

often compliment each other in cases with intermediate findings [55]. Lung ultrasound is another low cost

available option for imaging Covid-19 patients. Although it produces low level images, no X-ray radiation is

involved [56].

Medical imaging may show various types of abnormalities such as severity, pre-existing lung conditions etc.
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Figure 2.2: Sample chest CTs with infected lung regions of Covid-19 patients [9].

in Covid-19 patients based on their disease stage. Different types of opacity in lungs is one major indication

of the disease. This can include subpleural curvilinear opacity, reticulonodular opacity, ground-glass opacity

(i.e. bilateral, multifocal, peripheral, posterior, medial, basal etc.) etc. Other common abnormalities include

septal thickening, consolidation (i.e. pulmonary, air space etc.), cavitating lesions, crazy-paving appearances

etc. with various irregular shapes like tree-in-bud or halo signs [9]. Figure 2.2 shows some sample chest CT

showing infection variations of Covid-19 patients.

The results of medical image analysis (i.e. CXR, CT, lung ultrasound) for Covid-19 images provide a

convenient and non-invasive way of diagnosis and hence, medical professionals have been using them along

with the RT-PCR test results. To further help the medical professionals, analyzing the medical images with

AI can be valuable as AI requires significantly less amount of time than the manual process for assessing the

results of the analysis. Hence, AI-based tools and techniques have been popular for Covid-19 analysis tasks

and achieved high accuracy for - (i) detecting if the patient is Covid-19 positive or negative, (ii) classifying

Covid-19 cases from healthy, viral pneumonia and bacterial pneumonia cases, (iii) identifying the severity

of the infection, (iv) segmenting the infected regions, (v) tracking the progress of the disease over specific

time intervals, and vi) indicating the infected region. Various basic ML, DL and hybrid models have been

implemented and tested on Covid-19 images for these tasks. Some basic Covid analysis applications are

shown in Figure 2.4. To accelerate the execution of the image processing, some existing efficient DL models

trained with various image databases were directly applied through TL. Some researchers also proposed novel
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ideas and new deep neural network (DNN) models for the tasks. The experiments done on public or collected

Covid-19 image datasets showed impressive performances for most of these approaches and provided some

guidelines for new relevant researches.

Figure 2.3: Sample heatmap visualization of the CXR of a Covid-19 patient at different days using Grad-
CAM [10].

Within the short period of time since the Covid-19 outbreak, some researchers have developed and

published AI-based tools and applications such as LungPrint [57], InferReadTM Solutions [58], Clara Covid-

19 [59], CAD4COVID [60], AI4COVID-19 [61], CoViDiag [62], Covid-19 Assistant Discrimination [63] etc.

for Covid-19 data analysis, assessment and screening. These tools are either works in progress or ready to

use. Some visualization based AI applications have also been used for distinguishing the Covid-19 infected

regions of the lungs from the remainder of the lung. Figure 2.3 shows sample visualizations of heatmaps of

infected regions of CXRs of a Covid-19 patient on days 3, 7 and 9 respectively using Grad-CAM [64].

The overall framework of medical image processing for Covid detection and segmentation is shown in

Figure 2.5. The medical image datasets are used as inputs. CXRs, CTs and ultrasounds are normally

used for Covid detection and infected lung region segmentation in combination with various types of AI

models/algorithms (i.e. ML, DL, TL, hybrid, etc.). The input images are pre-processed using various

algorithms to mostly remove noises and unnecessary parts from the images and enhance the required pixels.

Then feature extraction algorithms are used to generate significant feature sets from the images. Based

on the image and output requirements, these pre-processing and feature extraction models are chosen from

existing image based algorithms or novel algorithms. The feature sets are then used for classification and

12



Figure 2.4: Covid-19 medical image analysis.

segmentation algorithms. The classification process detects if the image is of a Covid infected lung or not. If

it detects Covid then the next step is segmenting the infected region of the lungs. Segmentation algorithms

extract the infected region as outputs. Both detection and segmentation performances are evaluated with

standard image based performance measures. The image detection methods use various classification models

to classify the image into healthy, Covid-19, and other disease classes. In most cases, the task is to evaluate

if the output class generated by the model matches the class label (i.e. ground truth) of the original data.

Accuracy, precision, sensitivity, specificity and similar scores are computed to evaluate the correctness and

quality of the classifier. On the other hand, the image segmentation task generates images with the segmented

infection region. So, the segmentation evaluation process checks if the pixels from the ground truth image

(i.e. infection region) matches the pixels of the segmented output image. Similarity or dissimilarity metrics

like Dice score, Jaccard scores are generally calculated for image segmentation performance evaluation. The

definitions and equations of these performance metrics are explained in Section 2.3.

In this chapter, a review of recent research efforts on AI-based Covid-19 analysis from medical images is

provided. A few survey papers are also reviewed and summarized along with ML, DL, TL and hybrid model

based research works on Covid-19 medical image analysis. The mentioned approaches are summarized by

including their contributions, novelties, tasks, features, methods, datasets and performance scores. Some

Covid-19 image datasets used in recent relevant approaches are also mentioned with their image character-
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Figure 2.5: Covid-19 medical image detection and segmentation workflow.

istics, ground truths, sources etc. The performance metrics commonly used for Covid-19 image analysis in

recent works are defined and explained. Finally, some challenges and future research scopes based on the

review of Covid-19 approaches are mentioned to provide indications for research directions.

The publications from January 2020 to August 2022 are considered for this literature review. Publications

found in ‘PubMed’ [65] and ‘Google Scholar’ [66] using the following search terms and various combinations

of these terms - ‘covid’, ‘covid-19’, ‘medical images’, ‘x-ray’, ‘ct’, ‘machine learning’, ‘deep learning’, ‘covid

detection’, ‘covid segmentation’, ‘covid image datasets’, ‘covid medical image analysis’, ‘covid medical image

review’, ‘covid medical image survey’. The publications listed in phase 1 were completely based on the

inclusion of the search terms and more recent publication date. In phase 2, the listed papers were read and

analyzed to select the most relevant ones and to remove duplicates. After removing duplicates and selecting

the papers that were based on AI models for Covid-19 detection, segmentation, classification etc., the final

list of papers was created in phase 3. In phase 3, the final papers were selected based on the most recent

publications dates and novelty of the research. This process was repeated for the survey papers and the

AI model based papers separately. Among 50 publications collected on the Covid-19 literature review until

August 2022, 6 were removed from the list at phase 1 as they were not completely based on AI based medical

image analysis. 44 survey papers were shortlisted and read in phase 2. Finally, in phase 3, 18 of them were
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finalized for this chapter since they were most relevant to the topic and their publication dates were more

recent meaning they included more updated summaries of the research work on Covid-19 medical image

analysis. Similarly, for the AI model based papers, 224 papers were collected in phase 1. After removing the

duplicates and irrelevant ones, 50 papers were shortlisted in phase 2 and finally 32 were summarized in phase

3 by checking the novelty of the works. The medical image datasets available for Covid-19 were searched and

listed based on the dataset searches and the mentioned datasets in the read papers. 21 datasets that include

Covid-19 CXRs, CTs, or ultrasounds (mostly images in different formats) were mentioned with their details

in this chapter. Figure 2.6 shows the survey papers, AI model-based papers and dataset selection process.

Figure 2.6: The paper selection process for this review.

The major contributions of this chapter are -

• providing a summary containing analysis of recent Covid-19 medical image based researches using AI

tools,

• discussing basics of ML, DL, TL models, common evaluation metrics for the topic,

• summarizing existing recent literature reviews on the topic to present the overall research directions

on the topic,

15



• providing a literature review on recent AI model based researches on Covid-19 medical image analysis,

• listing the methods, datasets, type of data, performances and major contributions of recent researches

on the topic,

• providing necessary resources on available Covid-19 medical image databases,

• listing the challenges related to the research topic to indicate possible future research ideas.

The rest of this chapter is outlined as follows. Section 2.2 shows the basics of AI models and algorithms.

Section 2.3 includes the performance metrics used in Covid-19 detection, classification and segmentation.

Section 2.4 and 2.5 include summaries of some existing works on Covid-19 analysis surveys and various AI

models (ML, DL, TL and hybrid methods) respectively. Section 2.6 lists some available image datasets

for Covid-19 detection methods. Section 2.7 discusses the scopes and challenges with respect to Covid-19

analysis and Section 2.8 concludes the chapter.

2.2 AI Models

Figure 2.7: Relationships between AI, ML, DL, and TL.

AI is used to minimize human interaction with systems using computers to mimic human intelligence
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[67]. Medical data analysis is one of the major applications of AI and different ML algorithms have been

used for automated systems that use medical data (i.e. image, text, audio, etc.). AI models have been used

in disease detection and diagnosis with ML, DL and TL models. Analyzing large amount of medical data

with speed, accuracy and precision made AI tools and AI based automated systems popular to healthcare

workers and patients. Most healthcare professionals nowadays use some type of AI tool for all phases of

patient diagnosis and management. Figure 2.7 shows the generic structure of AI algorithms.

2.2.1 Machine Learning (ML)

Figure 2.8: ML models.

ML is a subset of AI that enables a computer to learn from the given data. ML can be supervised,

unsupervised, semi-supervised and reinforcement learning [68] as shown in Figure 2.8. Supervised learning is

the learning process where the machine learns to generate outputs from inputs based on training input-output

samples. Supervised learning processes use training output labels to learn to generate labels for test data

for classification and regression tasks. Support vector machine, näıve bayes, linear regression, decision tree

etc. are some efficient classification algorithms [69]. The machine may also learn by extracting features from

unlabeled data in what is known as unsupervised ML. Clustering and association algorithms like k-means,

DBSCAN are data-driven learning algorithms. Semi-supervised learning is a combination of supervised and

unsupervised learning process that uses both labeled and unlabeled data to achieve better classification than

unsupervised models by utilizing the available data labels in the training process. Reinforcement learning

is an environment driven learning process that learns by rewards and penalties on correct and incorrect

predictions respectively.
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2.2.2 Deep Learning (DL)

Figure 2.9: Artificial Neural Network (ANN) vs. Deep Neural Network (DNN) [11]

Figure 2.10: A sample CNN structure for medical image analysis [12]

DL is a subset of ML that is implemented with DNNs. The DNN is a special type of ANNs that have

multiple hidden layers between the input and output layer as shown in Figure 2.9 [11]. ANNs were inspired

by the brain of living things and they were created to mimic the learning process of biological brain. As

DNN is also an ANN, it also learns complex information by using the layers of neurons connected to each

other. Each layer of a DNN transforms the input data or the output of the previous layer into more complex

format with different types of feature values. By encoding and decoding the information between layers of

the network, the DL models learn and produce outputs. Convolutional Neural Networks (CNNs), U-Net,

GoogleNet, ResNet, DenseNet, AlexNet are some examples of DNNs.

CNNs are multi layer perceptron networks that are inspired by biological brain that are able to analyze

and detect patterns in image pixels [12]. Due to the efficiency of CNNs in image feature extractions, most of

the DL models for image analysis are generated with different combinations of CNNs and other supporting
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components. As CNN is a DNN, it is constructed with an input layer, an output layer and multiple hidden

layers between them. The layers will include convolution layers that generate feature maps from the input

images to pass to the next layer. The convolution layers are normally followed by pooling layers that reduces

the dimension of the convolution layers and the fully connected layers connect each neuron of one layer

to every neuron of the other layer. The feature maps generated from the input images and passed along

the layers while updating the feature maps by collecting more complex information finally produce the

classification output for the input image.

The image analysis DL models have a general format that includes i) data pre-processing, ii) data

augmentation, iii) CNN/DNN model, iv) post-processing, v) final prediction/segmentation/classification.

Most researches on image analysis for object detection and segmentation from various types of images (i.e.

medical images, non-medical images like facial images, tongue images, etc.) use similar frameworks with

CNN/DNN structures [70, 71]. The pre-processing and post-processing can be as simple as applying some

thresholding or as complex as applying some DNNs. They also may include data normalization, model

regularization [72], noise removal etc. The data augmentation [73] is a popular step in medical image

analysis with DNNs as the number of available medical image data is limited and DNNs perform better with

large datasets. The data augmentation process uses different methods to modify the existing data to create

new data for dataset extension. Various CNN/DNN models are then applied on them to generate outputs.

2.2.3 Transfer Learning (TL)

Figure 2.11: Transfer learning.

TL uses the idea of knowledge transfer from one domain to other related domains [74]. Knowledge

achieved from a known domain (i.e., source domain) can be utilized to reduce training time, necessity of

large amount of labeled data while improving the performance of the model on an unknown but related

domain (i.e., target domain). An example is shown in Figure 2.11. Task A, B, C, D are different types of

tasks from related domains where A and B are source domain tasks and C, D are target domain tasks. The

19



knowledge achieved from task A and B are transferred to solve task C and D, thus TL is applied. Deep

transfer learning (DTL) provides the scope for disease detection not only from medical images, but also from

other non-invasive images like facial images for genetic disorder (i.e., Thalassemia, Down syndrome, etc.)

detection [75]. Although TL does not always ensure better performance, it definitely generates a comparative

alternative approach [76].

Various ML, DL, TL and hybrid models have their own advantages and limitations. The general workflow

of these models are similar. They take medical images as inputs, applies some pre-processing on them to

enhance the image features, then train the model with (i.e., supervised) or without (i.e., unsupervised) data

labels and ground truth images. The outputs generated by the models detect the class of the image for

image detection task, and segment the infected region in segmentation task. The uniqueness of the ML and

DL models is at the ANN/DNN structure. By varying the DNN structure, number of levels of neurons, the

connections between the neurons, parameters and weights of parameters, these models can extract different

types of implicit and explicit features from the images based on their pixels, textures, intensities, semantic

measurements etc. Hence, the outputs of the models vary as the outputs depend on the features used to train

the system. The TL model outputs may vary based on the similarity and dissimilarity between the source

and target domains. Inferring a general decision on the best model is difficult as the performance of the

models vary depending on the data, extracted features, model hyperparameters, and the overall structure of

the model.

2.3 Performance Metrics

Most approaches for Covid-19 detection from chest image inputs have used some popular classification and

segmentation problem based performance metrics. The evaluations of the proposed or existing systems were

mainly analyzed by classification accuracy, loss, true negative rate (TNR) or specificity, positive predictive

value (PPV) or precision, true positive rate (TPR) or recall or sensitivity, false positive rate (FPR), F1-

score, receiver operating characteristic (ROC), area under the ROC curve (AUC) and Matthews correlation

coefficient (MCC), Dice coefficient/score, Jaccard coefficient/index [77, 78].

The values for true positive (TP) and true negative (TN) represent the number of correct predictions of

the ‘Positive’ class and ‘Negative’ class respectively. False positive (FP) and false negative (FN) represent

the number of incorrect predictions of ‘Positive’ class and ‘Negative’ class respectively. The accuracy value

represents the percentage or amount of correctly classified data and loss shows the difference between the

prediction and ground truth. The equation for accuracy calculation using the confusion matrix is mentioned

in equation 2.1.
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Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

The PPV score shows the ratio of correctly predicted positive values with respect to the total predicted

positive values. TPR represents the ratio of correctly predicted positive values to all actual positive values

and TNR represents the ratio of correctly predicted negative values to all actual negative values. FPR shows

the ratio of predicted values to all actual negative values. F1-score represents the harmonic mean of PPV

and TPR values. The calculations for these parameters are drawn in equations 2.2, 2.3, 2.4, 2.5 and 2.6.

PPV or Precision =
TP

TP + FP
(2.2)

TPR or Sensitivity or Recall =
TP

TP + FN
(2.3)

FPR =
FP

FP + TN
(2.4)

TNR or Specificity =
TN

TN + FP
(2.5)

F1 score =
2 . PPV . TPR

PPV + TPR
(2.6)

The ROC curve is a probability curve that plots TPR against false positive rate (FPR) at different

decision thresholds. AUC is a summary of the ROC curve and it represents the capability or separability of

the classifier to differentiate between classes. The higher the AUC, the better the classifier is at differentiating

the elements of different classes. Figure 2.12 shows a sample of a typical ROC and AUC.

The MCC score represents the quality of classification for a classifier. If the classifier generates 100%

correct classifications, then the values of FP and FN are 0s. In that case, MCC score is 1 showing the perfect

quality of the classifier. It can be calculated by equation 2.7 as follows.

MCC =
(TP . TN)− (FP . FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.7)
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Figure 2.12: ROC and AUC [13].

For Dice score and Jaccard index calculation, let A and B be the output image and the ground truth.

Dice score measures the similarity between A and B with equation 2.8 and 2.9. Jaccard index calculates the

similarity between A and B by incorporating the triangle inequality with equations 2.10 and 2.11.

Dice score(A,B) =
2|A ∩B|
|A|+ |B|

(2.8)

Dice score(A,B) =
2TP

2TP + FP + FN
= F1 score (2.9)

Jaccard index(A,B) =
|A ∩B|
|A ∪B|

(2.10)

Jaccard index(A,B) =
TP

TP + FP + FN
= IoU (2.11)

2.4 Survey/Review Papers

Researchers are trying to find good solutions for detecting, diagnosing and monitoring the disease as well as

developing drugs and vaccines for Covid-19. Although the available knowledge, resources and systems are

very limited with respect to curing the disease completely, researchers from various fields are approaching

the problem of finding solutions as soon as possible. The first step for solving any problem is to gather

as much information as possible on the problem and information about existing approaches or solutions to

the problem. Therefore it is essential to review existing works in order to understand the problem, provide

possible solutions and review challenges and scopes of research. Some researchers have been working on

reviewing or summarizing the problem origin, applied methods, their advantages and limitations, available
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datasets, available tools and applications of Covid-19 and presented them in survey/review papers. In this

section, a few existing survey papers on Covid-19 approaches using image data were reviewed as follows.

Alafif et al.[79] recently summarized the existing approaches used for Covid-19 detection, segmentation,

diagnosis, challenges and future research directions in a comprehensive survey paper. They discussed Covid-

19 from various perspectives with invasive and non-invasive systems, available tools, drugs and vaccine

including a review of the origin of Covid-19, its’ severity and current situation. A comparative discussion on

manual vs. AI-based Covid analysis was discussed, and the advantages of AI tools due to their accuracy and

instant outputs was included. Chest CT and X-rays were discussed with current ML, DL and hybrid methods

using these images for their processing. Some available AI tools and models like CovidAID [80], Clara Covid-

19 [59], COVNet [81], FluSense [82] etc. were also mentioned with their applications for Covid detection,

Covid severity classification, Covid ROI segmentation and patient monitoring. They listed some recent works

with their methods, datasets and performance metrics and most of them used DNNs as Truncated Inception

Net, Darknet-19, U-Net, V-Net, VNet-IR-RPN, VB-Net, U-Net++, SqueezeNet, ResNet, DenseNet etc.,

TL, and some used popular ML models like SVM, RF etc. Covid-19 analysis with audio inputs (respiratory

sounds like cough, breathing, and voice) were also mentioned by the authors with similar listing. The drug

and vaccine development procedure for Covid-19 was explained and AI-based drug development systems

that researchers have been working on were included. Finally the review was concluded with the challenges

and scopes of Covid-19 detection, diagnosis and analysis. The review showed the advantages of using DL

models for Covid-19 analysis that were able to produce 90% to 100% accuracy, sensitivity, specificity and

AUC and performed better than radiologists in some cases. It has therefore been shown that AI-based tools

and devices can provide rapid outcomes assisting patient diagnosis significantly and thus help healthcare

professionals in their fight against covid-19.

Another recent survey on the application of AI for Covid-19 [83] included the basics of Covid, general

overview of AI ML models such as RF, SVM, LR, XGBoost and DL models such as ANN, CNN, RNN

and LSTM. 10 CNN based DL models used in recent Covid classification from X-rays and CT scans were

summarized and their performances were compared using F-1 Score, AUROC with accuracy values of more

than 90%. They included the summaries of 7 approaches on Covid-19 severity detection (i.e., moderate,

severe, critical, etc.) with both ML and DL methods. The performances were compared with various

combinations of CT, blood and lab test data. Similar information was included on 10 Covid mortality

risk assessment methods based on demographic, lab tests, medication and other data. The limitations of

these models included lack of datasets, datasets with limited number of data, missing features in datasets,

their applicability to real time systems and lack of proper performance metrics like FPR/TPR, and lack

of discussion. 13 drug repurposing based methods were also discussed with AI applications, features and
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limitation. Finally, the general challenges of AI-based models like generalization, dataset issues, possibilities

of variations and their relevance to the Covid-19 issues were analyzed to provide some guidance for future

research efforts.

Nayak et al. [84] also reviewed recent works on ML and DL-based models for Covid-19 detection and

analysis. They collected 795 papers on Covid-19 after applying some relevant keywords and then filtered

out 672 deemed not relevant. Finally, 123 papers (36 on ML, 64 on DL, 23 on others) were reviewed for

their study. They started with a detail explanation of viruses that had caused severe disease over the last

century and then they discussed the Corona viruses and their effects including Covid-19 on human and other

animals. They described the statistics on death, recovery and active cases in different countries, the reason

for the spreading of the disease, the advantages of ML models for disease detection, data illustration, analysis

and prediction and the limitations of available ML methods. Then they discussed the applications of DL

models to overcome the challenges of ML models and to provide an easier and more effective way for disease

detection, medical image analysis, disease diagnosis, drug and vaccine design etc. The papers with their

datasets, methods, inputs (i.e., text data, image data, time-series data etc.) outcomes were summarized and

compared. Different supervised and unsupervised ML models (i.e., SVM, RF, KNN, K-means, LR, SVR,

DT, ANN etc.) and DL models (i.e. CNN, VGG, ResNet, Inception, LSTM, RNN, DenseNet etc.) were

mentioned with their performances. The data used for Covid-19 research efforts, including clinical data,

biomedical data, online data with their contents, applications, advantages, disadvantages, impacts of ML,

DL for data and challenges with mention of some popular datasets were discussed. The authors included

an extensive critical analysis on existing surveys, popular ML, DL models, publications, data, location and

impacts. Their analysis showed that although 52% of works were done on DL, whereas 29% approaches

were based on ML and 19% on other models, only 11% publications of Covid-19 from December 2019 to

September 2020 were on ML and DL (7% Dl and 4% ML). LR was the most popular ML model used

for Covid-19 analysis and CNN for DL where ResNet, VGG and Inception were the most popular CNN

variations. Among various types of data, 60% Covid-19 research works were on image data (i.e., CT, X-ray,

others), 31% were on text data and the remaining publications were on other data. They also ranked existing

works based on different strategies with respect to method, data and performance. More than 50% of those

publications were from Asia, whereas Europe and North America ranked second and third. The authors also

included detail analysis on the authors, their countries and contributions. Five other existing surveys were

compared to their review and the impacts of Covid-19 on different sectors and concluded with a summary

of their complete analysis.

Lalmuanawma et al. [85] reviewed the ML and AI applications for Covid-19 detection, prediction, contact

tracing and medicine approaches, listed the challenges and future directions for researchers of various fields

24



involved with Covid-19 research in a similar manner. They listed 36 applications for contact tracing developed

by different countries and compared 4 papers on screening, and 4 on prediction and forecasting based on

methods, datasets, validations and performance metrics for clinical, mamographic and demographic datasets.

Mohammad-Rahimi et al. [86] reviewed 105 approaches to Covid-19 from 1827 papers based on some

inclusion-exclusion criteria. The papers used various ML and DL models for analyzing CT or X-rays as

inputs. ML algorithms like SVM, RF, DT, KNN, NB and ensemble classifiers were able to achieve more

than 90% accuracy in most cases with limited amount of data. ResNet, Inception, NASNetLarge. GoogleNet,

CNN, AlexNet, VGG, SqueezeNet, Xception, MobileNet were applied as DL methods for Covid-19 analysis

and the performance metrics scores were close to 100% in many of those methods. Some hybrid models

with combinations from ML, DL and heuristics outperformed individual methods in many cases. They

summarized all papers in a tabular comparison containing the data sources, structures and sizes of the

datasets, pre-processing, best model achieved in each research, the accuracy, sensitivity, specificity and AUC

of their models for comparison. Although CT images provide more detail than X-ray images, the review

showed that X-rays images were also very efficient for Covid-19 detection and severity classification. One

of the major issues of Covid-19 research efforts is limited and inconsistent data with missing annotations.

Preparing complete and reliable Covid-19 image datasets was mentioned as necessary future work. Due to

the limitation of data, ML models performed very similar as DL models, and also had a higher learning speed

than DL methods. Thresholding, morphological operations, histogram equalization and data augmentation

were the most popular pre-processing steps. They also discussed possible future directions with TL as it

showed promising performance for Covid-19 approaches.

A recent brief review on AI models for Covid-19 detection, classification and segmentation from medical

images listed 12 infection segmentation researches and 23 AI model researches [87]. Medical imaging and

details of CT scan procedure with respiratory disease indications were discussed with respect to Covid

patients. The image segmentation framework was explained with 12 recent lung and infection segmentation

application that mostly used U-Net, U-Net++ and Inf-Net. The U-Net and Inf-Net architectures were

described step by step to explain the segmentation process. Afterwards, 23 papers on Covid classification

and segmentation from CXRs and CTs with YOLO, VGG, U-Net, U-Net++, basic DNN, ResNet, GoogleNet

etc. were discussed and their results were compared. Finally, the contributions of image analysis for Covid

screening and severity assessment were summarized to conclude the survey.

Another recent survey by Subramanian et al. [88] included a brief summary of recent DL models used in

Covid classification and detection from CXR and CT images. They added an elaborated background on CNN

and other basic DNN models like VGG, ResNet, MobileNet, Xception, DenseNet etc. A brief summary of the

existing TL based researches and novel researches were explained with their architectures and performances.
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7 public Covid image datasets used for classification were discussed after a detailed analysis on Covid medical

image datasets and their characteristics. The accuracy, precision, sensitivity, specificity, NPV, and F1-scores

were defined and the performance of 11 researches with these metrics were compared to discuss the top most

models with high efficiencies.

A review on 30 research papers until August 2020 on Covid-19 detection and severity classification with

performance analysis was discussed in [89]. The authors discussed the dataset details for each paper, the

models used and their performance metrics scores. ML, DL and hybrid models were used for feature ex-

traction, classification for Covid/normal/non-Covid cases, classification of different level of severity of Covid

and Covid area segmentation. ML models like LightGBM, SVM, RF, DT, XGBoost, AdaBoost, Bagging,

and DL models like Inception, InceptionResNet, IRRCNN, ShuffleNet, ResNet, MobileNet, DenseNet, Xcep-

tion, attention, U-Net, U-Net++, CNN and its’ variations were discussed with image data. These methods

showed high performance scores (i.e., higher than 80% in most cases) and up to more than 99% accuracy

and AUC for Covid-19 detection and classification tasks. They also showed the comparisons of the datasets,

methods, sensitivity, specificity, precision, accuracy, AUC, F1-score of 5 papers on Covid/normal image clas-

sification, 13 on Covid/non-Covid classification, 11 on Covid/non-Covid pneumonia classification, and 3 on

Covid severity classification. They concluded with the observations that DenseNet, ResNet and ShuffleNet

performed well for classifications, U-Net++ performed better for segmentation tasks and TL performed well

for all tasks.

Alghamdi et al. [90] reviewed 34 DL-based Covid-19 approaches on CXRs from March 2020 to May

2020. As X-rays are more available, less time consuming and provide precise imaging of organs, using CXRs

for Covid-19 diagnosis is very popular. They described the Covid-19 classification task as a multi-class

problem that was addressed differently from existing works in that the classes are called Covid-19, healthy,

bacterial pneumonia, viral pneumonia, no finding etc. They explored 13 existing datasets containing X-

rays of Covid-19 and other lung diseases with detail descriptions, image specifications, and links. As 71%

research papers from the review were on TL of CNN variations, they described TL and its’ relevance to

Covid-19 approaches. Some popular CNN structures used in those approaches like AlexNet, GoogleNet,

VGGNet, ResNet, Xception, SENet, DenseNet, MobileNet, ShuffleNet, CapsNet, autoencoder etc. were

discussed with the papers, their contributions, methods and performances. 25 papers that used these CNN

based DL models and 14 that used novel architectures were summarized and compared according to their

datasets, contributions, performance scores (i.e., accuracy, precision, specificity, sensitivity, AUC and F1-

score). They also discussed the methods used for visualizing the classification decisions in the reviewed

papers such as Grad-CAM, CAM, gradients, attribution maps, LRP, GSInquire, guided backpropagation

etc. They explained challenges such as class imbalance problem, classification uncertainty, Covid severity
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classification and dataset quality. Some future directions with proper dataset generation, exhaustive feature

extraction, exploring semi-supervised models, GANs and TL etc. were discussed to guide further methods.

Another similar survey on DL-based image analysis for Covid-19 was published recently [91]. Unlike the

previous paper, they reviewed works on both chest CT scan and X-rays.

Bhattacharya et al. [92] focused on ML and DL methods for both Covid-19 analysis and other abnormality

analysis from medical image data. They discussed Covid-19 in a detailed overview consisting of the origin,

current situation, necessity of DL approaches, basics of ML (supervised, unsupervised, semi-supervised)

methods, DL models (i.e., RNN, GAN, CNN etc.) and their applications. They explained medical image

analysis with some recent works for abnormality detection, classification, localization, segmentation, and

registration on various medical images. Outbreak prediction, tracking spread, diagnosis, treatment and

limitations of Covid-19 with ML and DL models was also discussed. They also listed the datasets, methods,

performance metrics and research challenges of 27 medical image analysis approaches and 16 Covid-based

works. They included 3 use cases of DL based Covid-19 detection and monitoring from China, Canada

and South Korea. Finally they discussed the challenges and future research directions for the pandemic

with AI tools. A similar but more general review was done in [93] for analyzing the applications of AI

regarding Covid-19. They provided an elaborate overview of AI applications in Covid-19 research papers

regarding tasks like Covid-19 detection, severity classification, prediction, patient data management, patient

management, resource management, CT image analysis with ML, DL, TL and other AI models, analysis of

biology-based data, drug discovery, social behavior monitoring and management etc. They also discussed

and compared the tasks and performances of 7 research works that used AI-based techniques (mainly DL

models, some ML and other models) for Covid-19 analysis from chest CT images and showed that AI was

able to achieve 97% accuracy.

A detailed survey on imaging techniques for Covid-19 (i.e., CT and X-ray), segmentation of region

of interests (ROIs) from those images, detection of Covid-19, classification, severity detection, diagnosis,

monitoring and Covid-19 image datasets was provided in [94]. The authors reviewed the image-based Covid

methods on various ML, DL and other AI techniques published until 31 March 2020. The workflow for

conventional imaging, AI-based imaging and Covid-19 based specific AI applications for imaging with proper

examples and explanations was included. They discussed basic image segmentation techniques, Covid-19

image segmentation techniques focused on U-Net and U-Net++ models for extracting lung regions and

lesions of lungs. Summaries of 11 Covid-19 segmentation approaches with their data modality, subject

details, methods, applications, ROI (i.e., lungs or lesions) and highlights of their contributions was provided.

They also discussed AI-based techniques for detection, classification, severity measurements and follow-ups

of Covid-19 from images. They summarized 14 approaches on these with their data types, dataset details,
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tasks, models (i.e., U-Nets, CNNs, RFs etc.) and performances. Details on 4 Covid-19 image datasets and

discussed the challenges and future research scopes for Covid-19 detection, segmentation and diagnosis were

listed.

Another recent survey on Covid-19 approaches that used ML and DL techniques on image and text

datasets for diagnosis, prediction and forecasting and providing a detailed overview of pandemics, Covid-19,

existing systems, datasets, challenges and possible future directions was given in [95]. The authors listed

and discussed all pandemics from plague to Covid-19 with timelines and death statistics. Detail on Covid-19

origin, transmission, cases, deaths and their statistics in various countries and timelines were provided. They

summarized 5 works on RF, 5 on SVM and 9 on other ML models like linear regression, K-means, XGBoost,

Gabor etc. with problem statements, type of data, used model, publication time and performance scores.

Similar summaries were included for 14 papers on CNN, 8 on LSTM and 7 on other DL models like GAN,

autoencoders etc. Most of them achieved more than 95% accuracy in their tasks. They also included an

overview on the mathematical and statistical models used for the pandemic losses and prediction analysis

with 9 papers. A performance analysis using the evaluation scores of 5 ML-based approaches and 13 DL-

based approaches was provided. They also included detail statistics on publications on Covid-19, type of

publications, countries, journals, type of data, and prediction-classification-forecasting distribution. They

concluded with a detail discussion on the challenges of Covid-19 like data limitation, prediction accuracy, lack

of advanced tools and applications and absence of customized systems appropriate for developing countries.

A systematic review of 11 Covid-19 research works from the 36 that were identified as published until the

middle of May 2020 was included in [96] after an extensive searching and screening process. The publications

were based on various combinations of classification tasks as binary/multi-class/hierarchical classes. The

authors also mentioned statistics of the databases and countries of publications for the reviewed papers.

Binary, multi-class and hierarchical classes were described in detail with relevance to the existing works and

a critical analysis was done on those papers based on dataset types, methods, case studies of X-rays and

CT scans. The challenges of evaluation, trade-offs and importance of criteria were discussed in detail. An

important contribution of this survey was a complete and step by step research proposal using multi-criteria

decision analysis based on the reviewed works. A complete methodology starting from identification, data

collection, pre-processing, evaluations, methods and validations was elaborately discussed.

Sufian et al. [97] followed a similar idea in their systematic review on Covid-19 approaches that used DL,

DTL and edge computing (EC) for lung image Covid-19 detection and classification. They discussed each

of these methods in detail and with relevance to Covid-19 approaches. Tasks and contributions of 15 papers

on DL models, 9 on DTL models and 7 on EC models for Covid-19 approaches were summarized. The also

included the image and textual datasets used in Covid-19 papers and listed 9 datasets and 7 data sources
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(images & textual) with brief descriptions for each. The current and future challenges that were not only

relevant to Covid-19 detection or classification, but also the human resources and other logistic issues were

analyzed. They finally proposed a complete framework combining DL, DTL and EC for Covid-19 detection,

diagnosis, hospital management and social distancing management as a possible future direction for Covid-19

systems.

A survey on Covid-19 based on mathematical models, AI models and datasets was provided in [98].

The authors reviewed 61 components (19 on mathematical models, 18 on AI, 24 on datasets) published

from December 2019 to April 2020 on Covid including journal articles, websites, reports and fact sheets.

They discussed mathematical models used for Covid-19 spread and dynamics analysis with models like

Susceptible-exposed-infected-removed (SEIR), Susceptible-lovered (SIR) etc. and listed the tasks, models

used in the reviewed mathematical model based approaches. For the AI models mostly used for image data,

they provided detailed discussions on detection and classification from CXR and CT data. ML and DL

models like CNN, NB, LDA, SVM, RF, DT, LR etc. providing explanations according to the corresponding

research items. Methods, datasets, data details, accuracy, sensitivity and PPV were compared for the AI-

based works and showed more than 99% accuracy. They included descriptions and sources of 24 Covid-19

datasets combining image, text and value data. Finally, they discussed the advantages and limitations of

both mathematical and AI models and proposed some possible future directions.

Several researchers have worked on reviews of datasets used in various Covid-19 analyses. A compre-

hensive study of the publicly available Covid-19 datasets, their applications and possible future research

directions was summarized in [99]. The image datasets included chest CT scans and X-rays, whereas the

textual data included case reports on various factors of Covid-19, social network data relevant to Covid-19

and scholarly article information. The authors discussed dataset details like data collection process, loca-

tion, number of data, type of data, data annotation, data availability etc. They also included descriptions

of methods used on those data for Covid-19 detection, segmentation, classification etc. with their perfor-

mances. They discussed the textual data containing demographic, economic, transmission, mobility, social

media emotion, conversation, scholarly article analysis. The application, method, data type and links for 19

resources for images and 26 resources for texts including some Kaggle and Github sources were compared.

The challenges regarding medical image and social media data, privacy issues, authentication with some

future research directions were suggested for Covid-19 analysis.

Another similar research on review of clustering algorithms for Covid-19 datasets was presented in [100].

Various textual datasets containing social network data, demographic data, case report data etc. were

discussed that used clustering algorithms as K-means, FCM, DBScan, hierarchical clustering etc. with

objectives, datasets, methods and results of their analysis. Latif et al. [101] prepared a survey paper
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based on different types of datasets, applications of data science, reviews of current approaches and chal-

lenges of Covid-19. They explored image, textual, biomedical, voice datasets, competition datasets, datasets

from developing countries, community-based datasets, other research works and other statistical datasets on

Covid-19. The data science aspects of Covid data such as risk assessments, classifying patients according

to different priority criteria, proper screening of each patient and diagnosis based on all variables were re-

viewed. They also evaluated various simulations and models used for Covid-19 diagnosis, contact tracing,

imposing social interventions by applying social distancing, managing rumor propagation, planning resources

and logistics accordingly, improving patient care, managing innovations of vaccines and other new medicines

and treatments, controlling economic interventions and applying all of those in different ways for developed

and developing countries. The methods, datasets and techniques (i.e., ML, DL, Hybrid etc.) of 26 recent

approaches on image data, 6 on text data and 7 on pharmaceutical data were summarized. They included

some statistics based on Covid based publications, research topics, other pandemics and listed the chal-

lenges of Covid-19 approaches like data limitation, time constraint, authentication and security, necessity

for multidimensional approaches and data and more concrete approaches for developing countries.

Various researchers reviewed Covid image analysis from different perspectives. Some survey papers

focused on the general framework of the image analysis tasks and mentioned existing works for each step

of those tasks. Some reviews were focused on the papers on Covid image analysis and tried to provide

brief summaries of recent works in the field. Some researchers organized their literature review to combine

all known information on AI based Covid analysis. In this section, a brief idea of the existing literature

is provided with the major tasks they performed, the general approaches they used and their summarized

contributions. The goal of this section is to provide an overall idea of each discussed review paper to relevant

researchers so that they have some indications of combined information resources on these tasks available

currently. Table 2.1, 2.2, and 2.3 show lists of summaries of the contributions mentioned in the review/survey

papers on Covid-19 analysis.

2.5 AI Model-based Papers

Covid-19 approaches on medical image datasets mostly used DL and TL models. Some methods included

popular ML techniques or hybrid models. As CNN models perform better in medical image analysis than

other techniques, various popular CNN models were used in most of the recent works. Although the necessity

and urgency of a complete system for Covid-19 screening encouraged the researchers to use pre-trained CNNs

on Covid-19 datasets for rapid output generation, some researchers focused on proposing novel frameworks

with ML, DL algorithms and achieved promising outputs. Most recent works chose the detection and
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Table 2.1: Survey/review papers.
Ref. Topic Approach Features Contributions

[79]

Detection
Segmentation
Diagnosis
AI tools
Drugs & Vaccines

ML
DL
Hybrid

CT
X-ray
Sounds

Listed AI-tools for Covid-19 detection, segmentation and patient monitoring.
Mentioned DL models like U-Net, U-Net++, V-Net, VB-Net etc. and ML models like
SVM, RF, LR, MLP used for AI-based Covid detection.
Included summaries of existing ML, DL models with datasets, performance metrics
and methods.
Listed the challenges related to data availability, quality, privacy and other similar issues,
lack of collaborations between medical and technical professionals, lack of resources etc.
The future directions included various possible approaches from different stages of the
government, people, medical and technology professionals to overcome this pandemic
as soon as possible.

[83]
Detection
Classification

ML
DL
Hybrid

CT
X-ray
Blood
Lab tests
Demographic
Medication
Symptoms
Comorbidity

Described general overview of various popular ML and DL models.
Summarized and compared 10 recent Covid classification models using various CNN-
based DL with limitations.
Summarized 7 ML and DL models for Covid severity detection with limitations.
Summarized 10 ML and DL models for Covid mortality risk assessment with their
limitations.
Summarized 13 ML and DL models for drug repurposing and epidemic trend detection
with limitations.
Listed challenges of AI-based models and Covid-19 based approaches with possible
future directions.

[84]

Detection
Prediction
Classification
Forecasting
Screening & Assessment
Diagnosis
Others

ML
DL
Others

CT
X-ray
Lab tests
Demographic
Statistics
Others

Reviewed 123 papers (36 on ML, 64 on DL, 23 on others) on Covid.
Discussed viruses, diseases, corona, Covid-19, Covid-19 statistics, ML and DL in disease
detection, prediction, analysis etc. in detail.
Discussed the clinical, biomedical and online data with their advantages, challenges
impacts on Covid-19 research with ML and DL models.
Included critical analysis for data, methods, publications, research types, most popular
ML and DL models, authors, countries etc.
Compared their ML and DL survey with 5 other ML survey papers.
Listed and analyzed the sectors affected by Covid-19.

[85]

Screening
Contact tracing
Prediction
Forecasting
Drugs & vaccines

ML
DL

Clinical
Mamographic
Demographic

Reviewed research papers on Covid-19 screening, detection, prediction, contact tracing,
drugs and vaccines using basic AI methods containing ML and DL models.
Listed 36 applications for contact tracing developed by different countries.
Compared 4 papers on screening, and 4 on prediction and forecasting based on
methods, datasets, validations and performance metrics.

[86]
Diagnosis
Detection
Prediction

ML
DL

CT
X-ray

Reviewed 105 Covid-19 approaches based on some inclusion and exclusion criteria.
Discussed ML, DL and hybrid models with their data sources, dataset details, models
and performance metrics.
Listed limitations and possible future research directions relevant to proper and
complete datasets, approaches on X-ray based models and TL.

[87]

Detection
Classification
Segmentation
Screening
Assessment

ML
DL

CT
X-ray

Reviewed latest applications on Covid detection and segmentation from chest imaging.
Discussed CT characteristics of different respiratory issues.
Highlighted the details of 12 recent Covid infection segmentation researches on U-Net,
U-Net++, Inf-Net.
Discussed details of U-Net and Inf-Net structures foe segmentations.
Reviewed 23 AI-based researches for Covid-19 image analysis.
Discussed Covid image screening, severity assessment and public datasets briefly.

[88]
Detection
Classification
Datasets

DL
CT
X-ray

Discussed basic CNN and other DL model architectures in details while mentioning
the recent Covid classification researches.
Explained TL and novel approaches for Covid classification with brief summaries of
existing researches.
Compared performances of 11 recent researches that used DL models.
Discussed public Covid image datasets and mentioned details of 7 of them.

[89]
Detection
Classification
Segmentation

ML
DL

CT
X-ray

Reviewed 30 papers on Covid-19 detection and severity classification using image data.
Discussed the papers in detail starting from datasets, subjects of the datasets,
pre-processing, feature extraction, classification and segmentation methods and
performances scores.
Compared datasets, methods and performance metrics of 5 papers on Covid/normal
image classification, 13 on Covid/non-Covid classification, 11 Covid/non-Covid
pneumonia classification, and 3 on Covid severity classification.
Observed that DenseNet, ResNet and ShuffleNet performed well for classification and
U-Net++ performed better for segmentation.
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Table 2.2: Survey/review papers.
Ref. Topic Approach Features Contributions

[90]
Detection
Classification

DL X-ray

Reviewed 34 Covid-19 approaches on CXRs between March and May 2020 that
used DL models.
Discussed the classification task for Covid-19 to define the X-rays as Covid-19,
normal, pneumonia, and some other classes.
Summarized 13 datasets used in relevant papers with number of images, resolutions,
formats, descriptions, Covid existence and links.
Discussed popular CNN-based DL models used in Covid-19 research.
Summarized 25 papers that used these CNN based DL models and 14 that used novel
architectures including datasets, contributions, performance scores like accuracy,
precision, specificity, sensitivity, AUC and F1-score.
Explained the methods used for visualization of classification decisions.
Included challenges and future directions for Covid-19 approaches.

[92]

Detection
Classification
Segmentation
Localization
Registration
Contact tracing
Drugs & vaccines

ML
DL

Medical images
Covid images
(CT, X-ray)

Provided detail on Covid-19, severity, basics of ML and DL models.
Explained ML and DL basics, their applications, medical image analysis fundamentals.
Discussed recent works on detection, classification, localization, segmentation, and
registration of medical image analysis with ML and DL models.
Summarized recent works on DL models for Covid-19 detection, tracking disease,
diagnosis, treatment, drug, vaccine and their limitations.
Listed datasets, methods, evaluation metrics and research challenges of 16 Covid-based
papers and 27 medical image analysis papers.
Included challenges of existing approaches and datasets.
Included 3 use cases of DL based Covid-19 detection and monitoring from China,
Canada and South Korea.
Discussed challenges and future research directions for Covid-19 using AI tools.

[93]

Detection
Diagnosis
Tracking
Prediction
Drugs
Application

ML
DL
TL
Others

CT

Provided detail analysis and overview of AI-based applications for Covid-19 detection,
severity classification, prediction, patient management, resource management, various
models (ML, DL, TL, hybrids, etc.) for Covid-19 analysis from CT images,
performance analysis, biology-based analysis of Covid, drug discovery, social behavior
monitoring and management.
Compared the methods and performances of 7 AI models that used CT as inputs.

[94]

Imaging
Segmentation
Detection
Classification
Diagnosis
Monitoring

ML
DL
Others

CT
X-ray

Reviewed image-based Covid-19 approaches until 31 March 2020.
Provided detail on the workflows of conventional, AI based imaging and AI applications
used for scanning patients for Covid-19.
Discussed segmentation basics and methods for segmenting lung region and lesions
(focused on U-Nets and U-Net++).
Summarized 11 approaches on Covid-19 ROI segmentation from lung images with data
type, models, applications, target ROIs and observations.
Discussed X-ray and CT-based techniques including classification, severity assessment,
follow-ups and summarized 14 approaches with datasets, models, tasks, and results.
Included 4 Covid-19 CT and X-ray datasets, research challenges and future scopes.

[95]
Classification
Prediction
Forecasting

ML
DL

Image
Textual

Provided list of pandemics since Plague with time period and death statistics.
Provided an elaborate analysis on the origin of Covid-19, its’ transmission, statistics
related to case and deaths in different countries etc.
Compared approaches, datasets and tasks of recent approaches including 19 ML
methods (5 on RF, 5 on SVM, and 9 others), 29 DL methods (14 on CNN, 8 on
LSTM, 7 others) and 9 statistical and mathematical models.
Included performance analysis based on evaluation scores of 5 ML and 13 DL approaches.
Provided statistics on publications, type of publications, countries, journals, type of data,
and prediction-classification-forecasting distribution.
Discussed challenges due to data limitation, prediction accuracy, lack of more advanced
tools and absence of systems appropriate for developing countries.

[96]
Detection
Classification
Proposed framework

ML
DL

CT
X-ray

Included a systematic review on 11 Covid-19 approaches that used AI techniques.
Discussed Covid-19 classifications as a problem of various combination of classification
model - binary, multi-class, hierarchical and explained each in detail.
Mentioned statistics of databases and countries of publications.
Listed types of datasets, methods and case studies used in each paper.
Included critical analysis and challenges of Covid-19 detection with AI technologies
from medical images regarding evaluation, trade-offs, and importance of criteria.
Defined all evaluation metrics used in existing approaches.
Provided a complete methodology with identification, data collection, pre-processing,
evaluations, methods and validations.
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Table 2.3: Survey/review papers.
Ref. Topic Approach Features Contributions

[97]
Detection
Classification
Proposed framework

DL
DTL
Edge Computing

Image
Textual

Discussed DL, DTL and EC models in detail with relevance to Covid-19 approaches.
Reviewed existing works on these methods and on Covid-19 related to these methods.
Compared the tasks and contributions of 15 papers on DL models, 9 on DTL models
and 7 on EC models for Covid-19.
Listed 9 datasets and 7 data sources (images & textual) on Covid-19 and included
brief descriptions for each of them.
Discussed the challenges of Covid-19 based approaches and proposed a complete
framework combining DL, DTL and EC for Covid-19 detection, diagnosis, hospital
and social distancing management.

[98]

Detection
Classification
Propagation
Management
Applications
Methods
Datasets

Mathematical
AI (ML,DL,Others)

Image
Textual
Others

Reviewed 61 approaches including journal articles, reports, websites published from
December 2019 to April 2020.
Discussed mathematical and AI models for Covid-19 detection, classification,
propagation and compared the methods used in existing works from each category
based on tasks, performances and models.
Listed 24 datasets including Covid-19 images (CT, X-ray), text (i.e., demographic,
social media etc.), values (i.e., economic, climate etc.) and other types with data type,
size and sources.
Discussed advantages, limitations and possible future research directions for both
mathematical and AI models.

[99]
Datasets
Applications
Methods

ML
DL
Statistical

Image
Textual

Discussed about image (CT, X-ray) and text (case reports, social media posts, scholarly
articles) datasets for Covid-19.
Described ML, DL and statistical models that used those datasets and achieved good
performance for Covid-19 detection, segmentation, classification etc.
Included comparative lists of 19 image resources and 26 text resources for Covid-19.
Discussed challenges and future works for Covid-19 datasets and approaches.

[101]

Datasets
Applications
Data science
Methods
Challenges

ML
DL
Hybrid
Evolutionary
Others

Image
Textual
Biomedical

Explored image, textual, biomedical, voice datasets, competition datasets, datasets
from developing countries, community-based datasets, other research works and other
statistical datasets on Covid-19.
Discussed data science issues relevant to patients and diagnosis.
Discussed simulations and models from clinical, social, economical, logistical, and
various other perspectives.
Reviewed recent works based on datasets, techniques, methodologies for 26 papers
on image data, 6 papers on text data and 7 papers on pharmaceutical data.
Included statistics and challenges related to Covid-19 diagnosis.

33



classification task, but few papers also provided methods for infected region segmentation and visualization.

The detection and classification tasks were used on medical images like CXR, CT and ultrasounds as binary

(i.e., Covid-19 or normal), 3 classes (i.e., Covid-19, normal, pneumonia) and 4 classes (i.e., Covid-19, normal,

viral pneumonia, bacterial pneumonia) tasks. The visualization task based works mostly highlighted infected

lung regions. The segmentation tasks segmented the lung regions and the infected parts of the lungs.

Some recent AI-based approaches for Covid-19 detection, classification, segmentation and visualization are

summarized below.

Chandra et al. [102] recently proposed a two phase Covid-19 screening system for classifying X-ray

images into Covid-19 infected, Covid-19 suspected and normal images. After pre-processing (i.e., resizing,

denoising, normalizing, etc.) the images, they used 4 data transformation techniques (i.e., sharpening,

Gaussian blur, brightness modification and contrast modification) for data augmentation. Then a binary

grey wolf optimization (BGWO) algorithm was used to select the best features from 8196 features (i.e 8

first order statistical features (FOSF), 88 grey level co-occurrence matrix (GLCM) and 8100 histogram

of oriented gradients (HOG) features). Decision tree (DT), support vector machine (SVM) with 3 different

kernel functions in 3 separate models, k nearest neighbor (KNN), näıve bayes (NB) and ANN were trained in

two phases (phase I- normal/abnormal, phase II- normal/abnormal Covid-19/abnormal pneumonia). Finally

majority voting was used to generate the final output. The proposed method achieved 98.06% accuracy in

phase I and 93.41% in phase II and the results were comparable to 5 and 6 similar Covid-19 approaches for

2 and 3 class problems respectively.

Another similar ML-based Covid-19 detection and classification research was proposed recently in [103].

They explained the origin, transmission, statistics and other basics of Covid in detail. Then they proposed a

Ml approach for Covid-19 X-rays to classify them into Covid-19 and non-Covid-19 classes that outperformed

the accuracy of DL models. After some basic pre-processing were done on the input image, the luminance

value for each pixel was determined by the luma transform to extract 10,000 features from each image. Then

the hybrid social group optimization (HSGO) algorithm was used to select the best set of features (i.e., 116

features) for each image as it achieved the highest accuracy with lowest number of features compared to SGO,

principal component analysis (PCA) and kernel PCA (KPCA). The feature sets were applied as inputs to

5 ML classifiers - KNN, DT, random forest (RF), support vector classifier (SVC), and linear SVC (L-SVC).

The SVC classifier achieved the highest accuracy of 99.65% outperforming 12 other DL and bio-inspired

algorithms for Covid-19 classification.

A novel idea called One-shot Learning was proposed and implemented in [104]. To use all necessary

information from a limited amount of data of a multi-class problem, the model extracted the best samples

from each class by ranking them based on their discrimination ability among classes. Then samples were
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chosen randomly from the best sample sets to create clusters for the one-shot learning of ensemble classifier.

They proposed an ensemble model combining Generalized Regression Neural Network (GRNN) and Prob-

abilistic Neural Network (PNN) classifiers. After extracting raw features by the one-shot learning model,

GRNN and PNN were individually applied for best performing samples that were used for clustering. The

enhanced features were then used for the ensemble model of GRNN and PNN to produce final classification

outputs. They used 2, 3 and 4 classes for Covid, normal, viral pneumonia and bacterial pneumonia and

achieved 100%, 80% and 65% accuracies on average respectively. Their experiments on Covid-19 X-ray

dataset showed performances comparable to the popular DNNs AlexNet, GoogleNet and ResNet18.

A 23-layer CNN was proposed in [105] for Covid-19 CT images classification with a comparative analysis

of ML, DL and texture analysis methods for the task. They included summaries of 7 studies from 2020 on

Covid-19/non-Covid-19 classification from CT images with their datasets, methods, test models, and results.

At the pre-processing stage of the proposed approach, they applied GLCM, local binary pattern (LBP), and

local entropy (LE) on each original image and then used basic data augmentation on these and the original

images to increase the dataset 5, 10 and 20 times. The augmented datasets for their proposed 23-layer

CNN containing 1 input layer, 5 blocks of convolution, batch normalization, Relu and max-pooling, 1 fully

connected layer, 1 softmax layer, and 1 output layer was then applied. They experimented on their proposed

model with various combinations of data augmentations (i.e., 5, 10 , 20 times) and data combinations (i.e.,

original, GLCM, LBP, LE) with 2 and 10 fold cross-validation. They applied 2 DL models (AlexNet and

MobileNetV2) and 2 ML models (SVM and KNN) with similar data augmentations and combinations to

compare their model. They also compared the model performance with 7 existing Covid-19 CT image

classification and achieved comparable performances.

Ismael et al. [106] proposed a novel Covid-19 detection model for CXR images using a hybrid model

containing ML, DL and TL methods. After resizing the input images, pre-trained ResNet18, ResNet50,

ResNet101, VGG16 and VGG19 models were fine tuned and used for deep feature extractions from the

images. A SVM model with linear, quadratic, cubic and gaussian kernel functions was used for training

on the extracted deep features. They also experimented with eight local texture descriptor features to

compare their affects on the classification. ResNet50 features with linear kernel SVM achieved the highest

accuracy with 94.7% for classifying the images into Covid19 and normal categories in minimum time (i.e.,

48.9 seconds).

Another similar approach combining ML, DL and Sobel filtering for Covid-19 detection from X-ray

images was proposed in [107]. They reviewed 25 existing approaches on Covid-19 detection from X-ray and

CT images with DL models and proposed the scopes of their work. They then generated their own dataset

containing verified annotations of 333 X-rays collected at Omid Hospital in Tehran from February 2020 to

35



April 2020. 256 of those images were normal and 77 were Covid positive. The Sobel filtering for detecting

the edges from the images was then applied and then they were pre-processed for two CNN models - one

with sigmoid output layer and another with SVM output layer that used 10 fold cross validation. They

showed that using Sobel filtering improved the performance of the network and achieved 99.02% accuracy.

Their model was also tested with 6 public datasets and generated high accuracy. The proposed method

outperformed most of the results of 11 recent DL-based Covid-19 detection approaches.

A novel pre-processing method with fuzzy and stacking techniques was used in a hybrid model in [108]

combining ML and DL methods for classifying images into Covid-19, normal or pneumonia classes. Each

input image was reconstructed with fuzzy color algorithm for RGB values and the reconstructed images were

added to the original data using stacking algorithm to reduce noise and improve image quality. The complete

image set was then fed separately into 2 pre-trained DL models named SqueezeNet and MobileNetV2 for

feature extraction. Then a social mimic optimization (SMO) algorithm was used on each feature set to select

the best set of features that were then combined to create the feature set of the image. Finally, a multi-

class SVM used these features to classify the images into Covid-19, normal or pneumonia classes. Various

combinations of the images and networks showed that the proposed model with fuzzy color and stacking

algorithms achieved the highest accuracy of 99.27% compared to the model with features from the individual

networks. The system was also computationally cost effective as it used fewer parameters and features.

Elkorany et al. [109] proposed a very similar hybrid of ML, DL and TL models named COVIDetection-

Net combining two popular pre-trained CNN models for deep feature extraction and a multi-class SVM

(MSVM) for classification of images into Covid, normal, viral pneumonia and bacterial pneumonia classes

(2, 3 and 4 classes respectively) with those features. Pre-trained ShuffleNet and SqueezeNet were applied

on the datasets separately to generate 544 and 1000 features respectively. All 1544 deep features were then

fed to a MSVM for 2, 3 and 4 class classification. The comparisons between the results of COVIDetection-

Net and individual Shufflenet and SqueezeNet showed that combining features from both improved the

performances for all classes. A comparison between the proposed model and two popular Covid-19 detection

models Coronet[110] and CovXNet[111] showed 2% to 7% improvements in COVIDetection-Net. They also

compared their model with 18 other approaches on Covid-19 detection including 2, 3 or 4 class classifications

proving COVIDetection-Net achieved the highest accuracy 100%, 99.72% and 94.44% for 2, 3 and 4 classes

respectively.

Bhattacharyya et al. [112] proposed a segmentation and classification system for Covid-19 X-ray images

to classify them into normal, Covid, and pneumonia classes. A conditional GAN model was used for lung

segmentation to minimize the ROI for classification. After segmenting the lungs from the X-rays, different

keypoint extraction methods like SIFT, BRISK, k-means etc. were used for keypoint extract and DL models
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were used for deep feature extractions. The feature sets were then applied for the final classification. The

proposed model was compared to similar 5 recent DL-based classification and outperformed all of them with

96.6% accuracy. A Bayesian DL model was used in [113] for classifying CXRs into the same three classes -

normal, Covid, pneumonia with 96% classification accuracy on similar datasets. They applied the proposed

model on a combination of a Covid X-ray dataset and a pneumonia X-ray dataset. The combined dataset

was divided into training, testing and validation sets. A basic 5 layer CNN model was used to extract the

feature set from the X-rays and then the Bayesian optimizer was used to tune the hyperparameters to achieve

the highest performance for the CNN for the 3 class classifier.

A novel feature fusion model for Covid-19 detection, classification and segmentation was proposed in

[114] that combined 3780 histogram-oriented gradient (HOG) features and 4096 features extracted by a pre-

trained CNN (VGG19) automatically. The best 1186 features selected by maximum entropy method were

used for Covid-19 classification with another pre-trained VGG19 model. A modified anisotropic diffusion

filtering (MADF) algorithm was used for noise removal from Covid-19 positive images. Then the effected

lung regions were segmented with the watershed algorithm. The classification achieved 99.49% accuracy

that outperformed 19 other DL-based Covid-19 detection models.

A TL-based model was proposed in [115] to overcome the limitations of existing Covid-19 detection

models with the application of Haralick features for texture analysis. The input images were pre-processed

for histogram equalization, weiner filter and ROI cropping. Then the Haralick texture features were extracted

from the pre-processed images for classification. Pre-trained DL models Resnet50, VGG16 and InceptionV3

were applied on a combination of X-ray and CT images collected from various sources to classify them into

4 classes : normal, Covid-19, viral pneumonia, and bacterial pneumonia. They also provided visualization

for the infected lung region using Grad-CAM. The proposed model was tested with individual and combined

Haralick features to analyze their effects on the classification and was discussed in detail. The model

outperformed 9 existing Covid-19 classification approaches using ML, DL and TL models with 93% accuracy.

Wang et al. [116] proposed one of the pioneering state-of-the-art DL models for Covid-19 detection

called Covid-Net based on a projection-expansion-projection-extension (PEPX) design with human-machine

collaboration strategy. They also generated one of the largest Covid-19 X-ray benchmark datasets called

COVIDx with 13,975 CXRs from 13,870 patients. They designed a two steps network that included one stage

with 1 convolution layer, 16 PEPX blocks, 1 flatten layer, 1 fully connected layer and a softmax output layer,

and second stage with 4 convolution layers for long range connectivity. Each PEPX block contained 5 layers

for projection, expansion, depth-wise convolution, second stage projection and extension for incorporating

all features accurately. The proposed model was compare to VGG-19 and ResNet-50 and outperformed them

both by 3% to 10% while achieving 93.3% accuracy.
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Another novel 22-layer CNN-based Covid detection model named CoroDet was proposed in [117]. CoroDet

contained 9 2D convolutional layers, 9 max pooling layers, 1 flatten layer, 2 dense layers and 1 layer with a

leaky Relu activation function. CoroDet was able to classify X-ray and CT images into 2, 3 and 4 classes as

Covid-10, normal, non-Covid pneumonia (non-Covid viral pneumonia and non-Covid bacterial pneumonia).

The model was tested on of the largest Covid image dataset COVID-R and achieved 99.1%, 94.2% and

91.2% accuracy for 2, 3 and 4 class problems respectively. COVID-R was generated by collecting, combining

and modifying X-ray and CT images from eight public datasets and was one of the major contributions

of their research. The proposed method was compared to 10 similar Covid-19 classification methods and

outperformed all by at least 1% to at most 17%.

Narin et al. [118] proposed a TL CNN-based Covid-19 detection model for classifying CXRs into 4

classes as Covid-19, normal, non-Covid viral pneumonia and non-Covid bacterial pneumonia with 3 binary

classification models. They used 5 pre-trained CNNs: ResNet50, ResNet101, ResNet152, InceptionV3 and

Inception-ResNetV2 using 5 fold cross-validations on 3 datasets. The highest accuracy of 96.1% to 99.7%

was achieved with ResNet50. The comparison between their proposed method and 10 similar approaches

on 2, 3 and 4 class Covid-19 detection showed that their model outperformed most similar ML and DL

approaches for Covid-19 detection from X-ray images.

Another TL based model was proposed in [119] using an EfficientNet pre-trained on ImageNet dataset to

optimize the computational cost (i.e. time and memory) of the Covid-19 screening system. They used the

EfficientNet with two structures: flat (classification without considering the relationship between classes) and

hierarchical (considering the taxonomy of classes). Two different dataset divisions were used that combined

3 Covid-19 X-ray datasets to train and test on normal and cross-dataset environments. Both flat and

hierarchical models achieved 93% accuracy with more than 30% higher computational efficiency and 100%

Covid-19 positive prediction rate. These characteristics made the approach efficient for multiple platforms,

devices and applicable for developing countries.

Das et al. [120] proposed an ensemble DL-based approach for Covid-19 X-ray classification with DenseNet201,

Resnet50V2 and Inceptionv3. They used 7 Covid X-ray datasets from different sources to train and test their

model. A pre-processed dataset was used to train and test the models separately and the test images were

used for loss minimization. The weights for each model were calculated by using 5 fold cross validation on

the test data. Then the ensembler used the average of the weights for 3 models to generate the final output

label (i.e. Covid positive or Covid negative). They compared the outputs of each individual networks, their

concatenation and the proposed approach to show that the proposed model achieved the highest accuracy

of 91.62% and outperformed the others by at least 1%. They also included a detail comparative analysis be-

tween their method and 8 other recent works according to dataset, evaluation method, accuracy, sensitivity,

38



specificity, classifier and summary of approaches.

Another DL based ensemble model named EDL-COVID was proposed in [121]. They designed the model

by combining snapshots of a pioneer open source deep CNN for Covid-19 called Covid-Net [116]. The authors

used multiple snapshots of the same Covid-Net at the same training execution to reduce the computation cost

of training and testing multiple different networks. To overcome the lack of diversity problem of snapshots

from the same network, they applied cosine annealing learning rate schedule for aggressive learning rates.

After generating 6 models from the Covid-Net, the ensembler applied calculations on the class probabilities

to provide an average and generated the final classification results. They tested all individual models and

the ensemble one on Covid-19 X-ray images and compared the results to show that the ensemble output

performance was higher than individual models in most cases.

A similar DL ensemble model of 3 popular CNNs (AlexNet, GoogleNet, ResNet18) with the same name

(i.e. EDL-COVID) was proposed in [122] combining CNNs, TL and majority voting. They discussed the

clinical values of lung CT images for Covid-19 detection and listed the summaries of 6 relevant approaches.

Detailed definitions and frameworks of TL, ensemble models, AlexNet, GoogleNet and ResNet were provided.

A dataset containing normal, lung tumor and Covid-19 CT images was pre-processed and fed into pre-trained

AlexNet, GoogleNet and ResNet18 separately with 5 fold cross validation. An ensembler used the outputs

from 3 classifiers and applied a relative majority voting to produce the final classification output. The

experimental results showed more than 99% classification accuracy with an optimized detection time proved

that the ensemble model performed better than individual DL models in terms of accuracy and detection

time.

A comparative analysis between 3 CNN models for classifying X-rays into Covid-19, normal or pneumonia

classes was presented in [123]. They mentioned that the novelty of the work was proposing a Leaky Relu

activation function instead of Relu for all 3 models. They implemented Inception Net V3, XCeption net and

ResNeXt models with Leaky Relu and tested them with Kaggle Covid-19 X-ray repository data. A detailed

analysis on the comparisons of the models was included and they concluded that XCeption net performed best

for Covid-19 X-ray classification. Nayak et al. [53] worked on a similar research by comparing 8 popular

CNN models on X-rays for Covid-19 detection. They applied pre-trained AlexNet, VGG-16, GoogleNet,

MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50, and Inception-V3 with various batch sizes (i.e. 8, 16,

32), optimizers (i.e. Adam, SGD, RMSProp, Adadelta), learning rates and epochs to compare and choose

the best network with the best set of parameters. They concluded with the decision that ResNet-34 achieved

the highest accuracy of 98.33 with a sensitivity score of 100 that outperformed 8 recent similar research

works.

Degerli et al. [124] not only proposed a DL-based Covid-19 detection and segmentation model, but
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also provided the largest Covid-19 X-ray dataset so far named ‘Qata-COV19’ that was also the first dataset

with Covid-19 segmentation ground truth mask images generated by a human-machine collaborative method.

They used a 2-stage architecture that applied manual segmentation on a randomly chosen subset and trained

DL-models on this to produce segmentations. Then MDs chose best segmentations and they were used at

stage 2 for training and cross-validation. Three different DNNs named U-Net, U-Net++ and Deep layer

aggregation (DLA) were used with four pre-trained encoders (i.e. DenseNet-121, CheXNet, Inception-v3

and ResNet-50) with two settings as frozen or non-frozen encoder. All 24 combinations of these networks

were then used with two different dataset divisions and the results were compared to find the best model.

U-Net, U-Net++ with DenseNet-121 achieved the best performance with more than 99% accuracy for both

detection and segmentation.

A novel 14 layer CNN models was proposed in [125] for classifying chest CT and X-rays into normal,

pneumonia or Covid-19. They built the CNN model with 9 convolution layers, 1 max pooling layer and

4 fully connected layers with proper hyper-parameters. Their model was tested on 3 public datasets (i.e.

Cohen CXR, RSNA, Radiopaedia) and 1 local dataset from the radiology department of BVHB, Pakistan to

compare the similarities and differences of Covid-19 traits between local and public datasets. The proposed

model achieved 96.68% that either outperformed or had similar scores as 7 existing Covid-19 classification

approaches on ML, DL and hybrid models. The model was also trained on a large dataset and is currently

being used at the radiology department of BVHB, Pakistan.

Ozturk et al. [126] recently proposed a novel DL model called DarkCovidNet for Covid-19 X-ray detection

and classification into 2 and 3 classes (i.e. Covid-19, no findings, pneumonia). The proposed model is based

on the DarkNet-19 model using the YOLO (you only look once) [127] system for object detection. They

generated a 19-layer model with DarkNet and convolution blocks including batch normalization, max pooling

and LeakyRelu activation with gradually increasing filters as 8, 16, 32 etc. They applied a 5-fold cross

validation and provided a visualization of the heat map with Grad-CAM. An expert radiologist observed the

performance and results of the proposed network and commented on DarkCovidNet. They mentioned the

model as an outstanding model for Covid-19 detection, a sensitive model for pneumonia detection, a helpful

model with heatmap visualization with the drawback of incorrect detection for unclear lung images or X-rays

of acute respiratory distress syndrome (ARDS) patients that produced diffused images. The network was

compared to 9 other Covid-19 detection models and outperformed all for binary classification with 98.08%

accuracy and achieved comparable performance for 3 class problems with 87.02% accuracy.

TL-based Covid-19 detection using multimodal images were discussed in [7] to identify pneumonia in

the lungs and detect the pneumonia type (i.e. Covid-19 or non-Covid). Their research was also one of the

very few approaches to Covid-19 detection that used lung ultrasound images with X-rays and CT-scans. A
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detail comparative analysis on popular CNN models for Covid-19 classification was provided and 8 CNN

models were evaluated. They evaluated pre-trained VGG16, VGG19, Resnet50, Inception V3, Xception,

InceptionResNet, DenseNet, NASNetLarge and compared their performances to choose the best model for

Covid classification with minimum tuning requirement to apply TL task. The models showed F1-scores

varied from 0.63 to 0.99 for test data and VGG19 performed better compared to others considering all

types of data and ultrasound images and provided more accurate results than the other images. They also

proposed a pre-processing framework to minimize the noises, quality imbalance and maximize the lung area

visibility. After reading the color images, they were converted to grey scale and normalized with N-CLAHE

were then converted back to color images and resized for augmentation and training. They discussed the

different experiments done on the models with varying parameters and their effects on classification results.

A comparative analysis provided guidelines for future Covid-19 detection approaches on the performances

of popular CNNs on various image types.

Zebin et al. [10] proposed a framework for Covid-19 detection, synthetic data generation and progress

monitoring using DL-based models, generative adversarial networks (GANs) and activation mappings. They

discussed the Covid-19 datasets, sources and their distributions according to percentages of labels. They

applied a cycle GAN algorithm for 5000 iterations on the normal images from the datasets to generate realistic

synthetic Covid-19 images to solve data limitation issue and added 100 synthetic data to the training set.

Then pre-trained VGG16, ResNet50, and EfficientNetB0 were used for feature extraction and classification of

the images into normal, Covid-19 and non-Covid pneumonia classes. They also used Grad-CAM to generate

heatmap visualizations for the Covid infected lung region of the same patient after intervals to monitor the

progress of the disease. The proposed framework was compared to 7 Covid-19 approaches and achieved

comparable performance with accuracy varying between 0.88 to 0.96.

Xu et al. [128] proposed a mask-attention base DNN called MANet for Covid X-ray classification. The

input dataset was created by combining 3 different datasets to achieve 5 class labels - normal, Covid, TB,

viral pneumonia, bacterial pneumonia. A basic ResUNet was used to segment the lungs from the images and

then four different DNN (i.e. ResNet34, ResNet50, VGG16, InceptionV3) were used with and without the

mask attention layers. The performance evaluation clearly showed that the mask-attention models achieved

around 2% better performance and ResNet50 with MA achieved the highest classification accuracy of 97%.

An ensemble model with a very similar idea was proposed in [129] for similar Covid-19 X-ray segmentation

and classification. A ResUNet model was used to segment the lungs from the X-rays to optimize the ROI for

the classifier. The segmented lungs were then applied as inputs to an ensemble model containing ResNet,

VGG and DensNet. A majority voting method was used on the outputs of them to finalize the classifier

output to detect Covid-19 infected lungs from the X-rays. The Grad-CAM tool was used for visualization of
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the lung infections. The proposed model achieved around 77% classification accuracy with 95% dice score.

A soft attention based U-Net model was used for Covid infection lesion segmentation from chest CT

images in [130]. As U-Net [15] is one of the most popular DNNs for medical image processing, basic U-

net and various variations of U-Net have been used in medical image segmentation researches for last last

few years with high performance and accuracy. Recent Covid image segmentations have been using U-Net

variants for different infection region segmentation. This research applied soft attention at every layer of

U-net to extract the implicit features so as to enhance the segmentation performance. They used 3 Covid

segmentation datasets and extended them by applying spatial, color and noise augmentation. The proposed

model achieved 98.2% accuracy and 76.3% dice score while outperforming basic U-Net, U-Net++, SD-UNet

and basic attention U-net.

Punn et al. [131] proposed CHS-Net, a hierarchical segmentation model for Covid CT datasets to extract

the infection region. The used two cascaded residual attention inception U-Net (RAIU-Net) to incorporate

semantic information. The U-Net used a residual inception model with hybrid pooling function combining

max pooling and spectral pooling, and spectral spatial and depth attention based skip connections. The

proposed model segmented the lung mask and then the infection region with 95% accuracy. A few-shot

U-Net model was proposed in [132] for similar infection segmentation from CT images. The model was

trained with few data and then a medical professional provided feedback on the segmented outputs. The

feedbacks were then included in the training process to refine the model. The proposed model was compared

to CNN, FCN and U-Nets and achieved higher accuracy and performance. Another infection segmentation

model was proposed in [133] as BS Net (i.e. boundary guided semantic learning network. A dual branch

multi level feature extraction and aggregation framework was defined and implemented to incorporate high

level features for enhancing the segmentation performance. They were able to achieve 85% dice scores with

84.9% sensitivity and 86.7% precision.

There are other existing researches on Covid image analysis for Covid detection, classification and seg-

mentation. Although almost all types of ML, DL algorithms have been already used for these tasks, the

DL models with complex CNN structures, U-Nets, ResNets, InceptionV3, DenseNets, attention-based net-

works and their variations were able to achieve better performances for Covid X-ray/CT classification and

segmentation. The hybrid, ensemble and TL models also generated comparative performance scores. The

performance metrics used in different researches were different and the datasets of these researches had vari-

ous resources. Hence, comparing the performance of these models containing different datasets and different

metrics would not represent a fair comparison. Tables 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11 tabulates

summaries of these approaches with their research task, methods, features, datasets, data type, performance

and contributions.
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id
-1
9
d
et
ec
ti
o
n
a
n
d
cl
a
ss
ifi
ca
ti
o
n
p
ro
b
le
m
s.
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T
a
b
le

2
.6
:
R
ec
en
t
a
p
p
ro
a
ch
es

o
n
C
ov
id
-1
9
.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

D
a
ta
T
y
p
e

C
o
n
tr
ib
u
ti
o
n
s

[1
12
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

S
eg
m
en
ta
ti
on

G
A
N

k
-m

ea
n
s

C
N
N

V
G
G

D
en
se
N
et

B
R
IS
K

T
L

R
F

S
V
M

X
G

B
o
os
t

D
N
N

K
ey
p
on

ts

A
cc
u
ra
cy
-9
6
.6
0

S
en
si
ti
v
it
y
-9
5

S
p
ec
ifi
ci
ty
-9
7
.4

C
o
h
en

ch
es
t
X
-r
ay

P
n
eu
m
o
n
ia

X
-r
ay

X
-r
ay

P
ro
p
o
se
d
a
n
ov
el

m
o
d
el

co
m
b
in
in
g
m
u
lt
ip
le

D
L
a
n
d
T
L

m
o
d
el
s
fo
r
C
ov
id

X
-r
ay

cl
a
ss
ifi
ca
ti
o
n
in
to

3
cl
a
ss
es

-
C
ov
id
,

n
o
rm

a
l,
p
n
eu
m
o
n
ia
.

U
se
d
co
n
d
it
io
n
a
l
G
A
N

fo
r
lu
n
g
se
g
m
en
ta
ti
o
n
a
n
d
a
p
p
li
ed

ke
y
p
o
in
t
ex
tr
a
ct
io
n
a
lg
o
ri
th
m
s
a
n
d
D
N
N

fo
r
fe
a
tu
re

ex
tr
a
ct
io
n
.

O
u
tp
er
fo
rm

ed
si
m
il
a
r
re
ce
n
t
re
se
a
rc
h
es

u
si
n
g
In
ce
p
ti
o
n
V
3
,

R
es
N
et
,
A
le
x
N
et
,
S
V
M

a
n
d
M
o
b
il
eN

et
.

[1
13
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

B
ay
es
ia
n

C
N
N

C
N
N

A
cc
u
ra
cy

-
9
6

C
O
V
ID

-1
9
R
a
d
io
g
ra
p
h
y

P
n
eu
m
o
n
ia

D
a
ta
b
a
se

X
-r
ay

P
ro
p
o
se
d
a
n
ov
el

B
ay
es
ia
n
o
p
ti
m
iz
a
ti
o
n
b
a
se
d
C
N
N

fo
r

C
ov
id

d
et
ec
ti
o
n
.

U
se
d
B
ay
es
ia
n
o
p
ti
m
iz
er

to
re
fi
n
e
th
e
h
y
p
er
p
a
ra
m
et
er
s
o
f

C
N
N

to
cl
a
ss
if
y
th
e
im

a
g
es
.

U
se
d
a
co
m
b
in
a
ti
o
n
o
f
co
v
id

X
-r
ay

d
a
ta
se
t
a
n
d

a
p
n
eu
m
o
n
ia

X
-r
ay

d
a
ta
se
t.

A
ch
ie
v
ed

co
m
p
a
ra
b
le

p
er
fo
rm

a
n
ce

co
m
p
a
re
d
to

1
0
si
m
il
a
r

C
N
N

b
a
se
d
D
L
m
o
d
el
s.

[1
14
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

S
eg
m
en
ta
ti
on

C
N
N

M
A
D
F

W
at
er
sh
ed

T
L

H
O
G

C
N
N

A
cc
u
ra
cy

-
9
9
.4
9

S
p
ec
ifi
ci
ty

-
9
5
.7

S
en
si
ti
v
it
y
-
9
3
.6
5

K
a
g
g
le

C
o
h
en

ch
es
t
X
-r
ay

C
h
es
t
X
-r
ay

s
X
-r
ay

P
ro
p
o
se
d
a
fe
a
tu
re

fu
si
o
n
D
N
N

m
o
d
el

co
m
b
in
in
g
H
O
G

a
n
d

C
N
N

fe
a
tu
re
s.

E
x
tr
a
ct
ed

3
7
8
0
H
O
G

fe
a
tu
re
s
a
n
d
4
0
9
6
C
N
N

fe
a
tu
re
s
fo
r

ea
ch

p
re
-p
ro
ce
ss
ed

im
a
g
e.

S
el
ec
te
d
b
es
t
fe
a
tu
re
s
b
y
m
a
x
im

u
m

en
tr
o
p
y
-b
a
se
d
fe
a
tu
re

se
le
ct
io
n
a
n
d
fi
n
a
li
ze
d
1
1
8
6
fe
a
tu
re
s
fo
r
ea
ch

im
a
g
e.

A
p
p
li
ed

a
p
re
-t
ra
in
ed

V
G
G
1
9
fo
r
C
N
N

fe
a
tu
re

ex
tr
a
ct
io
n

a
n
d
a
n
o
th
er

fo
r
cl
a
ss
ifi
ca
ti
o
n
(i
.e
.
C
ov
id

o
r
n
o
rm

a
l)
.

S
eg
m
en
te
d
eff

ec
te
d
lu
n
g
re
g
io
n
s
b
y
w
a
te
rs
h
ed

se
g
m
en
ta
ti
o
n
.

O
u
tp
er
fo
rm

ed
1
9
ex
is
ti
n
g
D
L
-b
a
se
d
C
ov
id
-1
9
d
et
ec
ti
o
n
.

[1
15
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

T
L

H
ar
al
ic
k

A
cc
u
ra
cy

-
9
3

C
o
m
b
in
ed

m
u
lt
ip
le

G
it
h
u
b

R
S
N
A

G
o
o
g
le

N
IH

M
en
d
el
ey

X
-r
ay

C
T

P
ro
p
o
se
d
a
T
L
m
o
d
el

w
it
h
H
a
ra
li
ck

fe
a
tu
re
s
fo
r
a
4
cl
a
ss

C
ov
id

cl
a
ss
ifi
ca
ti
o
n
.

P
re
-p
ro
ce
ss
ed

im
a
g
es

w
it
h
h
is
to
g
ra
m

eq
u
a
li
za
ti
o
n
,
w
ei
n
er

fi
lt
er

a
n
d
R
O
I
cr
o
p
p
in
g
.

E
x
tr
a
ct
ed

H
a
ra
li
ck

fe
a
tu
re
s
fr
o
m

p
re
-p
ro
ce
ss
ed

im
a
g
es

fo
r

3
p
re
-t
ra
in
ed

D
L
m
o
d
el
s
-
R
es
n
et
5
0
,
V
G
G
1
6
,
In
ce
p
ti
o
n
V
3
.

O
u
tp
er
fo
rm

ed
9
ex
is
ti
n
g
M
L
,
D
L
a
n
d
T
L
b
a
se
d
C
ov

id
-1
9

cl
a
ss
ifi
ca
ti
o
n
a
p
p
ro
a
ch
es
.

P
ro
v
id
ed

v
is
u
a
li
za
ti
o
n
o
f
in
fe
ct
ed

re
g
io
n
u
si
n
g
G
ra
d
-C

A
M
.
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T
a
b
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2
.7
:
R
ec
en
t
a
p
p
ro
a
ch
es

o
n
C
ov
id
-1
9
.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

D
a
ta
T
y
p
e

C
o
n
tr
ib
u
ti
o
n
s

[1
16
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

(C
ov
id
-N

et
)

D
N
N

A
cc
u
ra
cy

-
9
3
.3

S
en
si
ti
v
it
y
-
9
1

P
P
V

-
98
.9

C
O
V
ID

x
X
-r
ay

P
ro
p
o
se
d
o
n
e
o
f
th
e
fi
rs
t
n
ov
el

d
ee
p
C
N
N

b
a
se
d
o
p
en

so
u
rc
e
C
ov

id
-1
9
d
et
ec
ti
o
n
m
o
d
el

fo
r
X
-r
ay

d
a
ta

u
si
n
g

h
u
m
a
n
-m

a
ch
in
e
co
ll
a
b
o
ra
ti
o
n
b
a
se
d
o
n
a
P
E
P
X

d
es
ig
n
.

G
en
er
a
te
d
o
n
e
o
f
th
e
la
rg
es
t
C
ov
id
-1
9
X
-r
ay

d
a
ta
se
ts

n
a
m
ed

C
O
V
ID

x
co
n
ta
in
in
g
1
3
,9
7
5
C
X
R
s
fr
o
m

1
3
,8
7
0
p
a
ti
en
t
ca
se
s.

D
es
ig
n
ed

C
ov

id
-N

et
w
it
h
tw

o
st
a
g
es

o
f
C
N
N

la
y
er
s
th
a
t

in
cl
u
d
ed

fi
rs
t
st
a
g
e
w
it
h
1
co
n
vo
lu
ti
o
n
la
y
er
,
1
6
P
E
P
X

b
lo
ck
s
(e
a
ch

b
lo
ck

w
it
h
5
la
ye
rs

fo
r
p
ro
je
ct
io
n
,
ex
p
a
n
si
o
n
,

d
ep
th
-w

is
e
co
n
vo
lu
ti
o
n
,
se
co
n
d
st
a
g
e
p
ro
je
ct
io
n
a
n
d

ex
te
n
si
o
n
),
1
fl
a
tt
en

la
ye
r,

1
fu
ll
y
co
n
n
ec
te
d
la
ye
r
a
n
d

so
ft
m
a
x
o
u
tp
u
t
la
ye
r,

a
n
d
se
co
n
d
st
a
g
e
w
it
h
4
co
n
vo
lu
ti
o
n

la
ye
rs

fo
r
lo
n
g
ra
n
g
e
co
n
n
ec
ti
v
it
y.

O
u
tp
er
fo
rm

ed
V
G
G
-1
9
a
n
d
R
es
N
et
-5
0
.

[1
17
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

(C
or
oD

et
)

D
N
N

A
cc
u
ra
cy

-
2
cl
as
s
:
9
9
.1

3
cl
as
s:

94
.2

4
cl
as
s:

91
.2

C
O
V
ID

-R
X
-r
ay

C
T

P
ro
p
o
se
d
a
n
ov
el

2
2
-l
ay
er

C
N
N

ca
ll
ed

C
o
ro
D
et
.

D
et
ec
te
d
a
n
d
cl
a
ss
ifi
ed

im
a
g
es

in
to

2
,
3
a
n
d
4
cl
a
ss
es

(i
.e
.

C
ov
id
-1
9
,
n
o
rm

a
l,
n
o
n
-C

ov
id

v
ir
a
l
p
n
eu
m
o
n
ia
,
n
o
n
-C

ov
id

b
a
ct
er
ia
l
p
n
eu
m
o
n
ia
).

P
re
p
a
re
d
th
e
b
ig
g
es
t
X
-r
ay

a
n
d
C
T

im
a
g
es

d
a
ta
se
t
o
f
C
ov
id

b
y
co
m
b
in
in
g
im

a
g
es

fr
o
m

ei
g
h
t
p
u
b
li
c
C
ov

id
d
a
ta
se
ts
.

O
u
tp
er
fo
rm

ed
1
0
ex
is
ti
n
g
C
ov
id
-1
9
a
p
p
ro
a
ch
es

fo
r
C
ov
id

d
et
ec
ti
o
n
a
n
d
cl
a
ss
ifi
ca
ti
o
n
.

[1
18
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

T
L

D
N
N

A
cc
u
ra
cy

-
96
.1

-
99
.7

C
o
h
en

ch
es
t
X
-r
ay

C
h
es
tX

-r
ay
8

C
h
es
t
X
-R

ay
Im

a
g
es

(P
n
eu
m
o
n
ia
)

X
-r
ay

P
ro
p
o
se
d
3
b
in
a
ry

cl
a
ss
ifi
er
s
to

d
et
ec
t
4
cl
a
ss
es

a
s
n
o
rm

a
l,

C
ov
id
,
v
ir
a
l
p
n
eu
m
o
n
ia

a
n
d
b
a
ct
er
ia
l
p
n
eu
m
o
n
ia
.

A
p
p
li
ed

p
re
-t
ra
in
ed

R
es
N
et
5
0
,
R
es
N
et
1
0
1
,
R
es
N
et
1
5
2
,

In
ce
p
ti
o
n
V
3
a
n
d
In
ce
p
ti
o
n
-R

es
N
et
V
2
w
it
h
5
fo
ld

cr
o
ss
-

va
li
d
a
ti
o
n
s
se
p
a
ra
te
ly

o
n
th
e
d
a
ta
.

C
o
m
p
a
re
d
th
e
p
er
fo
rm

a
n
ce

sc
o
re
s
to

co
n
cl
u
d
e
th
a
t

R
es
N
et
5
0
w
a
s
th
e
b
es
t
cl
a
ss
ifi
er

fo
r
C
ov
id
-1
9
.

O
u
tp
er
fo
rm

ed
fe
w

si
m
il
a
r
C
ov
id
-1
9
d
et
ec
ti
o
n
a
p
p
ro
a
ch
es

th
a
t
u
se
d
M
L
a
n
d
D
L
m
o
d
el
s.

[1
19
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

E
ffi
ci
en
tN

et
T
L

D
N
N

F
la
t
:

A
cc
u
ra
cy

-
9
3
.9

S
en
si
ti
v
it
y
-
9
6
.8

P
P
V

-
10
0

H
ie
ra
rc
h
ic
a
l
:

A
cc
u
ra
cy

-
9
3
.5

S
en
si
ti
v
it
y
-
8
0
.6

P
P
V

-
10
0

R
S
N
A

C
o
h
en

ch
es
t
X
-r
ay

C
O
V
ID

x
H
C
V
-U

F
P
R

X
-r
ay

P
ro
p
o
se
d
a
n
ov
el

m
o
d
el

fo
r
C
ov
id
,
n
o
rm

a
l
o
r
p
n
eu
m
o
n
ia

cl
a
ss
ifi
ca
ti
o
n
b
a
se
d
o
n
E
ffi
ci
en
tN

et
fa
m
il
y.

U
se
d
E
ffi
ci
en
tN

et
p
re
-t
ra
in
ed

o
n
Im

a
g
eN

et
d
a
ta
se
t
a
n
d

fi
n
e
tu
n
ed

fo
r
C
ov
id

sc
re
en
in
g
.

A
ss
es
se
d
th
e
cl
a
ss
ifi
ca
ti
o
n
p
ro
b
le
m

w
it
h
b
o
th

fl
a
t

cl
a
ss
ifi
ca
ti
o
n
a
n
d
h
ie
ra
rc
h
ic
a
l
cl
a
ss
ifi
ca
ti
o
n
.

A
p
p
li
ed

2
d
iff
er
en
t
d
a
ta

se
tu
p
s
fo
r
tr
a
in
in
g
a
n
d
te
st
in
g
.

In
cl
u
d
ed

th
e
fi
rs
t
cr
o
ss
-d
a
ta
se
t
a
n
a
ly
si
s
o
n
C
ov
id
-1
9
.

D
ev
el
o
p
ed

a
lo
w

co
m
p
u
ta
ti
o
n
a
l
co
st

(t
im

e
a
n
d
m
em

o
ry
)

n
et
w
o
rk

w
it
h
h
ig
h
p
er
fo
rm

a
n
ce

sc
o
re
s
th
a
t
a
ch
ie
v
ed

m
o
re

th
a
n
3
0
%

co
m
p
u
ta
ti
o
n
a
l
effi

ci
en
cy

co
m
p
a
re
d
to

si
m
il
a
r
a
p
p
ro
a
ch
es
.
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T
a
b
le

2
.8
:
R
ec
en
t
a
p
p
ro
a
ch
es

o
n
C
ov
id
-1
9
.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

D
a
ta
T
y
p
e

C
o
n
tr
ib
u
ti
o
n
s

[1
20
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

E
n
se
m
b
le

D
N
N

A
cc
u
ra
cy

-
9
1
.6
2

S
en
si
ti
v
it
y
-
9
5
.0
9

S
p
ec
ifi
ci
ty

-
8
8
.3
3

A
U
C

-
9
1
.7
1

T
w
it
te
r

C
h
es
tI
m
a
g
in
g

S
IR

M
K
a
g
g
le

C
O
V
ID

-c
h
es
tx
ra
y

C
o
h
en

ch
es
t
X
-r
ay

C
a
se

st
u
d
ie
s

C
h
eX

p
er
t

X
-r
ay

P
ro
p
o
se
d
a
n
ov
el

en
se
m
b
le

m
o
d
el

w
it
h
D
en
se
N
et
2
0
1
,

R
es
n
et
5
0
V
2
a
n
d
In
ce
p
ti
o
n
v
3
to

a
ch
ie
ve

b
et
te
r
p
er
fo
rm

a
n
ce
.

T
ra
in
ed

ea
ch

m
o
d
el

in
d
iv
id
u
a
ll
y
a
n
d
u
se
d
te
st

d
a
ta

fo
r

lo
ss

m
in
im

iz
a
ti
o
n
.

U
se
d
te
st

d
a
ta

to
ca
lc
u
la
te

w
ei
g
h
ts

o
f
ea
ch

m
o
d
el

w
it
h
5

fo
ld

cr
o
ss

va
li
d
a
ti
o
n
a
n
d
a
p
p
li
ed

th
e
av
er
a
g
e
w
ei
g
h
t
o
f
a
ll

3
in

th
e
en
se
m
b
le
r
b
lo
ck
.

A
ch
ie
ve
d
h
ig
h
er

p
er
fo
rm

a
n
ce

th
a
n
ea
ch

in
d
iv
id
u
a
l
m
o
d
el

a
n
d
th
ei
r
co
n
ca
te
n
a
ti
o
n
.

P
ro
v
id
ed

a
d
et
a
il
co
m
p
a
ra
ti
ve

a
n
a
ly
si
s
o
f
p
ro
p
o
se
d

a
p
p
ro
a
ch

a
n
d
8
re
ce
n
t
a
p
p
ro
a
ch
es

w
it
h
th
ei
r
d
a
ta
se
ts
,

ev
a
lu
a
ti
o
n
m
et
h
o
d
,
a
cc
u
ra
cy
,
se
n
si
ti
v
it
y,

sp
ec
ifi
ci
ty
,
cl
a
ss
ifi
er

a
n
d
su
m
m
a
ry

o
f
a
p
p
ro
a
ch
es
.

[1
21
]

D
et
ec
ti
on

C
la
ss
ifi
ca
ti
on

C
N
N

E
n
se
m
b
le

(E
D
L
-C

O
V
ID

)
D
N
N

A
cc
u
ra
cy

-
9
5

S
en
si
ti
v
it
y
-
9
6

P
P
V

-
9
4
.1

C
O
V
ID

x
X
-r
ay

P
ro
p
o
se
d
a
n
en
se
m
b
le

m
et
h
o
d
b
y
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2.6 Datasets

As Covid-19 was discovered at the end of 2019 and it is still an ongoing pandemic, datasets containing

Covid-19 patient information (i.e. images, texts, gene etc.) are very limited. The available datasets also have

limitations such as unavailable labels or ground truth values, not proper annotations, not valid evaluation

etc. Among the few available Covid-19 image datasets, the majority include CXRs, some include CT scans

and very few contain lung ultrasounds. Table 2.12 and 2.13 show list of few available Covid-19 image datasets

with their image types, tasks, ground truth availability and labels, source URLs etc. Most of these datasets

are still growing and few of them have overlapping images. As most of these datasets are still being updated,

their specifications may vary on a future date. The X-rays, CTs, MRIs, ultrasounds are mostly 2D or 3D

images of various formats like .png, .jpg, .dcm, etc. and only few of them have recently started including

dynamic files. The text data is mostly the metadata, case descriptions and sometimes annotations of the

data.

2.7 Challenges and Future Research Scopes

Researchers have been trying to find effective solutions for Covid-19 detection, diagnosis and analysis using

various AI-based tools and applications. They have encountered a few issues while working on automated

systems for Covid-19 and have mentioned these limitations and possible solutions. Other few additional

challenges were identified while reviewing the existing approaches for this survey. Some major challenges

and suggestions for future research are mentioned below.

2.7.1 Challenges

Authenticity of the systems

Due to the emergency pandemic situation, many researchers have been proposing various AI-based systems

for Covid-19 detection and analysis. As the medical professionals and patients need accurate automated

systems as soon as possible, proper screening for the proposed models is needed to ensure the authenticity

of the approaches. Researchers should provide clear justifications and information that can be used to

reproduce the results and check the accuracy of the claims of the researchers.

Time constraint

As the Covid-19 pandemic is ongoing, the necessity of accurate automated systems that are able to detect,

classify, diagnose and monitor Covid-19 patients are acute. The urgency of working Covid-19 analysis systems
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that can be immediately implemented for Covid-19 patients is a very real issue. Another time constraint

issue of the automated systems is the execution or analysis time. To stop the rapid progress of the pandemic,

the automated systems are required to process patient data as quickly as possible but with correct results.

Lack of a complete automated system

Most approaches have been focusing on detection of the disease or segmentation of the ROIs. To properly

manage the severity of the pandemic, complete automated systems are needed that will be able to separate

Covid-19 patients from healthy or any other respiratory disease patients, then asses the severity of the disease,

detect the exact infected regions, provide diagnosis, monitor patient progress and provide a complete and

comprehensive report to the medical professionals.

Amount of FPs & FNs

Detecting Covid-19 accurately is necessary to treat the patients, however, the accuracy scores of proposed or

existing systems are not good enough to address the severity of the disease. Each automated system needs

to check and minimize the number of false positives and false negatives detected by their systems. Covid-19

death rates and contamination rates are very clear indications that the errors in detection of Covid-19 can

have serious impact on the ongoing pandemic. So, AI systems with zero false negative and false positive

classifications should be one of the main objectives of the automated systems.

Applicability to real-time data

Researchers from different countries have been working on Covid-19 based systems using ML, DL, TL and

other methods. But most approaches were tested on a very limited amount of data. These AI-based systems

needs to be implemented and tested with real-time patient data in hospitals and other medical care facilities

treating Covid-19 patients so that they can be fine tuned according to real-time data and can be used in

large scale practical scenarios.

Lack of customized systems

The statistics and news of Covid-19 from all over the world have already shown that the same systems,

resources and measures are not applicable for every country. Developed and developing countries need

different types of setups and patients of different variants of Covid-19 require different care. These variations

regarding countries, their resources, available healthcare systems, accessibility to treatments, variants of

Covid-19 and their severity should be addressed while designing automated systems for various countries.
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Lack of available datasets

One of the major limitations of Covid-19 analysis is the limited amount of available datasets. Some of the

datasets mentioned in section 2.6 are combinations of some other datasets. Lack of sufficient unique datasets

of CXRs, CTs and lung ultrasounds of Covid-19 patients limits the complete and accurate applications of

DL models.

Limitations of available datasets

The available Covid-19 datasets have some limitations. Most datasets have very few images from a limited

amount of patients. The image qualities, dimensions, modalities and consistencies are not similar among

most of the images of the same dataset. The lack of variations in the dataset images including all possible

abnormal scenarios of Covid-19 infected lungs are absent. Another severe issue with the existing datasets is

the lack of ground truths or labels of images. The datasets that included proper labels also need profound

verification about the authentication and accuracy of their labeling.

Most of the limitations of the current researches are related to the time constraint. The urgency of the

pandemic led to automated systems using TL models for faster disease detection and segmentation with a

limited amount of verified data. Researchers did not have sufficient time to experiment with unique ideas

for providing more concrete novel approaches. To provide a non-invasive automated Covid-19 detection and

segmentation system, most researchers applied few popular ML, DL, TL models that generated outputs

with high performance scores previously on other medical or non-medical images. This process neglected the

analysis of features unique to Covid-19 medical images and their affect on the classification and segmentation

tasks. The time constraint also affected the dataset verification. The limitation of correctly annotated and

verified datasets from patients of different age, gender, ethnicity, location, etc. made it difficult to provide

general and customized automated systems for Covid detection. The time constraint raised some concerns

about the validity of the researches. Currently, there are hundreds of proposed automated systems tested

with small amount of various verified and unverified datasets that are not tested on real time data to establish

their authenticity.

2.7.2 Future Research Scopes

The challenges mentioned in the previous subsection can also provide some future research scopes on Covid-

19 medical image analysis. As the efficiency of the detection, segmentation and classification of Covid-19

infections are directly related to the availability, quality, completeness and amount of medical image data,

one of the major future research goal can be generating new benchmark datasets by combining, refining
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and labeling the available datasets and adding more recent and precise data to them. Medical professionals

or radiologists can provide correct data annotation label (i.e. healthy, covid, other diseases, etc.) for

classification datasets and ground truth images with segmented infection regions for segmentation datasets.

More advanced datasets may contain the specific types of infections, their severity etc. Feedbacks from

medical professionals to verify these datasets is also needed for future researches. Another possible research

idea can be to develop more novel algorithms or systems for Covid-19 detection and segmentation. Due to the

time constraint, most of the current researches are based on known ensemble methods, hybrid methods, TL

models or variations of popular DL/ML models. Although they work well for the current limited datasets,

more original researches are needed in this field to provide some unique perspectives on the solutions to

extract and apply the unique features of Covid images. More original researches incorporating geographical,

environmental, and other specific constraints for different countries can also lead to more practical outcomes

or automated systems for non-invasive Covid-19 detection.

2.8 Conclusion

Researchers from all fields have been trying to contribute in different ways to fight and win the war against

the SARS-CoV-2 virus. Researchers have been trying to develop tools and applications to aid the medical

professionals. In this chapter, a review on the recent researches on Covid-19 medical image analysis is

presented. Basic tasks like Covid detection, Covid infected lung region segmentation, severity assessment

are solved using CXRs, CTs etc. and the AI-based systems applied for these tasks recently have been analyzed

and summarized here to provide a complete idea about the current researches. Although some researchers

worked with basic ML models like SVM, RF, DT, KNN etc., most recent methods applied DL-based methods

like ResNet, Inception, Xception, MobileNet, U-Net, U-Net++ etc. for Covid-19 image analysis achieving

high accuracy. TL models are also very popular in recent approaches and have been applied to incorporate

the advantages of popular DL networks for Covid-19 analysis without spending time to implement and train

existing DL models from scratch. Some researchers have provided some novel ideas to analyze the tasks from

different perspectives and showed comparable performances. A large number of papers showed more than

99% accuracy for Covid-19 detection and classification on the available datasets and most of the performance

scores were higher than 80% or 90%. Despite having hundreds of publications on Covid-19 medical image

analysis with almost 100% accuracy, the requirements of more extensive, customized and novel experiments

on this field is still there due to the challenges mentioned Section 2.7. This is an interesting research area

having societal and scientific impact. It is important to work on approaches that will reduce the false

negatives to the most possible minimum, though zero is the preferred target to avoid further spread of the
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virus.
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Chapter 3

Interactive framework for Covid-19

detection and segmentation with

feedback facility for dynamically

improved accuracy and trust

3.1 Introduction

Chest image processing for Covid-19 detection is focused on identifying any abnormalities in the chest images

[164] and the previous chapter already discussed some common indications of Covid-19 in chest images. The

analysis of chest images together with RT-PCR test results help healthcare professionals with Covid-19

diagnosis. Hence, applying AI tools to automate chest image analysis for identifying Covid-19 patients and

for segmenting the infected regions could speed up the diagnosis while reducing the manual workloads of

healthcare workers [165]. This had encouraged researchers to apply various machine learning (ML), deep

learning (DL) and transfer learning (TL) techniques on chest images for automatic Covid-19 detection,

segmentation, severity prediction, diagnosis and patient monitoring [166]. In this chapter, we therefore

propose a DL-based Covid-19 detection and segmentation system with a web-based application which has a

user interface to access the system that can classify Covid-19 patients and segment the infected lung regions

from chest imaging.

The proposed system framework includes a web-based application that can be used to upload and evaluate
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chest CT images in various formats (i.e., PNG, JPG, DICOM, etc.) using one of three DL models (namely,

Mask R-CNN, U-Net, U-Net++) to be chosen by a user who can also set various thresholds and parameters.

The framework pre-processes an image to extract the lungs part of the image by removing the background

and then uses the lungs image to detect and segment the Covid infected regions. The interface shows the

infected regions in the lungs together with other patient information, and the ratio of the infection in the

lungs helps in specifying the severity of the infection. The DL models use a combination of two annotated

datasets to train, evaluate and test each model individually. Three versions of the Mask R-CNN model

with three different epoch values (i.e., 40, 60, and 80), basic U-Net, and U-Net++ performance scores and

segmentation outputs were compared and the comparisons provided some directions for choosing the best

model for image processing. The interface also provides options for medical professionals to submit their

feedback on the outcome (segmentation/annotation) produced by the system. The feedback is then added

to the dataset and the updated dataset is used to refine the models for improved future image processing.

Although some researches on Covid-19 infection segmentation with DNNs applied the feedback process from

medical professional [132], they applied the feedbacks (i.e. correct or incorrect) only on a few random

images as a contribution to future training. Our proposed system instead provides a complete framework for

medical professionals to provide detail feedbacks including drawing the correct segmentation and submitting

the resulting image to the system for future training.

There are existing systems that can detect Covid-19 from medical images, segment infectious parts of

the lungs, or can both detect and segment the infections. Very few of the existing works mention automated

report generation or feedback incorporation from medical professionals. Our proposed system provides a

complete application for Covid-19 detection, infection region segmentation, and feedback processing from

medical professionals to improve future training for the process using medical images. The novelty of our

proposed system is it will create a web application by combining all these tasks in a single system with a user

friendly interface that can help medical professionals by providing the detection and segmentation results as

a pre-screening with multiple deep learning algorithm and thresholding choices and by taking inputs from

them with more accurate segmentation to improve the training process for future usage of the system. The

major contributions of this research is a proposal for -

1. generating a web application for Covid-19 lung infection detection and segmentation from medical

images for clinical and research usage,

2. evaluating lungs images (i.e., CT images) to detect Covid-19 infected regions by providing five alter-

native DL models - three variations of Mask R-CNN (Mask R-CNN 40, Mask R-CNN 60, and Mask

R-CNN 80), U-Net, U-Net++ that the user can choose from,
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3. detecting accurate infection regions by fine tuning model parameters (i.e., thresholds) directly using

the web application,

4. allowing medical professionals to provide feedback to fix any potential misdetection of the infected

regions by allowing them to draw the boundaries for the infection regions, using the feedback for

self-tuning, and hence improve the performance of the models.

The rest of the chapter is organized as follows. The related works are briefly covered in Section 3.2.

The methodology, experimental setup and results follow the related works is Section 3.3 and in Section 3.4

respectively. Finally the chapter is concluded with a conclusion in Section 3.5.

3.2 Related Works

A large amount of research has also been published on Covid-19 analysis with the hope to cope with its

severity. However, only a few researchers have reviewed and summarized the existing works to provide

an overview of the current progress and future research directions. Some of the previous researches are

discussed in detail in the previous chapter as part of the survey on Covid-19 image analysis. Some recent

survey papers reviewed Covid-19 researches using medical images (mostly chest X-ray and CT) for detecting,

segmenting, classifying, monitoring and diagnosing Covid [167][86][89][90][93][94][96]. ML, DL, TL and

hybrid models like SVM, RF, DT, KNN, NB, LightGBM, XGBoost, AdaBoost, Bagging, ensemble classifiers,

ResNet, Inception, InceptionResNet, IRRCNN, ShuffleNet, NASNetLarge. GoogleNet, CNN, AlexNet, VGG,

SqueezeNet, SENet, Xception, CapsNet, autoencoder, MobileNet, DenseNet, attention, U-Net, U-Net++,

GAN etc. were applied to medical images and most of them achieved high performance on the few available

or customized Covid datasets. Most of them presented the classification tasks to classify Covid patient data

from non-Covid patient data. Non-Covid patient data included healthy people, people with pneumonia,

and some researches included more divisions of pneumonia classifying it into viral or bacterial pneumonia.

Some researchers also applied heuristic-based methods for Covid-19 medical image analysis. Hamza et al.

[168] used moth flame optimization on a CNN-LSTM based Covid-19 classification model on chest X-rays.

Chest X-rays were used to enhance the dataset with data augmentation and a CNN-LSTM model was

implemented for deep feature extraction. Features were fused and the best features were selected by a moth

flame optimization heuristic algorithm to classify the images into normal, Covid-19, lung-opacity, normal

pneumonia, viral pneumonia and tuberculosis classes.

Most recent research efforts on Covid-19 image datasets used DL or TL, and a few researchers have applied

some conventional image processing approaches to the classification problem with comparable performance.
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Although most research on Covid-19 segmentation applied DNNs for lung segmentation as a part of pre-

processing for Covid-19 classification to extract only the lung regions from the medical images [128, 129],

more recent researches are focusing on segmenting the infections and lesions from lungs using DNN and

hybrid models. Sundaram et al. [169] recently proposed a two stage DL framework by combining residual

SqueezeNet and SegNet (RSqz-SegNet) models to detect Covid images and segment opacities, granulomas

and subtle infections of Covid patients. The model detected Covid patients from viral pneumonia and

bacterial pneumonia patients with more than 99% accuracy. The segmentation network was able to segment

the infection regions with more than 82% accuracy for two different datasets. The segmentation framework

outperformed six other ML, DL and hybrid models containing VGG, ResNet, SVM, SqueezeNet, etc. by

1% to 9% and was able to achieve comparable segmentation performance as U-Nets. Sait et al. [170]

recently proposed a multimodal framework called Ai-CovScan for Covid-19 diagnosis system that utilized

deep transfer learning named CovScanNet on breathing sound, chest X-ray and a rapid antigent test. The

system analyzed breathing sound of a patient and generates a spectogram video which is then segmented

to generate spectogram images. The chest X-ray and spectogram images were individually pre-processesd

to train an Inception-V3 DNN for feature extraction and a multilayer perceptron (MLP) was used for

classification, respectively. Sound was classified into normal, fine crackles, coarse crackles and wheezes

whereas x-ray images were classified into normal, Covid-19, viral pneumonia and bacterial pneumonia. They

also proposed a smartphone application for Ai-CovScan system to enable e-diagnosis to help the healthcare

system. The proposed model provided 80% accuracy for Covid-19 detection from breathing sound and 99.66%

accuracy from chest X-ray while decreasing the false-negatives. Oulefki et al. [171] proposed a Covid-19 lung

infection segmentation and measurement model with image-dependent multilevel thresholding to minimize

over segmented regions. A new masking algorithm was used which contains multiple thresholding, filtering

and entropy calculation on the image histogram to generate masks for the infected regions of the lungs.

The proposed segmentation model achieved more than 98% accuracy with 0.714 dice coefficient score that

outperformed 9 popular DNNs and similar medical image segmentation models. Visual representation and

assessment were performed on the segmented images to show the infected area and severity level of infections

with different colors. The novel and simple multi-level thresholding algorithm was able to quite accurately

extract the infected lung regions for Covid-19 patients.

Due to the high performance of DNN models in medical image analysis, most of the recent research

efforts have focused on DL and TL methods. A new Covid-19 image dataset with 433 annotated chest CT

images collected from 82 COVID-19 patients has been recently provided in [172]. They also proposed a

DL segmentation model for segmenting the Ground Glass Opacity (GGO) and Consolidation (C) infection

regions. They trained and tested their model with four datasets (including their own). Their model was a
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FCNN which was an encoder-decoder-based network with encoding path, transition layers, context perception

boosting module, and decoding path for image segmentation. The proposed model was able to achieve high

performance scores (i.e., around 0.80 dice score, 0.99 specificity, etc.) in detecting GGO and C pixels. Aleem

et al. [173] used Mask R-CNN for Covid-19 infection area detection from chest CT scans. They provided

a basic UI for storing, accessing and analyzing patient data while providing reports for the patients. They

used ResNet50 and ResNet101 as Mask R-CNN backbones individually to segment the area of the infection

and provided the ratio of the infected area in the lungs. After segmenting the objects with Mask R-CNN, 50

ROIs were kept and finally the highest probability ROI bounding boxes were shown as results to highlight

the infections. Based on the infection ratio (i.e., intensity), images were classified as ‘Mild’ or ‘Alarming’,

and the UI provided for different types of users showed the bounding box of the infection with the intensity

level. The UI also generated a prediction graph for each patient for 3 or more days using the AI models.

Covid-ct-mask-net [174], a variation of the Mask R-CNN model was recently proposed for detecting and

segmenting two types of Covid related lesions from lungs CT images. ResNet and Feature Pyramid Net

(FPN) were used as the backbone of the model, and their output was used by a Region Proposal Net (RPN)

to create the bounding boxes for the detected ROIs. The model was trained with 3000 Covid, pneumonia

and control images; it was evaluated with more than 21192 different images. It outperformed seven other DL

model based Covid detection and segmentation systems with 91% accuracy and more than 90% sensitivity.

Another research on Covid-19 chest X-rays used Mask R-CNN for mucus plug blockage detection in [175].

A CNN model was used for binary classification to identify X-rays of Covid patients. The Covid positive

X-rays were then used for detecting and segmenting mucus plug blockage with Mask R-CNN.

Among various DNNs, U-Net and its variations are popular with medical image analysis for their high

accuracy rates. Hence, researchers have been using U-Net models for Covid-19 detection, classification

and segmentation from image datasets. Some of them were summarized in the previous chapter with their

contributions and limitations [130], [131], [132], [124]. Another recent DL model using U-Net++ for Covid

segmentation and detection is provided in [176] with a basic UI. They collected chest CT of Covid patients

from Renmin Hospital of Wuhan University for developing their automated system. They validated their

system using an external test on Qianjiang Central Hospital data to evaluate its robustness. They included

data from control patients to balance the datasets and to train the model appropriately. They used a U-

Net++ model with a pre-trained ResNet-50 backbone for Covid infection detection and segmentation. The

system achieved accuracy values in the range 95.24% and 98.85% for images of the training, validation and

testing phases. They created a basic UI that allowed the users to upload CT image and submit them for

diagnosis of Covid-19 pneumonia.

Saeedizadeh et al. [177] proposed a modified U-Net model called ‘COVID TV-Unet’ for Covid infection
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(i.e., ground glass regions) segmentation from chest CT images. A modified loss function with 2D-anisotropic

total-variation was introduced for connectivity-promoting regularization of a U-Net model. The total-variant

loss was computed and added to the binary cross entropy (BCE) loss to evaluate the total loss function.

Various combinations of split thresholds, loss function, and optimizers were applied on the datasets. Then,

the best parameters were chosen from the results for the proposed system. The proposed TV-Unet model was

compared with U-Net+, Inf-Net, Semi-Inf-Net on Covid chest CT images; it outperformed them with 0.801

dice score. Another variation of U-Net named ‘CARes-UNet (content-aware residual UNet)’ was proposed in

[178] for lesion segmentation from Covid chest CT images. The residual network was used for improving the

segmentation performance. The content aware upsampling module improved the performance and optimized

the computation cost. An advanced optimizer ‘Ranger’ was used to decrease the convergence time of the

model and a semi-supervised approach was applied to overcome the limitations of limited pixel-level labeling.

CARes-UNet achieved 0.731 dice score whereas the semi-CARes-UNet performed better by achieving a dice

score of 0.776. They outperformed most of the nine other popular DL models for Covid lesion segmentation.

SD-UNet [179], a modified U-Net framework, was proposed with the squeeze-and-attention (SA) and dense

atrous spatial pyramid pooling (Dense ASPP) modules. The network used lungs masks to extract only the

lungs from the images. The model was trained with the lungs regions and the ground truth containing

the infection regions. The combined advantages of U-Net, attention network and dense ASPP enabled

the proposed model to outperform similar basic or modified U-Net and U-Net++ models. SD-UNet also

provided a more specific infection region segmentation with 94% accuracy for GGO and C lesions creating

the possibility of practical application of the model in real-time medical image based systems.

Attention Gate-Dense Network-Improved Dilation Convolution-UNET (ADID-UNET) [180] is another

U-Net variation which was proposed recently for Covid infection segmentation from lungs CT scans. A

dense network combining convolution layers, transition layers, pool functions and dense blocks was used in

the U-Net instead of a max pool layer to extract dense features. An improved dilation convolution was used

to refine and extract more specific edge features for small infection areas and the attention model improved

the prediction accuracy by focusing on infection ROIs. ADID-UNET performed better than similar U-Net

variations and other DNNs used on Covid CT scans for infection segmentation with more than 97% accuracy

and 0.80 dice score. A multi-task multi-instance deep network (M2 UNet) was proposed by Zhao et al. [181].

It segments the infectious region from Covid CT images while detecting the severity level of the infection.

They trained their U-Net model on 2D patches generated from 3D CT images to extract image features. The

features were then used to classify the images as severe or non-severe cases of Covid. They also provided a

visualization for the images to show the infection regions of both lungs with various colors. The proposed

model achieved 0.985 accuracy with 0.785 DCC; it outperformed similar U-Net, U-Net+ and Res-Net models.
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Researchers used various types of machine learning, deep learning, transfer learning and hybrid models

for Covid-19 detection, classification, and segmentation from different types of inputs. As expected, the deep

learning models performed better compared to the other systems and were able to achieve high accuracy. But

Covid-19 research efforts need more data, correctly annotated data and experiments to generalize the results

of those models, and to apply them in real time systems. Our research proposed a system to minimize

these limitations by providing a deep learning base Covid-19 detection and segmentation system with a

web application for medical professionals to check the output and provide feedback to refine the system

performance and update the annotation for chest medical images.

3.3 Methodology

A block diagram of the proposed DNN-based Covid-19 detection and segmentation model is shown in Figure

3.1. The complete framework consists of two main parts - (i) the web application and user interface with

feedback facility, and (ii) the segmentation with DNNs. The system can receive input from both healthcare

professionals and hospitals. By integrating the Picture Archiving and Communication System (PACS), the

system can connect directly to the present imaging systems at any given hospital, and help its users in

instantly assessing patient’s conditions. The system can be accessed by users (i.e., healthcare professionals)

and the system administrator. The system is also adaptive to the user’s feedback. During each evaluation,

experts are given the capability to criticize the output produced by the system and give their feedback by

marking what they consider as misclassification. This will help the system in self tuning by considering the

provided feedback in improving its learning process to achieve higher accuracy. As a result of this feedback

learning process, the system is expected to stabilize where the amount of feedback will decrease leading to

higher accuracy satisfactory and appreciated by domain experts. The admins can only see feedback and

provided labels, which can be compared to refine the results later on.

The process starts when the users enter the patient information and evaluation parameters. The system

gathers the required CT images from PACS and applies the pre-processing steps to convert the images into

the appropriate format. After the conversion and basic image processing steps, the lungs area is separated

from the background and other tissues. With the final form of the CT images, the system segments the

Covid-19 affected regions and calculates some relevant metrics, such as the affected area to lung area ratio.

Later on, authorized users can give structured feedback on the findings.

Image segmentation algorithms are used for both the lung segmentation and the infection segmentation.

Image segmentation [182] is the method of dividing or segmenting the image into multiple regions based on the

similarity or dissimilarity of the characteristics of those regions. Image segmentation is used then to extract
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Figure 3.1: Block diagram of the proposed system.

the required objects from the background or other parts of the image. The various pixel characteristics like

intensities, edges, curves, textures etc. are used as features to differentiate between the pixels for grouping

the pixels with similar features and finally generate the segmented ROI.

Medical image segmentation is in general a very popular research area where various medical images

(i.e. MRI, CT, X-ray, PET, etc.) are used as inputs to segment different organs/tissues (i.e. liver, kidney

etc.) or abnormalities (i.e. tumors, lesions, fractures, etc.) from the images. Different ML, DL, TL, hybrid

algorithms have been used for the medical image segmentation with high accuracy.

3.3.1 Pre-processing

The images to be analyzed have to be pre-processed for consistency of formats, dimensions, etc. This

pre-processing contains two main parts - (i) simple image processing, and (ii) lungs segmentation.

Image Processing

Two main types of images are used in this study, namely PNG/JPG and DICOM. Most of the publicly

available early Covid-19 CT datasets, and the datasets used in this study are in the PNG or JPG formats

[154, 148, 134, 141, 138]. Therefore, the models are trained and tested with RGB and grayscale images.

However, since most medical imaging systems use DICOM, and the developed system takes images directly
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from these systems via PACS, an intermediate step has been added to convert DICOM format images to

PNG format. The ‘pydicom’ library [183] is used for this conversion process. Images in DICOM format are

converted to PNG format by applying modality LUT and VOI LUT transformation [184, 185].

The pseudocode for pre-processing is shown in Algorithm 1. The input to the pre-processing is the lung

image (i.e. X-rays/ CTs etc.) and the output is the pre-processed image. As mentioned earlier, the system

can process PNG, JPG and DICOM files, but for DICOM files it converts the DCM images into PNG images.

Hence at the beginning, the system checks if the image is in DICOM format and if it is then the system

first applies modality LUT and then VOI LUT transformation and converts the DICOM image into a PNG

image. In the next step, the image is normalized so that all pixel values are in the range 0 to 255. If the

input image is PNG/JPG, then the conversion is bypassed and the image is directly normalized between 0

to 255. After the normalization, the lung regions are segmented from the image and extracted for both the

right and left lung.

Algorithm 1 Pre-processing : Image processing

Require: Input Image
if image type == DICOM then

Image← apply modality lut(Image)
Image← apply voi lut(Image)

end if
Normalize Image between 0− 255
lung mask ← LungSegmentation(Image)
Image← composite(Image, lung mask, lung mask) ▷ Separate the lung area

Lung Segmentation

To achieve a more accurate Covid-19 affected area segmentation and to calculate the metrics about the

lungs capacity such as the affected area to lungs area ratio, lungs segmentation and extraction processes are

applied as the second part of pre-processing before the infected area segmentation. Throughout the study,

the lungmask tool [186] and a similar implementation of the U-Net by Lee et al. [187, 15] are used to segment

the lungs area. The lungmask’s pre-trained ‘U-Net(R231)’ model is used to segment the lungs directly from

the DICOM images [186], and a model similar to Lee’s U-Net [187] model is retrained with both ‘Finding

and Measuring Lungs in CT Data’ dataset [188] and ‘CNCB CT scan’ dataset [148] to segment the lungs

area in the PNG/JPG images. With the masks obtained, other tissues are removed so that the tissue outside

the lungs area is in the background of the image.

Algorithm 2 shows the steps of the lung segmentation process. A processed image from the previous

step is used as input and the segmented lungs are produced as outputs. The processed image is resized into

the dimension of (256, 256, 1). A basic thresholding with pixel score 190 is applied so that the pixels with
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values greater than 190 are replaced by 255. Then the image is fed into the pre-trained DNN for prediction.

If the prediction is less than 0.5 then the pixel is not counted (i.e. assigned 0 as pixel value), otherwise 1 is

assigned to the pixel. Then prediction markers are created from the threshold outputs and Sobel filtering is

used to generate the elevation map for the prediction. Watershed thresholding is then used to enhance the

edges and holes in the ROIs are filled in extracted regions. Finally, small unnecessary regions are removed

with thresholding and the final ROIs are combined to get the lung masks for both the right and left lungs.

Algorithm 2 Pre-processing : Lung Segmentation

Require: Image (i.e. Pre-processed Image)
Image← resize(Image, (256, 256, 1))
Image[Image > 190]← 255 ▷ Apply thresholding
model← load model()
prediction← model.predict(Image)
prediction[prediction < 0.5]← 0 ▷ Apply threshold to prediction
prediction[prediction > 0.5]← 1
Create markers from prediction
elevation map← sobel(prediction)
regions← watershed(elevation map,markers)
regions← binary fill holes() ▷ Fill in found regions
Apply threshold to eliminate small regions
Combine found regions
mask ← resize(combined image, original image size)

3.3.2 Infected Area Segmentation

The infected area from the lungs is segmented with three different DNN approaches - (i) Mask R-CNN [14],

(ii) U-Net [15], and (iii) U-Net++ [16]. These DNN models are applied on the lungs individually. All the

three methods are trained and tested with the lung area extracted from grayscale CT images generated by

Algorithm 2. The segmented lungs are used as input images for the DNNs to segment them even further

based on the infection regions. Based on the model chosen by the user from Mask R-CNN, U-Net and

U-Net++, the DNN is trained with the lung segmented images and the predictions are generated as outputs

containing the infection regions.

Mask R-CNN is a DNN for high performance instance segmentation and object classification [14]. Con-

volutional Neural Networks (CNN) are used on image data to optimize the pixel information for image

processing and analysis. CNNs and it’s variations are very popular in image segmentation tasks and the

basic CNN structure includes convolution layers, pooling layers and fully connected layers for image anal-

ysis. Convolution layers are used to generate feature maps from the input images using various filters and

kernels, whereas the pooling layers generates summarized scores of different patches of the feature maps to

downsample it. The fully connected layers are used to connect all neurons of one layer of the artificial neural
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network to every neuron of the other layer. Region-based CNN (R-CNN), a variation of CNN applied for

image detection is used for detection of multiple regions from an image by applying CNNs on each ROI

bounding boxes from the input image. Fast R-CNN is a variation of R-CNN that applies classification and

bounding box regression on features extracted by ROI pooling. After combining learning from fast R-CNN

and attention mechanism with Region Proposal Network (RPN), a Faster R-CNN model is developed that

also enhances the computation speed of the DNN. The RPN generates more appropriate region proposals

for object bounds. Mask R-CNN is an extension of the Faster R-CNN [189] that includes a branch for object

masks prediction with the original object bounding box extraction. The Faster R-CNN has two stages. First,

the RPN extracts objects and creates bounding boxes for them, and then a feature extraction is applied on

objects within the bounding box for object classifications. Mask R-CNN also performs these stages. But

at the second stage, it creates a binary mask for the objects in parallel to object classification. Although

Mask R-CNN adds a little overhead to Faster R-CNN, it is more efficient with the advantage of having a

very simple training and testing phase. The basic Mask R-CNN framework is shown in Figure 3.2.

Figure 3.2: Mask R-CNN framework [14].

The Mask R-CNN model for the proposed system is based on Arem Ter-Sarkisov’s implementation

of Mask R-CNN, which introduces a more lightweight model [190, 191]. The problem is handled as a

multiclass segmentation problem with ground-glass opacity, consolidation and background classes, and a

binary segmentation problem with Covid-19 affected area and background classes in [190]. However, our

study uses only a binary segmentation model by merging masks in both the introduced dataset and the

CNCB CT scan dataset [148] which was used in the Ter-Sarkinov model [190].
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U-Net, on the other hand, is a fully connected convolutional network developed for more precise and

faster biomedical image segmentation [15]. The framework includes an encoder and a decoder to classify

each pixel and extract the features at each stage for semantic learning. The semantic segmentation model

includes a contracting path and an expansive path. The contracting path contains convolutional layers

with downsampling whereas the expansive path consists of convolutional layers and upsampling with 23

convolutional layers in total. Each level of each path extracts more dense features from the input image

and combines them with the previous features. The contraction path has five levels and the expansive path

includes four levels. Each level of the contraction path has two convolutional layers for feature extraction

and one max pooling layer for reducing the image size. At every level, the depth gradually increases as

the size of the image decreases and the network learns the semantic features. The expansive path works in

the reverse direction. At each level, there is a transposed convolution with the regular convolution layer.

Instead of maxpooling, it has upsampling process to increase the size of image while decreasing the depth.

To incorporate the location information more appropriately, skip connections are used at each level of the

expansive path by concatenating the output with the output of the same level of the contracting path. The

structure of the network resembles a symmetric U shape. The U-Net framework is shown in Figure 3.3.

The U-Net has been one of the most popular DNN models for medical image segmentation, and multiple

variations of U-Net have also been developed to improve the performance even further.

U-Net++ is an extension of the original U-Net framework [16]. U-Net++ is a nested U-Net that extends

U-Net by adding modified skip pathways, skip connections and deep supervisions between the layers of

contracting and expansion paths. Skip pathways reduce the semantic gaps between the encoder and decoder

by directly connecting their feature maps. Dense skip connections are added based on the DenseNet [192]

idea, and these skip connections accumulate the feature maps from all the intermediate nodes. Finally, a

deep supervision step averages the branch outputs and selects one for faster and accurate segmentation.

As the modified dense layer of U-Net++ adds more skip connections, it basically introduces more deep

semantic features by reducing the semantic gap between the encoder and the decoder. To reduce the

semantic gap, the skip connections add not only the features from the same level of the encoder, but all of

other previous levels. This modification enables the DNN to incorporate the feature maps from different

levels to create more specific feature maps for the image analysis. The deep supervision part of the model

balances the performance and the computation time of the model. The deep supervision takes an average

of the segmentation outputs of all layers and uses that as an additional input to the final calculation. The

U-Net++ framework is shown in Figure 3.4. The basic U-Net and U-Net++ structures are implemented for

our study following the frameworks mentioned in [15] and [16] by using keras models [193].

To summarize, the major differences between U-Net and U-Net++ are - (i) U-Net++ reduces the semantic
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Figure 3.3: U-Net framework [15].

gaps between the feature maps of the encoder and the decoder path, (ii) U-Net++ improves the gradient

flow with the dense skip connections, and (iii) U-Net++ improves the performance with deep supervision

layer [194]. The differences can be seen in their structures from Figure 3.3 and 3.4 where the black parts

in Figure 3.4 are from the original U-Net, the green parts are the added dense blocks, the green and blue

arrows are the added skip connections, and the red parts are the added deep supervision. The added dense

convolution blocks help to reduce the gaps between the same level of the encoder and decoder path. So, the

feature maps generated at the same level are more similar in U-Net++ which simplifies the learning process.

The skip connections connect the original U-Net backbone and the added dense blocks so that the outputs

of convolution blocks of the same layers are combined and merged with the outputs of the lower level of the

encoder path. This process helps to incorporate the feature maps with more semantic similarities. Finally,

the deep supervision of U-Net++ allows the model to apply one of the two modes (i.e. accurate mode, fast

mode). The accurate mode takes the average of all segmentation outputs and the fast mode chooses one of

the segmentation outputs based on model pruning and speed gain. In general, U-Net++ provides a more

optimized and accurate segmentation model compared to original U-Net.
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Figure 3.4: U-Net++ framework [16].

The infection segmentation process is included in Algorithm 3. The system loads the model based on

the choice of the user. Once one of the models from the Mask R-CNNs, U-Net, and U-Net++ is chosen, the

prediction for the input image is generated and the confidence threshold is applied. For the mask R-CNN

model, the system needs to combine the generated infection segmentation regions. The infection region is

then combined with the original image for the visualization of the infection and the corresponding evaluation

scores are computed.

Algorithm 3 Lung Infection Segmentation

Require: Image (i.e. Segmented Lung Image)
model← load model()
prediction← model.predict(Image)
Apply confidence threshold
if model.type == MaskRCNN then

Combine found regions
end if
mask ← prediction.mask
Combine original image and the mask
Save mask, combined image, prediction scores
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3.3.3 Post-processing

The infection segmentation process extracts the infectious parts from the lungs and then a post-processing

method is applied to refine the results and calculate the ratio of the infection. Algorithm 4 shows the steps

of the post-processing. The original images, lung masks and the Covid infection masks are used as inputs

for the post-processing. As the lung masks have only the lung regions, the pixels with non-zero values are

counted to calculate the lung area. The same method is applied to calculate the infected area from the

infection masks. Then the ratio of the infection is computed from these two values and shown as part of the

results in the UI.

Algorithm 4 Post-processing

Require: Images, LungMasks, CovidMasks
results← [ ]
total lung size← 0
total infected area size← 0
total ratio← 0
for image in Images do

lung size← count nonzero(LungMask)
total lung size + = lung size
infected area size← count nonzero(CovidMask)
total infected area size + = infected area size
if lung size > 0 then

covid ratio← infected area size / lung size
end if
results.append((lung size, infected area size, covid ratio))
total ratio← total infected area size / total lung size

end for

3.3.4 UI - Web Application

The web application introduced in this study has been designed as a complete framework for clinical usage,

and for further research usage. The system is designed as a Flask web application. On the client side, pages

are generated with the Jinja template engine. PACS and Feedback pages have additional functionalities

implemented with HTML and Javascript. On the PACS page, asynchronous queries are implemented with

jQuery. A modified version of VGG Image Annotator[60] is used for gathering user feedback.

The system architecture is depicted in Figure 3.5. The main component of the server side is the Gunicorn

WSGI server which is used for running the main Flask application. Additionally, there is a PostgreSQL

database to store user information and evaluation logs. Session-based authentication is used for access

control. Time-consuming parts of the system such as segmentation and PACS communication are designed

in a modular structure as subprocesses. With this structure, segmentation methods are hot-swappable and

new methods can be easily added even if they are written in another programming language. Communication
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with the PACS was established with C-ECHO, C-FIND, and C-MOVE requests. With the C-ECHO[6]

request, the system checks that the PACS is accessible and active. The C-FIND message allows the users to

search with the parameters entered. In the last step, the selected DICOM images are requested over PACS

with C-MOVE.

Figure 3.5: Web application architecture.

There are screenshots from the user interface in Figure 3.6, 3.7, 3.8, and 3.9. There are two ways to

evaluate images in the system. One option is by uploading PNG, JPG, or DICOM files to be evaluated with

the file upload option shown in Figure 3.6. The second option is evaluating the images selected via PACS

which can be accessed via the ‘Evaluate with PACS’ button. Besides the file upload option, there are two

other parameters indicated in Figure 3.6, specifying the model to be used and deciding on the associated

threshold value. Users can select between Mask R-CNN, U-Net, and U-Net++ models with different training

parameters. The threshold parameter gives users the opportunity to filter out findings that have inference

accuracy lower than the specified threshold.

Using the page shown in Figure 3.7, images can be evaluated through PACS rather than uploading

manually. Users can browse through and select previous CT scans of patients based on Patient ID. Scan

date, body part examined, and modality information are available to the users. There are also models

to be used and associated threshold options shown in Figure 3.7. When users interact with PACS, such

as searching patient ID or selecting images for evaluation, the application communicates with PACS via

‘DICOM Query/Retrieve Service’ [195] using pynetdicom library [196]. Once the CT scans are selected, the

evaluation starts with the previously mentioned pre-processing step.
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Figure 3.6: Home page.

In the results page, which is shown in Figure 3.8, there are three sections. The upper left section contains

evaluation ID and date, the used parameters, and the total Covid-19 affected area to lungs area ratio. The

upper right section is used to re-evaluate the same images with different thresholds and models without re-

uploading. In the lower section, there is a table with the following columns - original image thumbnail, lungs

image thumbnail, the thumbnail of the image with the found areas, image name, score, affected area-lungs

area ratio, and two buttons which are used as shortcuts for the feedback and comparison pages.

Users can also compare the original image and the masked image side-by-side via the show button. Users

can annotate the masked image and give feedback about the evaluation on the feedback page shown in

Figure 3.9. The feedback page is based on the simplified version of VGG Image Annotator (VIA) [197]. The

annotated feedback is intended to be used for tune up to further improve the models. On ‘My Evaluations’

page (see Figure 3.10), each user can see their previous evaluations and brief information about the evaluation

such as ID, date, model, number of images and threshold.
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Figure 3.7: Evaluate with PACS page.

3.4 Experimental Results

3.4.1 Datasets

Our models used 902 chest medical images, combining the CNCB-NGDC [198, 148] dataset with some aug-

mented images to increase the size of the dataset. The CNCB-NGDC dataset was created from images

provided by China Consortium of Chest CT Image Investigation (CC-CCII). We used the Lesion segmen-

tation dataset of the CT slice images from datasets containing 750 CT slices taken from 150 COVID-19

patients. Each CT slice of the dataset is segmented and annotated into four components - background,

lungs field, ground-glass opacity (GGO), and consolidation (CL). Additionally, 152 images were generated

by augmentation of the other images already in the dataset, and added to enrich the dataset. The latter

images were checked manually for validity and diversity and were marked with annotations of the infection

regions. The total dataset with all 902 images were used for our experiments with Mask R-CNNs, U-Net

and U-Net++ models. 629 images were used for training the deep neural networks, 158 images were used

as the validation data and the rest (i.e., 115 images) were used as the test data.

3.4.2 Experimental Setup

The image segmentation models were applied for two types of segmentation - (i) lung segmentation, and (ii)

infection segmentation. The hyperparameters used for the lung segmentation and infection segmentation

tasks were similar. Both tasks used model optimizer, learning rate, number of epochs, batch size, dropout,

activation function, loss function etc. [199, 200, 201]. The ‘optimizer’ of a DNN is an algorithm or method
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Figure 3.8: Results page.

that modifies the values of attributes of the DNN to minimize the loss of the DL model [202]. Stochastic

Gradient Descent, Adagrad, Adam, Adadelta are some examples of common optimizers used in DL models

[203, 204]. Each of them varies based on their convergence rate, computation cost, tuning etc. and each

DL task uses an optimizer most suitable for the application. The ‘activation function’ is the function that

decides if a neuron of the neural network should be activated or not [205]. Depending on the importance of

the output of each neuron, the activation function adds non-linearity to the network and decides whether a

neuron should be activated to contribute it’s output generated from the connected neurons of the previous

layer to the network. Rectified linear unit (ReLU), Sigmoid, Softmax are some commonly used activation

functions [206]. The ‘dropout’ is a regularization process to avoid overfitting the DNN [207, 208]. It randomly

drops out neurons/nodes from a fully connected DNN layers (i.e. input layer and hidden layers) based on a

given dropout probability in every iteration. The ‘learning rate’ of a DNN represents the amount of changes

needed at every weight update of the model based on the estimated error [209]. The convergence of the

model for an optimal solution depends on the learning rate. The convergence can be too slow if the learning

rate is low, and the training can be unstable with high learning rate and both can lead to never reaching to

an optimal solution. The ‘number of epochs’ is a DL model is the number of times the model passes through

the complete dataset for training the model. The ‘batch size’ is different from the epochs [210]. Instead of

passing the whole dataset at once, the dataset is generally divided into sets of data to train the DL model.
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Figure 3.9: Part of the feedback page.

The number of data in one such set or batch is called the batch size. The number of epochs and batch sizes

are decided based on the dataset, dataset size and the diversity of the data. The ‘loss function’ measures

the dissimilarities between the predicted output and the ground truth [211]. The goal for any DNN is to

minimize the loss by applying various types of regression (i.e. mean squared error, mean absolute error,

etc.) and classification (i.e. binary cross entropy, categorical cross entropy, etc.) loss functions or generating

hybrid or novel loss functions.

The model used for lung segmentation has similarities with U-Net as it has a downsampling path and an

upsampling path. There is a total of 331,137 trainable parameters. Adam and Binary Cross Entropy has

been used as the optimizer and the loss function. Table 3.1 shows the model details of the lung segmentation

FCNN.

The infection segmentation task used Mask R-CNN, U-Net and U-Net++ for the infectious region seg-

mentation. The Mask R-CNN algorithm was applied with three different versions by varying the number of

epochs or iterations. Mask R-CNN 40, Mask R-CNN 60 and Mask R-CNN 80 are Mask R-CNN algorithms

with 40, 60 and 80 epochs, respectively. Each of these versions was applied with ten different Intersection

over Union (IoU) thresholds (i.e. 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95) to generate

30 Mask R-CNN models in total. The Mask R-CNN models used pre-trained ResNet backbones for the DL

model. The different versions with varying thresholds were tested to show the changes in the performance

of the system with respect to the IoU threshold values that will help choosing the best IoU threshold for

Covid segmentation application in future extensions of this system. ResNet18 ResNet34, and ResNet50

models were applied as the backbone; ResNet50 is the default model. The model weights, anchor generator,
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Figure 3.10: My evaluations page.

Table 3.1: Lung segmentation model.
Layer Type Output Shape Kernel Size

0 Input Layer (256, 256, 1) -
1 Convolution (ReLU) (256, 256, 32) 3x3
2 Max Pooling (128, 128, 32) 2x2
3 Convolution (ReLU) (128, 128, 64) 3x3
4 Max Pooling (64, 64, 64) 2x2
5 Convolution (ReLU) (64, 64, 128) 3x3
6 Max Pooling (32, 32, 128 2x2
7 Dense (ReLU) (32, 32, 128) -
8 Up-Sampling (64, 64, 128) 2x2
9 Convolution (Sigmoid) (64, 64, 128) 3x3
10 Up-Sampling (128, 128, 128) 2x2
11 Convolution (Sigmoid) (128, 128, 64) 3x3
12 Up-Sampling (256, 256, 64) 2x2
13 Convolution (Sigmoid) (256, 256, 1) 3x3

optimizer state, etc. were assigned from the pre-trained models. The training phase used learning rate

0.00001 for epochs 40, 60 and 80, respectively. The test phase used similar parameters with 0.05 confidence

score threshold and 0.5 mask threshold. The test phase also used the aforementioned IoU thresholds for

the precision scores. The ground truth masks included infections labeled as Ground Glass Opacity (GGO),

Consolidation (C), or both.

The U-Net used the 2D image slices to train and validate the model with 80% data and test it with 20%
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data. The training dataset was used for data augmentation by flipping the images and the ground truth to

the left and to the right individually. The flipped images were added to the training dataset and the U-Net

model was trained with a batch size of 8 for 100 epochs. The model used Adam optimizer with learning rate

0.001. The kernel size for all layers of the U-Net was 3x3, stride was 2x2, and the filter sizes were 64, 128,

256, 512, 512 and 512, 256, 128, 64 for the contraction and expansion layers, respectively. Each contraction

layer had a 2x2 MaxPooling layer and Batch normalization layer with momentum 0.8. A dropout of 10% was

applied at the end of each contraction layer. The U-Net model used a hybrid loss function combining the

binary cross entropy and dice loss. Each loss function contributed to the total hybrid loss calculation with

0.5 weight. All convolution layers used the RelU activation function, whereas the final convolution block

used the Sigmoid activation function to generate the output. The U-Net for the infection segmentation task

used 22,716,609 trainable parameters in total.

The U-Net++ model applied a very similar set of functions and hyperparameters. The structure for the

U-Net++ includes one contraction layer and four expansion levels with 1, 2, 3, and 4 expansion layers to

merge the results of the contraction and expansion layers, respectively. The filter sizes for the expansion

levels were 64 (level 1); 128, 64 (level 2); 256, 128, 64 (level 3); and 256, 256, 128, 64 (level 4). The loss

function, activation functions, stride size, contraction layer filter sizes, Batch normalization, MaxPooling

and other parameters for U-Net++ were similar to those of the aforementioned U-Net model setup. The

batch size and number of epochs for U-Net++ training were 8 and 100 respectively. U-Net++ also used the

hybrid of binary cross entropy and dice loss as the loss function. After calculating the binary cross entropy

and dice loss separately, each of them was added with 0.5 weight to generate the total loss. The activation

function used for all convolution layers except the final block was RelU and the final convolution block

applied Sigmoid function. The learning rate of the model for the Adam optimizer was 0.001, the momentum

of the Batch normalization is 0.8, and the dropout after each contraction layer was 10%. The Maxpooling

layer at each contraction layer had a pool size 2x2. The kernel size and strides in all layers were 3x3 and

2x2 respectively. The U-Net++ for the infection segmentation task used 22,496,961 trainable parameters in

total. Table 3.2 and 3.3 show the U-Net and U-Net++ model structures for the infection segmentation.

3.4.3 The Results

The experiments on the dataset with Mask R-CNN, U-Net and U-Net++ using various parameters and setups

showed some interesting characteristics of the infection detection and segmentation process. Accuracy, loss,

precision, Jaccard score and Dice score were used as performance metrics in the experiments [78]. Table

3.4 shows performance comparisons between the average precision (AP) of three Mask R-CNN models (i.e.,
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Table 3.2: Infection segmentation model : U-Net.
Layer Type Output Shape Kernel Size

0 Input Layer (128, 128, 1) -

1

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(128, 128, 64)
(128, 128, 64)
(64, 64, 64)
(64, 64, 64)
(64, 64, 64)

3x3
3x3
2x2
-
-

2

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(64, 64, 128)
(64, 64, 128)
(32, 32, 128)
(32, 32, 128)
(32, 32, 128)

3x3
3x3
2x2
-
-

3

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(32, 32, 256)
(32, 32, 256)
(16, 16, 256)
(16, 16, 256)
(16, 16, 256)

3x3
3x3
2x2
-
-

4

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(16, 16, 512)
(16, 16, 512)
(8, 8, 512)
(8, 8, 512)
(8, 8, 512)

3x3
3x3
2x2
-
-

5
Convolution (ReLU)
Convolution (ReLU)

(8, 8, 512)
(8, 8, 512)

3x3
3x3

6

Transposed Convolution
Concatanate (Layer 4 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(16, 16, 512)
(16, 16, 1024)
(16, 16, 1024)
(16, 16, 512)
(16, 16, 512)

3x3
-
-

3x3
3x3

7

Transposed Convolution
Concatanate (Layer 3 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(32, 32, 256)
(32, 32, 512)
(32, 32, 512)
(32, 32, 256)
(32, 32, 256)

3x3
-
-

3x3
3x3

8

Transposed Convolution
Concatanate (Layer 2 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(64, 64, 128)
(64, 64, 256)
(64, 64, 256)
(64, 64, 128)
(64, 64, 128)

3x3
-
-

3x3
3x3

9

Transposed Convolution
Concatanate (Layer 1 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(128, 128, 64)
(128, 128, 128)
(128, 128, 128)
(128, 128, 64)
(128, 128, 64)

3x3
-
-

3x3
3x3

10 Convolution (Sigmoid) (128, 128, 1) 3x3
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Table 3.3: Infection segmentation model : U-Net++.
Layer Type Output Shape Kernel Size

0 Input Layer (128, 128, 1) -

1

Convolution (ReLU)(d1)
Convolution (ReLU)(d1)

Max Pooling(p1)
Batch Normalization(p1)

Dropout(p1)

(128, 128, 64)
(128, 128, 64)
(64, 64, 64)
(64, 64, 64)
(64, 64, 64)

3x3
3x3
2x2
-
-

2

Convolution (ReLU)(d2)
Convolution (ReLU)(d2)

Max Pooling(p2)
Batch Normalization(p2)

Dropout(p2)

(64, 64, 128)
(64, 64, 128)
(32, 32, 128)
(32, 32, 128)
(32, 32, 128)

3x3
3x3
2x2
-
-

3

Convolution (ReLU)(d3)
Convolution (ReLU)(d3)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(32, 32, 256)
(32, 32, 256)
(16, 16, 256)
(16, 16, 256)
(16, 16, 256)

3x3
3x3
2x2
-
-

4

Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(16, 16, 512)
(16, 16, 512)
(8, 8, 512)
(8, 8, 512)
(8, 8, 512)

3x3
3x3
2x2
-
-

5
Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

(8, 8, 512)
(8, 8, 512)

3x3
3x3

6

Transposed Convolution(u1)
Concatanate[u1,d4](u1)

Dropout(u1)
Convolution (ReLU)(c1)
Convolution (ReLU)(c1)

(16, 16, 512)
(16, 16, 1024)
(16, 16, 1024)
(16, 16, 512)
(16, 16, 512)

3x3
-
-

3x3
3x3

7

Transposed Convolution(u2)
Concatanate[u2,d3](u2)

Dropout(u2)
Convolution (ReLU)(c2)
Convolution (ReLU)(c2)

(32, 32, 256)
(32, 32, 512)
(32, 32, 512)
(32, 32, 256)
(32, 32, 256)

3x3
-
-

3x3
3x3

8

Transposed Convolution(u3)
Concatanate[u3,d2](u3)

Dropout(u3)
Convolution (ReLU)(c3)
Convolution (ReLU)(c3)

(64, 64, 128)
(64, 64, 256)
(64, 64, 256)
(64, 64, 128)
(64, 64, 128)

3x3
-
-

3x3
3x3

9

Transposed Convolution(u4)
Concatanate[u4,d1](u4)

Dropout(u4)
Convolution (ReLU)(c4)
Convolution (ReLU)(c4)

(128, 128, 64)
(128, 128, 128)
(128, 128, 128)
(128, 128, 64)
(128, 128, 64)

3x3
-
-

3x3
3x3

10 Convolution (Sigmoid) (128, 128, 1) 1x1
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Mask R-CNN 40, Mask R-CNN 60, and Mask R-CNN 80) with IoU thresholds varying from 0.50 to 0.95

and their mean average precision (mAP). Precision represents the fraction of the prediction relevant to the

ground truth (i.e., the purity of the prediction of true positives compared to the ground truth).

Table 3.4: Performance comparison between the Mask R-CNN segmentation models.

Model mAP
AP

(0.50)
AP

(0.55)
AP

(0.60)
AP

(0.65)
AP

(0.70)
AP

(0.75)
AP

(0.80)
AP

(0.85)
AP

(0.90)
AP

(0.95)

Mask
R-CNN 40

0.1427 0.3006 0.2672 0.2304 0.1851 0.1274 0.0884 0.0710 0.0530 0.0522 0.0522

Mask
R-CNN 60

0.2193 0.3791 0.3555 0.3091 0.2549 0.2162 0.1673 0.1459 0.1217 0.1217 0.1217

Mask
R-CNN 80

0.2352 0.4112 0.3864 0.3191 0.2757 0.2368 0.1711 0.1558 0.1348 0.1304 0.1304

The precision scores for all the 30 Mask R-CNN models with different epochs and varying IoU thresholds

show how the models performance changed over the thresholds and the epochs. As the IoU thresholds define

the threshold score to determine whether or not to return the prediction output generated by the model, the

precision generally decreases with the increment of the threshold score. The precision scores for Mask R-CNN

40, Mask R-CNN 60, Mask R-CNN 80 followed the same pattern. The precision scores for lower thresholds

(i.e., 0.50, 0.55, etc.) achieved high precision values for predictions of the segmentation model. The average

precision scores for these three models showed that the Mask R-CNN 40 performance was considerably lower

than that of the other two models whereas Mask R-CNN 60 and Mask R-CNN 80 had similar performances.

For last few thresholds, the precision scores got saturated for all the models. Although Mask R-CNN 80

models outperformed the other two, Mask R-CNN 60 had around 2% performance difference compared to

Mask R-CNN 80. The Mask R-CNN 40 models sometimes were able to find more pixels from the infection

regions than the other two models, but it also detected more false positives than the other models while

segmenting the infection regions from the images. In some cases, Mask R-CNN 80 models were not able to

detect the complete infection region. They detected fewer false positive pixels compared to Mask R-CNN 40

and Mask R-CNN 60 models.

The U-Net and U-Net++ models were applied on the same datasets. Table 3.5 reports the accuracy and

loss for U-Net and U-Net++ segmentation performance on the test data. Accuracy refers to the percentage

of correctly classified pixels, and loss represents the difference between the prediction level and the ground

truth. The U-Net and U-Net++ models achieved very high segmentation accuracy scores (i.e., more than

98%) with small amounts of losses. The original U-Net performed slightly better in terms of accuracy, but

the U-Net model loss score was significantly lower than the U-Net++ loss score (i.e., about 12%). As the

U-Net++ model is an advanced variation of U-Net with more layers and connections. The U-Net++ models
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generally work better with larger datasets. Due to the availability of limited amount of Covid-19 annotated

datasets, the U-Net++ model loss score was higher. On the other hand, the basic U-Net model with fewer

layers and connections than the U-Net++ model was able to more precisely segment the infection region.

Table 3.5: Performance comparison between U-Net and U-Net++ models.
Model Accuracy Loss

U-Net 0.9881 0.1361
U-Net++ 0.9816 0.2523

Table 3.6 reports the comparison between all these models (i.e., Mask R-CNN 40, Mask R-CNN 60, Mask

R-CNN 80, U-Net, and U-Net++) with their Jaccard similarity score and Dice similarity score. Jaccard

similarity score represents the fraction of the overlapping area between the segmentation and the ground

truth with the union of both areas. Dice similarity score is a similar performance metric that refers to

pixel-wise similarity between the ground truth and the segmented area which is the fraction of the overlap

between them and the total number of pixels in both of them. Figure 3.11 shows the comparison of Dice

similarity scores and Jaccard similarity scores of all DNN models related to the proposed system.

Table 3.6: Comparison between the segmentation models.
Model Jaccard Dice

Mask R-CNN 40 0.2692 0.3708
Mask R-CNN 60 0.2857 0.3875
Mask R-CNN 80 0.2894 0.3904

U-Net 0.5814 0.4927
U-Net++ 0.3451 0.4574

The Jaccard and Dice similarity scores for all the models showed similar pattern as the individual Mask

R-CNN model scores and U-Net models scores. The Mask R-CNN 80 models achieved high Dice and Jaccard

scores, whereas the Mask R-CNN 60 models provided second best Mask R-CNN scores. The basic U-Net

model Dice and Jaccard scores were at least 4% to 23% higher than the U-Net++ model. The difference

between the Jaccard similarity scores of the best Mask R-CNN model (Mask R-CNN 80) and the U-Net model

was around 10%, and the difference between the dice similarity scores was around 30%. These noteworthy

differences between Mask R-CNN and U-Net models were also noticeable in the segmented output images.

Figure 3.12 shows some sample segmentation output for all models with the extracted lungs image and

infection ground truth.

The sample segmented images showed that Mask R-CNN models generated more precise segmentations

compared to U-Net models. Mask R-CNN 80 models predicted fewer pixels for the segmentations than

Mask R-CNN 60 or Mask R-CNN 40 models, but it was also able to segment most pixels from the infection

regions similar to the ground truth images. The segmentation performance scores and the segmented images
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Figure 3.11: Performance comparison graph.

from Mask R-CNN clearly showed that the more trained models (i.e. higher number of epochs) performed

better; as the models were trained for more epochs they were able to refine their detection and segmentation

predictions. The performance scores showed that U-Net models performed better than Mask R-CNNs in

segmenting the infection regions. The segmentation output images clarified the reasons underlying the

performance. Both U-Net and U-Net++ models included wider regions as the segmentation output compared

to the ground truth and Mask R-CNN output images. But the ground truth region pixels were almost always

subsets of the segmented region pixels of U-Net and U-Net++ models, which contributed to the high Dice

similarity scores and Jaccard similarity scores. The basic U-Net model outperformed all the other models

by a high percentage and was able to capture most parts from the infectious regions of the chest CT images.

3.5 Conclusion

AI-based automated Covid detection and diagnosis systems from medical chest images like chest X-rays or

CTs can help medical professionals to quickly diagnose and help their patients. These systems can help

patients by using non-invasive imaging for disease detection. As the tasks are based on medical images, high

accuracy of the detection and precise infection segmentation are major priorities for such systems. Most
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recent research efforts have applied various deep learning models to address these issues and to improve the

accuracy and precision as much as possible. In this chapter, we propose a complete framework that provides a

web application to incorporate the complete procedure of processing patient data and chest images, applying

three different types of DL models (i.e., Mask R-CNN, U-Net, and U-Net++) with multiple variations,

detecting Covid patients from the images, segmenting the infection in the lungs, marking the infection

regions in CT images, and providing the ratio of the infectious area. This web application can also be used

by medical professional to provide feedback on our segmentation and annotation output. The feedback can

be used to tune up and refine the performance our system.

Experiments on three variations of Mask R-CNN (i.e., Mask R-CNN 40, Mask R-CNN 60, Mask R-CNN

80), U-Net, and U-Net++ models with two datasets showed impressive performances in Covid-19 region

detection and segmentation from CT images. The U-Net being one of the most popular model for medical

image analysis, outperformed all other segmentation models and showed comparable performance scores with

more than 98% accuracy, and around 0.5 Dice similarity and Jaccard similarity scores with only 13% test

loss. The other models performed well and the segmentation image outputs provided some precise infection

region detection in most cases. Although our proposed novel approach of a complete framework for Covid-19

detection, segmentation and feedback submission to help healthcare professionals showed promising results,

the performance of the infection detection process should be improved further to help healthcare professionals

in better diagnosing Covid-19 patients and also expanding the same methodology to cover other types of

diseases. We are currently working on improving the system to increase its acceptability and applicability.

We want to refine the performance of the system by adding more DL and TL models (including hybrid and

ensemble models). We also want to apply various pre-processing and post-processing approaches to focus on

the infection ROIs.
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Figure 3.12: Sample segmentation outputs for all models.
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Chapter 4

A survey on brain tumor image

analysis

4.1 Introduction

The brain is a central part of the human nervous system and brain image analysis for neurological disorder

detection is a major research topic of medical image analysis. This analysis has been used to detect and

assess neurological disorders like brain tumor/cancer, Alzheimer disease, Parkinson disease by researchers

from both medical and technology backgrounds. Brain and central nervous system cancers that often start

as brain tumors cause over 200,000 deaths every year [212].

More than 150 types of brain tumors exist based on the specific location of the tumor and they can

be either benign (i.e., Chordomas, Gangliocytomas, Meningiomas, etc.) or malignant (i.e., Ependymomas,

Medulloblastomas, Ependymomas, etc.) [21, 213]. Tumors do not have any active cells and are uniform

in structure are said to be benign tumors or non-cancerous tumors. Tumors containing active cells with

non-uniform shapes are called malignant or cancerous. Based on the origin, brain tumors are primary if

it originated in the brain or secondary/metastatic if it originated in any other organ and later spread to

the brain [214]. While primary tumors may or may not be malignant secondary tumors are almost always

malignant. In many cases it might be possible to remove a tumor by surgery, but the tumor might recur

after the surgery.

Brain tumors can be categorized into four grades where grades I and II are ‘low grade’ tumors that

are slowly growing and mostly benign whereas grades III and IV are ‘high grade’ tumors that are mostly

malignant and recurring. Grade I tumors do not infiltrate to other organs, grow slowly, can be cured with
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surgeries and have a high long-term survival rate. Grade II tumors are more severe. This class of tumors may

recur after surgery, they might infiltrate other organs and they grow a bit faster than grade I tumors. Grade

III tumors are malignant, they tend to infiltrate other organs and they have a high frequency of recurrence,

and grade IV tumors are the most severe ones.

Brain tumor analysis from brain images have been studied by researchers to capture different healthy

brain tissues (i.e., white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)) and tumor tissues.

Different tumor tissues are shown in Figure 4.1 in different colors. The tumor tissues can be detected as - i)

necrotic or permanently dead tissues, ii) enhancing or active tumor tissues containing active cells that can

reproduce and infiltrate, and iii) edema or swollen tissues that create brain swelling due to plasma leakage

and can increase pressure inside the skull.

Figure 4.1: Brain tumor tissues [17, 18].

Medical imaging for brain abnormality analysis use various types of imaging techniques and each imaging

method enhances some specific features of the organ. For example, ultrasound [215] uses soundwaves to

capture images of brain, cerebrospinal fluid and blood flow in brain, CT uses X-rays to detect swelling,

bleeding or structural changes in brain, PET uses radioactive tracers to identify the spots with defects, and

MRI uses radiowaves to capture brain, different tissues, functionalities etc. [216, 217]. Among the various

types of brain scans MRI images are the most popular for brain tumor studies and they have been used in

most of the recent methods. MRI’s offer low radiation exposure together with high contrast images. They can

detect nervous abnormalities, blood flow, cryptic vascular diseases and provides clearer images with multiple

modalities. It is a non-invasive imaging technique that scans the body to generate detailed cross-sectional

images of body parts. MRI’s use a magnetic field to align the protons of the brain cell water molecules and
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a radio signal at a specific frequency is used to disrupt them once they are all aligned [218]. When the radio

signal is stopped, the protons try to realign and while doing so emit signals which are captured by detectors.

Figure 4.2: Axial, coronal and sagittal views [19, 20].

Different anatomical planes for brain imaging can be viewed using MRI scans and each plane contains

some specific information. These planes are considered as imaginary planes or surfaces passing through the

anatomical position of the body or any specific part of the body. Generally, three major anatomical planes

are used for brain imaging - i) axial or horizontal, ii) coronal or frontal, and iii) sagittal or longitudinal.

Figure 4.2 shows how the views from the different planes depict cross-sections of the brain as well as the

brain MRIs corresponding to the planes [19, 20]. Other than the view planes, MRI imaging can also vary

based on image sequences. Various types of radio frequencies can be used in MRI imaging with different

response times and echo times of the pulse signals that are used to produce multiple types of image sequences

(i.e., T1-weighted, T2-weighted, fluid attenuated inversion recovery (Flair) etc.) [23] and each of these image

sequences store some novel characteristics. Each type of image sequence highlights certain parts of the brain

or the skull, and can be used for analyzing different parts of the brain. Table 4.1 shows the repetition times

(i.e., time duration between two consecutive pulse sequences) and echo times (i.e., time duration between

radio frequency remittance and echo signal reception) for some of the different MRI sequences, and Figure

4.3 shows sample MRIs for these sequences [21].

Table 4.1: MRI sequences [23].
MRI

sequence
Repetition
Time (TR)

TR
Type

Time to
Echo (TE)

TE
Type

T1-weighted 500 msec short 14 msec short
T2-weighted 4000 msec long 90 msec long

FLAIR 9000 msec very long 114 msec very long

Brain tumor analysis from medical images is a popular research field and researchers have been trying
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Figure 4.3: T1, T2 and FLAIR MRIs [21].

to contribute for years towards a perfect automated system for brain tumor detection, segmentation, tumor

type classification, tumor tissue identification, and extraction of other tumor properties. Various thresh-

olding, filtering, morphological operations, region growing, connected component detection, supervised and

unsupervised machine learning, heuristics, recent deep learning methods, and hybrid models have been de-

ployed to solve these tasks in an efficient manner. Most systems are only tested on limited amounts of clinical

and synthetic data. Within this limited scope of data tested some systems have achieved high performance

scores. In theory, lots of the existing systems performed well on individual tasks, but very few integrated

all tasks together to create a completely automated brain tumor detection and analysis system. Analyzing

the existing research works to compare their contributions, performances, limitations can help to design a

complete system by incorporating the models in a proper way to achieve highest accuracy. It can also help

to find the challenges of the tasks and the possible solutions.

Due to the complexity of the problem, most recent approaches of brain tumor analysis use DL for brain

tumor image analysis. Some recent works also focused on metaheuristics algorithms like particle swarm

optimization (PSO), various hybrid methods with PSO, cuckoo search, firefly algorithm, chicken based

optimization, artificial bee colony optimization, bacteria foraging optimization, etc. These methods are able

to achieve around 90% accuracy as mentioned in recent approaches [21]. Other than these, supervised and

unsupervised machine learning methods like support vector machine (SVM), random forest (RF), K-means

clustering, K-nearest neighbor (KNN) algorithm, fuzzy C-means clustering (FCM) and hybrids of these

methods are also popular in the literature. Various convolutional neural networks (CNN), fully convolutional

networks, cascaded CNNs, deep neural networks (DNN), etc. are the most popular methods among all due

to their high accuracy and other performance scores [219, 220, 221, 21, 214, 222, 223].

Although DL models have been providing better performances than the conventional machine learning

methods, researchers are still trying other approaches such as various hybrid, ensemble and novel methods

with different existing conventional approaches by focusing on new perspectives and analysis. Various skull

stripping algorithms [224, 225], thresholding methods [226, 227], region growing algorithms, level set algo-

rithms [228, 229], contour models [230, 231, 232], wavelet transform models, principal component analysis,

morphological models [233] have been applied for brain tumor analysis that were able to achieve compatible
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performances as the DL models [21, 214]. Some researchers also tried to view the MRI tumor detection

problem from a geometric perspective and have been working on various fractal and computational geom-

etry approaches for automatic brain tumor detection, tumor segmentation and reconstruction, tumor area

calculation, tumor volume computation etc. For example, delaunay triangulation was used for brain tu-

mor reconstruction [234], whereas convex hull was used for brain tumor segmentation [231], tumor volume

calculation [235] and artefact removal [236].

There are hundreds of brain tumor publications over the years. Most of the papers are on brain tumor

analysis from different type of inputs using various methods and only a few provide literature reviews on

brain tumor researches. In this survey, the publications on brain tumor analysis from medical images were

included by collecting publications from ‘Google Scholar’ [66] and ‘PubMed’ [65]. The search keywords were

the following terms and their combinations - ‘brain tumor’, ‘medical images’, ‘brain MRI’, ‘brain tumor

detection’, ‘brain tumor segmentation’, ‘brain tumor classification’, ‘AI for brain tumor analysis’, ‘brain

tumor analysis with MRI survey’, ‘deep learning in brain MRI’, ‘machine learning in brain MRI’. The

publication timeline was from January 2015 to June 2021. Only a few publications from 2013 and 2014 were

added based on their mentions in the collected publications and their relevance to the search topics. At

the first phase, 32 survey papers, 90 ML and DL based papers, 20 dataset papers, and 33 papers on the

basics of brain tumor analysis (in total 175 papers) were collected. Although the publications from 2015 to

mid 2021 based on those search terms were collected at the first phase, the duplicates were removed, and

they were filtered based on the relevance and more recent publication dates in the second phase. Another

criterion in the second phase to shortlist the collected publications was the uniqueness of the task or the

methods or both. After going through the abstracts and publication dates of all papers collected, they were

sorted based on these three criteria and 110 publications (i.e. 20 survey papers, 55 ML and DL papers, 15

dataset papers, and 20 brain tumor analysis papers) were listed for further filtering. At the final phase, after

going through all 110 publications one by one in detail, 68 were finalized to be summarized in this literature

review. Among the final 68 papers, 12 publications were on brain tumor surveys, 34 were on ML and DL

methods, 12 were on 12 different datasets, and 10 were on the basics of brain tumor image analysis. The

criteria for the final selection for the survey papers were the latest publication dates, the tasks discussed

(i.e. analysis, detection, segmentation, classification, skull stripping, feature analysis etc.), and the discussed

approaches (i.e. ML, DL, conventional, etc.). For the ML, DL based papers, the criteria were the type

of the task (i.e. detection, segmentation, classification, etc.), the uniqueness of the method or part of the

method, the novelty of the used features, and the most recent publication dates. The dataset papers were

chosen completely based on the uniqueness of the dataset. The basic brain tumor analysis-based papers were

selected based on the recent publication dates, coverage of the discussions on brain tumor, brain medical
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images, brain tumor analysis tasks, brain tumor image analysis evaluations, brain tumor image features,

brain tumor image analysis methods, etc. Figure 4.4 shows the phases of the publication filtering.

Figure 4.4: Publication searching criteria and process.

Various researchers have reviewed brain medical image analysis and different tasks like brain tumor

detection, classification and segmentation etc. for the existing researches on brain tumor images [237,

238, 239, 240, 214]. Although these reviews contain the contributions of researchers on this topic, most

of them have focused on either a specific analysis task (i.e. detection, segmentation, classification, skull

stripping etc.), or specific types of approaches (i.e. conventional, ML, DL, etc.). The contributions of the

existing survey papers are discussed in section 4.4 summarizing the recent existing brain tumor surveys

provided within the scope of this chapter by generating a more complete literature review. Proposing and

implementing automated systems with ML, DL models for each of the brain tumor image analysis task

achieves some advancement towards helping the healthcare professionals in detecting the brain tumor and

its’ severity more accurately. The tumor detection task can separate healthy brains from tumorous brains

and the accuracy of the detection can save lives of the patients. The tumor segmentation task segments the

tumor region from the rest of the brain to specify the exact location, area and other tumor properties. This

allows the healthcare professional to focus on the details of the tumor region only, hence the accuracy of the

tumor segmentation is a key point to treat patients with brain tumors. The accurate segmentation can also

specify the severity of the tumor based on the segmented tumor properties. The tumor classification task

can also help with assessing the severity of the tumor by classifying different tumor parts and grading the

tumor based on its’ properties. As all of these brain tumor analysis tasks are directly related to help the

healthcare professional saving the lives of their patients and provide them more accurate diagnosis, applying

92



different ML, DL models to improve the detection, segmentation and classification performances is very

crucial. Hence, comprehensive reviews on each of these tasks to understand the current state of the research,

the performances of the current systems, their advantages and limitations can help other researchers to

get a clear idea about the existing researches and the scopes of improvements and contributions for better

automated systems. The goal of this survey chapter is to provide a review on the basics of the brain tumor

image analysis and the existing researches with their contributions and our observations on them. The

existing recent survey papers are summarized to represent the researches on the various tasks of brain tumor

analysis, their features, available datasets etc. The brain tumor detection, segmentation and classification

researches are added to sum up the approaches (i.e. novel and others) used with types of features extracted

from the images for the tasks, the performance scores of the implementations, their contributions to the

research field and our observations to their works to guide the future researchers on all major keypoints of

future research possibilities.

The objective of this chapter is to generate a complete review of existing approaches on brain tumor

analysis, including the methods used in various recent works with their performance, contributions and

some observations. It includes existing recent reviews on medical image and brain image analysis, novel

approaches used with various models, features used for brain image analysis, datasets that are available

for research, common measurements used for performance evaluation, etc. After analyzing the relevant

works, the chapter also discusses the current challenges for these tasks and scopes out the requirements for

a completely automated brain tumor analysis system.

The rest of this chapter is outlined as follows. Brain tumor analysis tasks are summarized in Section

4.2. Section 4.3 includes various brain tumor analysis features and models. Sections 4.4, 4.5, 4.6, 4.7,

4.8 includes summaries of some existing works on brain tumor analysis - surveys, conventional methods,

machine learning methods, deep learning methods and hybrid methods, respectively. Section 4.9 lists some

benchmark datasets for brain tumor analysis. Section 4.10 includes the performance metrics used in brain

tumor analysis. Section 4.11 discusses the scope of research and challenges of brain tumor analysis and

Section 4.12 concludes the chapter.

4.2 Brain Tumor Analysis

As shown in Figure 4.5, brain tumor analysis tasks can be divided into three main categories- (i) brain

tumor/non-tumor detection, (ii) brain tumor segmentation, and (iii) brain tumor classification. All these

tasks have been approached by researchers using different methods. The AI based systems use various types

of brain medical images as inputs. The tumor detection task analyzes the image and detects if there is a
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tumor present in the image or not. The output of the tumor detection task is the decision (i.e. tumor or

non-tumor/healthy). On the other hand, the tumor segmentation task is to determine the exact tumor region

in the image and segmenting or extracting that region from the image. Finally, the tumor classification task

can incorporate processes like grading the tumor based on the severity (i.e. benign/malignant or grade I -

IV) or specifying different tissues in the tumor (i.e. core tumor, edema, enhancing tumor, non-enhancing

tumor etc.).

Figure 4.5: AI-based system for brain tumor analysis tasks.

Brain tumor detection is a tumor/non-tumor classification task that detects if a brain MRI is from a

healthy brain or has a tumor/abnormality. Various machine learning models, deep learning methods and

hybrid models have been used to classify MRIs into tumor and non-tumor classes [241]. Tumor/non-tumor

classification is based on datasets containing both healthy brain MRIs and tumor brain MRIs with labels to

train supervised/unsupervised/deep learning models by extracting distinguishing features of healthy tissues

and tumor tissues. Figure 4.6 shows some examples of brain medical images with healthy brains and brains

containing tumors [22]. Similarly, the brain tumor classification task is to classify or detect the different

types of tumor tissues shown in Figure 4.1.

In some works, tumor classification is also used to detect tumor type (i.e., benign/malignant or specific

type of tumors.) [213]. But these two tasks are normally not experimented separately, instead they are

combined with the brain tumor segmentation task. For brain MRI analysis, the images have been used for

deep feature extractions (i.e., automatically extracted features by DL models) in most of the recent works,
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Figure 4.6: Sample tumor and non-tumor brain MRIs used for brain tumor/non-tumor detection task [22].

but a huge amount of research works also have been focusing on other approaches by extracting different

intensity features (i.e. mean, variance, skewness, kurtosis etc.), shape features (i.e. area, circularity, volume

etc.), and texture features (i.e. correlation, contrast, energy, entropy, local binary pattern etc.) from the

MRIs to either incorporate them with the images or to use only the extracted features as system inputs

achieving efficient detection and segmentation results [214].

Brain tumor image segmentation task is an image segmentation problem which is the process of segment-

ing images to extract a specific part (i.e., the region of interest, denoted ROI) based on certain conditions

specific to the problem. Figure 4.7 shows few samples on original MRI, the ground truth tumor in the

original mask (marked as red) and the predicted segmentation results of the tumor (marked as red). Brain

tumor can contain different types of tissues as core tumor tissues, edema tissues, enhancing tumor tissues,

non-enhancing tumor tissues etc. Figure 4.8 shows a sample MRI and the different types of tissue the tumor

contains. In recent years, image segmentation became very popular to medical researchers for analyzing

medical images like MRI, CT scans, etc. Image segmentation approaches help identifying different areas or

groups of pixels containing ROI organs, or lesions inside the organs, hence forming the research field for

medical image segmentation [237]. Brain tumor image segmentation from non-invasive brain scans (mostly

MRIs) has been explored by researchers from various fields to generate efficient and accurate automated

brain tumor segmentation systems that can segment tumor, and classify the tumor type and severity so that

abnormalities can be detected and treated in a timely manner [21].

Most of the existing research focus on brain tumor image segmentation task since correctly segmenting

the region of tumor from the rest of the image is crucial for diagnosis and it is also the most complex task

among the three tasks depicted in Figure 4.1. It should also be noted that few researchers have worked on

more than one of these tasks due to the unavailability of appropriate datasets and due to the complexity of
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Figure 4.7: Sample tumor area segmentation task outputs.

each task. Research on developing a complete and accurate system able to solve all of the tasks without any

human intervention is, therefore, one of the major future scopes of the brain tumor image analysis problem.

4.3 Features and Methods

Brain image analysis needs to be able to perform feature extraction from brain MRIs. Various models and

algorithms can then use these features to generate outputs for the brain analysis task. Different types of

features and models have been used for brain image analysis in the literature and they are summarized

below.

4.3.1 Features

The features collected from brain MRIs can be divided into four main classes as noted by [214]. These

classes are - (i) intensity-based features, (ii) texture-based features, (iii) shape-based features, and (iv) deep

learning based features and they are diagrammed in Figure 4.9.

Intensity-based Features

Intensity features are based on the first order histogram which has four statistical features: mean, variance,

skewness and kurtosis. The values for the features of an image are calculated using the grey scale pixel values
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Figure 4.8: Sample MRI and different types of tumor tissues.

Figure 4.9: Brain tumor analysis feature types.

of the image. Let, Gi be the pixel value of a pixel i of the greyscale image. If the total number of pixels is N,

then the mean value represents the center of distribution of the first-order histogram of the image. Variance

measures how dispersed the pixel values are, skewness provides the degree of asymmetry of the histogram,

and kurtosis measures the peakedness or the flatness of the histogram. Equations 4.1, 4.2, 4.3, and 4.4 can

be used for calculating the four features.

Mean =
1

N

N∑
i=1

Gi (4.1)

V ariance =
1

N

N∑
i=1

(Gi −Mean)2 (4.2)

Skewness =
1

N

N∑
i=1

(Gi −Mean)3 (4.3)
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Kurtosis =
1

N

N∑
i=1

(Gi −Mean)4 (4.4)

Texture-based Features

An image texture is a set of metrics calculated in image processing designed to quantify the perceived texture

of an image. Image texture gives us information about the spatial arrangement of color or intensities in an

image or selected region of an image [242]. Specifically grey level co-occurrence matrix (GLCM), autocorre-

lation, correlation, homogeneity, energy, entropy, local binary pattern, dissimilarity, contrast, cluster shade

and prominence are the mostly used texture-based features for brain image analysis.

Shape-based Features

Shape based features characterize the shape of objects. Some of these features are area, volume, perimeter,

convex area, polygon shape, circularity/irregularity of the object, etc. They can be extracted as shape-based

features from a brain MRI.

Deep Learning-based Features

Deep learning features are the simple and complex features collected automatically by the DL models at

every level of the neural network. At each layer of the network, new features are found and feature maps are

created. For example, the first layer may extract the edges, the second layer may extract the corners, the

third layer may extract the shape of the objects and so on. Every layer extracts some more detailed feature

information of the input image and these features are used to create feature maps/vectors and passed trough

the network. The features are concatenated (based on the network architecture) and used for brain tumor

detection, segmentation and classification.

4.3.2 Methods

Various types of methods and models are used for brain tumor image analysis. They can be categorized

into four classes - (i) conventional methods, (ii) machine learning models, (iii) deep learning models, and

(iv) hybrid methods [21, 214]. Figure 4.10 shows the commonly used methods for brain image analysis.

Conventional image analysis methods were used in brain tumor image analysis for a long period before

the ML and DL models/algorithms were introduced. They are still being used in the pre-processing and post-

processing steps in recent researches when incorporating algorithms to enhance image and/or pixel features.

Various thresholding models are applied on images to define a threshold for the pixel scores and then removing
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Figure 4.10: Types of brain tumor analysis method.

the pixels below the threshold. This process helps with removing noise from images and enhancing the ROI

pixels. Figure 4.11 shows some sample outputs of few popular thresholding methods applied on brain MRIs.

The region-based models use the connected pixels to find the regions from the images and apply contouring

algorithms to outline the ROIs and Figure 4.12 shows an example of region extraction using connected

component analysis and contouring of the region. Basic morphological operations are applied to reduce or

expand the boundaries of objects in an image. Figure 4.13 shows four basic morphological operations [243]

on brain MRIs and all of these operations are based on the neighbor pixels to decide whether to remove some

pixels from boundary of the object (i.e., erosion), or to add pixels (i.e., dilation), or to use a combination

of both like opening (i.e., erosion followed by dilation) or closing (i.e., dilation followed by erosion) to

represent the ROI more appropriately. Although geometry-based algorithms are not commonly used in

brain tumor analysis for lack of appropriate geometric properties of organs, some non-Euclidean geometry

models are rarely used in brain tumor image detection or segmentation. The popular conventional methods

include basic thresholding (i.e., binary, Otsu, Yen, Adaptive, Manual thresholding, etc.) and filtering models

(i.e., Anisotropic filtering) , region-based models (i.e., region growing, connected component extraction,

contouring, etc.), geometry-based models (i.e., graph-based algorithms, fractal geometry, computational

geometry, etc.) and morphology-based models (i.e., erosion, dilation, opening, closing, etc.).

Another category of research is AI-based based on AI algorithms are in general used to imitate human

intelligence with computer-based systems [67] and medical data analysis have been using AI models to

develop automated systems to assist healthcare professionals. Machine learning (ML) is a branch of artificial
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Figure 4.11: Examples of various thresholding methods.

Figure 4.12: Example of ROI extraction with region-based algorithms.

intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate the way that

humans learn, gradually improving its accuracy [244, 245, 246]. Some parts of these methods were mentioned

in Chapter 2. The machine learns from the data provided and improves the prediction accuracy using various

methods when supplied with further data. ML algorithms can be supervised, unsupervised, semi-supervised

and reinforcement learning based on the data and training process. Supervised ML algorithms use data

containing labels/ground truths to learn mapping input data into output data. Unsupervised ML algorithms

on the other hand use unlabeled data and finds patterns/structures from the data to learn. Regression,

SVM, DT are some examples of supervised ML algorithms and clustering algorithms, KNN are examples

of unsupervised algorithms. Semi-supervised ML algorithms combine both labeled and unlabeled data to

develop the classifier outputs. Reinforcement ML algorithms learn from the observation of the environment

and the feedbacks on the actions from the environment. Examples of the most commonly used machine

learning methods for brain tumor analysis are are SVM, RF, K-Means clustering and FCM clustering.

Most of the recent works mainly focus on deep learning models. Deep learning is a subset of ML that

uses a hierarchical structure of artificial neural networks (ANN) with multiple hidden layer to extract high-

level features from inputs [247]. Different types of DL algorithms are applied with variations in network

structures like CNN, DNN, RNN etc. [248]. The basic structures of ANN, DNN and CNN were included in

Chapter 2. DL models achieve significantly high performance for brain image analysis, hence CNN models

and its’ variation like VGG, AlexNet, GoogleNet, ResNet, attention-based CNNs, etc.[249] and variants of

fully convolutional networks like U-Nets (popular for biomedical image segmentation) [250], DNNs [251]
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Figure 4.13: Examples of basic morphological operations.

have been very popular for brain medical image analysis tasks. Other than these methods, various hybrid

models containing multiple methods from these three (i.e., conventional, ML and DL), or combination of

these with heuristics, genetic algorithms, statistical models and other novel architectures are also popular

and they have shown to achieve high accuracy comparable to DL models. Some of the recent approaches

from all these categories are discussed in the next five sections.

4.4 Survey/Review Papers

Medical image analysis with various semi-supervised machine learning, multi-instance learning and transfer

learning for different organs have been discussed in detail in [238] with references to relevant systems. Some

survey papers like [237] have discussed more recent methods based on DL models for medical image analysis,

including their challenges and solutions.

Tiwari et al. [21] reviewed the recent methods used for brain tumor segmentation and classification of

brain MRIs in 62 research papers from 2014 to 2019. They included details of brain MRIs, various types

of MRI imaging techniques, their outcomes, differences, advantages of MRIs to extract the gray matter

(GM), white matter (WM), and cerebrospinal fluid spaces (CSF) individually. They also discussed all

the superclasses and subclasses of brain tumor classifications, detail classification of gliomas, tumor grades

based on their severity and location in the brain. The image segmentation methods used up to now including

thresholding-based (i.e., region growing), supervised (i.e., ANN, SVM, RF, KNN) and unsupervised (i.e.,

clustering and active contour models) machine learning were also discussed as they were used for brain tumor

segmentation. Both supervised (i.e., DT, NB, bayesian, SVM, LDA, perceptron, KNN) and unsupervised
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(i.e., hierarchical clustering, FCM, k-means, SOM) tumor classification methods were listed with references.

The techniques, performance measurements, true-positive and false-positive rates, and the datasets were

summarized in a tabular format for all the 62 reviewed articles with their textual summary. A list of 19

datasets used in previous brain tumor segmentation studies with their references and frequencies of usage

also provided a clear idea about the benchmark datasets and their availability as well as showing that the

datasets BRATS 2013 and BRATS 2015 were being used in most recent works. The authors also included

some statistical results on the country of origin of the reviewed articles, publishers, citations, publication

years, used datasets, used methodologies, etc. The comparisons between the used methods showed the

dominance of CNN and PSO in recent years, whereas SVM, FCM and k-means had the second rank among

the used methods from 2014 to 2019. Different performance metrics used in brain tumor analysis were

explained with proper equations and their network visualization maps of the terms and their links were

helpful to get a general idea about the terms used in similar articles. Their conclusion on various deep

learning and PSO methods being the current and future focus on this research field has been validated with

our review on the recent works on brain tumor segmentation and classification. The review paper was quite

thorough on the recent research works and correctly mentioned the contributions of all the 62 articles. The

tabular summaries and statistical analysis on various topics were helpful for quick comparisons between

different methods and the datasets, publications, performance metrics, etc. Summaries for some papers were

very brief due to their similarities to some other discussed works and the methods used in various papers

were mentioned with their names. The benchmark datasets were listed with their names and references.

More details on the datasets, such as the number of items, type of data, public availability, and ground truth

availability could help for understanding the datasets better when choosing an appropriate one for further

related research.

Saman et al. [214] published a survey on brain tumor segmentation and various feature extraction tech-

niques discussing MRI systems, the technology behind MRI processing and MRI sequences with explanation

and examples. Different grades of brain tumor, their locations, symptoms and their treatment methods

were listed in the survey. The paper reviewed works on brain tumor detection from the last ten years with

a main focus on works from the last three years. The authors discussed pre-processing of the MRIs like

skull stripping, bias field correction, noise removal, object detection and segmentation using existing tools

and algorithms. The existing research works on brain tumor segmentation were summarized as manual,

intensity-based (i.e., threshold-based, region-based, classification-based, clustering-based), atlas-based, and

deformable model-based (i.e., level set, and active contour models), hybrid and deep learning methods (i.e.,

CNN, cascaded CNN, FCN, DCNN, etc.). The advantages and disadvantages of some of the papers from

these methods were expressed in tabular format. The authors also analyzed and reviewed recent works on
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feature extraction methods for brain tumor analysis. Different types of features, including texture-based

(i.e., auto correlation, correlation, contrast, cluster prominence, shade, dissimilarity, energy, entropy, ho-

mogeneity, and local binary pattern), intensity-based (i.e., mean, variance, skewness, kurtosis, and pixel

orientation), shape-based (i.e., area, perimeter, circularity, irregularity, and shape index) were defined and

described with their corresponding equations. Deep learning based automated feature extraction techniques

were also discussed. The recent focus on various CNNs, U-Nets with their variations were mentioned by the

authors as well. The detailed analysis on the features of brain tumor segmentation mentioned in the paper

was helpful to understand and compare the features for feature extraction and processing of similar systems.

Mentioning and referring to more than 130 research works from 10 years was impressive and useful in order

to analyze the popular methods and their performances in brain tumor research. Although a huge number

of relevant articles were listed in the references, most of them were not properly discussed or summarized

which made it difficult to generate any comparison-based decisions without actually going through the cited

papers individually.

Another review on brain tumor segmentation was presented in [222]. The authors covered recent devel-

opments in brain tumor segmentation by summarizing 19 recent articles with their methods, datasets, data

dimensions, MRI modalities, execution time, detected abnormality types and the supervision status (i.e.,

automatic, semi-automatic, etc.). They also added a comparative analysis of their performance metrics (i.e.,

dice score, precision, sensitivity) from two benchmark datasets - BRATS 2013 and BRATS 2015, guiding

future research towards the most promising approaches. Conventional methods such as thresholding and

region growing were defined and explained with mentions of some existing morphological methods applied

in relevant research works. Supervised methods (like KNN, SVM, RF, and ANN), unsupervised methods

(like k-means and FCM), active contour models, and hybrid methods combining the aforementioned ones

were explained with brief summaries of more than 100 existing methods. The authors concluded their work

with the recommendation that the application of conditional random field (CRF) with FCNN, DeepMedic

or ensemble systems was superior from the performance comparison presented in the paper. The authors

presented a detailed summary on brain tumor segmentation research works from recent years. Most of the

works among the more than 100 articles they included were focused on the last 10 years, and they were

discussed with brief summaries of their contributions in separate sections based on the methods used. The

different methods existing in the literature were defined and described properly with their advantages and

disadvantages. Although a large number of papers were covered in this survey, similar to the previous survey,

the contributions of most works were not mentioned properly with their outcomes or performance metrics.

The comparison of performances was done on few selected works to include as many methods as possible

in the comparison, but comparing few works was not sufficient to make any generalized decisions on their
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scope and possible future research directions.

Abd-Ellah et al. [240] reviewed brain tumor MRI image segmentation from a machine learning and

deep learning perspective. Machine learning techniques for image denoising, reconstruction, registration and

skull stripping were mentioned as preliminaries to brain tumor analysis. A generic computer-aided diagno-

sis (CAD) system was analyzed with a framework containing data collection, pre-processing with masking,

thresholding, filtering, etc., segmentation with various techniques, texture, intensity and other feature ex-

traction, feature selection with genetic or sequential algorithms, feature reduction with principal component

analysis, classification with machine learning and deep learning, performance evaluation and final diagnosis.

Brain MRIs, MRI types and a discussion of 14 popular datasets, namely AANLIB, ADNI1, Allen brain atlas,

BrainWeb, Brain-development, BRATS 2012 to 2017, Cjdata, Rider, IBSR with their sources, modalities,

number of images, image types, number of patients and source link was included by the authors. Traditional

machine learning methods and deep learning methods for tumor detection, segmentation and classification

were then discussed with relevant references. CNN, cascaded correlation artificial neural network (CCANN),

feedforward backpropagation neural network (FFBPNN), backpropagation neural network (BPNN), prob-

abilistic neural network (PNN), fuzzy hopfield neural network (FHNN) and many other DL models were

discussed in detail. 32 machine learning based papers with their feature extraction methods, detection

methods, datasets, performance metrics (i.e., sensitivity, specificity, and accuracy), and limitations were

summarized for tumor detection. Similarly, 41 papers on tumor segmentation with their methods, datasets,

performance metrics (i.e., dice score, accuracy, sensitivity, and specificity) and limitations were discussed.

The comparison showed that DL performed better than other methods for all these approaches. A discussion

of 15 tumor classification based papers was also added with their features, classification methods, datasets,

performance metrics and limitations. The authors discussed the scope of brain tumor methods based on the

limitations extracted from existing works and mentioned the small amount of work on the detection of tu-

mors as well as the limited number of datasets for the process. The advantages of DL models over traditional

machine learning methods were also mentioned with the necessity of providing a more precise approach to

specify the location, area and performance measures for the tumor. The authors concluded the paper with

the observation that more complete systems combining detection, segmentation, classification and precision

analysis of brain tumor is needed in this research area. The review on brain tumor analysis provided by the

authors covered all major issues of brain tumor studies. They discussed all basic components of the analysis

in detail with a general framework structure and mentioned the specific works of existing approaches with

their limitations and scope. Although the individual summaries of the papers were very brief the authors

were able to point out all the major contributions and challenges of the field and the possible future works

towards a combined system.
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A very recent survey on brain tumor segmentation with deep learning was presented in [223]. The

authors discussed image segmentation and various brain tumor segmentation techniques such as manual,

semi-automatic and automatic methods, and then focused on automatic methods that used deep learning.

To introduce the deep learning process, the authors started with a detailed explanation of neural networks.

CNNs and each building block of CNN (i.e., convolutional layer, pooling layer, non-linearity layer, fully

connected layer, optimization, loss function, parameter initialization, hyperparameter training, and regular-

ization) were defined and explained with proper references to some conventional and novel methods for each

of them representing the original methods and their various optimizations. Similarly, the structure of deep

CNN structures like single/dual pathway, cascading and U-Nets were included with their definitions and

descriptions with various approaches to optimize the results for a network. The paper included a detailed

discussion on the various steps and techniques for brain tumor segmentation starting from pre-processing

(i.e., bias field correction, normalization, etc.) to post-processing (i.e., CRF, MRF, connected component

analysis, morphological operations, etc.) with class imbalance solution (i.e., loss functions, hard negative

mining, two-phased training, hierarchical segmentation, etc.), data augmentation (i.e., data transformation,

artificial data generation, etc.), datasets (i.e., Decathlon, BRATS 2012 to 2019 etc.), performance evalu-

ation metrics (i.e., Hausdorff measure, Dice score, sensitivity, specificity, etc.), and various softwares and

frameworks (i.e., Theano, Pylearn2, Pytorch, Kears, Tensorflow, Caffe, etc.) were used for brain tumor

segmentation. An overview of recent deep learning methods with their input type, pre-processing methods,

optimizer, activation and loss function, and regulization was added for 26 methods based on U-Net archi-

tectures, and for 13 works on dual-pathway architecture, for 8 works on single-pathway architecture, for 7

works on ensemble architecture and for 13 works on cascaded architectures. The performance metrics of the

papers that used BRATS 2017, BRATS 2018 and BRATS 2019 datasets were compared and discussed with

the conclusion that U-Net with good set of parameters performs better than other deep learning methods for

brain tumor segmentation. This survey on the recent deep learning methods for brain tumor segmentation

was quite unique in its representation of the works. Instead of summarizing the referred methods indi-

vidually, the authors created a complete introductory analysis and workflow for brain tumor segmentation

and referred parts of the recent works in each component of the introduction and workflow. The approach

helped to better understand the whole process while learning the existing methods used for each part of

the process. The discussion and comparisons of the methods helped to realize the best available options for

similar works up to recently. Keeping track of the complete processes used in each of the recent works was

a bit inconvenient as they were distributed throughout the workflow.

Another deep learning based brain tumor image analysis survey that was recently published [239] reviewed

427 research works published from 2018 until February 2020 in the Science Direct database, the IEEEXplore
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Library, and Scopus by following a systematic review protocol. After scanning titles, abstracts and checking

the relevance of all the 427 works, 92 papers were read thoroughly and summarized for the survey. The

authors focused on two types of methods - brain tumor segmentation and brain tumor classification. They

started by mentioning the large scale use of SVM, then random forest and the evolution to deep learning

(DL). They included an overview of the datasets used and the DL method. Performance measurements were

included in tabular and summary paragraph formats to show how DL methods were able to achieve more

than 90% accuracy and dice score comparison to machine learning (ML) techniques with around 70% dice

scores. The BRATS datasets and around 10 other frequently used datasets (i.e., TCIA, REMBRANDT,

etc.) were also mentioned. Different methods applied for brain tumor segmentation research with references

were also discussed briefly. Data augmentation with image transformation or synthetic data generation, CNN

architecture with convolutional layer, fully connected layer, pooling layer, activation function, and evaluation

metrics used in recent DL methods were described. Popular CNN structures like GoogleNet, AlexNet, VGG,

ResNet, U-Net, etc. and their implementation in brain tumor analysis were explained, and the application of

transfer learning for those structures was mentioned. The advantages of the DL methods for higher accuracy

and consistency were explained and the challenges when using smaller datasets and corresponding ground

truth were mentioned in the conclusion. The survey paper was organized in a very efficient manner to get

an overview on the different DL methods for both segmentation and classification used in recent years, their

performances, datasets and some discussion on the general brain tumor analysis framework and steps. The

paper covered all recent research directions and challenges.

Some brain image analysis reviews discussed only parts of the complete brain image processing such as

skull stripping and mentioned the existing works and datasets [225, 224]. The methods were sometimes used

either as a pre- or post-processing for brain tumor analysis or overlapping with brain tumor studies, and

some of those datasets were used in brain tumor analysis methods. Table 4.2 contains summaries of these

survey papers.

4.5 Conventional Methods

Although machine learning and deep learning methods are more popular now, the methods for brain tumor

segmentation originally started with thresholding and morphological operations. With the rise of machine

learning and deep learning, more researchers focused on the recent approaches, but some thresholding, filter-

ing, morphology based methods are still being developed individually or in hybrid approaches with machine

learning or deep learning and they show promising outcomes. A novel region-based level set method on topo-

logical changes of curve evolution using superpixel fuzzy clustering and Lattice Boltzmann Method (LBM)
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Table 4.2: Survey/review papers.
Ref. Topic Approach Features Datasets Contributions

[237]
Segmentation
(medical images)

DL DL -

Detail of CNN, 2D CNN, 2.5D CNN, 3D CNN architectures.
Overview of variations of FCNNs, U-Nets, CRNs, RNNs.
Explanation of various network training techniques, transfer learning.
Challenges and their possible solutions for medical imaging.

[238]
Analysis
(medical images)

Semi-supervised
Multi-instance

TL
- -

Publications from 2006 to 2017.
Overviews of all techniques with their categories, applications, methods
and organs.
Detail discussion on recent trends, challenges, learning and datasets.

[239]
Classification
Segmentation

DL DL 24

Publications from 2018 to February 2020.
Overview of datasets, DL methods, performance metrics.
Detail explanation of CNN architecture.
Popular existing CNN frameworks for medical image analysis.
Challenges of brain tumor analysis.

[223] Segmentation DL DL 9

Overview of image segmentation, various DL models, architectures,
datasets, performance metrics, softwares.
Review of publications on Unet(26), dual-pathway(13), single-pathway(8),
ensemble(7), cascaded(13) architectures.

[252]
Detection
Classification

DL - 11

Publications from 2015-2020.
Detail of MRI, brain tumors, performance metrics.
Year-wise statistics of reviewed papers, pre-processing, augmentation,
DL models, feature extraction methods.
Comparative analysis of the methods, purpose, dataset, image modality,
pre-processing, features, performance, algorithm, softwares, limitations
of 53 publications.
Detail discussion on performance degrading factors and future directions.

[21]
Classification
Segmentation

Conventional
ML

- 19

Publications from 2014 to 2019.
Overview of brain tumor, MRIs.
Statistics on publisher, comparison of methods, datasets, citations,
countries, number of publications.
Performance metrics details.
Comparative analysis on methods, datasets and performance metrics.
Challenges and future directions.

[222] Segmentation
Conventional

ML
- 2

Detail explanations of conventional and ML methods.
Comparative analysis on MRI modalities, methods, time, data,
abnormality types.
Performance comparisons of publications on BRATS 2013 and
BRATS 2015.

[17] Segmentation
Conventional

ML
- -

Overview of brain tumors, MRI, manual, semi-automatic and
automatic segmentation.
Detail discussion on threshold-based, region-based,
pixel-based, model-based, supervised and unsupervised
methods for tumor segmentation.

[240]
Detection
Segmentation
Classification

Conventional
ML
DL

- 14

Detail discussion on CAD, brain MRI, datasets.
Comparative analysis on feature extraction, detection/classification
method, dataset, performance metrics.
List of limitations for tumor detection and classification.
Comparisons of methods, data, performance with limitations of tumor
segmentation publications.

[214]
Segmentation
Feature extraction

Conventional
ML
DL

Texture
Intensity
Shape
DL

-

Detail discussion on brain tumor,MRIs pre-processing.
Definition and explanation on manual, intensity-based, atlas-based,
deformable model, ML, DL and hybrid segmentation methods.
Comparisons of advantages and disadvantages of all methods.
Definitions and discussions on feature extractions for texture, intensity,
shape, DL features.
Discussion on recent research trends.

[225] Skull-stripping
Conventional

ML
DL

- -

Publications from 2016 to 2019.
Overview of surface, morphology, intensity, template and hybrid
conventional methods.
Review of supervised, unsupervised ML and DL methods.
Comparisons between existing methods with quantitative measures.
Challenges and possible future directions.

[224] Skull-stripping
Conventional

ML
DL

- 8
Overview of datasets with visualization.
Review of histogram thresholding, morphology, deformable surface-
based, atlas-based, region-growing, meta heuristics, 2D and 3D CNNs.
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was proposed very recently [228]. A watershed transform (WT) algorithm with multiscale morphological

gradient reconstruction (MMGR) to handle over-segmentation was used for segmentation. Dilation, ero-

sion, opening and closing were applied for morphological reconstruction. Then the En-FCM method was

implemented for the superpixels and the results were used to generate a two region level set. Finally, the

contours were produced after minimizing the energy of the level set function using LBM to produce the final

segmentation. The proposed method was tested on both synthetic and BRATS2017 data and the segmen-

tation results were compared to 6 other recent segmentation methods to show that the proposed method

outperformed other methods by at least 3% to at most 20% for the dice score, and it had better sensitivity

and specificity. The proposed method was computationally efficient and took less than 4 seconds for each

image whereas the similar methods like LINC, LIC, GINC, VLS required at least 20 seconds to more than

100 seconds to process each image. The inclusion of superpixels and LBM helped to reduce the running time

significantly. The method was also robust to noise, heterogeneity and initial contour. The proposed method

was computationally at least 5 times faster than the existing approaches, but the method was used with only

a single modality that was applicable for whole tumor and it was unable to specify the core or other tissues.

It was mentioned that the proposed method was applied to both synthetic and BRATS2017 dataset, but

there was no proper description about the synthetic data. Only 40 2D slices from FLAIR modality of the

BRATS2017 dataset were used for the experimentation without proper justification. Although the proposed

system was computationally efficient and performed better than other recent approaches, the results were

from experiments on a very limited dataset and hence not enough to establish the performance of the method

as a comparable method for brain tumor segmentation.

Islam et al. [230] proposed a novel parametric active contour model (PACM) that reduced the processing

time of brain MRIs by extracting three initial points for initial contouring of a snake model. The proposed

model also provided the optimal set of parameters for PACM model by trial and error and calculated the area

of the detected tumor region by measuring the pixels within the extracted tumor region. After reshaping the

input MRIs, the proposed method applied a median filter on them to reduce noise while keeping the contrast

variation information. An initial contour interpolation method was then used to find three initial points to

form a triangle and then to draw a circle through the points so that the tumor was inside the circle. Then the

PACM was applied to draw the tumor contour starting from the curcumscribed circle with 3 initial points

and found the optimal parameter set for the PACM with 180 iterations using step size = 1, scaling factor =

0.5, elasticity controller = 0.38, rigidity controller = 0.21, weighting factor for intensity-based potential =

0.32, weighting factor for edge-based potential = 0.38, and termination potential weighting factor = 0.7. The

sample output images showed that the proposed method was able to correctly contour the tumor region in

the MRIs. As the intensities of the pixels in brain MRIs are very similar, threshold-based, contrast-based or
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edge-based methods had issues trying to find the tumor region correctly. The proposed snake method using

only three initial points for contouring seemed a simple but efficient solution for brain tumor segmentation.

The details of the used dataset and performance metric measurements were not available so that the accuracy

of the method or a comparison with other existing similar approaches was not possible. It was mentioned

that the dataset was collected from available resources without any detail on the number of data instances,

ground truth or the images themselves. All of the sample images included in the paper had very visible and

high intensity tumor region which is not the case for all brain MRIs. So, it was not clear if the method would

work on other brain MRIs where the tumor region is not clearly visible. For these reasons, any generalization

of the performance of the method was difficult.

A region based fuzzy active contour model was proposed recently in [232] for brain tumor segmentation.

The MRIs were divided by otsu thresholding [253] into three non-overlapping areas (i.e., tumor, dark region

and background, and the rest of the brain region), and an energy based membership degree calculation

was done on the pixels to separate them into two parts. After repeating the process until the total energy

became stable and then the contours for the regions were generated. After normalizing the MRIs, anisotropic

filtering was applied for the segmentation algorithm to get the texture features, and then the SLIC algorithm

was executed to create clusters of superpixels. The three-region division with otsu thresholding was then

used and repeated as mentioned earlier to generate the final tumor boundary. The novel approach was

experimented on with both synthetic data and the BRATS2013 and BRATS2019 datasets. The performance

metrics comparisons between the proposed method and nine other baseline methods for BRATS dataset,

four other baseline methods for synthetic dataset, and two methods for both datasets showed that the model

outperformed most of them and was compatible with the remaining ones. The idea of clustering based on the

energy of the pixels to create clusters of tumor/light pixels, dark pixels and other pixels was an impressive

idea which helped to increase the region contouring efficiency. But to generalize the result decisions, some

more experiments on the proposed approach was needed with MRIs having overlapping regions and very

similar intensities or energy for most pixels to check if the clustering algorithm was able to identify them

correctly and was able to draw tumor boundary contour properly for overlapping or vaguely distinct areas.

A model using ROI extraction, region growing and morphological operations (i.e., dilation and erosion),

FCM and gaussian filters was proposed in [233] for brain tumor segmentation, area and centroid detection.

The model applied FCM on the MRIs to get clusters with tumor pixels and non-tumor pixels for extracting

and removing the non-tumor regions. Then the tumor regions were labeled and after thresholding of the

MRIs, two morphological operations were used on them. Dilation was used to identify region growth, and

erosion was applied to detect seed points. Sequential application of the morphological outputs was then used

to capture the complete tumor region edge for tumor segmentation. Performance scores on specificity and
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sensitivity of 10 patient MRIs were compared to show the efficiency of the system. The idea of applying a

hybrid model by combining morphological operations, clustering and filtering for tumor segmentation was

promising. But the lack of details explanation of every step of the methodology, the experimental setups, the

comparison of the method with other baseline methods, and the absence of a comprehensive dataset details

made it difficult to assess the efficiency of the model and to re-implement the model for testing the system on

a benchmark dataset. A novel thresholding method with similar idea was proposed in [226] for brain tumor

segmentation. Basic morphological operations and pixel subtraction were used for pre-processing. Then a

new thresholding based on the uniquely valued pixels was applied and median filtering was used for refining

the output. The TCIA dataset was used and achieved 96% accuracy which outperformed the standard otsu

thresholding based segmentation by at least 8%.

Brain tumor image analysis and brain tumor segmentation methods were also explored from a geometric

point of view where in most cases ‘fractal geometry’ was used [254]. Fractal geometry is a non-Euclidean

geometry that is defined recursively using self-similarity. As the elements in nature and animal/human body

do not follow proper euclidean geometrical shapes or rules, fractal geometry introduces self-similarly fine

structures that use magnification to create infinitely complex objects. Various fractal geometric features and

algorithms were implemented for brain tumor image segmentation by various researchers. Iftekharuddin et

al. [236] extracted fractal features for pediatric brain tumor segmentation and classification. The piece-

wise triangular prism surface area (PTPSA) algorithm was used for fractal feature extraction and a novel

fractional Brownian motion framework was used for fractal wavelet feature extraction from 204 T1, T2 and

FLAIR MRI images. The fusion of those two features with intensity values was very effective for automatic

tumor detection from single and multimodal MRIs where the tumor was clearly visible. Although the model

worked better than existing fractal feature based systems, it was unable to properly distinguish tumors from

the other parts of the brain when the tumor was not the most visible area (i.e., the only region containing

highest intensity pixels) in the image. Multiple fractal algorithms (i.e., PTPSA, piece-wise modified box

counting (PMBC), and blanket) were used for brain tumor segmentation from MRI images as described in

[229, 221]. After dividing each MRI image into multiple pieces, the algorithms used the pixel intensities of

each piece to detect the tumor. Different intensity threshold values were used for fractal dimension (FD) and

cumulative histograms. The PMBC algorithm worked better for tumor detection than the other methods

described in [229]. In [221], 80 MRI and CT images were tested for statistical validation of using fractal

dimension in brain tumor detection. The comparison of average tumor FD and non-tumor FD in 80 images,

negative and positive FD difference of half images for PMBC, PTPSA and blanket algorithms showed the

effectiveness of FD as an important attribute for tumor detection. The experiments showed how FD values

differed for the tumor area and the non-tumor area so that the tumor could be detected and distinguished
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properly from the other parts of the brain.

A few researchers worked on brain tumor MRI image analysis using some well-known computational

geometry algorithms. Delaunay triangulation was used for reconstruction of a brain tumor in 3D using

2D parallel cross-sectional MRI segmented slices [234]. Sobel operators and morphological operations were

used to find the boundaries and pre-processing before applying delaunay triangulations between points of

two planes. The 3D model was constructed with those connected 2D slices with a stacking algorithm. The

research used a novel idea for 3D tumor image reconstruction using geometry that improved the segmentation

quality. But the authors did not include any details of the datasets used or any proper experimental results

to show the performance of the algorithm. Although the work contributed to tumor location, size and volume

calculation, the decision that their ‘proposed method was better than other segmentations still needed to

be proved by proper benchmark datasets and experimentation. ‘Convex hull’, another major topic from

computational geometry was used for brain tumor segmentation by Shivhare et al. [231]. Although the

convex hull was only generated to be the input for an active contour model of brain tumor segmentation, it

was one of the few approaches where a computational geometry approach was used for brain tumor image

analysis. After pre-processing the MRI images from BRATS2015 dataset, the key points were extracted

from high energy regions of the image to draw the convex hull for the tumor. The convex hull was then used

to draw the exact tumor using active contour model and to decide on the tumor core, complete tumor and

enhanced tumor. The proposed method produced outputs with 81% to 92% DCC, and performed better

than state-of-the-art image processing methods. The convex hull was also used for a part of the process in

[235] for convex area generation. A spectral clustering-based brain tumor segmentation method was used

for tumor detection using similarity graph on the MRI image. The connected component labeling algorithm

was applied on the processed image to find all connected regions in the image, and define the largest region

as the tumor. Then the tumor volume calculation was done by measuring the convex area generated from

the convex hull of the tumor.

Compared to the ML and DL methods, the performances of conventional methods for brain tumor analysis

tasks are generally inferior. But as shown in this section, combination of multiple operations can provide

comparable performances in some cases. Although applying only the conventional models are not popular

in recent researches, they are still part of pre-processing and post processing phases in almost every brain

tumor analysis task. Different types of thresholding and filtering (i.e. otsu, sobel), watershed superpixel

model, region growing algorithms, contouring algorithms, fractal geometry algorithms, few computational

geometry algorithms (i.e. Convex hull, Delaunay triangulation, etc.) and basic morphological operations are

still used to enhance the input image properties, separate the ROIs from the background and from other

parts of the image, creating boundaries of the tumors, locating the ROIs in image, removing noise from
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both input and output images, computing geometric properties of the tumor and other similar tasks. The

major advantage of the conventional methods is the simplicity of the application of the algorithms and that

they work well with simple 2D images with distinguishable pixel properties between the tumor region and

the rest of the image. The limitation of the conventional methods is the lack of features to handle complex

multidimensional medical images where the differences between the tumor region and the other regions are

subtle. The conventional methods can still be recommended for use for brain tumor analysis methods but

the preferred option will be applying a hybrid of these models as part of pre-processing and post-processing

while DL models (or efficient ML models) are used for main training modules.

4.6 Machine Learning Methods

Both supervised and unsupervised machine learning and their hybrid methods have been used for brain

tumor detection/classification and tumor region segmentation tasks. Although most recent works focused

on deep learning methods due to their high performance scores, the basic machine learning methods and

their variations are still compatible with the deep neural network performance.

Reddy et al. [255] proposed a method using modified region growing and adaptive SVM for brain tumor

prediction and segmentation. They summarized the proposed methods, advantages and limitations of 18

related works from 2001 to 2019 covering different methods like SVM (with different variations), fuzzy

clustering, kernel clustering, thresholding, and CNN for different medical image analysis (but mostly on

brain tumor segmentation and classification). The pre-processing started with denoising the images and

applying median filter after RGB to HSV conversion and V-image selection. The skull stripped versions of

the pre-processed images were then used for a modified region growing algorithm with gridding and seed

point selection for ROI detection. To overcome the shading and over-segmentation, the proposed algorithm

used two defined threshold values for intensity and orientation to create a guided region growing system. The

segmented images were then used for 22 GLCM feature extraction from each direction of the four orientation

angles as 0, 45, 90, 135 making a total of 88 features for each input image. Then a grasshopper optimization

algorithm (GOA) was applied for important feature set selection that was fed to a SVM classifier used

for tumor classification. The BRATS 2015 dataset was used in the experiments and the performance of

the proposed method was evaluated by peak signal-to-noise ratio (PSNR), mean-square error (MSE) and

structural similarity index (SSIM) in order to compare them with existing k-means, hybrid k-means and

FCM methods. The results showed that the proposed approach performed either very similarly to the

comparison algorithms or outperformed them by at least a small percentage. The accuracy, execution time,

specificity, sensitivity, and other measurements outperformed other methods, however with more than 98%
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accuracy in minimum time. The tumor prediction approach with GOA-SVM was also measured against

PSO-SVM and SVM for 24 low-grade glioma (LGG), high-grade glioma (HGG) tumor images to prove

that their method outperformed the other two by at least 8% higher accuracy by achieving more than

95% prediction accuracy. The authors outlined their proposed method step by step from pre-processing to

experiments. They mentioned and discussed the results in detail with complete analysis of every aspect

of the results, but they were not very descriptive at some parts of the methodology section. Rather than

including the general theoretical definitions and equations of the steps, a more detailed and well-explained

methodology mentioning the relevant values or components for their method could better clarify the proposed

approach. Some ambiguity and abstractedness in pre-processing (i.e., skull removal), seed-point selection

(i.e., histogram analysis), thresholds and other parameters of the algorithm, etc. throughout the complete

methodology made it difficult to understand or duplicate their method.

Another ML based tumor/non-tumor detection and segmentation model was proposed recently [256].

The input images were normalized and a median filter was used for pre-processing. Then feature extraction

was applied using a histogram of oriented gradients (HoG) after decomposing the images with DWT. Four

texture-based features such as contrast, energy, correlation and homogeneity were measured for each image.

The images were classified as normal or tumorous with random forest, SVM and decision tree classifiers. A

basic principal component analysis (PCA) was used for image segmentation. Although the sensitivity value

was higher for SVM, the random forest model achieved better performance for all metrics and achieved the

accuracy of 98.37%. The proposed model outperformed few existing similar models, however the unique

contributions of the proposed approach and the segmentation results were not clearly mentioned.

A combination of supervised and unsupervised machine learning methods was proposed recently by [212].

Pre-processing of the images from the BRATS 2015 and 2019 datasets was done by histogram normalization.

Gradient-based features and Gabor wavelet features were then extracted from the normalized images. An

atlas-based feature enhancement process was applied that used the local average and standard deviation of

pixel intensities. The values were applied to create atlases for training and test sets to enhance the features

for an ensemble learning classifier. The ensemble learning framework consisted of 125 decision trees for

accommodating the feature vectors of the training data. The dataset was randomly divided into six groups

and five of them were used as training data and the rest as test data. Randomly selected feature vectors from

100K to 1000K were used to train the decision trees with different depth varying from 25 to 45 based on the

data entropy. The segmentation outputs from the decision trees were then post-processed with a random

forest model to separate positive and negative pixels and finally a region growing algorithm was applied to the

positive outputs to generate the final segmentation. The proposed method was tested against some existing

CNN, deep CNN, RF, GA, FCNN, and hybrid approaches. The DCC of the proposed method varied from
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0.84 to 0.88 that was similar to the deep CNN and it was able to outperform all other methods by at least

a small percent. The proposed method combined multiple supervised and unsupervised machine learning

creating an ensemble method which showed that the correct combination of machine learning methods was

able to achieve similar and in cases better results than the CNN frameworks. As most recent works are

mostly focusing on deep learning, a novel idea like this combining multiple machine learning methods to

create an ensemble method that was able to generate efficient outputs similar to deep learning opened up

the possibilities of a new research direction with the expectation of a ML-based method outperforming all

recent DL methods.

Pitchai et al. [257] proposed a method combining machine learning and fuzzy k-means clustering for brain

tumor classification and segmentation from MRIs where the machine learning was used for tumor/non-tumor

classification and clustering was used for tumor segmentation. The MRIs were pre-processed to remove noise

by a Wiener filter that limits the mean square error while smoothing the noise in the images. Then sixteen

GLCM features were extracted from the pre-processed images, and the most optimized set of features was

selected with a genetic algorithm called Crow Search Optimization Algorithm (CSOA). A simple three layer

artificial neural network with a backpropagation layer was used to classify the images as normal images or

abnormal tumor images based on the optimized feature set as input to the ANN. The weights of the ANN were

adjusted by the mean squared error (MSE) at the training phase. The images classified as tumor images were

then used as inputs to a fuzzy k-means algorithm executed for 12 iterations for tumor region segmentation.

Various experiments on BRATS 2015 and BRATS 2017 datasets were performed by varying the neuron

numbers of the ANN, the iteration numbers of the clustering, over segmentation and under segmentation

scores to choose the best parameter set for the proposed method. The performance metrics showed that the

approach outperformed 2D ConvNet, FCNN, CNN and KNN by at least 3% and achieved 94% accuracy. As

CNN-based approaches generally outperformed the conventional machine learning methods, the proposed

hybrid method outperforming basic CNN-based methods generated a new direction for future studies on

brain tumor analysis combining basic machine learning algorithms with genetic algorithm optimizations to

achieve better results without high computation cost. Although the authors explained the process in detail,

more information about the features and the optimized set of features could be helpful for future work.

Another hybrid k-means clustering and ANN based method was proposed in [258] using k-means, ANN

and texture features for brain tumor segmentation using data from the BRATS 2015 dataset. The method

classified a tumor as benign or malignant and then segmented the tumor region. For the classification, after

applying the k-means clustering, the non region of interest (ROI) parts were removed from consideration

based on the clustering results. Then the texture features were calculated for the images so they could be

applied to a basic ANN structure for tumor type classification. Another similar structure was used for the
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segmentation where after filtering out the non ROI parts, each clustered object was used to extract features

to train another simple 3 layered ANN for tumor region segmentation. The proposed segmentation achieved

almost 87% accuracy whereas the basic SVM-based segmentation had around 67% accuracy. The proposed

hybrid machine learning method outperformed the basic supervised methods by almost 10%. The idea of

combining k-means clustering as a pre-processing for ANN helped improving the segmentation performance,

but the paper did not share proper details of the parameters of two structures combining the clustering and

ANN, the features, performance metrics, etc. making the process a little bit difficult to follow.

Angulakshmi et al. [259] proposed a novel simple linear iterative clustering (SLIC) based approach for

brain tumor segmentation using walsh hadamard transform (WHT) [260] texture features of MRIs from

BRATS 2015 dataset. At the pre-processing step, non-local means (NLM) filtering was used to denoise the

data and then N4ITK was applied for bias correction of only T1c images. After dividing each MRI into

blocks, diagonal kernels of the WHT was used on each block to generate texture features and finally they were

used to create the saliency texture map for the image that was used as input for the SLIC algorithm. The

algorithm generated superpixels from the texture saliency maps and spectral clustering was used to segment

the tumors. Then the member pixels of the superpixels were recovered to generate the final segmentation

output. At the post-processing step, the regions other than the connected components were removed and

a polygon fill algorithm was used to refine the segmented tumor. The proposed approach was compared to

three other spectral clustering segmentation methods and outperformed all by 12% to 17% with DCC scores

varying from 0.69 to 0.89. The method was also compared to k-means, gaussian mixture model (GMM)

and FCM clustering models and outperformed them all by 10% to 16%. The novel approach proposed by

the authors using WHT and SLIC definitely improved the performance of the clustering and transformation

methods and achieved results compatible with deep learning models providing an alternative way for efficient

brain tumor segmentation with texture features and spectral clustering.

A brain tumor detection and segmentation framework containing ML with heuristics and thresholding

was proposed by Devanathan et al. [227]. The MRIs were pre-processed by bilateral filtering, contrast

enhancement and skull-stripping. Then the pre-processed images were used for tumor segmentation with an

artificial bee colony based multi level thresholding. After segmentation, the GLCM features were extracted

and used by a SVM for classification into normal and abnormal MRI classes. Experiments using the Kaggle

brain tumor dataset showed 97.56% accuracy, 97.9% sensitivity and 97.91% specificity. A comparison with

other ML models showed that the proposed model outperformed most of them and was comparable to the

best model. Another ML model with heuristic for brain tumor type classification (benign or malignant)

was proposed recently in [261]. After removing the noise from the MICCAI dataset, the tumor areas were

segmented with a weighted Fuzzy Clustering Algorithm (FCA). Then features were extracted from the
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segmented images with LBP, GLCM, Gabor filter, Discrete Fourier transform and other first and higher

order transforms. The features were used for a Deep Auto Encoder (DAE) that applied a Barnacle Mating

Optimization Algorithm (BMOA) and finally the random forest classifier classified the images into benign

or malignant tumor classes. The F-measure were around 0.9 and were at least 20% higher than the basic

ML algorithms. The proposed method combining multiple approaches with random forest outperformed

the existing models. But the sequential steps of the methodology were not very clearly explained. The

experimental results section did not provide the performance scores directly as specific values, which made

it difficult to understand the results. Other than the mention of MICCAI, the dataset specifications and

details were also missing.

A very recent ML-based approach for brain tumor segmentation was proposed in [262]. Each image was

divided into 3x3 blocks to extract GLCM features following a pre-processing of the images with a median

filter. An adaptive KNN (AKNN) classifier used the GLCM features to detect the tumor/non-tumor images.

The abnormal images were then used for tumor segmentation. An optimal possibilistic FCM (OP-FCM)

was used to segment the tumors and a Binary Competitive Swarm Optimizer (BCSO) was used to optimize

the centroids of the clusters. The experiments on BRATS and an internet dataset showed 99.9% accuracy

and almost similar sensitivity and specificity as 97 and 98. The Matthews correlation coefficient (MCC) and

F1-score of the proposed approach were compared to similar models and showed around 10% improvement.

The proposed ML-based method clearly outperformed other models by a huge margin and performed better

than DL-based methods for brain tumor segmentation. More details on the dataset and the specifications

for the results could justify the performance in a better way.

ML models are popular mostly for brain tumor detection and classification tasks. These models are highly

dependent on the data used to train the models and similar to any other medical image datasets, brain tumor

datasets generally have limited amount of images (i.e. at most few hundreds). Some ML algorithms are

used for tumor segmentation or part of the segmentation process. Although all types of ML algorithms

have been used for brain tumor analysis, SVM and RF supervised classifications have been proved to be the

most efficient for the tasks. On the other hand, K-means, KNN, FCM and GMM clustering have been the

most popular ones for the unsupervised ML models. Although, the clustering models performed well, ANN

models and their variations performed better for the segmentation tasks. The ML models definitely have

significantly better performance in brain tumor analysis tasks compared to the conventional models. The

ML models can extract more specific and implicit features of the image pixels and can apply more accurate

classification models by training automated systems on various types of data. ML can also be used to apply

weights on different parts and parameters based on their contributions to the output and their tuning can

improve the image analysis greatly. There are also some limitations to the ML models. The computational
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complexity of ML models is slightly higher than the conventional models, but the trained models can be

saved to reduce the complexity. As noted the performance of the ML models depend on the training data,

the limited amount of training data can lead to overfitting of the models. The limited amount of labeled

data also creates issues with supervised ML models where not only labeled datasets are needed, but also the

distribution of labels/classes affects the performance of the ML model. Hence, data augmentation methods

are popular in medical image based ML models to increase the amount of labeled data by applying various

modifications to existing data and adding them to the datasets. The SVM, RF, K-means, KNN, FCM, GMM

and ANN variations can be recommended as preferred algorithms for ML based brain tumor analysis. The

supervised models can be more appropriate for the detection and classification tasks, whereas the clusterings

can be more accurate for segmentation. The ANN models can be applied for all brain tumor image analysis

tasks to achieve high performance.

4.7 Deep Learning Methods

Deep learning methods are the current focus of brain tumor analysis methods for their higher accuracy scores.

Various frameworks of DL algorithms have been used in recent works by researchers all over the world.

According to the review papers, analyzing the different deep learning methods showed that U-Net [15] is

currently one of the best methods for brain tumor analysis as well as other medical image analysis approaches

and the details of U-Net were explained Chapter 3. Since the performance of U-Net was significantly better

and the algorithm was faster than other existing CNN structures, U-Net became one of the mostly used

architecture for medical image analysis and different variations of U-Nets have been used by researchers

since the U-Net framework was published. One recent variation of U-Net for brain tumor segmentation was

the path aggregation U-Net [263] with a path aggregation encoder, an enhanced decoder and an efficient

feature pyramid (EFP). The encoder was used to shorten the distance between the output layers and the

features and to extract deep features from the dataset by concatenating the outputs of the corresponding

contraction layers whereas the decoder added extra convolutional layers and combined different filter sizes

to extract the features more accurately. Then an efficient pyramid structure was used to combine all the

path aggregation outputs from every layer after some upsampling to make the inputs consistent and used a

final softmax layer to generate the segmentation output. The BRATS2017 and BRATS2018 datasets were

used for experimentation and the results were compared to the VGG, DUNet and FCNN to show that

the proposed framework outperformed the baseline methods by at least 1% at dice score, sensitivity and

specificity. Also, the proposed network was able to segment the scattered points of a tumor that weren’t

detected by the baseline methods. The proposed framework was built on the idea of the U-Net structure
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and was an enhanced version of the basic U-Net. The structure helped to incorporate more specific features

and improved the performance of tumor segmentation a little bit. Correct segmentation of scattered points

of a tumor was definitely a major improvement over the existing approaches and this was possible because

of the efficient feature extraction with the path aggregation structure. But it also increased the execution

time due to the network size being at least three times bigger than the original U-Net and the performance

was not significantly higher when incorporating the extra parts for small datasets.

Another recent brain tumor based U-Net variation was the HTTU-Net proposed by Aboelenein et al.

[264]. The proposed model included a hybrid network containing two tracks of U-Nets with slightly different

structures. One U-Net track had the original U-Net structure with five layers and 3 x 3 filters with the only

change being in the activation function. Rather than the Relu function, the HTTU-Net used leaky Relu for

the complete structure. The other U-Net track had four layers and 5 x 5 filters. Both tracks received the

same patches as inputs from the images of BRATS2018 dataset. The networks used a hybrid loss function

combining the focal loss and generalized dice score. The outputs of both tracks were concatenated and a

final softmax layer was applied to get the segmented tumors. The performance metrics of the HTTU-Net

were compared to the original U-Net and individual tracks of HTTU-Nets to show that the dice score of

HTTU-Net varied from 0.75 to 0.86 whereas the other ones varied between 0.69 to 0.85. Incorporating

different U-Net structures was helpful for extracting features from different sized tumors and combining the

results and applying leaky Relu and a hybrid loss function helped to segment the tumors more accurately.

But the HTTU-Net had similar disadvantage as the path aggregation U-Net. The performance improvement

was mostly around 1% to 2% on average with higher execution time for the network structure.

A triple intersecting U-Net (TIU-Net) was proposed in [265] and tested on BRATS2015 and BrainWeb

datasets to show that the approach outperformed existing U-Nets, FCNNs, DeepMedic and other similar

deep learning structures. The TIU-Net contained binary class segmentation U-Net (BU-Net) and multi class

segmentation U-Net (MU-Net), where the MU-Net used the outputs of the BU-Net and fused the features of

BU-Net with its’ own features to enhance the feature set using a novel polarized cross-entropy loss function.

The edge detection maps generated from MU-Net were used to refine the tumor boundaries for the final

segmented output. Slices containing more than 2% glioma of the image region were selected for 2D TIU-

Nets and 3D patches of dimensions 32 x 96 x 96 were selected for 3D TIU-Net. The normalized images

were then used for the models and the performance metrics were calculated to compare with attention-based

TIU-Net, without edge TIU-Net, and 13 other 2D and 7 other 3D deep learning methods showing that the

proposed approach outperformed them by at least 1%. By incorporating three intersecting U-Nets, and

using the outputs of one to guide the others with a novel feature sharing architecture, the proposed method

was able to outperform the existing DL methods. Compared to the other U-Net variations with hybrids of
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two U-Nets, the triple intersecting U-Nets was more effective but at the same time the added deep neural

network frameworks also increased the computational cost while it only gained a small improvement in the

performance.

Recently, Sharif et al. [266] proposed an active deep learning based feature selection method for brain

tumor segmentation in order to increase the performance efficiency of the CNN-based segmentation of mul-

timodal brain MRIs. They proposed a novel method named saliency based deep learning (SbDL) for tumor

detection and used a pre-trained deep model Inception V3 for tumor classification. The approach was tested

on the BRATS2013, BRATS2015, BRATS2017, BRATS2018 datasets and achieved more than 80% dice

score for detection with more than 92% average accuracy for classification. The authors proposed a pixel

increase along limit (PIaL) process for contrast stretching combining clustering based on pixel intensity

and a histogram based contrast enhancement that increased the visibility of the tumor region. For tumor

segmentation, saliency based method with segmentation based fractal texture analysis (SFTA) and local bi-

nary pattern (LBP) texture features on Alexnet deep CNN pre-trained model was used. Extracted features

were mapped on the image with deep CNN and k-means clustering to extract the ROI with a boundary

being generated around it. Another pre-trained deep model Inception V3 with 316 layers was used for tumor

modality classification. The weighted dominant rotated LBP (DRLBP) features were used on rotated images

based on the texture of the pixels; they were combined and concatenated with the deep CNN feature set to

create the feature vector for modality classification. The comparison between the proposed method and few

existing texture feature and contour model based methods showed that the proposed system was comparable

in their performances and in some cases outperformed recent methods and achieved accuracy from 92% to

98%. The proposed feature selection method not only increased classification accuracy but also decreased

classification execution time. The proposed feature selection method of combining deep CNN-based features

extracted from the MRIs and the texture based features was an important contribution towards the tumor

MRI feature processing. It contributed to the efficiency and accuracy of the classifier and the decreased the

classification execution time. Although the feature-based contribution was effective, the system used some

pre-trained existing DL models for detection and classification. The models were tuned for their experi-

ments, but as they were pre-trained and used on BRATS datasets (most BRATS dataset have very similar

format and structure), generalizing the results for making decisions on brain tumor feature selection could

be problematic. Also, as it was not clear if the proposed method could work for any features of MRIs since

using a different set of features extracted from the data could lead to different outcomes.

Sun et al. [267] recently proposed a novel 3D fully convolutional network for brain tumor segmentation,

inspired by U-Net models, which achieved 0.77 to 0.90 DCC for BRATS2018 and 0.76 to 0.89 DCC for

BRATS2019 datasets respectively. The model used a multi-pathway feature extraction method to correctly
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extract features from multi-modal data. The authors discussed the challenges of segmenting the whole

tumor, enhancing tumor and tumor core including the complexity of extracting well-defined boundaries,

MRI noise, feature reduction during the pooling operation and over-fitting CNN in detail, and explained

how the proposed model solved those issues. After pre-processing the input images by cropping them to

144 x 192 x 192 dimensions to remove the black region, randomly selecting 9 consecutive slices from the

cropped versions and normalizing them by z-scores, the pre-processed images were used for the proposed

model. The model used a FCN with 5D arrays at each layer containing batch size, channel and spatial

dimensions and was built of a FCN structure containing convolutional layers, max pooling layers, batch

normalizations, dilated convolutional layer, transposed convolutional layer and activation function. Four

different pathways with different structures, filters, strides were implemented to extract the feature maps

individually and the four feature maps were then fused followed by a transposed convolutional layer to make

the output sizes consistent. A Relu activation function and a categorical cross-entropy loss function were

used for the network. The novel method included few unique ideas like cropping the images, taking random

sequential slices, applying the dilation convolutional layer and using multiple pathways for feature extraction

that clearly improved the performance of a basic FCN model. The segmentation performance metrics showed

that the proposed model was completely compatible to and in some cases better than the existing similar

FCN models. Although the authors mentioned various advantages of their model over the existing ones,

applying batch normalization in each layer was not a novel idea since it was already used in multiple CNN

and U-Net structures.

Another similar work on cross modality deep feature learning method was proposed in [268]. The novel

idea of using a cross-modality feature transition system and a cross-modality feature fusion system for

medical images (specifically for brain tumor) was introduced and tested on BRATS2017 and BRATS2018

datasets and the proposed model achieved an average DCC of 0.84. The performance metrics comparison

between the proposed method and some other similar methods showed the compatibility of the proposed

network. The cross-modality feature transition method used a generative adversarial learning strategy to

extract informative patterns from each modality of the MRIs. A U-Net structure was used for the feature

transition model with leaky Relu activation function, 4 x 4 x 4 filter size for 16, 32, 64, and 128 filters, stride

2, whereas another similar structure with different kernel sizes was used for feature fusions. The DCC and

Hausdorff95 scores were calculated for the segmentation output to compare their results with state-of-the-art

ensemble and single prediction models and showed that the proposed model was better than most of the

state-of-the-art models. The proposed model introduced a novel feature transition and fusion process that

was able to overcome the limitation of small datasets and was able to extract important features and patterns

without human annotation. The model used U-Net structures for both feature transition and fusion that
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was very similar to few existing models mentioned earlier where multiple U-Net structures were used for

feature extraction. A brief description of the differences between the proposed system and the other similar

multiple U-Net systems is needed to clearly identify the uniqueness of the approach.

Chen et al. [269] proposed a computationally faster novel approach called deep convolutional symmetric

neural network (DCSNN) using symmetric masks in few layers to improve the performance of basic DCNN

based segmentation. The normalized versions of the original images, their left-flipped versions and right-

flipped versions were used as inputs to the DCSNN system and the similarity between these images was

used as an extra location-based feature for the segmentation model. The framework was built on ResBlocks

[270] and left-right similarity masks and applied to the BRATS2015 dataset. Seven convolutional layers

used different filters, strides, parameters, focal loss function with stochastic gradient descent (SGD) and

Adam optimizer. The performance of the proposed approach was compared with two other symmetric

models - the LRSM2 and the Siamese based methods to show that the proposed method outperformed them

by at least 2% of DCC score. The comparison with four state-of-the-art DCNN methods showed at least

1% improvement in segmentation DCC scores. The proposed method not only outperformed the existing

methods in segmentation accuracy, it was also able to process each patient image within 10 seconds whereas

the other methods took at least 1 - 2 minutes for the same task. Using the similarity feature of the flipped

images to create a symmetric network was a unique idea that performed better than some other ideas. At

the same time the augmented dataset lacked variations as none of the other data augmentation methods like

rotating, cropping, random selections, etc. were applied.

A deep-LSTM based tumor/non-tumor detection model was proposed in [271]. The framework pre-

processed the input MRIs with bias-field correction and Gaussian filtering. Then a 4 layer LSTM model

was used where the first layer used the pre-processed images as inputs and the consecutive layers used the

previous layer outputs as their input. They also tested the model with different numbers of hidden units

in each LSTM layer and found that the optimal numbers were 200, 225, 200 and 225 for layers 1, 2, 3 and

4, respectively. Their experiments on multiple BRATS datasets, the ISLES 2015 dataset and a collected

patient data showed 92% to 100% accuracy in tumor/non-tumor detection. Zhang et al. [272] proposed a

novel architecture with a ResU-Net brain tumor segmentation model by adding a series of attention gates.

The system added residual blocks in a U-Net architecture and the attention gates were included in the skip

connections. The model was able to collect the salient features and the semantic information extracted

were able to segment not only large tumors but also smaller tumors more accurately. Their experiments on

BRATS 2017 - 2019 datasets showed DCC scores between 0.70 to 0.88 which outperformed basic U-Net and

ResU-Net architectures.

An efficient encoder-decoder framework for brain tumor segmentation was proposed in [273]. The authors
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proposed a structure similar to U-Net but with the additional novel idea of shuffle blocks to shuffle the channel

data in the contraction path. They also proposed a hybrid loss function by combining the cross-entropy and

dice loss to improve the training performance. They applied a thresholding-based post-processing and used

the ERV-Net on BRATS 2018 dataset. The model achieved DCC scores of 91.21, 81.81 and 86.62 for whole

tumor, enhancing tumor and tumor core, respectively. Some researchers also applied DL models on images

from multiple organs. Moeskops et al. [274] worked on 3 different datasets - brain MRIs (OASIS), breast

MRIs and cardiac CTAs for segmenting various tissues from brain, breast and heart images. A simple CNN

was trained with all possible combinations of tasks (i.e. 7 models) and generated the segmentation outputs.

The output DCC score varied from 0.7 to 0.9 which was impressive when considering the simple network

structure and 3 different organ images.

DL models performed generally better than most other models for image analysis in general. The same

statement can also be applied to medical image analysis. The ML models extracts patterns in data as features

and train on them. The DL model tries to mimic the complex human brain by using deep neural networks

with multiple hidden layers between the input and output layer. The complex hidden layers in DL can extract

obvious and implicit features from the image such as the pixels, the context and the feature maps that then

are passed to the next hidden layers to accumulate more intense features. The structure of the DL models

allows the training to be much more extensive compared to ML models. The DL models work well for the

tumor detection task, but their accuracy for tumor segmentation and tumor tissue classification can definitely

outdo other models. Due to the extraction of more specific, detailed, implicit and microscopic features from

the image, DL models can segment the exact tumor region more accurately and can distinguish the subtle

differences among various tissues. The hyperparameters of the DL models like learning rate, optimizer,

activation function, dropout, kernel size, epochs etc. are used to improve the performance of the models.

The DL models are efficient at automatic feature generation from input images and they perform well with

unstructured data. The self-learning ability of the DL models outperform the conventional and ML models

by a huge margin. The ability of processing huge amount of data efficiently makes DL model appropriate

for real time automated system implementation for medical centers to help healthcare professionals. The

complexity of the DL models can also increase the computation cost. The aforementioned limited amount of

available brain tumor image datasets is considered as a more severe limitation for DL models compared to

ML models as the DL models work better with huge amount of training data due to their complex structure.

Data augmentation with noise addition, color modifications, intensity modification, rotation, translation,

scaling, cropping, flipping etc. can help solving the limited training data issue. Different variations of

CNNs, VGGs, LSTMs, U-Nets and attention-based models are popular in recent brain tumor detection,

segmentation and classification researches. As U-Net was originally proposed for medical image analysis and
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shows better performance in brain tumor and other medical image analysis tasks, variations of U-Nets can

be recommended as a major candidate for DL based models. More recent LSTM and attention-based models

can also be applied as preferred DL models for brain tumor image analysis.

4.8 Hybrid Methods

Many of the existing papers used conventional methods as pre-processing or post-processing steps, and some

models used a combination of multiple brain analysis methods which means that a number of research works

can be classified as hybrid methods. Some of the papers which worked on multiple tasks like detection

and segmentation or segmentation and classification, etc. can be included in this category. Some of the

papers already mentioned in earlier sections can also be classified as hybrid methods - conventional and ML

[258, 228, 232, 233, 235], conventional, ML and heuristics [255, 227], Ml and heuristics [257], conventional,

ML and transform models [259], conventional, DL and heuristics [266], conventional, ML, DL and heuristics

[261], etc.

The hybrid methods also included the models that worked on multiple organs, brain image analysis and

other relevant issues. Han et al. [241] proposed a model for synthetic brain MRI data generation and

data augmentation to solve the issues with limited data availability. They designed a progressive growing

generative adversarial network (PGGAN) for training the system for synthetic data generation. ResNet-50

was used for testing the system and provided more than 91% accuracy for the proposed system. A simple

ML, DL based tumor segmentation and classification method was proposed in [213]. A FCM model was

used for MRI segmentation to segment each image into 5 sections. A discrete wavelet transform (DWT) was

applied on the segmented images to extract 1024 features with a 3-levels decomposition by Haar wavelet.

Principal components analysis (PCA) was used to select the best features. A simple DNN with 7 hidden

layers was then used for tumor type classification. The AANLIB dataset was used for experimentation. The

system outperformed KNN, LDA, and SMO methods with more than 96% accuracy, 0.97 recall, precision

and F-measure, and 0.984 ROC.

Khan et al. [275] proposed a hybrid model with ML and DL where the k-means algorithm was used to seg-

ment the ROI and then VGG19 was used for tumor stage detection (i.e. benign/malignant) and experiments

on BRATS 2015 dataset showed 90.03% accuracy. The system was also tested after augmenting with some

synthetic data and achieved 94.06% accuracy. The model performance was therefore comparable to other

existing approaches. Another ML-DL hybrid system was recently proposed by Raja et al. [276]. Bayesian

Fuzzy Clustering (BFC) was used for extracting the ROIs. Then three types of features (i.e. information-

theoretic measures, Wavelet packet Tsallis entropy (WPTE) and Scattering transform (ST)) were extracted
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and used by a deep auto encoder (DAE) for tumor type classification). BRATS 2015 dataset was used for the

experiments and achieved 98.5% accuracy which was higher than 17 existing approaches containing various

conventional, ML, Dl and hybrid methods. Although the theoretical details of the methodology were clear,

some more specification of how the segmentation was done in the experiments should have been provided to

clarify the process completely.

A hybrid method for brain tumor detection and segmentation on MRI and PET of brain was proposed

in [277]. It combined conventional, ML, DL and heuristic methods. Each input image was decomposed

by Discrete Wavelet Transformation (DWT) and they were fused with a modality-coefficient based fusion.

Then a final weighted fusion was introduced in the paper as a novel fusion method. Then 22 GLCM features

were extracted from each image to increase the classifier efficiency. An Optimal DNN (ODNN) was used

for tumor/non-tumor classification with the GLCM features, and a Spider Monkey Optimization (SMO)

algorithm was used for its’ weight optimization. Finally, the detected abnormal images were segmented to

extract the tumor region with a weighted K-Means algorithm. Experiments on images collected from the

internet showed sensitivity - 1.00, specificity - 0.89, accuracy - 0.93, PPV - 0.86, NPV - 1.00, FPR - 0.11,

FNR - 0.00, FDR - 0.14 and the performance outperformed basic DNN by around 30%. The proposed model

was also compared with 3 other models from recent approaches and outperformed them by 1%-3%. The idea

to combine multiple methods and to propose new fusion rules to increase the classification and segmentation

was impressive. But the lack of dataset information and the absence of experiments on benchmark datasets

made it difficult to generalize their results.

A hybrid of DL and heuristics for tumor detection and segmentation is proposed in [278]. After pre-

processing with bi-lateral filtering, the GLCM features were extracted. An adaptive fuzzy deep neural

network (AFDNN) with frog leap optimization (FLO) was used to detect the normal and abnormal images.

The abnormal images were then used for segmentation with adaptive flying squirrel (AFS) algorithm. Finally,

the segmentations were refined with anisotropic diffusion filter (ADF). BRATS 2012, BRATS 2015, BRATS

2016 and BRATS 2018 datasets were tested and achieved accuracy of 99.2% to 99.6%. The proposed model

was either comparable or outperformed 5 other hybrid models.

Tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show the summaries of the papers of conventional, ML, DL and

hybrid methods discussed above.
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n
ec
te
d

co
m
p
on

en
t
la
b
el
in
g

C
on

ve
x
h
u
ll

-
-

C
o
ll
ec
te
d

p
a
ti
en
t
d
a
ta

U
se
d
sp
ec
tr
a
l
cl
u
st
er
in
g
a
n
d

co
n
n
ec
te
d
co
m
p
o
n
en
t
a
n
a
ly
si
s

fo
r
tu
m
o
r
se
g
m
en
ta
ti
o
n
.

D
efi
n
ed

la
rg
es
t
re
g
io
n
a
s
tu
m
o
r

a
n
d
ca
lc
u
la
te
d
tu
m
o
r
vo
lu
m
e

fr
o
m

tu
m
o
r
co
n
ve
x
h
u
ll
.

A
b
se
n
ce

o
f
d
et
a
il
s
o
n
d
a
ta
se
t

ex
p
er
im

en
ta
l
se
tu
p
,
re
su
lt
s

a
n
d
d
is
cu
ss
io
n
s.
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T
ab

le
4.
5:

S
u
m
m
a
ry

o
f
re
la
te
d
w
o
rk
s
o
n
b
ra
in

tu
m
o
r
a
n
a
ly
si
s
u
si
n
g
M
L
m
et
h
o
d
s.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

C
o
n
tr
ib
u
ti
o
n
s

O
b
se
rv
a
ti
o
n
s

[2
55
]

S
eg
m
en
ta
ti
on

T
u
m
or

ty
p
e

d
et
ec
ti
on

R
eg
io
n
gr
ow

in
g

S
V
M

G
O
A

G
L
C
M

S
en
si
ti
v
it
y
-
0
.9
2

S
p
ec
ifi
ci
ty
-
1

A
cc
u
ra
cy
-
0
.9
6

P
P
V
-
1

N
P
V
-
0
.9
2

F
P
R
-
0

F
N
R
-
0
.0
8

F
D
R
-
0

B
R
A
T
S
2
0
1
5

U
se
d
m
ed
ia
n
fi
lt
er

fo
r
n
o
is
e

re
d
u
ct
io
n
.

A
p
p
li
ed

a
m
o
d
ifi
ed

re
g
io
n

g
ro
w
in
g
th
a
t
u
se
d
o
ri
en
ta
ti
o
n
.

U
se
d
g
ra
ss
h
o
p
p
er

o
p
ti
m
iz
a
ti
o
n

a
lg
o
ri
th
m

fo
r
fe
a
tu
re

se
le
ct
io
n
.

U
se
d
a
d
a
p
ti
v
e
S
V
M

fo
r

tu
m
o
r
ty
p
e
cl
a
ss
ifi
ca
ti
o
n
.

In
cl
u
d
ed

a
co
m
p
re
h
en
si
ve

a
n
d

co
m
p
a
ra
ti
ve

re
v
ie
w

o
f
re
le
va
n
t

re
se
a
rc
h
w
o
rk
s.

D
et
a
il
s
o
f
th
e
se
g
m
en
ta
ti
o
n
a
n
d

cl
a
ss
ifi
ca
ti
o
n
a
re

u
n
cl
ea
r.

N
o
p
ro
p
er

ex
p
la
n
a
ti
o
n
fo
r
u
si
n
g

o
n
ly

1
0
im

a
g
es

fo
r
se
g
m
en
ta
ti
o
n

a
n
d
2
4
fo
r
cl
a
ss
ifi
ca
ti
o
n
.

[2
56
]

D
et
ec
ti
on

S
eg
m
en
ta
ti
on

D
W

T
H
oG

R
an

d
om

F
or
es
t

S
V
M

D
ec
is
io
n
T
re
e

P
C
A

C
on

tr
as
t

C
or
re
la
ti
o
n

E
n
er
gy

H
om

og
en
ei
ty

A
cc
u
ra
cy
-
9
8
.3
7

S
en
si
ti
v
it
y
-
9
6
.6
0

S
p
ec
ifi
ci
ty
-
9
9
.0
9

K
a
g
g
le

U
se
d
m
ed
ia
n
fi
lt
er

fo
r
p
re
-

p
ro
ce
ss
in
g
.

A
p
p
li
ed

D
W

T
a
n
d
H
o
G

a
n
d
ex
tr
a
ct
ed

fe
a
tu
re
s.

C
o
m
p
a
re
d
cl
a
ss
ifi
ca
ti
o
n

p
er
fo
rm

a
n
ce

o
f
R
F
,
S
V
M

a
n
d
D
T

to
ch
o
o
se

th
e
b
es
t

cl
a
ss
ifi
er
.

P
ro
p
o
se
d
a
ra
n
d
o
m

fo
re
st

b
a
se
d
cl
a
ss
ifi
er

fo
r
tu
m
o
r/
n
o
n
-

tu
m
o
r
cl
a
ss
ifi
ca
ti
o
n
.

S
eg
m
en
ta
ti
o
n
o
u
tp
u
ts

a
n
d

th
ei
r
re
le
va
n
ce

w
er
e
n
o
t
cl
ea
r.

[2
12
]

S
eg
m
en
ta
ti
on

B
in
ar
y
d
ec
is
io
n
tr
ee

R
an

d
om

fo
re
st

G
ra
d
ie
n
t

D
C
C
-
8
6
%

B
R
A
T
S
2
0
1
5

B
R
A
T
S
2
0
1
9

P
ro
p
o
se
d
a
n
en
se
m
b
le

m
o
d
el

co
n
ta
in
in
g
b
in
a
ry

tr
ee
s
w
it
h

va
ri
a
b
le

d
ep
th
s.

A
p
p
li
ed

m
u
lt
ip
le

a
tl
a
se
s
fo
r

fe
a
tu
re

ex
tr
a
ct
io
n
.

R
ed
u
ce
d
ex
ec
u
ti
o
n
ti
m
e.

R
ed
u
ce
d
n
u
m
b
er

o
f
fa
ls
e

p
o
si
ti
ve
s.

P
ro
ce
ss
ed

ea
ch

M
R
I
in

le
ss

th
a
n

1
m
in
u
te

w
it
h
o
u
t
u
si
n
g
G
P
U
.

P
ro
p
o
se
d
a
M
L
en
se
m
b
le

m
o
d
el

th
a
t
p
er
fo
rm

ed
v
er
y
si
m
il
a
rl
y
a
s

D
L
m
o
d
el
s.

[2
57
]

D
et
ec
ti
on

S
eg
m
en
ta
ti
on

C
S
O
A

A
N
N

F
u
zz
y
K
-m

ea
n
s

G
L
C
M

J
C
C
-
9
6

S
en
si
ti
v
it
y
-
9
8

S
p
ec
ifi
ci
ty
-
9
9

A
cc
u
ra
cy
-
9
4

B
R
A
T
S

U
se
d
W

ie
n
er

fi
lt
er

fo
r
n
o
is
e

re
d
u
ct
io
n
.

A
p
p
li
ed

cr
ow

se
a
rc
h

o
p
ti
m
iz
a
ti
o
n
a
lg
o
ri
th
m

fo
r

fe
a
tu
re

se
le
ct
io
n
.

U
se
d
a
si
m
p
le

A
N
N

fo
r

tu
m
o
r/
n
o
n
-t
u
m
o
r
d
et
ec
ti
o
n
.

A
p
p
li
ed

F
u
zz
y
K
-m

ea
n
s
fo
r

tu
m
o
r
se
g
m
en
ta
ti
o
n
.

A
ch
ie
ve
d
h
ig
h
p
er
fo
rm

a
n
ce

si
m
il
a
r

to
D
N
N
s
w
it
h
co
m
b
in
a
ti
o
n
o
f

ex
is
ti
n
g
M
L
m
o
d
el
s.

S
p
ec
ifi
ca
ti
o
n
o
f
d
a
ta
se
t
is

m
is
si
n
g
.

N
o
t
cl
ea
r
if
o
n
ly

1
0
d
a
ta

w
a
s
u
se
d

o
r
m
o
re
.

[2
58
]

S
eg
m
en
ta
ti
on

T
u
m
or

ty
p
e

d
et
ec
ti
on

K
-m

ea
n
s

R
eg
io
n
gr
ow

in
g

A
N
N

-

S
eg
m
en
ta
ti
o
n
-
8
5
.7
7

C
la
ss
ifi
ca
ti
o
n

S
en
si
ti
v
it
y
-
9
0
.9

S
p
ec
ifi
ci
ty
-
9
6
.7
8

P
re
ci
si
o
n
-
9
4
.7

B
R
A
T
S
2
0
1
5

U
se
d
k
-m

ea
n
s
cl
u
st
er
in
g

fo
r
ex
tr
a
ct
io
n
R
O
Is
.

F
ed

te
x
tu
re

fe
a
tu
re
s
o
f

R
O
I
in
to

a
si
m
p
le

A
N
N

fo
r
cl
a
ss
ifi
ca
ti
o
n
o
f
tu
m
o
r

ty
p
e
-
b
en
ig
n
,
m
a
li
g
n
a
n
t.

U
se
d
a
n
o
th
er

si
m
il
a
r

m
o
d
el

fo
r
se
g
m
en
ta
ti
o
n
.

S
te
p
s
ex
p
la
in
ed

w
it
h
th
eo
ry

a
n
d
a
b
st
ra
ct

d
is
cu
ss
io
n
.

T
h
e
co
m
p
le
te

p
ro
ce
ss

fo
r

ex
p
er
im

en
ts

w
it
h
re
le
va
n
t

p
a
ra
m
et
er
s
a
re

u
n
cl
ea
r.

T
h
e
re
su
lt
s,

p
er
fo
rm

a
n
ce

m
et
ri
cs

u
se
d
fo
r
g
ra
p
h
s
a
n
d

o
th
er

d
is
cu
ss
io
n
s
d
o
n
o
t

cl
ea
rl
y
m
en
ti
o
n
if
th
ey

a
re

m
ea
su
re
d
w
it
h
st
a
n
d
a
rd

p
er
fo
rm

a
n
ce

m
et
ri
cs

o
r
n
o
t.
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T
ab

le
4.
6:

S
u
m
m
a
ry

o
f
re
la
te
d
w
o
rk
s
o
n
b
ra
in

tu
m
o
r
a
n
a
ly
si
s
u
si
n
g
M
L
m
et
h
o
d
s.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

C
o
n
tr
ib
u
ti
o
n
s

O
b
se
rv
a
ti
o
n
s

[2
59
]

S
eg
m
en
ta
ti
on

W
H
T

S
L
IC

sa
li
en
cy

m
ap

S
p
ec
tr
al

cl
u
st
er
in
g

(K
-m

ea
n
s)

C
on

n
ec
te
d
co
m
p
on

en
t

W
H
T

D
C
C
-
0
.6
9
-0
.8
9

V
D
-
3
.9
1
-6
.1
3

B
R
A
T
S
2
0
1
5

P
ro
p
o
se
d
a
n
ov
el

w
ay

fo
r

se
g
m
en
ta
ti
o
n
w
it
h
te
x
tu
re

sa
li
en
cy

m
a
p
s.

U
se
d
W
a
ls
h
H
a
d
a
m
a
rd

T
ra
n
sf
o
rm

to
ex
tr
a
ct

te
x
tu
re

fe
a
tu
re
s
a
n
cr
ea
te

te
x
tu
re

sa
li
en
cy

m
a
p
s
fr
o
m

d
iff
er
en
t
m
o
d
a
li
ty

M
R
Is

in
d
iv
id
u
a
ll
y.

U
se
d
S
L
IC

fo
r
su
p
er
p
ix
el
-b
a
se
d

cl
u
st
er
in
g
fo
r
d
iff
er
en
t
tu
m
o
r

ti
ss
u
e
se
g
m
en
ta
ti
o
n
.

A
p
p
li
ed

co
m
b
in
a
ti
o
n
o
f
in
d
iv
id
u
a
l

re
su
lt
s
to

g
en
er
a
te

o
u
tp
u
t.

Im
p
re
ss
iv
e
h
y
b
ri
d
m
et
h
o
d

co
m
b
in
in
g
M
L
m
o
d
el
s
to

a
ch
ie
ve

h
ig
h
p
er
fo
rm

a
n
ce

a
s
D
L
m
o
d
el
s.

N
o
p
ro
p
er

ju
st
ifi
ca
ti
o
n
fo
r
n
o
t

a
p
p
ly
in
g
b
ia
s
co
rr
ec
ti
o
n
o
n

T
2
a
n
d
F
L
A
IR

.

[2
27
]

D
et
ec
ti
on

S
eg
m
en
ta
ti
on

M
u
lt
i-
le
ve
l

th
re
sh
ol
d
in
g

A
B
C

S
V
M

G
L
C
M

S
en
si
ti
v
it
y
-
9
7
.9

S
p
ec
ifi
ci
ty
-
9
7
.9
1

A
cc
u
ra
cy
-
9
7
.5
6

K
a
g
g
le

U
se
d
b
il
a
te
ra
l
fi
lt
er
in
g
,
co
n
tr
a
st

en
h
a
n
ce
m
en
t
a
n
d
sk
u
ll
tr
ip
p
in
g

to
p
re
-p
ro
ce
ss

th
e
d
a
ta
.

U
se
d
a
rt
ifi
ci
a
l
b
ee

co
lo
n
y

m
u
ll
ti
le
ve
l
th
re
sh
o
ld
in
g
fo
r
tu
m
o
r

se
g
m
en
ta
ti
o
n
.

U
se
d
S
V
M

fo
r
tu
m
o
r
d
et
ec
ti
o
n
.

T
h
eo
re
ti
ca
l
d
es
cr
ip
ti
o
n
s
o
n

co
m
p
o
n
en
ts

a
re

in
cl
u
d
ed
,
b
u
t
th
e

a
ct
u
a
l
m
et
h
o
d
o
lo
g
y
is

n
o
t
cl
ea
rl
y

ex
p
la
in
ed
.

N
o
in
fo
rm

a
ti
o
n
o
n
ex
p
er
im

en
ta
l

se
tu
p
o
r
p
a
ra
m
et
er
s.

N
o
ex
a
m
p
le
s
o
n
se
g
m
en
ta
ti
o
n
s

re
su
lt
s.

[2
61
]

T
u
m
or

st
ag
e

d
et
ec
ti
on

W
ei
gh

te
d
F
C
A

D
A
E

B
M
O
A

R
an

d
om

F
or
es
t

L
B
P

G
L
C
M

H
ig
h
-o
rd
er

p
ix
el

fe
a
tu
re
s

A
cc
u
ra
cy
-
9
5
.8
4

S
en
si
ti
v
it
y
-
9
4
.3
6

S
p
ec
ifi
ci
ty
-
9
3
.3
6

F
-m

ea
su
re
-
≈

0
.9

M
IC

C
A
I

P
ro
p
o
se
d
a
ra
n
d
o
m

fo
re
st

m
o
d
el

fo
r
b
en
ig
n
/
m
a
li
g
n
a
n
t

tu
m
o
r
cl
a
ss
ifi
ca
ti
o
n
.

U
se
d
w
ei
g
h
te
d
fu
zz
y

cl
u
st
er
in
g
fo
r
se
g
m
en
ti
n
g

th
e
R
O
I.

A
p
p
li
ed

m
u
lt
ip
le

m
et
h
o
d
s

fo
r
fe
a
tu
re

ex
tr
a
ct
io
n
a
n
d

u
se
d
th
em

o
n
a
B
M
O
A
-D

A
E

b
a
se
d
ra
n
d
o
m

fo
re
st

cl
a
ss
ifi
er
.

A
p
p
li
ed

sp
ec
ifi
c
fe
a
tu
re

li
st
s

w
er
e
u
n
cl
ea
r.

E
x
a
ct

re
su
lt
s
a
n
d
sc
o
re
s
w
er
e

n
o
t
cl
ea
rl
y
m
en
ti
o
n
ed
.

D
a
ta
se
t
sp
ec
ifi
ca
ti
o
n
u
n
cl
ea
r.

[2
62
]

D
et
ec
ti
on

S
eg
m
en
ta
ti
on

A
K
N
N

O
P
-F
C
M

B
C
S
O

G
L
C
M

M
C
C
-
0
.9

F
1
-s
co
re
-
0
.9

A
cc
u
ra
cy
-
9
9
.9

S
en
si
ti
v
it
y
-
≈

9
7

S
p
ec
ifi
ci
ty
-
≈

9
8

B
R
A
T
S

In
te
rn
et

U
se
d
a
d
a
p
ti
ve

K
N
N

fo
r
d
et
ec
ti
n
g

tu
m
o
ro
u
s
im

a
g
es
.

U
se
d
O
P
-F
C
M

fo
r
fi
n
a
l

tu
m
o
r
se
g
m
en
ta
ti
o
n
a
n
d

cl
u
st
er

ce
n
tr
o
id
s
w
er
e
o
p
ti
m
iz
ed

w
it
h
B
C
S
O
.

O
u
tp
er
fo
rm

ed
ex
is
ti
n
g
m
o
d
el
s.

P
ro
v
id
ed

a
n
u
se
r
fr
ie
n
d
ly

in
te
rf
a
ce

to
ch
ec
k
th
e
p
er
fo
rm

a
n
ce
.

P
er
fo
rm

a
n
ce

w
a
s
ve
ry

si
m
il
a
r/

h
ig
h
er

th
a
n
D
L
m
o
d
el
s.

M
is
si
n
g
p
ro
p
er

sp
ec
ifi
ca
ti
o
n
o
n

u
se
d
d
a
ta
se
t.
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T
ab

le
4.
7:

S
u
m
m
a
ry

o
f
re
la
te
d
w
o
rk
s
o
n
b
ra
in

tu
m
o
r
a
n
a
ly
si
s
u
si
n
g
D
L
m
et
h
o
d
s.

R
ef
.

T
y
p
e

A
p
p
ro
ac
h

F
ea
tu
re
s

P
er
fo
rm

a
n
ce

D
a
ta
se
t

C
o
n
tr
ib
u
ti
o
n
s

O
b
se
rv
a
ti
o
n
s

[2
63
]

S
eg
m
en
ta
ti
on

P
A
U
-N

et
C
N
N

D
C
C
-
0
.6
7
-0
.9
2

S
en
si
ti
v
it
y
-
0
.6
4
-0
.9
7

P
P
V
-
0
.9
2
-0
.9
3

B
R
A
T
S
2
0
1
7

B
R
A
T
S
2
0
1
8

U
se
d
a
va
ri
a
ti
o
n
o
f
U
-N

et
w
it
h
p
a
th

a
g
g
re
g
a
ti
o
n
en
co
d
er
,

en
h
a
n
ce
d
d
ec
o
d
er

a
n
d
effi

ci
en
t

fe
a
tu
re

p
y
ra
m
id
.

U
se
d
d
iff
er
en
t
fi
lt
er

si
ze
s
to

a
ch
ie
ve

co
rr
ec
t
fe
a
tu
re
s
fo
r

d
iff
er
en
t
si
ze
d
tu
m
o
rs
.

S
h
o
rt
en
ed

th
e
d
is
ta
n
ce

b
et
w
ee
n
d
ee
p
a
n
d
o
u
tp
u
t

la
ye
r.

A
b
le

to
in
co
rp
o
ra
te

m
u
lt
i
le
ve
l
fe
a
tu
re
s.

Im
p
ro
ve
d
p
er
fo
rm

a
n
ce

th
a
n
U
-n
et
.

In
cr
ea
se
d
ex
ec
u
ti
o
n
ti
m
e.

[2
64
]

S
eg
m
en
ta
ti
on

H
T
T
U
-N

et
C
N
N

D
C
C
-
0
.7
5
-0
.8
7

B
R
A
T
S
2
0
1
8

P
ro
p
o
se
d
a
fr
a
m
ew

o
rk

w
it
h
tw

o
U
-N

et
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d
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d
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0
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2
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R
A
T
S
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5
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ra
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A
p
p
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b
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a
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g
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o
n
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-N
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U
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n
d
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se
d
it
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u
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u
t
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n
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u
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i
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g
m
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o
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U
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et
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-N

et
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F
u
se
d
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a
tu
re
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o
f
B
U
-N
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n
d
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U
-N
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.
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se
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e
b
ra
n
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et
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u
n
d
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f
b
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rr
y
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.
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p
p
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p
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ta
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o
d
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t
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h
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b
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ce
p
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F
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L
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d
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N
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R
L
B
P

A
cc
u
ra
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9
2
.5
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9
5
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2

B
R
A
T
S
2
0
1
3

B
R
A
T
S
2
0
1
4

B
R
A
T
S
2
0
1
7

B
R
A
T
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2
0
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8
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ro
p
o
se
d
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h
o
d
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b
a
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d
d
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p
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g
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r
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m
o
r
d
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o
n
.
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d
a
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li
en
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b
a
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d
m
et
h
o
d

w
it
h
se
g
m
en
ta
ti
o
n
b
a
se
d
fr
a
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a
l

te
x
tu
re

a
n
a
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s
fo
r
se
g
m
en
ta
ti
o
n
.

U
se
d
p
re
-t
ra
in
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In
ce
p
ti
o
n
V
3

a
n
d
A
le
x
N
et
.

P
ro
p
o
se
d
a
p
ix
el
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se

a
lo
n
g
li
m
it

(P
Ia
L
)
p
ro
ce
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r
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n
tr
a
st
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h
in
g
.
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o
m
b
in
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u
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er
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g
b
a
se
d
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n
p
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n
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n
d
a

h
is
to
g
ra
m

b
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d
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n
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a
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h
a
n
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in
cr
ea
se
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e
v
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it
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f
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e
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m
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r.
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n
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r
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g
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n
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p
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p
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.
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C
N
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N
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6
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A
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A
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d
cr
o
p
p
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n
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m
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n
d
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o
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o
n
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r
p
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ro
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in
g
.
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d
a
F
C
N
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h
5
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s
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n
d
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u
r
d
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r
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u
m
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o
f
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d
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n
b
ra
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m
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r
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n
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L
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.
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p
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A
p
p
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P
er
fo
rm

a
n
ce

D
a
ta
se
t

C
o
n
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b
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w
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k
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0
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5
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R
A
T
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7
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A
T
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d
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o
d
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a
n
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n
a
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.

U
se
d
m
u
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U
-N

et
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w
it
h
d
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t
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s.

F
u
se
d
fe
a
tu
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s
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a
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t
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o
m

d
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er
en
t
m
o
d
a
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ti
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b
y
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n
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te
n
a
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n
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a
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g
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o
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.

A
p
p
li
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n
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m
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h
o
d
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r
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a
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n
a
n
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a
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a
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H
el
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b
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d
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c
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d
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d
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p
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a
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b
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b
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P
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h
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g
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d
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d
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b
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x
p
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l
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s
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n
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o
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sp
ec
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c
a
n
d
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d
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p
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la
te
d
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p
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y
n
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b
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M
R
I
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n
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D
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a
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b
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M
R
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d
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m
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r
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n
d
n
o
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r
im

a
g
es
.

S
o
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b
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T
u
m
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p
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cl
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ti
on

D
N
N
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A
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C
M
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A
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u
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p
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m
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E
x
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a
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h
d
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n
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p
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n
ci
p
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m
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o
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a
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d
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m
p
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r
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R
O
I

se
g
m
en
ta
ti
o
n
.

F
in
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1
9
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n
d
a
p
p
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t
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n
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e
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O
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a
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y
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b
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g
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m
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a
s
b
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n
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m
a
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g
n
a
n
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A
p
p
li
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a
n
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a
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g
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h
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h
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u
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d
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g
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d
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ra
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p
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n
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4.9 Datasets

One of the major challenges of brain tumor or any medical image analysis is data availability. Even though

some brain tumor image datasets are available, there are few reliable resources that provide brain tumor

data with correct annotations and labeling. Most of these datasets are small and mostly include only few

hundreds of images. Table 4.10 shows some resources that provide multiple medical datasets including brain

datasets.

Table 4.10: Portals containing multiple medical datasets including brain data.
Dataset URL

SPL spl.harvard.edu/software-and-data-sets

Allen brain map portal.brain-map.org/

Neurosynth neurosynth.org/

RADIOPAEDIA
radiopaedia.org/articles/imaging-data-sets-
artificial-intelligence

TCIA www.cancerimagingarchive.net/

Plastimatch plastimatch.org/data sources.html

Marmoset marmosetbrainmapping.org/data.html

Medical Segmentation
Decathlon

medicaldecathlon.com/

OsiriX
www.osirix-viewer.com/resources/
dicom-image-library/

Tables 4.11, 4.12 and 4.13 show some commonly used datasets of brain images. More detail on the datasets

as their type, modality, tumor type, plane, ground truth availability with labels (GT) and URLs are provided

in the tables for the datasets - BRATS 2012, BRATS 2013, BRATS 2014, BRATS 2015, BRATS 2016, BRATS

2017, BRATS 2018, BRATS 2019, BRATS 2020, BRATS 2021, IBSR, IBSR2, BrainWeb, Figshare/CjData,

Kaggle brain tumor dataset, Decathlon, BITE, AANLIB/Whole brain atlas, RIDER, REMBRANDT, and

Brain-development. Some of these datasets include only healthy brain MRIs, some include only tumorous

MRIs, and some include both. The tumorous MRI datasets also sometimes include labels for different types

of tumors. Some datasets like ISLES 2015, NAMIC, ABIDE, OASIS, and ADNI include MRIs for other

neurological disorders as Stroke, Autism, Schizophrenia, and Alzheimer’s etc.

As MRI is the most popular brain imaging method in recent years, most of the datasets mentioned

here are MRI datasets featuring various characteristics and labels. Only few datasets have additional data

with gene information [279], ultrasound images [280], PET images [281], and other signal based information

[282] and they are included in this review to accommodate the results of a thorough search on brain image

datasets. Some of the datasets mentioned in the tables provide synthetic or simulated data, some of them

provide patient data and some datasets combine both types. Few of these datasets are subsets of others.

Only few of the datasets are labeled properly with valid annotations. For example, BRATS dataset [283]
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is one of the major benchmark datasets for brain tumor detection and segmentation and has been updated

every year with more data and concrete labeling with consistent image features providing a core source for

reliable brain medical images with different modalities and ground truth. There are a few other datasets

that are mentioned in some existing works but are not mentioned here. Most of those datasets are obsolete

now and some are relocated to other resources or not publicly available anymore.

Table 4.11: Datasets used in brain analysis (ET - enhancing tumor, ED - peritumoral edema, NCR/NET -
necrotic and non-enhancing tumor core, WT - whole tumor).
Dataset Type Modalities Data Labels Plane GT URL

BRATS 2012
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www2.imm.dtu.dk/projects/BRATS2012/data.html

BRATS 2013
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.smir.ch/BRATS/Start2013

BRATS 2014
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.smir.ch/BRATS/Start2014

BRATS 2015
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.smir.ch/BRATS/Start2015

BRATS 2016
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.smir.ch/BRATS/Start2016

BRATS 2017
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.med.upenn.edu/sbia/brats2017/data.html

BRATS 2018
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.med.upenn.edu/sbia/brats2018/data.html

BRATS 2019
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.med.upenn.edu/cbica/brats2019/data.html

4.10 Performance Metrics

The major performance metrics used for the tumor/non-tumor detection are accuracy, loss, precision, recall,

specificity and F1-score. The accuracy of the model represents the percentage of correctly classified data

whereas loss represents the distance between the prediction and the ground truth. Hausdorff Distance

(HD), Dice Coefficient (DCC), Jaccard Coefficient (JCC), Precision, Recall and Specificity are the common

performance metrics for segmentation. They are used to compare the actual tumor and the segmentation of

detected tumor region [78], and they work with the objects of two binary images - the reference image (i.e.,
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Table 4.12: Datasets used in brain analysis (ET - enhancing tumor, ED - peritumoral edema, NCR/NET -
necrotic and non-enhancing tumor core, WT - whole tumor).
Dataset Type Modalities Data Labels Plane GT URL

BRATS 2020
[284, 285, 286]

3D

T1
T2
T1ce
FLAIR

High Grade Glioma
Low Grade Glioma

Axial

ET
ED
NCR/NET
WT

www.med.upenn.edu/cbica/brats2020/data.html

BRATS 2021
[284, 285, 286,
287, 288, 289,
290]

3D

T1
T2
T1ce
FLAIR

Glioma Axial

ET
ED
NCR/NET
WT

https://www.synapse.org/#!Synapse:syn27046444/
wiki/616992

Figshare Cj-
data [291, 292]

2D T1
Meningioma
Glioma
Pituitary tumor

Axial
Coronal
Sagittal

WT
figshare.com/articles/dataset/brain tumor dataset/
1512427

Kaggle [22]
2D
3D

-
Healthy
Tumorous

Axial -
www.kaggle.com/navoneel/
brain-mri-images-for-brain-tumor-detection

Decathlon
[293]

3D

T1
T2
T1ce
FLAIR
(Not all)

Glioma Axial

ET
ED
NCR/NET
WT

medicaldecathlon.com/

RIDER
[294, 295]

3D

T1
T1 Flash
T2
FLAIR
(Not all)

Glioblastoma Axial
Subset of
BRATS

wiki.cancerimagingarchive.net/display/Public/
RIDER+NEURO+MRI

REMBRANDT
[279]

3D
MRI
Gene

Glioma - -
wiki.cancerimagingarchive.net/display/Public/
REMBRANDT

BITE [280]
2D
3D

MRI
Ultrasound

Pre-,intra-,post-
operative Tumor

- -
nist.mni.mcgill.ca/bite-brain-images-of-tumors-for
-evaluation-database/

AANLIB
Whole brain
atlas

3D
MRI
PET

Healthy
Tumorous
Neurological
abnormalities

- - www.med.harvard.edu/aanlib/home.html

Brain-
development

-
T1
T2
PD

Healthy - - brain-development.org/ixi-dataset/

IBSR 3D T1 Healthy
Axial
Coronal
Sagittal

WM
GM
CSF

www.nitrc.org/projects/ibsr/

IBSR2 3D T1 -
Axial
Coronal
Sagittal

- www.cma.mgh.harvard.edu/ibsr/
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Table 4.13: Datasets used in brain analysis.
Dataset Type Modalities Data Labels Plane GT URL

MRBrains13
[296]

3D
T1
T1ir
FLAIR

Healthy
Lesion

-

Cortical GM
Basal ganglia
WM
WM lesions
CSF
Ventricles
Cerebellum
Brainstem

mrbrains13.isi.uu.nl/data/

MRBrains18
[296]

3D
T1
T1ir
FLAIR

Healthy
Lesion

-

Background
Cortical GM
Basal ganglia
WM
WM lesions
CSF
Ventricles
Cerebellum
Brainstem
Infarction
Other

mrbrains18.isi.uu.nl/data/

BrainWeb [297] 3D
T1
T2
PD

Healthy
Multiple Sclerosis

Axial
Coronal
Sagittal

Simulated brainweb.bic.mni.mcgill.ca/

ISLES 2015
[282]

-

T1
T1c
T2
FLAIR
TSE
TFE
DWI
TTP
Tmax
CBF
CBV

Stroke
Lesion

- Lesion www.isles-challenge.org/ISLES2015/

NAMIC -
T1
T2

Healthy
Schizophrenic

Axial Brain area mask www.insight-journal.org/midas/collection/view/190

ABIDE I [298] - - Autism - - fcon 1000.projects.nitrc.org/indi/abide/abide I.html

ABIDE II [299] - - Autism - - fcon 1000.projects.nitrc.org/indi/abide/abide II.html

OASIS [281] -
T1 MRI
PET

Healthy
Alzheimer

- - www.oasis-brains.org/#data

ADNI - - Alzheimer - -
adni.loni.usc.edu/methods/mri-tool/standardized-mri-
data-sets/
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the ground truth) and the resultant image (i.e., the segmented image). A sample confusion matrix is shown

in Figure 4.14.

Figure 4.14: Sample confusion matrix for tumor detection.

According to the confusion matrix,

TP = Number of correct predictions of ‘Positive’ class

FP = Number of incorrect predictions of ‘Positive’ class

TN = Number of correct predictions of ‘Negative’ class

FN = Number of incorrect predictions of ‘Negative’ class

The definitions and equations for accuracy, precision, recall, sensitivity, specificity and F1 score were

discussed in Chapter 2 with equations 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6.

For HD, DCC (also known as the overlap index) and JCC calculation, let, A be the result image and

B be the reference image. Figure 4.15 shows a sample brain MRI, the tumor mask (i.e. ground truth or

reference image) or Image B and the predicted tumor (i.e. result image) or Image A. HD refers to the

distances between the set of points and represented with equation 4.5.

Figure 4.15: Sample brain MRI, Image A and Image B.

HD(A,B) = max(h(A,B), h(B,A)) (4.5)
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where,

h(X,Y ) = max
x∈X

min
y∈Y
||x− y|| (4.6)

The DCC and JCC computation were defined in Chapter 2 with equations 2.8, 2.9, 2.10 and 2.11. These

scores can also be calculated from one another as given in equation 4.7 -

DCC(A,B) = 2
JCC(A,B)

1 + JCC(A,B)
(4.7)

4.11 Challenges

There are a number of challenges with brain tumor detection, segmentation and classification like any other

medical image analysis problem. Small amount of available datasets, datasets with unavailable ground truths,

noisy data, inconsistent data, randomness of abnormalities, possible variations of abnormalities, shape and

area variations of human organs, uniqueness of human organs and abnormalities, etc. are some examples of

the challenges. These issues complicate the possibility to provide one set of rules or conditions for all data

of the same organ that creates the requirement for complex systems. To efficiently and effectively analyze

medical data for producing correct outputs, a complex system needs to define multidimensional constraints

and apply several types of features to cover all characteristics.

4.11.1 Possible Variations

Randomness of abnormalities in brain images is one of the major challenges of brain tumor analysis from

brain MRIs. Possible variations of abnormalities, shape and area variations of human organs, uniqueness of

human organs and abnormalities are some of the common limitations of medical data analysis in general.

For brain MRIs, tumors can vary in size, shape, location, area, volume, etc. The large amount of possible

varieties are the origins of the challenging task of applying any general pixel characteristics based methods

for brain tumor segmentation. Tumors can also vary in pixel values with variable intensity and textures. For

example, in some MRIs, tumors are the highest intensity regions, and in some others they are not. Intensity

similarities or differences between pixels due to the MRI technique can effect any generalized assumptions

about the intensity of the tumor region or any intensity characteristic of the image (i.e. tumor region is

always the highest intensity region is one of the possible generalizations). The tumor and healthy area

distortion or lesion can also create incorrect area segmentation for unclear borders.
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4.11.2 Dataset Availability

There are mutiple ethical constraints when creating medical datasets since medical data is confidential. The

medical image datasets have another major issue when labeling the ROI. For brain tumor analysis, only brain

is not enough. The correct annotation or segmentation of brain tumors as ground truth is also needed for

accurate output. But the ground truth annotation is mostly done manually by medical professionals which

requires both human and other resources. Validation of the ground truth is another issue. The segmentation

annotation for each image needs correct labeling by multiple medical professionals and the final annotation

needs to be approved by them. The data collection, annotation and validation requires time and human

resources for generating standard image dataset.

Another issue with data availability is the lack of datasets containing both healthy and tumorous images

and absence of datasets with multiple types of brain tumors. Most of the existing datasets work with gliomas

or very few other types of tumors. But their are more than 150 types of brain tumors. Tumors can also

have different levels of severity to indicate if they are benign or malignant, grade I,II,III or IV. Lack of brain

tumor datasets with various types, severity, grade annotation is another major challenge for a completely

automated brain tumor analysis system.

4.11.3 Dataset Issues

There are also issues with the existing datasets. Most of the datasets only contain a few hundreds of images

which is not sufficient for a deep learning process. The same dataset can also contain different modality

images or images generated with different imaging techniques. Different modality of MRIs highlight different

regions of the brain. As most of the brain tumor image datasets have different modality data with different

MRI sequences, it is difficult to follow one particular method or set of parameters that is applicable for tumor

segmentation from any type of MRIs. Some datasets have other inconsistencies related to image dimensions,

image type and other properties that affect the correct analysis of those images. Lots of datasets also have

noisy images that disrupt a correct image analysis.

4.11.4 Complete System

Although lots of research works are based on the individual brain tumor analysis tasks, the lack of a complete

frameworks that can analyze a brain MRI and apply all tasks to produce a comprehensive output is still

a major challenge. An automated system to detect if there is any abnormality in the brain MRI, then

to segment the tumor region correctly, classify different tumor tissues, identify the tumor severity (i.e.,

benign/malignant), grade (i.e., I, II, III, IV) and specific tumor type (i.e., name of the tumor) is still not

138



available.

The possible scopes and future research problems can include - (i) creating consistent and sufficient

datasets with correct annotations and labels, (ii) designing hybrid frameworks for a completely automated

system for all the three brain tumor analysis tasks without human intervention, (iii) applying real time

patient data to these systems that can be observed by medical professionals to evaluate the actual (i.e.,

not theoretical) performance of the frameworks/models, (iv) developing automated systems to analyze brain

MRIs and other patient data to generate comprehensive reports to assist the healthcare professionals, and

(v) designing interactive recommendation systems to provide suggestions to healthcare professionals about

the brain medical image data and to receive feedbacks from the professionals for fine tuning the system

performance. Although developing automated systems for more accurate and efficient medical data analysis

is crucial, valid, complete and detailed datasets are equally essential for training, testing and validating those

automated systems. Hence, healthcare professionals and researchers need to focus on contributing to the

reduction of limitations regarding the datasets and the development of real-time automated data processing

and analysis systems simultaneously.

4.12 Conclusion

Medical image analysis with segmentation and classification is a well-known research area that has been

explored using manual, semi-automatic and automatic approaches to increase the precision of the medical

decisions to help both patients and healthcare workers. Brain tumor analysis is one of the research directions

within this area. It used thresholding, supervised machine learning, unsupervised machine learning, semi-

supervised machine learning, deep learning and hybrid methods, and it was able to achieve high accuracy

on a limited number of available datasets. Although the existing systems performed well, there are still

lots of challenges to medical image analysis methods. The main objective of this chapter is to explore the

possibilities of different approaches to brain tumor image detection, segmentation and classification. The

goal is to identify all the challenges and scopes properly to provide some future directions for the researchers

to address them with multiple approaches from different perspectives to achieve better results for medical

image analysis.

This chapter, contains a comprehensive review on brain tumor medical image analysis covering all major

aspects of brain tumor image analysis. Basic brain tumor and brain medical image related terms, their def-

initions, examples, applications of brain tumor image analysis are introduced with mentions of AI models.

All major brain tumor analysis tasks (i.e., detection, segmentation, classification) are discussed with appro-

priate examples. Image feature analysis and AI models with conventional, ML, DL and hybrid algorithms
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used in existing research works are discussed in details. The chapter includes the summaries on relevant

researches with all necessary information like tasks, features, datasets, performance, contributions in both

text and tabular formats for ease of comparisons between methods as needed. This review chapter does not

just summarize the existing researches but also adds observations (both positive and negative) on the papers

like their uniqueness and limitations to provide a complete narrative to future researchers. The datasets and

performance metrics used in recent and previous researches are also mentioned with their sources, image

properties, data labels, abnormality types, metrics definitions and equations etc. to help future researchers

to check and select appropriate datasets and performance metrics for their research. The review and obser-

vations on the existing research also provided the directions for current challenges and future scopes in this

research domain. Although this chapter provides a complete summary on the major components of brain

tumor image analysis researches, there are a few limitations which are intended to be resolved in future.

This survey mainly focuses on the AI based researches on different brain tumor analysis tasks, but more

analysis can be done on each step of the image processing and analysis to figure out the scopes of better novel

approaches. More detailed analysis on each step (i.e., feature extraction, pre-processing, post-processing,

decision generation etc.) can lead to specify the current limitations and scopes of improvements in each,

contributing towards a novel and more accurate complete automated system for brain tumor image analysis.

140



Chapter 5

Convex hull in brain tumor

segmentation

5.1 Introduction

Convex hull computation [254] is one of the most well-known topic in computational geometry. In the 2D

case, it calculates the minimum or smallest convex area containing a given set of points. The 2D convex hull

computation problem has been solved with algorithms like Gift wrapping, Graham scan, Quickhull, Divide

and Conquer each having different time complexities [300]. Convex hull algorithms generate a minimum

convex polygon enclosing a set of points, and hence graph-based and image-based researches have been using

convex hull computation for object detection problems in regular images[301], medical images[231, 235, 236],

gaming platforms[302] and many other types of images. The brain tumor detection from MRIs can be

represented as an object (i.e. tumor) detection problem from an image (i.e. MRI) by calculating the convex

hull for the tumor.

In this chapter, a convex hull computation based approach is used for brain tumor segmentation. A convex

hull algorithm is used to detect the tumor area from brain MRIs with different filtering and thresholding

methods. The proposed system uses brain MRIs as inputs and produces the convex hull for the tumor

regions as outputs. The input images are pre-processed by basic image pre-processing methods to resize

and normalize the images and redefine them to achieve homogeneity. The system then focuses on the

abnormal regions of the brain by removing pixels containing healthy brain tissues using a thresholding

method, such as Yen’s thresholding, adaptive thresholding, anisotropic filtering or a customized (manually

defined) thresholding which is then applied to each pre-processed image to highlight the tumor region. As
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the intensities of the pixels from the tumor region are generally higher than pixels containing healthy tissues,

region-labeling is used to identify all connected high intensity pixels regions and extract the major remaining

region as the tumor region from the image. The key-points of the abnormal area (i.e. tumor area or major

region) are extracted based on their intensity-level. A convex hull algorithm is used to define the specific

tumor boundary using the hull area with the extracted key-points. The method is applied separately on

region-segmentation with Yen’s filters, adaptive thresholding, anisotropic filtering and customized or manual

thresholding. An area-based heuristic is added to the methods that calculates the convex area of the extracted

major region to check if it is a part of non-tumor region or not. For each image, the area-heuristic is also

separately applied to the region-segmentation with the mentioned thresholdings and filtering to generate

an area-heuristic region-segmentation for each of them. The brain tumor image segmentation is therefore

viewed as a problem from a (computational) geometry perspective.

The major contributions of this chapter include - i) applying various existing thresholding, filtering,

region-growing methods (i.e. Yen filters, adaptive thresholds, anisotropic filtering, customized thresholds,

region-based segmentation etc.) on different types of brain MRIs from two brain tumor MRI datasets to

decide on the best thresholding for brain MRIs, ii) defining a convex area based measurement (i.e. area-

heuristic) to detect the tumor area more accurately, iii) generating the convex hulls for the detected tumor

region using each method, and iv) finally analyzing the results produced by each method.

The next sections are organized as follows: some related works are mentioned in Section 5.2, the method-

ology is summarized in Section 5.3, the experimental setup with results are mentioned in Section 5.4 and

the conclusion is provided in Section 5.5.

5.2 Literature Review

Researchers have been reviewing existing works of brain tumor analysis for understanding past and new

challenges and scopes. Some of the recent surveys were discussed in the previous chapter [21], [214], [240].

Geometry has been one of the areas contributing to brain image analysis. ‘Fractal Geometry’ was mostly

used for brain tumor analysis from brain images in [303]. Fractal geometry is a non-Euclidean geometry

that is used to describe complex structures found in nature. Generally, the components present in nature or

in human/animal bodies do not have simple shapes that can be described by euclidean geometry. Fractal

geometry therefore defines self-similar structures that are able to create infinitely complex objects by magni-

fication of the structure recursively with self-similarity. Fractal geometry features and algorithms have been

long used by researchers for brain tumor image analysis. Iftekharuddin et al. [304] extracted fractal features

for brain tumor segmentation and classification in pediatric brain images. Fractal features were extracted
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with the Piece-wise Triangular Prism Surface Area (PTPSA) algorithm. They used a novel fractional Brow-

nian motion framework to extract fractal wavelet features from 204 MRIs of T1, T2 and FLAIR sequences.

The fractal features were fused with intensity values and the feature set was able to detect tumors from

single and multimodal MRIs where only the tumor region had the highest intensities. Although the model

outperformed other existing fractal feature based systems, it performed poorly for MRIs that contained other

parts of the brain with similar intensities as tumor pixels.

Fractal algorithms like PTPSA, Piece-wise Modified Box Counting (PMBC) and Blanket algorithm were

also used in brain tumor segmentation research [305, 306]. Each MRI was divided into multiple pieces and

these algorithms were applied to the pixel intensities of every piece of MRI. Fractal dimension (FD) and

cumulative histograms were generated with different thresholding and filtering. PMBC algorithm for tumor

detection outperformed other similar methods in [305]. FD was calculated for 80 MRI and CT images in

[306] for statistical validation. FD was proven as an effective measure for brain tumor detection from the

comparisons of average tumor FD and non-tumor FD for all of the images in the dataset, negative and

positive FD differences of half images for Blanket, PMBC and PTPSA algorithms. The FD scores for the

tumor areas and the non-tumor areas had very distinguishable characteristics that helped segmenting a

tumor accurately from the rest of a brain.

Computational geometry, another well-known field of geometry, has also been used in brain tumor de-

tection and segmentation like Delaunay triangulation [234] and convex hull [231], [235] and were discussed

in the previous chapter. A number of image processing and deep-learning based methods are being used for

brain tumor segmentation with high accuracy in recent years. But there is an absence of research describing

euclidean geometric approaches to address brain tumor detection and segmentation. Hence, this chapter will

focus on thresholding approaches to analyze the pixel intensities and represent the brain tumor segmenta-

tion as a computational geometry problem to be solved by computing the convex hull of the detected tumor

region.

5.3 Methodology

The methodology of the proposed framework follows a sequence of steps to process the input MRIs for

finding the tumor convex hulls. Figure 5.1 shows the framework for the implemented system for brain

tumor detection. Each MRI input is pre-processed and then filtering and thresholding are applied on the

pre-processed image. After that, region-based segmentation and area-heuristic region-based segmentation

are applied on the image separately to extract the possible tumor region. Finally, a convex hull is generated

for the extracted region which is compared to the original tumor to check the accuracy of the segmented
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tumor convex hull.

Figure 5.1: Workflow of the proposed brain tumor segmentation system.

5.3.1 Pre-processing

The first step of the methodology is image pre-processing. As the dimensions of the MRIs are not consistent,

the first step of image pre-processing is ‘Image Reshaping’. Each image is checked for its’ dimensions and then

it is converted into 2D. Also, the images have different heights and widths which creates inconsistencies in the

pixel intensity calculations and locations. Therefore, every image is resized to height of 300 pixels height and

250 pixels width. Then the images are converted from RGB (i.e. color) to grayscale for further processing.

The original pixel values of each image are from 0 to 255 where 0 represents black pixels (i.e. lowest intensity

pixels) and 255 represents white pixels (i.e. highest intensity pixels). To ensure the consistency and ease of

calculation, the images are normalized to the range of 0 to 1 (fractional values) after reshaping and resizing.

The original pixel values varied from 0 to 255 with 0 being the value for black pixel and 255 for white pixel.

To normalize the pixel values within the range of 0 to 1, the min-max normalization is used according to

equation 5.1. Zi is the normalized pixel value, Pi is the original pixel value, Max is the maximum range and

Min is the minimum range. As Max = 255 and Min = 0, the normalized pixels values are calculated with

dividing the original pixel values by 255. Finally, each image is converted into a 2D array storing the pixel

intensity for each corresponding cell of the array.

Zi =
Pi −Min

Max−Min
=

Pi

Max
=

Pi

255
(5.1)
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5.3.2 Tumor Area Extraction

The tumor area is extracted using filtering, thresholding, region extraction and area-heuristic methods. All of

the input images are tested individually with every region-based and area-heuristic region-based segmentation

methods.

Filtering and Thresholding

Different image equalization and filtering methods are applied on the images so that the best method can

be chosen. Thresholding is applied on the images to convert the grayscale images into binary images while

removing the non-ROI areas. Thresholds are applied using Otsu’s method [307], Ridler-Calvard method

[308], Li’s iterative method [309], mean of grayscale values, minimum of the histogram values, triangle

method, adaptive method, anisotropic method [310] and Yen’s method [311]. Among all these methods,

filtering using the threshold from Yen’s method, adaptive thresholding and anisotropic filtering produces the

best results that highlights the tumor better than the other filters. Yen’s method uses bilevel thresholding

on maximum correlation criteria where a cost function is optimized until the threshold value reduces the

discrepancy between the threshold and original image while reducing the number of bits for representing

the threshold image. On the other hand, adaptive thresholding uses the mean value of a defined number of

neighbors of a pixel as a threshold for the pixel. The anisotropic filtering mentioned above is a texture based

filtering.

Another customized (manual) thresholding is also applied to the images. After converting the images into

2D arrays, each pixel intensity is manually checked with a customized threshold value which is varied from

0.3 to 0.9 to find the perfect customized threshold for the images. Most of the time, the whole tumor area

does not have the same intensity and some parts of the tumor have intensity value less than 0.6. Therefore,

choosing any threshold value less than 0.5 or greater than 0.5 results in either including non-tumor regions

or loosing some parts of the tumor area. So, a customized threshold value 0.5 is applied on each pixel of the

converted 2D array. If the pixel value is less than 0.5 then it is replaced by 0, otherwise the original value is

kept. The manual approach is applied as an alternative thresholding to check against the other pre-defined

thresholding models mentioned above. Any other existing and/or customized thresholding methods with

different parameters can be used by choosing the parameters manually or with some automated process.

Region-based Segmentation

After applying the Yen, anisotropic, customized and adaptive thresholding, the tumor area is extracted from

the image using region labeling. All of the connected sets of pixels are identified as individual regions and a
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label is assigned to each of them after removing artefacts from the image borders. Each region label is then

associated with properties of that region like area, centroid, axis lengths etc. Then an overlay is stacked on

the original grayscale image to plot each region with a colored rectangle bounding box. Generally, the tumor

region is the largest high intensity region. So, the region with the maximum area (i.e. maximum number of

connected pixels) is identified as the major region from the image and is considered to be the tumor region.

Area-based Heuristic

One common problem after analyzing the detected major regions from the MRIs, is that the system might

detect a non-tumor area of the image that has a connected set of pixels with similar intensities but higher

number of pixels. To solve this problem, an area-based heuristic approach is used. The major region collected

from the previous part is the largest connected component in the image with the region area possessing the

highest number of connected pixels. Therefore, checking only the region area is not enough to find the tumor.

Checking the co-ordinates of the centers of the regions is not a valid approach either as the tumor can be

located at any place of the image. After assessing all the properties (i.e. Area, Bounding Box, Centroid,

Major Axis Length, Minor Axis Length, Convex Area etc.) for each region in a region-based segmentation,

the convex area is the most appropriate one to consider for the tumor.

The convex area computation returns the area defined. Due to the finite resolution (i.e., pixels) of the

display device, this area is a set of connected pixels. As the images are resized with height of 300 pixels

and width of 250 pixels, the complete image is a convex area defined by 75,000 pixels. In most cases, the

tumor occupies at most 20% to 30% of the total area. So, the area-based heuristic checks if the extracted

major region has a convex area of 22,500 pixels or more (i.e., 30% or more of the total area). To achieve

that, the regions are sorted in a separate dictionary according to their convex areas after labeling. Then,

the major region is extracted with it’s label. The system checks the convex area corresponding to that label

and if the convex area is more than 30% of the total area, the sorted dictionary is used to find the label of

the next region that has a convex area of less than 22,500 pixels. Then the label for the latter region is used

to extract the corresponding characteristics from the properties dictionary to define that as the tumor area.

5.3.3 Convex Hull Generation

Each method explained in the previous part extracts a region from the processed image and detects that as a

tumor area which is a connected set of pixels that represents the tumor. As the convex hull is the minimum

convex area enclosing a set of points, the pixels are needed to be extracted from the detected area to create

the set of points for convex hull algorithm. After extracting all of the tumor pixels from the tumor area,
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each pixel is considered as a point with x and y coordinates as its’ location on a 2D logical matrix. The

convex hull algorithm then uses the set of pixel coordinates as the input points and generates the minimum

convex area by defining the convex hull enclosing the detected tumor pixels.

5.3.4 Convex Hull Accuracy Detection

The images containing only the convex hulls of the segmented tumor using all of the methods are collected for

comparison analysis. Each generated convex hull image is compared to the original tumor image (containing

only the tumor) to check the accuracy of the detected tumor convex hull. Different metrics are used on these

two images to check which method works better. The details about the performance metrics are included in

the next section.

5.4 Experimental Results

5.4.1 Datasets

Two different datasets were used for the experiments. Dataset1 (i.e. the Kaggle brain tumor dataset) [22]

includes 253 axial (i.e. horizontal intersection) view MRIs and Dataset2 (i.e. the CjData or Figshare brain

tumor dataset) [291, 292] includes 3064 axial, coronal (or frontal) and sagittal (or longitudinal) views of

T1-weighted MRIs [19, 20]. Table 5.1 shows the information on the datasets with references.

Table 5.1: Datasets
Datasets #Images View Type

Dataset1: Kaggle [22] 253 Axial 2D or 3D
Dataset2: CjData [291, 292] 3064 Axial, Coronal, Sagittal 2D (T1)

Figure 5.2: Sample MRIs from the datasets.

Figure 5.2 show some sample MRIs from Dataset1 and Dataset2. As all of the images in Dataset1 were

axial view images and the experiments could detect the brain tumors more accurately for Dataset1 than for

Dataset2. Also, in most cases, the brain tumor images in Dataset1 had higher intensity pixels than the other

parts of the brain. Dataset2 included more complex images with horizontal, vertical and cross-sectional
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views of the skull. The tumors in Dataset2 images were not as clear as the tumors in Dataset1 and the

pixel intensities of the tumor regions were similar to the other parts of the brain and sometimes were even

lower. All the files of Dataset2 were in .mat format. Each file included an integer label for the tumor type,

a patient ID, the MRI data, a vector with coordinates of tumor border and a tumor mask.

5.4.2 Performance Metrics

The performance metrics used to compare the actual tumor and the convex hull of detected tumor region

included the commonly used brain tumor segmentation performance measures. The resultant convex hulls

were used to calculate the Dice Coefficient (DCC ), Jaccard Coefficient (JCC ), precision, recall and specificity.

The definitions and equations of these metrics were added in Chapter 2 with equations 2.8, 2.9, 2.10, 2.11,2.2,

2.3, and 2.5.

Table 5.2 and 5.3 report the results of the various performance metrics applied to Dataset1 and Dataset2,

respectively.

5.4.3 Results and Discussion

The DCC, JCC, precision, recall and specificity were calculated for all MRIs from both datasets and the re-

sults are included in Table 5.2 and 5.3. The ‘Region’ result represents the result of the convex hull generated

by region-based segmentation after applying Yen filter whereas ‘Region (Anisotropic+Yen)’ is the region-

based segmentation with a combination of Yen and anisotropic filtering. ‘Region (Adaptive)’ represents the

result of region-based segmentation with adaptive thresholding and ‘Region (Manual)’ is the region-based

segmentation with customized thresholding. Similarly, ‘ConvexArea’ represents the result for region-based

segmentation with area heuristic using Yen’s method. ‘Convex(Anisotropic+Yen)’, ‘ConvexArea (Adap-

tive)’ and ‘ConvexArea (Manual)’ are the results for region-based segmentation with area heuristic using

anisotropic filtering, adaptive thresholding and customized thresholding respectively.

Table 5.2: Comparisons of segmentation results on Dataset1.
Method DCC JCC Prec. Rec. Spec.

Region 0.61 0.50 0.52 0.87 0.76
Region(Adaptive) 0.67 0.55 0.57 0.90 0.81
Region(Manual) 0.57 0.46 0.48 0.86 0.75

Region(Anisotropic) 0.59 0.49 0.51 0.85 0.73
ConvexArea 0.77 0.65 0.68 0.93 0.97

ConvexArea(Adaptive) 0.74 0.61 0.64 0.92 0.96
ConvexArea(Manual) 0.75 0.62 0.65 0.92 0.97

ConvexArea(Anisotropic) 0.79 0.69 0.70 0.93 0.98
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Table 5.3: Comparisons of segmentation results on Dataset2.
Method DCC JCC Prec. Rec. Spec.

Region 0.10 0.06 0.06 0.86 0.64
Region(Adaptive) 0.14 0.10 0.12 0.53 0.79
Region(Manual) 0.09 0.05 0.06 0.74 0.69

Region(Anisotropic) 0.09 0.05 0.05 0.86 0.63
ConvexArea 0.13 0.10 0.16 0.16 0.97

ConvexArea(Adaptive) 0.16 0.12 0.17 0.20 0.96
ConvexArea(Manual) 0.10 0.08 0.13 0.14 0.96

ConvexArea(Anisotropic) 0.12 0.09 0.15 0.14 0.97

The results reported in Table 5.2 show that the area-heuristic based region-segmentation generated bet-

ter results than the region-based segmentation considering all the performance metrics values for Dataset1.

These results have been validated by a domain expert who confirmed that the developed approach is promis-

ing and could lead to a stable solution which will guide pathologists and may act as a seed for developing

a learning tool for juniors to benefit from their seniors. Among the methods of normal region-based seg-

mentations, region-segmentation with adaptive thresholding achieved the best results in terms of all the

performance metrics. In case of the area-heuristic methods, the anisotropic filtering with area heuristic

showed the best results for tumor segmentation. The region-based segmentation with area heuristic pro-

duced the convex hulls with second highest dice coefficient values and region-based segmentation with area

heuristic using customized thresholding had the third highest DCC values.

The same thing was true for JCC which means the convex hull generated from the extracted area

was very similar to the original tumor using area-heuristic anisotropic filtering, area-heuristic region-based

segmentation while manual thresholding area-heuristic region-based segmentation performed well too. The

region-based segmentation with area heuristic using adaptive thresholding also performed well and had a

difference of 1% - 4% from the other area-heuristic based methods. The other metrics values like precision,

recall and specificity followed the same pattern.

The performance metrics values for Dataset2 were considerably lower than the corresponding values of

Dataset1 as mentioned in Table 5.3. Dataset2 had almost 12 times more images than Dataset1 and it had a

combination of different types of view of the skull, but that was not the problem. After analyzing the images

in Dataset2, the problem found was related to the pixel intensities of the images. In Dataset1, the tumor

region was mostly a highlighted connected region with high-intensity pixels whereas in Dataset2 almost all

parts of the image had very similar intensities. Only a few images in Dataset2 had high intensity pixels for

tumor regions. Therefore, extracting the correct tumor region from images of Dataset2 was very challenging.

This issue affected the output as per the results reported in Table 5.3.

Despite the lower values for the metrics, the area-heuristic based region-segmentation produced better
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Figure 5.3: Sample segmentation execution of an image (Y1.jpg) from Dataset1.

results for Dataset1 than the region-based segmentation for Dataset2. Although all the methods for area-

heuristics had similar results, the region-based segmentation with the area heuristic using adaptive threshold-

ing produced the best results. But for Dataset2, all the performance metrics values did not behave similarly

to the corresponding ones for Dataset1. For example, the region-based segmentation with area heuristic

using adaptive thresholding had higher DCC, JCC, precision and specificity among all region-segmentation

methods, but the recall value was higher for regular region-segmentation.

Figure 5.3 and Figure 5.4 show sample executions on one image from Dataset1 and one from Dataset2

respectively. Figure 5.3a) shows the original image, tumor, Yen thresholding, adaptive thresholding, cus-

tomized/manual thresholding, and all four region-segmentation and Figure 5.3b) shows area-heuristic region-

segmentation for the same image. Similarly, Figure 5.4a) and 5.4b) are samples of all eight methods on an

image from Dataset2.

For Figure 5.3, region-segmentation, region-segmentation with anisotropic filtering and region-segmentation

with manual thresholding were very similar for both datasets and had very similar convex hulls whereas

region-segmentation with adaptive thresholding extracted an incorrect area in both cases. Figure 5.4 shows
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Figure 5.4: Sample segmentation execution of an image (222.jpg) from Dataset2.

the results for an image from Dataset2. Only adaptive thresholding and anisotropic filtering produced in-

correct regions whereas manual thresholding had the most accurate tumor convex hulls. The problem with

lower intensity tumor pixels can be seen in the Dataset2 images. As other parts of the image included a

large set of connected high intensity pixels (i.e. part of skull or part of other healthy brain tissues) and the

tumor pixels had lower intensities with a smaller connected set of pixels, the system picked the major region

from the skull image and detected that as the tumor region.

The intensity overlapping issue was a common problem for many images in Dataset2 that had large

set of connected high intensity pixels from parts of the brain or skull and the tumor had a small set of

connected low intensity pixels. Hence, the system detected non-tumors parts as tumors. After applying the

convex area heuristic condition, the system detected the correct tumor region with area-heuristic region-

based segmentation. The area heuristic could not detect the correct tumor region for manual thresholding

and anisotropic filtering, but it at least stopped detecting a large part of skull as tumor and concentrated

on smaller connected high intensity regions.
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5.5 Conclusion

Brain tumor image segmentation is a well-known research area that have been explored using thresholding,

supervised/unsupervised machine learning and deep learning methods for a long time and achieved high

accuracy. The goal of this research was to solve the same problem from a geometric perspective - ‘Brain

tumor segmentation from MRIs as an application of convex hull generation’. The main focus of this research

was to explore further possibilities of applying computational geometry tools for brain tumor segmentation.

Experiments done on different thresholding and filtering methods and their combination with region-based

segmentation showed that tumor pixels could be identified and distinguished from the other parts of the

image with certain threshold conditions. But applying a more directed convex area based heuristic on the

thresholdings and region-segmentation improved the tumor detection considerably. The major limitation of

the system was that it could not extract the tumor area from many images where the tumor area pixels were

not the only high intensity connected set of pixels.
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Chapter 6

Brain tumor detection and

segmentation: interactive framework

with a visual interface and feedback

facility for dynamically improved

accuracy and trust

6.1 Introduction

In this chapter, a novel automated system to detect and segment brain tumors from brain medical images is

proposed using DL-based approaches. In our effort to serve healthcare professionals who deal with various

types of tumors and infections, we initiated a project to develop a system having a visual interface for

dealing with each type of diseases which is capable of identifying infected spots within an image (e.g.,

MRI, X-Ray, CT, etc.). Our target is to have a decision support system which increases the confidence of

experienced professionals and new professionals in assessing MRI images. In this regards, we have already

developed for COVID-19 an effective visual interface with feedback capabilities [2]. In this chapter, we

describe an automated system for brain tumor detection and segmentation from brain medical images. It

is a web application which will help a healthcare professional with an initial screening of the images. The
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web application based system is able to provide decisions about the presence or absence of brain tumor in

a brain medical image including a detection probability and provide a segmentation of the tumor from the

brain imaging with a tumor confidence score, tumor area score and tumor ratio score. Figure 6.1 shows the

architecture of the proposed system. The proposed model provides a web application that can be used to

upload patient data by the user or it can directly access patient data from the connected hospital or medical

databases. After the data collection process, the data is pre-processed and sent to the brain tumor analysis

for brain tumor detection and segmentation. Then the generated outputs are pre-processed and the user has

the option to provide feedbacks on the results as required.

Figure 6.1: Proposed automated system for brain tumor analysis.

Figure 6.2 shows the overall framework for the developed system in more details. Users can upload images

(for tumor detection or 2D segmentation) or feature sets (for tumor detection) or nifti files (for 3D tumor

segmentation) to the system based on the user requirement. The system provides the options for detection,

2D segmentation and 3D segmentation at the beginning. Then the users can specify if they want to use an

image or feature sets for the detection part. For both 2D and 3D segmentation, the users have the choice

of applying U-Net or U-Net++ model for the task. Based on the users choices and uploaded inputs, the

system uses the saved trained models to predict and segment brain tumors from the user uploaded input

data. Then the system provides output decisions (i.e. tumor or non-tumor) or segmentation information

(i.e. the segmented tumor) with some performance scores for the users. The users or medical professionals

can also provide their feedbacks on the output with the feedbacks being included in the training models to

incorporate the professional feedback for future detection and segmentation.

The objectives and major contributions of this research are as follows -

• provide a complete web application for the medical professionals for two major brain tumor analysis

tasks - tumor detection and tumor segmentation - that can be connected to existing medical databases
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Figure 6.2: Overall framework for the proposed system.

for data access or that can operate independently using user input,

• deliver multiple types of options for each of the two tasks (i.e. detection with image input and de-

tection with image features, 2D segmentation with U-Net and 2D segmentation with U-Net++, 3D

segmentation with U-Net and 3D segmentation with U-Net++) for a more user-friendly application,

• provide medical professionals with the opportunity to review the outputs generated by the system and

include their feedbacks to the application to improve the accuracy of the tasks that can be incorporated

with the data for future executions.

The rest of the chapter first provides brief summaries of the few related works on similar researches in

the next Section 6.2. The methodology of our proposed system is explained after that in Section 6.3. Then

experimental results are included in Section 6.4 and finally some concluding remarks are provided in Section

6.5.

6.2 Related Works

Although most recent brain medical image analysis systems use DL and ML models due to their high

accuracy, a few researchers are still working on improving the conventional approaches such as thresholding,

geometry, morphology, contouring etc. Nyo et al. [312] recently proposed a thresholding and morphology

based model for brain tumor segmentation from brain MRIs. After converting the images into grayscale, they
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removed noise and applied Otsu’s thresholding algorithm to segment the tumor region from the MRI and

then used opening and closing morphological operations for post-processing the segmented images. Their

method was applied to 110 FLAIR images from BRATS 2015 [313] dataset for 2, 3, and 4 class models and

achieved around 90% accuracy. Another recent thresholding and morphology based model applied a similar

method for brain tumor segmentation from brain MRI, while adding a brain tumor severity detection (i.e.

benign tumor or normal.) [314]. They created a dataset combining online datasets and gathering images

from hospitals and then pre-processed the 2294 images for the threshold-based segmentation that segmented

the tumor from the background. Then morphological operations were applied and a connected component

analysis was done to get the solidity, the area and the bounding box of the tumor. The highest density area

was extracted and checked with the maximum area of connected pixels. If both were same then the tumor

was identified and the image was labeled as a ‘benign tumor’ image. Otherwise the image was considered as

a normal/healthy image.

Most of the recent researches on brain tumor detection and segmentation apply conventional approaches

as part of the pre-processing or post-processing methods for ML or DL hybrid or ensemble models. Support

vector machine (SVM), random forest (RF), fuzzy C-means (FCM), K-means clustering are few of the

popular ML models for tumor detection, segmentation and classification [315]. Hasanah et al. [316] recently

proposed a ML-based brain tumor classification using filtering, contouring and thresholding as part of pre-

processing and segmentation of the tumor. The MRIs were filtered with median filtering and the skulls were

stripped from the images to use binary thresholding for a contouring algorithm. The largest contour was

used for tumor feature (i.e. intensity and GLCM features) extraction. A SVM model used these features to

classify the tumors into Glioma, Meningioma and Pituitary tumors with 95.83% average accuracy. A FCM

clustering with level set method called fuzzy kernel level set (FKLS) was applied for 3D tumor segmentation

in [317] using a combination of conventional and ML methods. They applied symmetry analysis to create

the bounding box for the volume of interest (VOI) and then used FCM and level set methods to minimize

the energy function for tumor segmentation. The proposed model showed high Dice score (i.e. 97.62%) on

the BRATS 2017 [318] dataset.

Currently DL-based techniques are the most popular tools for brain tumor image analysis. Convolutional

neural network (CNN), recurrent neural network (RNN), visual geometry group (VGG), ResNet, Inception,

autoencoders, U-Nets and their variations are the most popular DL models for brain tumor detection,

segmentation and classification [252]. Researchers have also tried to combine conventional method and

ML models with DL-models to enhance the performance even more. Chattopadhyay et al. [319] proposed

a DL model with a CNN framework and they tried to include ML method in the CNN for tumor/non-

tumor detection. They applied SVM as the activation function at the last layer of the CNN and showed
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that the accuracy was only about 15% and they therefore moved to using a Softmax activation function thus

achieving more than 99% accuracy. Another CNN-SVM hybrid model was used for brain tumor classification

into benign and malignant tumor classes in [320]. After some basic image pre-processing and skull stripping,

the tumor images were segmented using thresholding. Then a CNN model extracted the feature maps from

the segmented images and the feature maps were fed into a SVM for the final classification. The hybrid

CNN-SVM model was compared to the separate CNN and SVM models and outperformed both of them

with more than 98% classification accuracy.

Another CNN-based tumor classification model was recently proposed by Ayadi et al. [321]. They applied

a CNN model to three brain tumor datasets (i.e. Figshare [322], Radiopaedia [323], and REMBRANDT

[295]) and classified the images into 2 (i.e. tumorous or normal), 3 (i.e. normal, low grade glioma (LGG),

high grade glioma (HGG)), 4 (i.e. normal, astrocytoma (AST), oligodendroglioma (OLI), glioblastoma

multiforme (GBM)), 5 (i.e. AST grade 2, AST grade 3, OLI grade 2, OLI grade 3, GBM), and 6 (i.e.

normal, AST grade 2, AST grade 3, OLI grade 2, OLI grade 3, GBM) classes. Their model achieved overall

accuracy of 90.35% without data augmentation and 93.71% with data augmentation which was comparable

to the accuracy of similar CNN-based brain tumor classifiers. A CNN-based ensemble model was proposed

in [324] with two stage ensemble model for best feature extractions to classify the brain MRIs into normal,

meningioma, glioma and pituitary tumor classes. Three different brain MRI datasets were merged to create

a collection of 10620 MRIs and they were used separately and together. They were pre-processed and fed

into five pre-trained CNN models (i.e. VGG-19, EfficientNet-B0, Inception-V3, ResNet-50 and Xception)

and five classifier (i.e. softmax, SVM, RF, K-nearest neighbor (KNN) and AdaBoost) for choosing the best

feature extractor and best classifier respectively. Finally, the final classifier classified the MRIs into 4 classes

with more than 99% accuracy. They created a python-based UI for the users to upload brain MRIs for

classifying them in real-time and provide confidence percentages for each class.

A CNN variation U-Net [15] and its’ variations are very popular for brain tumor image analysis and brain

tumor segmentation from MRIs. Ilhan et al. [46] proposed a U-Net based brain tumor segmentation model

with tumor localization and enhancement models. After pre-processing the tumor regions were localized

and enhanced by using the intensity of the pixels and the standard deviations from the image histogram to

separate the tumors from the non-tumor regions. Then the U-net model was applied to segment the tumor

and it achieved 0.85 - 0.94 Dice scores outperforming similar tumor segmentation models. The localization

and enhancement of the ROI improved the feature extraction and training of the U-Net by a noticeable

amount. Aghalari et al. [325] proposed a modified U-Net for brain tumor segmentation from BRATS 2018

dataset. 2D slices containing only background were discarded from the 3D data and then the rest of the

slices were normalized from T1ce, T2 and FLAIR images. A two-pathway-residual (TPR) block structure
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was added to the U-Net to extract the global features as well as the local features from the images. The

TPR block at every U-Net level sent the extracted global features for concatenation at the next level, hence

enhancing the feature maps. The model was trained for segmenting tumors and achieved around 89% Dice

scores that outperformed most similar works and was comparable to other DL models.

An image driven U-Net model was proposed in [326] for brain tumor segmentation for the BRATS 2018

dataset. As the first and last few slices of the 3D MRIs did not contain much information, only slices from

30th to 120th were used for the analysis. After cropping each slice from dimension 240 X 240 to 192 X 192

to crop out the background parts, the Watershed algorithm was used to separate the image into a tumor

region and a non-tumor region and finally a Z-score normalization was done before feeding the images into

the U-Net. The U-Net model was trained and tested and achieved more than 98% Dice scores for both LGG

and HGG tumor segmentation. Das et al. [327] also worked on U-net but from a different perspective. They

experimented on the learning parameters of U-Net for brain tumor segmentation to achieve the optimal

results for BRATS 2017 and BRATS 2018 datasets. The input images were pre-processed and normalized

with N4ITK bias field correction and then cropped into 192 X 192 slices to be fed into the U-net. Five

different types of activation functions (i.e. Tanh, ReLU, leaky ReLU, parametric ReLU and ELU) were

applied on the U-Net to segment the complete tumor, the core tumor and the enhancing parts with 97% to

99% accuracy. Their experiments with the activation functions, filter size, pooling, batch normalization and

dropout showed better performance for ReLU activation function and average pooling.

U-Net++ [16] is an extension of the U-Net model that aims to improve the performance of medical

image analysis that has been implemented by Hou et al. [328] for brain tumor segmentation. They applied

basic data pre-processing on the BRATS 2018 and BRATS 2019 datasets by normalizing and clipping the

slices and then merging all of the modalities together. Then the resulting U-Net++ model with a hybrid

loss function of binary cross entropy (BCE) and Dice loss was trained and tested. Their proposed model

achieved almost 89% Dice scores for segmenting the whole tumor. Another U-Net++ based ensemble model

for Glioblastoma segmentation was proposed in [329]. This ensemble model used EfficientNet [330] for data

pre-processing instead of the common pre-processing methods. A 3D EfficientNet was applied on each of the

four MRI modalities of the BRATS 2021 dataset the and average was used for the classification step. Each

MRI was sliced to create 2D images along the axial, coronal and sagittal planes and four modality images

were concatenated. A separate 3D U-Net++ was applied on each plane to produce the segmentation and

a majority voting model was applied to generate the final output with 90% Dice score for the final tumor

segmentation.

nnU-Net [331], a new self-configuring DL model for biomedical image segmentation tasks is another

popular DL model used in medical image analysis now a days. Luu et al. [332] proposed an extended nnU-
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Net for brain tumor segmentation in BRATS 2021 challenge. They replaced the batch normalization with

group normalization using axial attention mechanism in decoder and applying double filters in the encoder of

U-Net. The larger encoder helped to manage the large amount of data more appropriately. Their proposed

model was able to achieve more than 90% Dice score with the extended nnU-Net model by modifying only

three properties of the original nnU-Net. Axial attention was also used in [333] for brain tumor segmentation

recently. They applied axial attention to extract and use both local and global semantic features from the

MRIs more accurately for tumor sub-region segmentations with a hybrid loss function. They chose the 3D

U-Net and added the axial attention mechanism at the decoder of the 3D U-Net. The proposed model was

tested with BRATS 2019 and BRATS 2021 datasets and achieved more than 84% Dice score outperforming

six U-Net based models proving the advantage of axial attention in accurate local and global pixel feature

extraction. An ensemble model including DeepSeg, nnU-Net and DeepSCAN for segmenting brain tumor

was proposed in [334] for BRATS 2022 challenge. Both DeepSeg and nnU-Net were inspired by the U-Net

architecture and DeepSCAN was inspired by U-Net and DenseNet. The ensemble model combined these

three DL models and applied an expectation-maximization method used for medical image segmentations

called simultaneous truth and performance level estimation (STAPLE). Their ensemble model achieved more

than 88% Dice scores outperforming all three individual models. Their performance ranking showed that

among the three models, nnU-Net performed the best and DeepSeg achieved the lowest rank.

Vijay et al. [335] recently proposed an extended U-Net called SPP-U-Net by replacing the residual

connection with attention blocks and spatial pyramid pooling (SPP). The attention blocks added at the

levels of the decoder enhanced the features by incorporating more local pixel features with their global feature

dependencies. The SPP blocks collected the information from all encoder layers to provide more specific data

for reconstruction at the decoder. Their experiments on the BRATS 2021 dataset with variations of presence

and absence of the SPP blocks and showed that the models achieved comparable results. The results with

SPP were better in average and the best result was achieved with one SPP block with almost 87% Dice scores.

A different U-Net based approach with transformers was applied in [336] for brain tumor segmentation task on

BRATS 2019, BRATS 2020 and BRATS 2021 datasets. Their hybrid model combining CNN and transformers

implemented the shifted window based swin transformer blocks that were able enhance the learning process

and achieved 81.15% Dice score outperforming similar transformer-based brain tumor segmentation models.

Lin et al. [337] also proposed a CNN-transformer hybrid model for brain tumor segmentation called CKD-

TransBTS (i.e., clinical knowledge-driven brain tumor segmentation). Their dual-branch hybrid encoder was

able to extract the correlations between different modalities of MRIs, extracted more precise features from

the fusion of multimodal MRIs. They also added a hybrid transformer-CNN block for each encoder layer

to calibrate the features better. They grouped the inputs into two categories - T1, T1Gd and T2, FLAIR
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and their proposed novel model achieved more than 90% Dice scores outperforming basic U-Net, U-Net++,

transformer based U-Nets and similar networks. Generally, in recent BRATS dataset based brain tumor

segmentation, part of the solution contains the segmentation of different tumor tissues like necrotic, edema

etc. But few researchers also extracted other tumor properties like tumor area, volume, location etc. [234].

Recently, Nalepa et al. [338] proposed an end-to-end pipeline for tumor sub region segmentations for both

pre and post operative data with DL and then computed the bidimensional and volumetric properties of the

tumors with a new RANO (i.e., response assessment in neuro-oncology) computation. They also proposed

an efficient manual annotation process and discussed their experiments on pre and post operative data and

their proposed model was able to achieve comparable performances. Their research outputs provided a new

direction for various brain tumor property extraction and keeping track of patients state before and after

surgery. Some UI based researches mentioned below also included some tumor property computations.

Some researchers also worked on basic UI-based systems to automate the tumor detection process. Some

of these researches focused on brain tumor/non-tumor detection or brain tumor type classification using

basic ML or DL models with various image intensity and texture features. Abdullah et al. [339] worked

on a Matlab simulator for tumor/non-tumor detection and tumor area segmentation using a cellular neural

network. MRIs collected from KPJ Penang specialists were used to train the network with some modified

templates for corner detection (i.e. template 1), edge detection (i.e. template 2) and hole filling (i.e.

template 3). The templates helped to detect the presence or absence of a tumor in the uploaded image. A

ML-based benign or malignant tumor detection UI was provided in [340] for brain MRIs. A median filter was

used to pre-process the images and then a hybrid of Otsu binarization and K-means clustering was applied

for segmenting the images. Thirteen intensity and GLCM features were then extracted from the segmented

images to train a SVM model for classifying the image into benign or malignant tumor classes. The proposed

model achieved about 100% accuracy in classification.

Boudjella et al. [341] proposed a KNN based prediction model implemented in a graphical user interface

(GUI) for brain tumor detection. A dataset with tumor and non-tumor labeled images were used for six

features extraction (i.e. mean, variance, standard deviation, entropy, skewness, kurtosis) which wa then

used to train a KNN model for image classification. The model parameters were adjusted to get the optimal

outputs with k values between 1 to 20. A GUI was developed where the users can enter six features, test

size and k value for the KNN classifier. The GUI can then generate the prediction with more than 80%

accuracy and display the relevant patient information. A similar web-based software for tumor classification

that provides the UI options in both English and Turkish was proposed in [342]. They applied CNN with

python AutoKeras libraries on T1-weighted brain MRIs to classify the input image into meningioma, glioma

and pituitary tumors. The users can upload .jpeg, .jpg or .png T1-weighted brain MRIs to the system and
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the classification prediction appears as output with 94% to 98% prediction accuracy.

Khan et al. [343] also proposed a UI-based system with Matlab for brain tumor detection and classification

with SVM for three classes - normal scan, benign tumor, malignant tumor. The input images were pre-

processed and then first order (i.e. mean, standard deviation, entropy, kurtosis, skewness, energy) and

second order (i.e. smoothness, contrast, homogeneity, correlation, inverse different moment (IDM)) features

were collected from both benign and malignant training data. The users can upload an image to the UI

and the features are extracted to generate the final decision on the tumor class. Very recently, a mobile

application for tumor/non-tumor detection model was proposed in [344]. The image datasets were pre-

processed and fed into a simple CNN model for tumor/non-tumor classification. The trained models was

then used for the mobile application where a user can select image by taking a photo with a mobile camera

or select an existing image to upload. While uploading the image, the user can crop the image to remove

background and then the uploaded image is classified into tumor or non-tumor class with percentages and

the higher percentage class is the prediction. The proposed model achieved more than 77% true positive

(TP) and true negative (TN) rates.

There are further researches done in this field using other types of ML, DL, TL and hybrid models

for brain tumor detection and segmentation from brain medical images which have other advantages and

limitations. The researches that provide some type of UI have mostly worked on brain tumor detection or

classification. Some of them applied tumor segmentation as part of their detection or classification, however,

this was not the major output from their algorithms. Most of the existing UI based researches focused on

one task with a limited scope and restricted input and output types.

6.3 Methodology

The proposed system represents a complete interactive framework for achieving various brain MRI analysis

tasks to assist medical professionals. Although the web application framework is designed in a way that it

is capable of adding any trained ML and DL models for both the detection and segmentation tasks, some of

the well-performed DL models are added to the application currently for detection and segmentation. More

recent DL models will be added for the users in future to choose from for each task to provide them with

more options for detection and segmentation tasks. The current implementation includes CNN models for

the tumor detection tasks and U-Net and U-Net++ models for tumor segmentation tasks.

As mentioned earlier, in this chapter, CNN models are used for brain tumor detection from brain MRIs

and features collected from MRIs. Information shared in recent brain tumor image analysis reviews [43, 345]

showed that despite the usage of newer DL models, CNN and its’ variations, and hybrid models containing
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CNN models are still widely used in medical image analysis researches. Another literature review [346]

recently showed that CNN models had the highest amount (i.e. 32%) of researches that used DL methods like

CNN, TL, Encoder-Decoder, HDL etc. for brain tumor images analysis. Similarly, U-Net has been broadly

used for different medical image segmentation with high performances compared to previous DL models.

Although there are various old and new DL models (i.e. attention-based models, LSTM, encoder-decoders,

TL models, cascaded networks, etc.) used in literature, U-Net and variations of U-Nets are still few of the

most popular DL models for brain tumor image analysis as mentioned in the recent brain tumor analysis

literature reviews [346, 347]. Hence, the CNN, U-Net and U-Net++ models are chosen for implementation

and experiments in this chapter and more DL models will be added to the framework in future.

The proposed system contains a web application for the automation of tumor detection and tumor area

segmentation from 2D and 3D images using a few DL models. The rest of this section includes more details

on the image features, DL models (i.e. CNN, U-Net and U-Net++) and the algorithms used for the complete

process of the proposed automated system.

6.3.1 Image Features

Various features can be extracted from the pixels of an image to understand their characteristics for further

analysis. In this chapter, we focused on the image intensity features, discrete wavelet transform (DWT)

features, gray level co-occurrence matrix (GLCM) features and texture based features. These features were

explained in Chapter 4 and are reviewed here as follows. First order histogram or image intensity based

features depend on the pixel values of an image [214]. Four intensity features such as mean, variance,

skewness and kurtosis are extracted for the analysis of images in this research. The mean value can be

computed by summing up the pixel values and dividing the summation by the total number of pixels in the

image. The variance value is an indication for how much the pixel values are spread out. The skewness refers

to a measurement of the asymmetry of the pixel values in the histogram. Finally, the kurtosis represents the

flatness or peakedness of the pixel values distribution in the histogram. The intensity values are normally

calculated after converting the image into a grayscale image.

The GLCM features represent the frequency of different grayscale level combination occurring together

[214]. The co-occurrence matrix computes the relative frequencies of the co-occurrences of the neighbor pixels.

The contrast refers to the number of variations that exists in the image, dissimilarity represents the distance

between the co-occurrences of two pixels based on their joint probability, whereas homogeneity represents

the similarity and increases with low contrast. Angular second moment (ASM) is another measurement of

homogeneity, the energy is the frequency of repetition of pixel pairs, and the correlation computes the grey
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level linear dependency of the image. The DWT transforms an image in order to reduce the dimension

of the image by dividing it into four parts - low-low (LL), low-high (LH), high-low (HL) and high-high

(HH) containing the low frequency sub-bands, horizontal features, vertical features and diagonal features

respectively, that covers the full frequency spectrum of the original image [348]. The DWT-Coefficient

represents the difference between the wavelet function and the analyzed signal of the image. A few other

texture-based features like entropy, local binary pattern (LBP) and Haralick features were also used in this

chapter [214, 349]. The entropy computes the randomness of the pixels, LBP represents the texture of the

image by thresholding neighbor pixels based on a specific pixel and the Haralick features provides the texture

of the image from the normalization of the GLCM.

6.3.2 DL Models

The data pre-processing and few dimensions may need to be changed based on the input image dimension

(i.e. 2D or 3D) for the CNN, U-Net and U-Net++ and are explained in the ‘Experimental Setup’, the basic

structures of CNN, U-Net and U-Net++ are discussed here.

Convolutional neural networks (CNN) are among the most popular models for image classification, seg-

mentation and analysis that have been developed over the last few years. The convolution layers of the

model extracts different aspects of the features at each layer and incorporate these for an improved analysis

of an image [350]. Medical images need more accurate feature extraction and an extensively well-trained

feed-forward ANN to classify or segment pixels for output generation and for this CNN and its’ variations

are the most frequently used models for medical image analysis tasks [351]. A CNN model uses a structure

similar to the structure of our visual cortex (i.e. the primary region of our brain that receives and processes

visual information [352]). The CNN model are trained on large image datasets with class labels in order to

learn from the features automatically extracted at different convolution layers of the model and predict the

labels for unknown test data based on the previously learnt patterns from training images. Figure 2.10 shows

a sample CNN network with the basic few layers and nodes. Some basics on CNN models were included in

Chapter 2 and more explanations on CNN structures are added as follows.

A CNN model reduces the total number of parameters by a large amount compared to a fully connected

neural network. Instead of collecting data from the whole image at once, CNN scans the input image in

blocks of n x n sliding windows (i.e. filter or kernel) at every convolution layer. The n x n block size is called

the kernel size and it varies based on input and application type. The stride size is the number of pixels

the sliding window moves at one step. The convolution reduces the dimension of the input without losing

any important information in the image collected by the sliding window. So, at each convolution layer, a
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component-wise multiplication is done based on the kernel at every stride and the results are summed up to

create the output for each pixel and finally the feature map is generated for the convolution layer. A pooling

layer is applied after the convolution layer which has a similar operation as the convolution, except that it

takes the average or maximum of the pixels to generate the feature map. So, it downsamples the output of

the convolution layer with generally the same kernel size and stride size as the convolution layer. The number

of convolution layers, neurons and pooling layers may vary based on the application. The number of hidden

layers (i.e. depth of the network) can be varied and tested in order to find the optimal structure. In some

cases some additional layers like batch normalization, dropout etc. may be added after each convolution

[353]. The batch normalization is used to normalize the feature maps created for the next layer to make

the computation faster and decrease the possibility of overfitting the model. A dropout layer is also added

to avoid overfitting by randomly dropping out some neurons (i.e. setting the weight to zero). A flattened

layer is used to convert the multi dimensional feature maps generated by the convolution layers into a one

dimensional vector for the fully connected layer (i.e. a dense layer). Every neuron of the output of the fully

connected layer is connected to each neuron of the input of that layer with different weights. An activation

function is used in the dense layer to apply a non-linear transformation to generate the output by deciding

which neurons should be activated during the transform.

A few more hyperparameters are used in CNNs like learning rate, loss function, optimizer, epochs,

momentum, batch size etc. A loss function is a function that computes the differences between the target

output and predicted output of the network to check the performance of the model. The goal is to achieve

a minimum loss. The optimizer is a method to update the hyperparameters of the network to minimize

the loss function and achieve optimal output. The learning rate is defined so as to control the amount of

modifications introduced to the model hyperparameters to minimize loss. A higher learning rate can speed

up the learning process of the model, however, it can lead to divergence and lower learning rate which slows

down the learning process but gradually achieve convergence. The momentum decides the amount of changes

needed based on the previous steps to avoid getting lost in local maxima by controlling the oscillation of

the model. The epoch size represent the number of times the training model passes through the complete

dataset and the batch size refers to the number of samples from the dataset passed through the network at

a time. The hyperparameter selection is a crucial step for every DNN as the performance of the network

depends largely on these hyperparameters.

U-Net is a variation of CNN specially proposed and developed for biomedical image segmentation and

abnormality detection in medical images [15]. U-net++, which is a variation of U-net to improve the medical

image abnormality detection, was proposed in 2018 [16]. Both U-Net and U-Net++ structures were discussed

in detail in Chapter 3 with Figure 3.3 and Figure 3.4.
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6.3.3 Brain Tumor Analysis Tasks

The two major brain tumor image analysis tasks are as note earlier in this chapter: -i) brain tumor detection,

and ii) brain tumor segmentation. Both of these tasks are implemented in our web application. The details

of each task are now discussed.

Tumor detection

The tumor detection models uses the Kaggle dataset [22, 354] to train and test the models. The dataset

includes images with names ‘Yxx’ or ‘Nxx’ where xx are numbers. ‘Y’ represents yes or tumor and ‘N’ refers

to no or non-tumor. The first task before applying the detection models on the images is to clearly label each

image for classification. Algorithm 5 shows the steps of the data labeling process. The images with tumors

are labeled as 1 and the other images are labeled as 0 with the labels being stored in a file together with the

image location. After labeling the images, some basic pre-processing steps are applied to the images. If the

input image is a dicom file, then it is converted into a .jpg file for the further analysis. Then the input image

is converted into a 2D format and resized into the dimension 256X256. Finally, the image is normalized so

that the pixel scores are in the range 0 to 255. Algorithm 6 shows the image pre-processing steps for the

tumor detection model.

Algorithm 5 Tumor/non-tumor image labeling

Require: Input image, Image name
image class← image name[0] ▷ Gets the first character of the image name
if image class == ‘Y’ then

image label← 1 ▷ 1 = Tumor
else

image label← 0 ▷ 0 = Non-Tumor
end if

Algorithm 6 Image pre-processing

Require: Input image
if image type == DICOM then

Convert dicom to jpg
end if
Convert image into 2D format
Resize image into dimension 256X256
Normalize each pixel score between 0 to 255

The tumor detection model allows the user to either choose the image as input or the features as input

for the tumor/non-tumor detection. Based on the user’s choice, the corresponding model is applied on the

input to classify it into tumor or non-tumor classes and then calculating the evaluation scores as mentioned

in Algorithm 7. If the user chooses the image as input, then the model trained with Algorithm 8 is applied
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and if the user choice is features the trained model from Algorithm 9 is used The tumor detection from

image training model uses a simple CNN model for classifying the image by extracting deep features using

the convolution layer. The feature maps extracted by the network are used to classify the image. The CNN

model is trained with the pre-processed images and the image labels. The training model splits the dataset

into training, validation and testing datasets. Then the ImageDataGenerator [355] process is used for data

augmentation. The augmented data is then used to train the CNN model and the trained model is saved

for future detection. The model is then tested with the test dataset. The model predicts a value and if

the predicted value is greater than 0.5 then the test image is assigned to class 1, otherwise it is assigned

to class 0. Class 1 refers to a tumorous image and class 0 refers to a healthy/non-tumorous image. The

tumor detection from image features also uses a similar trained CNN model and trains the model with image

features. The trained model is saved for the predictions of user inputs and follows similar steps as for the

tumor detection process.

Algorithm 7 Tumor/non-tumor detection

Require: Input image, Image features
if user choice == image then

Apply tumor/non− tumor detection from image trained model
else

if user choice == features then
Apply tumor/non− tumor detection from features trained model

end if
end if
Provide detection output
Generate evaluation scores

Algorithm 10 is used for extracting the features from the images. The input image is converted into

2D format and resized into the dimension 256X256. Then the intensity, DWT, GLCM, entropy, LBP and

Haralick features are extracted separately. After saving each type of features against the image label, they

are combined to have the complete feature set and saved with the corresponding image label. The features

can be used separately or together to classify images as tumorous or non-tumorous.

Tumor segmentation

The tumor segmentation process is applied based on user choice. As mentioned in Algorithm 11, the user can

choose between the 2D segmentation and 3D segmentation. If the user chooses 2D segmentation, then they

can either U-net or U-Net++ when uploading the image. The same process is followed for 3D segmentation.

The only difference is that the 3D segmentation requires four nifti files as inputs for T1, T2, T1ce and FLAIR

modalities. The chosen model is applied on the input and the tumor segmentation with performance scores

are shown as outputs.
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Algorithm 8 Model for tumor/non-tumor detection from image

Require: Pre-processed image, Image label
Split dataset into training, and testing set (i.e. 80 : 20)
Split training set into training and validation set (i.e. 80 : 20)
Apply image augmentation on training set using ImageDataGenerator
Apply image augmentation on validation set using ImageDataGenerator
Apply augmented data to train CNN model
Save CNN model weights, performance scores
Test trained model with testing dataset
if predicted value > 0.5 then

test class← 1
else

test class← 0
end if
if test class == 1 then

test image is tumorous
else

test image is non− tumorous
end if
Generate classification report

Algorithm 9 Model for tumor/non-tumor detection from features

Require: Image name, Image features, Image label
Shuffle dataset randomly
Split dataset into training, and testing set (i.e. 80 : 20)
Split training set into training and validation set (i.e. 80 : 20)
Apply data to train CNN model
Save CNN model weights, performance scores
Test trained model with testing dataset
if predicted value > 0.5 then

test class← 1
else

test class← 0
end if
if test class == 1 then

test image is tumorous
else

test image is non− tumorous
end if
Generate classification report
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Algorithm 10 Feature extraction from image

Require: Input image, image Label
Convert image into 2D format
Resize image into dimension 256X256
Extract intensity features
Extract DWT features
Extract GLCM features
Extract Entropy features
Extract LBP features
Extract Haralick features
Save every feature against image name, image label
Combine all features
Save combined feature set against image name, image label

Algorithm 11 Tumor segmentation

Require: Input image (2D) or Input nifti files (3D)
if user choice == 2D segmentation then

Apply 2D segmentation image pre− processing
if user sub choice == U-Net then

Apply 2D U −Net tumor segmentation model
else

if user sub choice == U-Net++ then
Apply 2D U −Net++ tumor segmentation model

end if
end if

else
if user choice == 3D segmentation then

Upload nifti files for T1, T2, T1ce and FLAIR modalities
Apply 3D segmentation image pre− processing
if user sub choice == U-Net then

Apply 3D U −Net tumor segmentation model
else

if user sub choice == U-Net++ then
Apply 3D U −Net++ tumor segmentation model

end if
end if

end if
end if
Provide segmentation output
Generate evaluation scores
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The 2D segmentation is applied after few basic pre-processing on the image as mentioned in Algorithm

12. If the input image is in dcom format, then it is converted into .jpg or .png format and transformed

into grayscale. The dimensions are then resized into 512X512 and the pixels are normalized between 0 and

1. Then the image is expanded to 3D and downsampled to 128X128 and the chosen DL model is applied

on it. The pre-processing in Algorithm 13 is the pre-processing needed for the 2D segmentation training

model in the training and testing phase discussed in Algorithm 14. The training pre-processing is similar

to the automated system input pre-processing with only the added tumor mask input and the tumor mask

pre-processing required for the training.

Algorithm 12 2D segmentation image pre-processing

Require: Input image
if image type == DICOM then

Convert dicom to jpg
end if
Convert image into grayscale
Resize image into dimension 512X512
Normalize image pixels between 0 to 1
Expand image to 3D by adding 1 as channel
Downsample image to 128X128

Algorithm 13 2D segmentation image pre-processing for training model

Require: Input image, tumor Mask
Extract .jpg files for MRI and tumor from .mat files
Convert image into grayscale
Resize image into dimension 512X512
Normalize image pixels between 0 to 1
Expand image to 3D by adding 1 as channel
Expand tumor mask to 3D by adding 1 as channel
Downsample image to 128X128
Downsample tumor‘mask to 128X128

The training and testing models for U-Net and U-Net++ for 2D tumor segmentation shown in Algorithm

14. The pre-processed dataset and tumor masks are divided into training, validation and testing sets and

then both the MRIs and tumor masks are flipped right and left and added to the training data for data

augmentation. The updated training data is then processed by randomly changing the brightness level and

zoom ranges to create random changes for data augmentation. The augmented data is used to train U-Net

and U-net++ and the models are saved and tested to generate performance evaluations.

The 3D segmentation process uses a very similar structure as the 2D segmentation process. The user input

is pre-processed with Algorithm 15 then U-net or U-Net++ is applied to generate the tumor segmentation

and performance scores, whereas Algorithm 16 is used to pre-process the input files and tumor masks for

training the 3D U-Net and U-Net++ models as shown in Algorithm 17. For the 3D segmentations, the user
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Algorithm 14 Model for 2D brain tumor segmentation

Require: Pre-processed image, Tumor mask
Split dataset into training, and testing set (i.e. 80 : 20)
Split training set into training and validation set (i.e. 80 : 20)
Flipping training data
for imageinimages,maskintumor masks do

rflip image← right flip(image)
rflip mask ← right flip(mask)
lf lip image← left flip(image)
lf lip mask ← left flip(mask)

end for
training image new ← add(training image, rflip image, lf lip image)
training mask new ← add(training mask, rflip mask, lflip mask)
Data generator for training data
for random image in training image new, random mask in training mask new do

bright image← brightness range(image)
bright mask ← brightness range(mask)
zoom image← zoom range(image)
zoom mask ← zoom range(mask)

end for
Use augmented data for model training & validation
Train U −Net/U −Net++ model
Store model weights, evaluations
Test trained model with testing dataset
Provide segmentation output
Generate evaluation scores

needs to upload four nifti files, one for each modality (i.e. T1, T2, T1ce and FLAIR). The system then

computes the mean and standard deviation for each of them and applies standardization on the images.

As the first few slices and last few slices of the images do not contain much information, only the middle

70 slices from 155 slices in total (i.e. from slice 60 to 130) are stored for computation. Then they are

resized to the dimension 128X128 and expanded. All four modality slices are then concatenated to create

one 3D image for the DL models. After the U-Net or U-Net++ model is applied, the system generates the

segmentation output with performance scores. The 3D segmentation training process uses the same training,

validation and testing dataset divisions as the 2D process. After pre-processing the four modality files and

the tumor mask files (according to Algorithm 16), the DL models are trained and tested following the steps

in Algorithm 17.

The post-processing for the detection and segmentation tasks is simple and follows the steps in Algorithm

18. The detection post-processing simply computes the probability of the output class and shows that as the

performance score. For the segmentation, the confidence score, the tumor area and the ration of the tumor

compared to the brain area are calculated with the segmentation image output.
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Algorithm 15 3D segmentation image pre-processing

Require: Input nifti files for 4 modalities
for each modality file do

mean image← mean(image)
std image← std(image)
standard image← standardization(mean image, std image)
for image slice in range(60,130) do ▷ Taking middle 70 slices from 155

Resize slice to 128X128
Expand slice dimension

end for
end for
preProcessed image← Concatenate (T1, T2, T1ce, FLAIR)

Algorithm 16 3D segmentation image pre-processing for training model

Require: T1, T2, T1ce, FLAIR, Tumor mask
for each modality file do

mean image← mean(image)
std image← std(image)
standard image← standardization(mean image, std image)
for image slice in range(60,130) do ▷ Taking the middle 70 slices from 155

Resize slice to 128X128
Expand slice dimension

end for
end for
mask[mask! = 0]← 1
for mask slice in range(60,130) do ▷ Taking the middle 70 slices from 155

Resize mask slice to 128X128
Expand mask slice dimension

end for

Algorithm 17 Model for 3D brain tumor segmentation

Require: Pre-processed Image, Tumor Mask
Split dataset into training, and testing set (i.e. 80 : 20)
Split training set into training and validation set (i.e. 80 : 20)
Train U −Net/U −Net++ model
Store model weights, evaluations
Test trained model with testing dataset
Provide segmentation output
Generate evaluation scores

Algorithm 18 Post-processing results

Require: Input image, Segmented tumor
Compute detection probility scores
Compute segmentation confidence scores
Compute tumor area
Compute tumor ratio
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6.3.4 Web Application

The web application developed for the proposed system can use user input (i.e. data uploaded by the user)

or can access hospital data from a picture archiving and communication system (PACS). PACS can be

integrated into the system and through that the system can connect to the imaging system of any hospital

to access data. Any user or healthcare professionals can also use the browser to access the system from the

client side. At the server side, a Gunicorn WSGI server is used to run the main Flask application and a

PostgreSQL database (i.e. application DB) is used to store the data for the complete system. The detection,

segmentation and PACS communication at the server side are designed as subprocesses so that they can

be edited, added or removed easily. The subprocesses are independent, so they can use any programming

languages or format without disrupting the main application. The PACS communication process uses C-

ECHO request to create the communication with the PACS, C-FIND request to search for specific data, and

C-MOVE request to request the selected medical images from the system. The Jinja2 [356] template engine

with Flask is used to generate HTML content at the client side. The pages on the client side are generated by

the Jinja2 template engine, whereas the PACS and feedbacks functionalities include additional content with

HTML, Javascript and the asynchronous queries in PACS applied jQuery. Currently, the web application

is deployed to a local development server (Intel Xeon Gold 6134 CPU, Nvidia P100 16GB GPU, 128GB

RAM). The hospital systems (i.e., PACS) options are added to the proposed architecture to enable the

medical professionals and/or institutes to incorporate our medical image analysis system into their existing

databases, applications etc. The real-time usage of the proposed system in any healthcare organization

will require some additional functionalities for the anonymization of patient information according to the

rules and regulations of the organization and the ethical obligations of the state/country. The procedure of

implementing these functionalities will depend on the conditions of the organizations and/or state/country,

hence may vary for every organization. We will update the anonymization process according to these

conditions during real-time usage of our proposed system. Figure 6.3 shows the web application architecture

components and their connections between each other.

6.4 Experimental Results

The datasets, experimental setup for all models, the web application outputs and the model results are

discussed in details in this section.

172



Figure 6.3: Web application architecture.

6.4.1 Datasets

Different datasets were used to train and test the aforementioned models. The tumor/non-tumor detection

models were trained and tested with the Kaggle tumor dataset [22, 354]. The dataset has both 2D and

3D images in .jpg, .jpeg and .png formats. The axial plane are visible in all 253 files. 155 of them are

in the ‘Yes’ folder representing them as tumorous images and 98 of them are in the folder labeled ‘No’

referring to no tumors. The image dimensions and sizes are not consistent hence they need to be resized

before they are used in this implementation. The 2D segmentation models were trained and tested with

the CjData [291, 292, 322]. The dataset include 3064 T1-weighted contrast-enhanced MRIs of all three

anatomical planes (i.e. axial, coronal, sagittal) from 233 patients suffering from three types of brain tumors

- meningioma (708 images), glioma (1426 images) and pituitary tumors (930 images). The dataset contains

3064 .mat files each including patient ID, tumor type, tumor border, MRI and tumor mask (i.e. ground

truth). The dataset was transformed by extracting the images and masks in 2D 512 X 512 images in .jpg

format from the .mat files before applying it to the segmentation models. The 3D segmentation models

used the most popular benchmark dataset for brain tumor image analysis - the BRATS dataset from the

MICCAI brain tumor segmentation (BraTS) challenges [357]. In this chapter, we applied the BRATS 2021

[283, 284, 287, 288, 289, 290] dataset for our analysis. The BRATS 2021 training dataset contains 1251

folders in .nii.gz format. Each folder contains four 3D MRIs for the same patient for four modalities (i.e. T1,

T2, T1ce and FLAIR) and one segmentation file (i.e. tumor ground truth) in the axial plane. The MRIs are

in 3D nifti formats and they all have the size 240 X 240 X 155. Table 6.1 shows a summary of the datasets

used in this chapter.
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Table 6.1: Datasets.
Task Dataset #Files Labels Type Modality Plane

Detection
Kaggle
[22, 354]

253
Tumor
Healthy

2D
3D

- Axial

Segmentation
CjData

[291, 292, 322]
3064

Meningioma
Glioma

Pituitary tumor
2D T1

Axial
Coronal
Sagittal

Segmentation
BRATS 2021

[283, 284, 287, 288, 289, 290]
1251 Glioma 3D

T1
T2
T1ce

FLAIR

Axial

6.4.2 Experimental Setup

The DL models used for the tumor detection and segmentation are now discussed in detail. In all implemented

models, the datasets were divided with a 80-20 distribution. 80% of the data was first separated and then the

remaining 20% was kept as the testing data. Then the first 80% of the data was again divided with a 80-20

ratio to have 80% data as training data and the remaining 20% of the data as validation data. So, the test

data fro all models were completely new to the trained models. Python [358] was used as the programming

language to implement the tumor detection and segmentation models for this chapter.

Tumor Detection

The tumor detection task was implemented using a simple CNN with two different input types. In one

implementation, the original brain MRI was used as input and the deep features were generated by the

model for the detection task. In the other implementation, the image features were extracted beforehand

from the MRI and the features were used as inputs to the CNN model for the final tumor/non-tumor

classification task. For the CNN that used the image as input, we implemented a CNN with input size (256,

256, 3) and trained the model for 50 epochs. The first convolution layer was included with filter size 32,

kernel size 8 X 8 and activation function ReLU. Then a dense layer with unit 32 and activation function

ReLU was included. Then a 2 X 2 maxpooling layer and a dropout layer with a dropout of 0.2 was added.

The second convolution layer had filter size 64, kernel size 8 X 8, activation function ReLU and was followed

by a dense layer with 64 units and ReLU activation function, a 2 X 2 maxpooling layer and a dropout layer

with 0.2 dropout. Lastly, a flatten layer was added before the final dense layer to generate the output. The

final dense layer had unit size 1 and the sigmoid function as the activation function. The model used binary

cross entropy as loss function and the RMSprop optimizer with a learning rate of 0.0001. The total number

of parameters for the model was 352,609 where all of them were trainable. The CNN structure is shown in

Table 6.2.
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Table 6.2: CNN model structure for the tumor detection model with input images.
Layer Type Output Shape Kernel Size

1 Convolution (ReLU) (249, 249, 32) 8x8
2 Dense (ReLU) (124, 124, 32) -
3 Max Pooling (124, 124, 32) 2x2
4 Dropout (124, 124, 32) -
5 Convolution (ReLU) (117, 117, 64) 8x8
6 Dense (ReLU) (117, 117, 64) -
7 Max Pooling (58, 58, 64) 2x2
8 Dropout (58, 58, 64) -
9 Flatten 215296 -
10 Dense (Sigmoid) 1 -

The CNN model that used the MRI features had a similar structure. In the first convolution layer with

the ReLU activation function, the filter size was 64 and the kernel size was 2. Then a dense layer was added

with 32 units with ReLU activation function followed by a dropout layer with 0.2 dropout. Then another

dense layer with 16 units and ReLU activation function was added to the network. A maxpooling layer was

included before another dropout layer with 0.2 dropout. Finally, a flatten layer was used before the final

dense layer with unit size 1 and sigmoid activation function. There was 2,817 trainable and total parameters.

The model was trained for 100 epochs with an Adam optimizer and a binary cross entropy loss function.

Table 6.3 shows the details of the model structure. The Kaggle dataset [22, 354] and the features extracted

from the dataset were used for the detection tasks.

Table 6.3: CNN model structure for the tumor detection model with input features.
Layer Type Output Shape Kernel Size

1 Convolution (ReLU) (3, 64) 2
2 Dense (ReLU) (3, 32) -
3 Dropout (3, 32) -
4 Dense (ReLU) (3, 16) -
5 Max Pooling (1, 16) 2
6 Dropout (1, 16) -
7 Flatten 16 -
8 Dense (Sigmoid) 1 -

Tumor Segmentation

The tumor segmentation was applied with four different models - 2D U-net, 2D U-Net++, 3D U-Net and 3D

U-Net++. Both of the 2D models had the same sets of hyperparameters and both of the 3D models applied

the same sets of hyperparameters. The 2D U-Net model followed the U-Net structure [15] and the 2D U-

Net++ model used the U-Net++ structure [16] as published. For the 2D U-Net, each layer of the contracting

path included two consecutive convolution blocks with a kernel size 3 X 3, ReLU activation function and they
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Table 6.4: 2D U-Net model structure for tumor segmentation.
Layer Type Output Shape Kernel Size

0 Input Layer (128, 128, 1) -

1

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(128, 128, 64)
(128, 128, 64)
(64, 64, 64)
(64, 64, 64)
(64, 64, 64)

3x3
3x3
2x2
-
-

2

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(64, 64, 128)
(64, 64, 128)
(32, 32, 128)
(32, 32, 128)
(32, 32, 128)

3x3
3x3
2x2
-
-

3

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(32, 32, 256)
(32, 32, 256)
(16, 16, 256)
(16, 16, 256)
(16, 16, 256)

3x3
3x3
2x2
-
-

4

Convolution (ReLU)
Convolution (ReLU)

Max Pooling
Batch Normalization

Dropout

(16, 16, 512)
(16, 16, 512)
(8, 8, 512)
(8, 8, 512)
(8, 8, 512)

3x3
3x3
2x2
-
-

5
Convolution (ReLU)
Convolution (ReLU)

(8, 8, 512)
(8, 8, 512)

3x3
3x3

6

Transposed Convolution
Concatenate (Layer 4 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(16, 16, 512)
(16, 16, 1024)
(16, 16, 1024)
(16, 16, 512)
(16, 16, 512)

3x3
-
-

3x3
3x3

7

Transposed Convolution
Concatenate (Layer 3 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(32, 32, 256)
(32, 32, 512)
(32, 32, 512)
(32, 32, 256)
(32, 32, 256)

3x3
-
-

3x3
3x3

8

Transposed Convolution
Concatenate (Layer 2 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(64, 64, 128)
(64, 64, 256)
(64, 64, 256)
(64, 64, 128)
(64, 64, 128)

3x3
-
-

3x3
3x3

9

Transposed Convolution
Concatenate (Layer 1 Convolution)

Dropout
Convolution (ReLU)
Convolution (ReLU)

(128, 128, 64)
(128, 128, 128)
(128, 128, 128)
(128, 128, 64)
(128, 128, 64)

3x3
-
-

3x3
3x3

10 Convolution (Sigmoid) (128, 128, 1) 3x3
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were followed by a maxpooling layer with pool size 2 X 2 and stride size 2 X 2. Then a batch normalization

with momentum 0.8 and a dropout layer with 0.1 dropout were added. The same structure was repeated

for the complete contracting path and the filter sizes were 64, 128, 256, 512 respectively. The bridge layer

between the encode and decoder had two consecutive convolution blocks with kernel size 3 X 3 and filter size

512. On the expansive path, the filter sizes were 512, 256, 128, 64 respectively. Each layer of the expansive

path had a transposed convolution block with kernel size 3 X 3, stride size 2 X 2. After the concatenation

layer, a dropout layer with 0.1 dropout was added. Finally, two consecutive convolution blocks with kernel

size 3 X 3, activation function ReLU were included. The final output convolution layer of the 2D U-Net

had filter size 1, kernel size 1 X 1 and activation function sigmoid. The model was tested with variations of

parameter values and the optimal parameter set was used for training the model. The model was trained for

60 epochs with batch size 8 with an Adam optimizer as the optimizer function with a learning rate of 0.001.

The U-Net++ layers had the same sets of hyperparameters as the 2D U-Net. Both models used a hybrid

loss function that computed the Dice loss and binary cross entropy separately and then they were added

together with 0.5 weight for each. The 2D U-Net model used total 22,718,529 parameters and 22,718,529 of

them were trainable whereas 1,920 of them were non-trainable. Similarly, the 2D U-Net++ model applied

22,498,881 parameters in total (22,496,961 trainable and 1,920 non-trainable). Table 6.4 and 6.5. 6.6 show

the structures of the models. The 2D segmentation models were applied to the CjData [291, 292, 322].

The 3D U-Net and 3D U-Net++ models used the BRATS 2021 [283, 284, 287, 288, 289, 290] dataset and

they followed the same structure as the original U-Net and U-net++, with some additional modifications

which were done to adjust the dimension changes for the 3D images. Again, the same sets of hyperparameters

were used for the 3D U-net and the 3D U-Net++ models. The input size for the models were (128 X 128 X

4). Each layer of the contracting path had two convolution layers with kernel size 3 X 3, activation function

ReLU where each convolution layer was followed by a batch normalization layer with a momentum of 0.8.

Then the contracting layer had a final maxpooling with pool size 2 X 2 to generate the input feature map for

the next layer. The filter sizes of the contracting layer were 64, 128, 256, 512 respectively. The bridge layer

between the contracting and expansive path had a filter size 1024, kernel size 3 X 3 and ReLU activation

function. Each layer of the expansion path had a transposed convolution layer with kernel size 2 X 2 and

stride size 2 X 2. After the concatenation, there were two consecutive convolution layers with kernel size 3 X

3, activation function ReLU and each of them was followed by a batch normalization layer. The filter sizes

for the expansive path were 512, 256, 128 and 64 respectively. The final convolution layer of the model had

filter size 1, kernel size 1 X 1 and used the sigmoid activation function. The 3D models were trained for 50

epochs with batch size 8, Adam optimizer, 0.0001 learning rate and the Dice loss function. The 3D U-Net

and 3D U-Net++ models had 31,055,873 (31,044,097 trainable and 11,776 non-trainable) and 24,266,977
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Table 6.5: 2D U-Net++ model structure for tumor segmentation.

Layer Type Output Shape Kernel Size

0 Input Layer (128, 128, 1) -

1

Convolution (ReLU)(d1)
Convolution (ReLU)(d1)

Max Pooling(p1)
Batch Normalization(p1)

Dropout(p1)

(128, 128, 64)
(128, 128, 64)
(64, 64, 64)
(64, 64, 64)
(64, 64, 64)

3x3
3x3
2x2
-
-

2

Convolution (ReLU)(d2)
Convolution (ReLU)(d2)

Max Pooling(p2)
Batch Normalization(p2)

Dropout(p2)

(64, 64, 128)
(64, 64, 128)
(32, 32, 128)
(32, 32, 128)
(32, 32, 128)

3x3
3x3
2x2
-
-

3

Convolution (ReLU)(d3)
Convolution (ReLU)(d3)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(32, 32, 256)
(32, 32, 256)
(16, 16, 256)
(16, 16, 256)
(16, 16, 256)

3x3
3x3
2x2
-
-

4

Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(16, 16, 512)
(16, 16, 512)
(8, 8, 512)
(8, 8, 512)
(8, 8, 512)

3x3
3x3
2x2
-
-

5
Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

(8, 8, 512)
(8, 8, 512)

3x3
3x3

6

Transposed Convolution(du 01)
Concatenate[du 01,d1](du 01)

Dropout(du 01)
Convolution (ReLU)(c 01)
Convolution (ReLU)(c 01)

(64, 128, 128)
(128, 128, 128)
(128, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

7-1

Transposed Convolution(du 11)
Concatenate[du 11,d2](du 11)

Dropout(du 11)
Convolution (ReLU)(c 11)
Convolution (ReLU)(c 11)

(128, 64, 64)
(256, 64, 64)
(256, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

7-2

Transposed Convolution(du 02)
Concatenate[du 02,du 01,d1](du 02)

Dropout(du 02)
Convolution (ReLU)(c 02)
Convolution (ReLU)(c 02)

(64, 128, 128)
(256, 128, 128)
(256, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

8-1

Transposed Convolution(du 21)
Concatenate[du 21,d3](du 21)

Dropout(du 21)
Convolution (ReLU)(c 21)
Convolution (ReLU)(c 21)

(256, 32, 32)
(512, 32, 32)
(512, 32, 32)
(256, 32, 32)
(256, 32, 32)

3x3
-
-

3x3
3x3

8-2

Transposed Convolution(du 12)
Concatenate[du 12,c 11,d2](du 12)

Dropout(du 12)
Convolution (ReLU)(c 12)
Convolution (ReLU)(c 12)

(128, 64, 64)
(384, 64, 64)
(384, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

8-3

Transposed Convolution(du 03)
Concatenate[du 03,c 02,c 01,d1](du 03)

Dropout(du 03)
Convolution (ReLU)(c 03)
Convolution (ReLU)(c 03)

(64, 128, 128)
(256, 128, 128)
(256, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3
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Table 6.6: 2D U-Net++ model structure for tumor segmentation.

Layer Type Output Shape Kernel Size

9-1

Transposed Convolution(u 31)
Concatenate[u 31,d4](u 31)

Dropout(u 31)
Convolution (ReLU)(c 31)
Convolution (ReLU)(c 31)

(512, 16, 16)
(1024, 16, 16)
(1024, 16, 16)
(256, 16, 16)
(256, 16, 16)

3x3
-
-

3x3
3x3

9-2

Transposed Convolution(u 22)
Concatenate[u 22,c 21,d3](u 22)

Dropout(u 22)
Convolution (ReLU)(c 22)
Convolution (ReLU)(c 22)

(256, 32, 32)
(768, 32, 32)
(768, 32, 32)
(256, 32, 32)
(256, 32, 32)

3x3
-
-

3x3
3x3

9-3

Transposed Convolution(u 13)
Concatenate[u 13,c 12,c 11,d2](u 13)

Dropout(u 13)
Convolution (ReLU)(c 13)
Convolution (ReLU)(c 13)

(128, 64, 64)
(512, 64, 64)
(512, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

9-4

Transposed Convolution(u 04)
Concatenate[u 04,c 03,c 02,c 01,d1](u 04)

Dropout(u 04)
Convolution (ReLU)(c 04)
Convolution (ReLU)(c 04)

(64, 128, 128)
(320, 128, 128)
(320, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

10 Concatenate[c 01,c 02,c 03,c 04] (256, 128, 128) -

11 Convolution (Sigmoid) (128, 128, 1) 1x1

(24,266,737 trainable and 240 non-trainable) parameters in total respectively. Table 6.7 and 6.8, 6.9 show

the structures of the models.

6.4.3 Web Application UI

The web application for the proposed brain tumor detection and segmentation system can be browsed from

the home page as shown in Figure 6.4. The home page includes a short description of the system and the

options to either directly upload an image for evaluation or using the PACS to access medical images from

hospitals. If the user is a registered user then they can login to the system with their ID and password as

shown in Figure 6.5. Figure 6.6 shows the process for new users who can also register to the system with an

ID, given name, surname and password to use the system. If the user wants to directly access the medical

image from the hospital system, they can access the ‘Evaluate with PACS’ option from the homepage which

leads to the PACS page as shown in Figure 6.7. The user can search with a valid patient ID and select the

study type to choose a medical image. Then they can enter the study ID and choose the model they want

to apply on the image. Finally, after entering all fields, they can click on the ‘Evaluate’ button to evaluate

the image with the chosen DL model and get the results.

After the user logs in to the system, they have three options - ‘Detection’, ‘2D Segmentation’ and ‘3D
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Table 6.7: 3D U-Net model structure for tumor segmentation.
Layer Type Output Shape Kernel Size

0 Input Layer (4, 128, 128) -

1

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

Max Pooling

(64, 128, 128)
(64, 128, 128)
(64, 128, 128)
(64, 128, 128)
(64, 64, 64)

3x3
-

3x3
-

2x2

2

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

Max Pooling

(128, 64, 64)
(128, 64, 64)
(128, 64, 64)
(128, 64, 64)
(128, 32, 32)

3x3
-

3x3
-

2x2

3

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

Max Pooling

(256, 32, 32)
(256, 32, 32)
(256, 32, 32)
(256, 32, 32)
(256, 16, 16)

3x3
-

3x3
-

2x2

4

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

Max Pooling

(512, 16, 16)
(512, 16, 16)
(512, 16, 16)
(512, 16, 16)
(512, 8, 8)

3x3
-

3x3
-

2x2

5

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

(1024, 8, 8)
(1024, 8, 8)
(1024, 8, 8)
(1024, 8, 8)

3x3
-

3x3
-

6

Transposed Convolution
Concatenate

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

(512, 16, 16)
(1024, 16, 16)
(512, 16, 16)
(512, 16, 16)
(512, 16, 16)
(512, 16, 16)

2x2
-

3x3
-

3x3
-

7

Transposed Convolution
Concatenate

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

(256, 32, 32)
(512, 32, 32)
(256, 32, 32)
(256, 32, 32)
(256, 32, 32)
(256, 32, 32)

2x2
-

3x3
-

3x3
-

8

Transposed Convolution
Concatenate

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

(128, 64, 64)
(256, 64, 64)
(128, 64, 64)
(128, 64, 64)
(128, 64, 64)
(128, 64, 64)

2x2
-

3x3
-

3x3
-

9

Transposed Convolution
Concatenate

Convolution (ReLU)
Batch Normalization
Convolution (ReLU)
Batch Normalization

(64, 128, 128)
(128, 128, 128)
(64, 128, 128)
(64, 128, 128)
(64, 128, 128)
(64, 128, 128)

2x2
-

3x3
-

3x3
-

10 Convolution (Sigmoid) (1, 128, 128) 1x1
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Table 6.8: 3D U-Net++ model structure for tumor segmentation.
Layer Type Output Shape Kernel Size

0 Input Layer (4, 128, 128) -

1

Convolution (ReLU)(d1)
Convolution (ReLU)(d1)

Max Pooling(p1)
Batch Normalization(p1)

Dropout(p1)

(64, 128, 128)
(64, 128, 128)
(64, 64, 64)
(64, 64, 64)
(64, 64, 64)

3x3
3x3
2x2
-
-

2

Convolution (ReLU)(d2)
Convolution (ReLU)(d2)

Max Pooling(p2)
Batch Normalization(p2)

Dropout(p2)

(128, 64, 64)
(128, 64, 64)
(128, 32, 32)
(128, 32, 32)
(128, 32, 32)

3x3
3x3
2x2
-
-

3

Convolution (ReLU)(d3)
Convolution (ReLU)(d3)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(256, 32, 32)
(256, 32, 32)
(256, 16, 16)
(256, 16, 16)
(256, 16, 16)

3x3
3x3
2x2
-
-

4

Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

Max Pooling(p3)
Batch Normalization(p3)

Dropout(p3)

(512, 16, 16)
(512, 16, 16)
(512, 8, 8)
(512, 8, 8)
(512, 8, 8)

3x3
3x3
2x2
-
-

5
Convolution (ReLU)(d4)
Convolution (ReLU)(d4)

(512, 8, 8)
(512, 8, 8)

3x3
3x3

6

Transposed Convolution(du 01)
Concatenate[du 01,d1](du 01)

Dropout(du 01)
Convolution (ReLU)(c 01)
Convolution (ReLU)(c 01)

(64, 128, 128)
(128, 128, 128)
(128, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

7-1

Transposed Convolution(du 11)
Concatenate[du 11,d2](du 11)

Dropout(du 11)
Convolution (ReLU)(c 11)
Convolution (ReLU)(c 11)

(128, 64, 64)
(256, 64, 64)
(256, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

7-2

Transposed Convolution(du 02)
Concatenate[du 02,du 01,d1](du 02)

Dropout(du 02)
Convolution (ReLU)(c 02)
Convolution (ReLU)(c 02)

(64, 128, 128)
(256, 128, 128)
(256, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

8-1

Transposed Convolution(du 21)
Concatenate[du 21,d3](du 21)

Dropout(du 21)
Convolution (ReLU)(c 21)
Convolution (ReLU)(c 21)

(256, 32, 32)
(512, 32, 32)
(512, 32, 32)
(256, 32, 32)
(256, 32, 32)

3x3
-
-

3x3
3x3

8-2

Transposed Convolution(du 12)
Concatenate[du 12,c 11,d2](du 12)

Dropout(du 12)
Convolution (ReLU)(c 12)
Convolution (ReLU)(c 12)

(128, 64, 64)
(384, 64, 64)
(384, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

8-3

Transposed Convolution(du 03)
Concatenate[du 03,c 02,c 01,d1](du 03)

Dropout(du 03)
Convolution (ReLU)(c 03)
Convolution (ReLU)(c 03)

(64, 128, 128)
(256, 128, 128)
(256, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3181



Table 6.9: 3D U-Net++ model structure for tumor segmentation.
Layer Type Output Shape Kernel Size

9-1

Transposed Convolution(u 31)
Concatenate[u 31,d4](u 31)

Dropout(u 31)
Convolution (ReLU)(c 31)
Convolution (ReLU)(c 31)

(512, 16, 16)
(1024, 16, 16)
(1024, 16, 16)
(256, 16, 16)
(256, 16, 16)

3x3
-
-

3x3
3x3

9-2

Transposed Convolution(u 22)
Concatenate[u 22,c 21,d3](u 22)

Dropout(u 22)
Convolution (ReLU)(c 22)
Convolution (ReLU)(c 22)

(256, 32, 32)
(768, 32, 32)
(768, 32, 32)
(256, 32, 32)
(256, 32, 32)

3x3
-
-

3x3
3x3

9-3

Transposed Convolution(u 13)
Concatenate[u 13,c 12,c 11,d2](u 13)

Dropout(u 13)
Convolution (ReLU)(c 13)
Convolution (ReLU)(c 13)

(128, 64, 64)
(512, 64, 64)
(512, 64, 64)
(128, 64, 64)
(128, 64, 64)

3x3
-
-

3x3
3x3

9-4

Transposed Convolution(u 04)
Concatenate[u 04,c 03,c 02,c 01,d1](u 04)

Dropout(u 04)
Convolution (ReLU)(c 04)
Convolution (ReLU)(c 04)

(64, 128, 128)
(320, 128, 128)
(320, 128, 128)
(64, 128, 128)
(64, 128, 128)

3x3
-
-

3x3
3x3

10 Concatenate[c 01,c 02,c 03,c 04] (256, 128, 128) -

11 Convolution (Sigmoid) (128, 128, 1) 1x1

Segmentation’. If they choose ‘Detection’, they can upload the image (in .jpg or .png or .jpeg or .dcm

formats) for applying the brain tumor detection models and the result shows whether there is a tumor

present in the image or not as shown in Figure 6.8. After clicking on ‘Evaluate’, the chosen model is applied

to the uploaded image and the prediction result is shown in the evaluation results as in Figure 6.9 with the

decision (i.e. tumor or non-tumor) and the probability score of the prediction result. The user can click on

‘Show’ to check the result details in results as shown in Figure 6.10 and they can also provide feedback on

the result using the ‘Feedback’ button. The feedback page is shown in Figure 6.11 and it allows the user

to enter their feedback on the existence of tumor in the ‘State’ option and it allows them to include more

details in the ‘Comment’ if necessary.

If the user chooses the ‘2D segmentation’ option, then they can upload the image (in .jpg or .png or .jpeg

or .dcm formats) and choose one of the two DL models (i.e. U-Net or U-Net++) as shown in Figure 6.12.

The evaluation results page shows the segmented tumor, the tumor area colored in red in the original image,

the tumor to total brain area ratio and the segmentation confidence score. The user can evaluate another

image, reevaluate the same image with another model or provide feedback on the evaluation as shown in

Figure 6.13. They can click on the ‘Show’ button to see the results in details like Figure 6.14. The same

approach can be followed for 3D segmentation. The user can go to the 3D segmentation option, upload the
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Figure 6.4: Home page.

images and choose one of the two models for segmentation as shown in Figure 6.15. The only difference is

that the 3D segmentation accepts four input files for all modalities (i.e. T1, T2, T1ce and FLAIR) in nifti

(i.e. .nii or .nii.gz) formats. Figure 6.16 shows the results of 3D segmentation.

The user can provide feedback using the ‘Feedback’ option. They can mention the state of the result

as ‘Area should be found (FN)’ for false negative outputs and ‘Area should not be found (FP)’ for false

positive results. They can also provide or draw a contour of the tumor area in case the segmented area is

not completely accurate. They can include any other comments they might have in the ‘Comment’ section

as shown in Figure 6.17. The user can also see all evaluations they have executed on ‘My evaluations’ page

as mentioned in Figure 6.18 with the evaluation ID, date and time of the evaluation, the models used and

number of images used. They can also check the results from the ‘Show’ option.

6.4.4 Results

The model accuracies for the detection and segmentation and the Dice scores for the segmentation models are

computed as performance evaluation scores. Chapter 2 included the definitions of the metrics with equation

2.1 and equation 2.8.

Table 6.10 shows the tumor detection performance evaluation for MRI image input and image features

inputs for MRI classification into tumor and non-tumor classes. The model with direct MRI image input

achieved more than 95% accuracy at the training phase and more than 82% accuracy at the validation

phase. The accuracy at the testing phase declined to 70%, but that was still a high accuracy for tumor

detection. The results for the tumor detection with each feature separately and the combination of all
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Figure 6.5: Login page.

features collected from the images showed a different outcome. The accuracy for the training and validation

models varied between 68% to 80% where sometimes the validation accuracy was higher and other times the

training accuracy was higher. But in all cases, the prediction accuracy for the testing data (i.e. new data

that was not used during training or validation) was much higher and varied between 80% to 93%. The

features separately collected from the images were able to classify the tumor/non-tumor images better than

the features automatically generated from image by the CNN model.

Although the training and validation accuracies for the model that directly used MR image as input

were visibly higher than the feature based outputs, the prediction accuracy shows that the CNN models

with feature inputs were able to predict the tumorous and non-tumorous images with at least more then

4% to 16% accuracy. The performances of the detection models with extracted feature inputs were better

than direct image input as the amount of data was not sufficient and the quality of all input images were

not consistent. Some of the input images have visible distinguishing characteristics (i.e., edges, boundaries,

solid areas, etc.) between the tumor area and the rest of the image, but that was not the case for all images.

Hence, the prediction accuracy of the CNN model using the images as inputs for the detection task was

slightly lower than the prediction accuracy of the model with separate and/or all features. The model was

able to predict the existence or absence of a brain tumor from all features more accurately compared to

separate feature sets. For this reason, the trained model for image detection with all features was added as

one of the user choices for classifying the image. The prediction accuracy comparisons also show that the

intensity features were able to contribute to the prediction task better than other separate sets of features

and that is why the intensity feature based prediction model was also added as an option to the UI. Figure
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Figure 6.6: Registration page.

6.19 shows the comparison in a graph where the red line represents the prediction accuracy, the green line

represents the training accuracy and the yellow line refers to the validation accuracy for the MRI CNN

features, intensity features, GLCM features, DWT features, other features and all (i.e. intensity, GLCM,

DWT, other) features.

Table 6.10: Tumor/non-tumor detection with image and image features.

Input
Prediction
Accuracy

Training
Accuracy

Validation
Accuracy

MRI 76.47 89.85 75.76
Intensity Features 88.24 71.86 75.12
GLCM Features 84.31 79.37 78.05
DWT Features 82.35 75.40 77.46
Other Features 80.39 73.52 68.29
All Features 92.16 69.70 76.41

Table 6.11 and Figure 6.20 show performance evaluations for the 2D and 3D MRI segmentations with

U-Net and U-Net++ models. The 2D segmentations achieved more than 84% and 61% training Dice score

and validation Dice scores respectively. The prediction Dice scores on the test dataset were higher than the

validation scores and varied from 80% to almost 82%. The 3D segmentation models achieved higher Dice

scores for training, validation and testing data and all scores were higher than 90% attaining more than

96%. The 3D U-Net models achieved almost same to 2% higher Dice scores for the test datasets compared

to the training and validation whereas the 3D U-Net++ models had almost no difference between training,

validation and testing data. The results showed that the U-Net models performed slightly better in tumor

segmentation than the U-Net++ models for both 2D and 3D data. Although the training and validation
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Figure 6.7: PACS page.

Dice scores for most cases were very similar and the prediction Dice scores showed the differences between the

models more clearly for both 2D and 3D data, the Dice scores for all implemented models were comparable

to DL-based brain tumor segmentation. Figure 6.21 shows a more comprehensive plot diagram based on

the average Dice scores of the test data prediction of the brain tumor segmentation models. The bar plot

represents the performance differences between the 2D and the 3D models which varied between 14% to

16% showing the 3D models performed better. Another interesting observation on the U-Net and U-Net++

model performances was the similarity between them. Although the U-Net model performed better than the

U-Net++ in both 2D and 3D images, the difference was only less than 2%.

The resulting differences between the 2D DNNs and 3D DNNs can be caused by the differences in the 2D

and 3D datasets. The 2D dataset contains 3064 t1-weighted 2D MRIs combining images of three different

anatomical planes. They also have different intensities for tumor and non-tumor regions and these intensities

are not consistent. In some images the tumor region intensity is higher than the rest of the image, in some

images it is lower, and it is not distinguishable in others. The 2D dataset has images that include the

skull, brain and tumor and the differences between these are not prominent. The 3D dataset is a processed

benchmark dataset containing all axial view 3D MRIs with skull-stripped brain images and the tumor regions

are distinguishable in almost all files. The 2D slices collected from the 3D files also provide more specific

and consistent information on the tumor region. Hence, the tumor segmentation from the 3D dataset with

U-net and U-Net++ achieved noticeably higher performances than U-Net and U-Net++ on the 2D dataset.

Table 6.12 shows some comparisons between the Dice scores of whole tumor segmentations between the

implemented models in this research and baseline U-Net [359], U-Net++ [337] for BRATS 2021 dataset.
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Figure 6.8: Tumor detection page.

The results show that the implemented models in this research achieved almost 3% to 10% higher Dice

scores in segmenting the whole tumor from the BRATS 2021 dataset for both U-Net and U-Net++ models.

The hyperparameter tuning and hybrid loss function improved the performances of the implemented model

by a large scale compared to baseline models.

Table 6.11: 2D and 3D tumor segmentation.

Model
Prediction

Dice
Training
Dice

Validation
Dice

2D U-Net 81.20 84.48 68.37
2D U-Net++ 80.96 84.77 61.92
3D U-Net 96.17 94.68 94.74

3D U-Net++ 94.39 94.28 94.14

Table 6.12: Comparison of whole tumor segmentation with BRATS 2021.
Model Dice Scores

3D U-Net [359] 93.24
3D U-Net (ours) 96.17
3D U-Net++ [337] 84.93
3D U-Net++ (ours) 94.39

Figure 6.22 and 6.23 show some sample input MRIs, the tumor and predicted tumor marked in red for

2D U-Net and 2D U-Net++ respectively. Similarly, Figure 6.24 and 6.25 show some sample input MRIs, the

tumor and predicted tumor for 3D U-Net and 3D U-Net++ respectively. Although most of the segmentation

outputs were able to segment the tumors properly, there were also some cases where the models were i) not

able to detect the tumor, ii) detected tumor area even if there were not any tumors, iii) segmented the
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Figure 6.9: Tumor detection evaluation results page.

tumor and some extra area, iv) segmented a part of the tumor area. Cases i and ii were the worst case

scenarios where the models were unable to focus on the tumor region of the test images. For example, in

Figure 6.22, (a) and (b) show proper tumor area segmentation, whereas (c) shows some missing part in

the segmented tumor compared to the ground truth and (d) shows some extra region at the opposite side

of the brain segmented as tumor area. The examples in 2D U-Net++ show some more variations. Figure

6.23 shows proper segmentation in (a) and (b). But the segmentation example in (c) shows that the model

could not detect the tumor area and detected another nearby but non-overlapping area as the tumor. The

example in (d) shows one of the worst case scenarios, where the model detected the complete image as the

tumor which is obviously incorrect. These examples support the Dice score results showing that the 2D U-

Net model performed better in tumor segmentation compared to the 2D U-Net++ model. Figure 6.24 and

6.25 also provided similar results as the Dice scores. Both 3D segmentation models clearly provided better

segmentation than the 2D models in most cases. The images show some slices from the 3D test images with

their segmentations and like their Dice scores, the 3D U-Net segmented the tumors more accurately than

the 3D U-Net++ model. Figure 6.24 (a) and (b) show that the segmented tumor area are exactly same as

the ground truth. (c) shows that although there was no tumor in the MRI, the segmentation output shows

very few nearby pixels at the lower left part of the image as the tumor. The 3D U-Net model segmented

a small nearby area as the tumor as well with the original tumor in (d). Finally, Figure 6.25 (a) shows an

accurate tumor segmentation output of 3D U-Net++, but the segmented tumor regions in (b) and (c) are

slightly more rounder at the edges including few more nearby pixels as part of the tumors. So, for these

two examples, the model detected a very similar but slightly bigger supersets of the tumor area pixels. On
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Figure 6.10: Tumor detection show result page.

the other hand, the pixels present in the segmented output of (d) are mostly different than the ground

truth pixels. Although there are few overlaps between the pixels of ground truth and segmented output,

mostly the segmented output provided different pixels from similar area of the image as tumor. Each test

dataset had hundreds of test images and corresponding outputs and these are just some examples. But these

examples show most of the variations the test data showed for the complete test outputs for all 2D and 3D

segmentation models.

6.5 Conclusion

Medical image analysis is a popular non-invasive way of diagnosing diseases an hence helping medical pro-

fessionals in their professional assessments. Researchers from various fields have been trying to improve this

analysis process applying different methods to develop more accurate automated processes and systems using

medical images from different organs and body parts. As brain is the most complex organ that controls most

of the functionalities of our bodies, neurological disease analysis from medical images of brain (i.e. MRI, CT,

PET etc.) is a well-explored research area. In this chapter, we propose a complete web application to detect

the existence of brain tumor and to segment the tumor area from medical images like brain MRIs to pro-

vide a primary and precise scanning phase to help the medical professionals. The proposed web application

produces a complete automated system to upload brain medical images, analyze the uploaded images with

different types of operations implemented by DL models and to allow feedbacks from medical professionals

to be incorporated in the future training of the models.
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Figure 6.11: Tumor detection evaluation feedback page.

The web application provides the users to directly upload medical images or they can use existing medical

images from hospital databases with PACS and apply three types of operations - tumor detection, 2D tumor

segmentation and 3D tumor segmentation. The tumor detection can be used with image or image features

and CNN models process the inputs to generate a decision - tumor or no tumor with a probability score

to show the accuracy of the prediction. Both 2D and 3D tumor segmentation can be used to upload 2D

or 3D brain images and either U-Net or U-Net++ model can be chosen to apply the segmentation. The

segmentation results show the segmented tumor, the ratio of the tumor area and the confidence score of the

tumor segmentation process. The tumor detection for some features achieved more than 90% accuracy and

the segmentation models achieved around 96% Dice scores for few models. The application also allows a

feedback option for healthcare professionals to provide their feedbacks on the detection and segmentation to

reduce the limitations of the results with text inputs, contouring inputs and checkbox inputs. The current

application have some restrictions on the input image types for each operation due to the training of the

DL models. The system works with few popular medical image based DL models like CNN, U-Net and

U-net++ models. But the architecture of the application allows the possibility of adding any detection or

segmentation models needed.
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Figure 6.12: 2D segmentation page.

Figure 6.13: Evaluation results page.
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Figure 6.14: Show results page.

Figure 6.15: 3D segmentation page.

192



Figure 6.16: 3D segmentation results page.

Figure 6.17: Feedback page.
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Figure 6.18: My evaluations page.

Figure 6.19: Performance comparison for tumor/non-tumor detection task.
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Figure 6.20: Performance comparison for tumor segmentation task.

Figure 6.21: Performance comparison for 2D and 3D tumor segmentation (average prediction Dice scores).
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Figure 6.22: Sample segmentation outputs for 2D U-Net segmentation.

Figure 6.23: Sample segmentation outputs for 2D U-Net++ segmentation.

Figure 6.24: Sample segmentation outputs for 3D U-Net segmentation.
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Figure 6.25: Sample segmentation outputs for 3D U-Net++ segmentation.
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Chapter 7

Pancreatic tumor detection by

convolutional neural networks

7.1 Introduction

DL systems are of great importance in the field of medical imaging and disease detection; therefore, the

use of such methods is critical to increase the accuracy of disease detection and to make health systems

work faster and more efficiently [360, 361]. Chen et al. [362] recently published a study on pancreatic

cancer detection from CT images with DL models. They applied a CNN model to detect the tumors from

manually segmented images and achieved about 97% accuracy with their Computer Aided Design (CAD)

tool. The CAD tool also evaluated the tumor size and stage of cancer with 50% to 93% sensitivity for various

stages and sizes. Another similar automated system for pancreatic tumor classification from CT images with

DL was introduced in [363]. The images were preprocessed with Gabor filtering and an Emperor Penguin

Optimizer algorithm with multilevel thresholding was used for segmentation. After extracting the features

with MobileNet model, an Auto Encoder classified the images as tumor or non-tumor images with more than

99% accuracy.

A complete pancreatic tumor diagnosis system was proposed in [364]. A ResNet model was used to locate

the pancreatic tumor, then a U-Net model was used for pancreas segmentation and finally another ResNet

was applied for the final classification. The model achieved 89% to 99% accuracy but the computation cost

was increased due to different DL models for different phases of the framework. Alves et al. [365] proposed

a similar network with U-Nets for pancreatic tumor detection. The input CT images were cropped to focus

on Region of Interest (ROI) and different U-Net models were implemented to segment the pancreas and
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tumor with other nearby tissues. Most of the existing DL model based pancreatic tumor or cancer detection

frameworks achieved high accuracy with some limitations like high computation cost, model overfitting or

underfitting, etc. in static systems. The lack of user friendly web applications with high performance DL

models to identify pancreatic cancer from medical images in existing literature motivated the research of

this chapter.

In this chapter, A DL based classification model is proposed for detecting the cancerous CT images

from healthy CT images with a dataset of pancreatic ductal adenocarcinoma CT images containing 5968

cancerous and non-cancerous/healthy images. A web application is developed to upload and process CT

images for cancer detection with a Convolutional Neural Networks (CNN). The framework pre-processes

the images with standard image pre-processing, data augmentation and then the CNN model extracts the

features from the image to classify it into one of two classes (i.e. cancerous or non-cancerous). The proposed

model achieved about 96% detection accuracy with 97% precision without overfitting or underfitting the DL

model. The major contribution of this chapter is developing a web application for medical professionals to

detect pancreatic cancer from CT images with an efficient, accurate and precise DL model.

The rest of the chapter is organized as follows- backgrounds on medical imaging, CNN models, hyperpa-

rameters and implementation components are discussed in Section 7.2. The system architecture is explained

in the Methodology section as Section 7.3 and the implementation setup and experimental results are men-

tioned in the Results section as Section 7.4. Finally, the contributions, discussions and possible future

research directions are discussed in the Conclusion as Section 7.5.

7.2 Background

7.2.1 Medical Imaging, ANN, DNN, CNN, Hyperparameter Tuning

Pancreatic cancer is a difficult disease in terms of early diagnosis, tumors found at an early stage during

normal examinations may not be noticed by the relevant healthcare professional. In addition, this disease

is more insidious in showing symptoms than other types of cancer, most people do not show symptoms

unless the cancer has grown too large or spread. Several medical imaging systems can be used for detection

of pancretic cancer, but CT is the initial medical imaging method for pancreas cancer, whereas another

imaging technique used quite frequently is Magnetic Resonance Imaging, MRI [366]. In addition to detecting

pancreatic cancer with CT, it can also be determined whether the cancer has metastasized. CT is a technique

that examines the body with X-rays in the form of thin slices (3-10 mm). The speed of multi-section CT

devices offered by the developing technology has increased, and the section thickness they can take has
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decreased. During the examination, the patient should lie still on the computerized tomography table. As

the table moves towards the middle section of the device, multiple cross-sectional images are taken by the

device to display the relevant body section. There is no application that will cause pain or a feeling of pain

during the examination. In abdominal CT examinations, medicated water, which is usually drunk orally, is

provided to fill all the intestines with dyed water, making it easier to distinguish the masses in the intestine

or its wall from other tissues. By dyeing the blood with the drug, which is given quickly by a vein pump,

the condition of the veins, the relationship of the mass and the veins, the blood supply characteristics of the

mass and some masses are made visible in the same examination [367, 368].

The functionalities, structures and examples of ANN, DNN and CNN were discussed in Chapter 2 in

detail. While designing ML and DL models, the selection of the algorithm used in the model and the hyper-

parameters of these models are also important factors that will affect the success of the experiments [369].

These hyperparameters differ according to the types of algorithms, such as, the k value is a hyperparameter

in the KNN algorithm, the type of kernel function is a hyperparameter in the SVM algorithm etc. There

are hyperparameters such as dropout, number of layers, number of neurons in DL models and they directly

affect the success of the experiment as discussed in Chapter 3 and Chapter 6. The hyperparameters can

be changed by looking at the preliminary results obtained in the later stages of the research, as well as the

characteristics such as the type and requirements of the problem, the size and complexity of the dataset,

required outputs, performance metrics scores etc. These hyperparameters are determined by considering the

mentioned elements. The performance of the model does not only depend on a single combination of hy-

perparameters In most cases, more than one combination of hyperparameters can provide high performance

and these different combinations can be used in designing the model [370].

In addition to the technical factors involved in the selection of hyperparameters, there are designer-based

critical stages such as the intuition of the designer who will create the model, the experience gained from

the problems encountered before, and the reflection of the problems in different fields. Although these are

general methods, there are some techniques to find the optimal hyperparameter structure. DL is a form

of learning that requires large dataset with diversity. The high learning rate is directly proportional to the

size of the dataset in general, but the training time and the size of the model will also increase with the

size of the dataset. These factors should be taken into account in researches where elements such as storage

space and the number of trainings are intense. However, this situation can be ignored in cases where the

number of trainings will not be very frequent and storage problems will not be experienced. In addition, in

researches that will be adapted to web environments, the size of the project is also an important factor and

it is of great importance to optimize it. In addition to the large dataset, the diversity of the data is one of

the factors that increase the success of the model [371].
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With this information, the huge increase in the number of data does not increase the success rate of the

implementation at the same rate, in general, the success rate increases little by little at certain rates. If the

similarity rate of the classes in the dataset and the number of noisy data are high, the performance graph

will have a bumpy structure. Batch value change can be used to solve this problem without using the data

exchange route. In addition, data can be augmented synthetically which is called data augmentation. As the

increase in the number of data will increase the success rate, it will be useful to apply data augmentation to

improve the model performance. DL applications can be costly in terms of time. In order to overcome this

problem, the mini-batch parameter can be used so that the number of data that the model will process at

the same time can be determined, and in this way, time can be saved.

While the model is being trained, not all of the data is included in the training at the same time, the first

piece is trained first and the weights are updated with the backpropagation after the model performance

is tested [372]. Then the model is retrained with the new training set and the weights are updated again.

This process is repeated at each training step to calculate the most appropriate weight values for the model.

Each of these training steps is called an “epoch”. Since these weight values are calculated step by step, the

success rate will be low in the first epochs, and the rate will increase in the epochs that progress with the

backpropagation processes. The model usually takes a long time to train; sometimes days or months. For

this reason, it is tried to shorten the training process as much as possible with other hyperparameters. As

the number of epochs increases, the performance increases. The number of epochs depends on the type of

problem and requirements. Training can be terminated at these points, as performance will increase in very

small units after a certain epoch [373].

Activation functions have a very important place in DL models. These functions add non-linearity to the

models. The linear function in the hidden layers turns into a non-linear value with matrix multiplication.

The reason for this is that the DL method is better than other methods in nonlinear problems, and real

world examples are generally non-linear problems. The conversion of the value obtained as a result of matrix

multiplication to non-linear is done with activation functions. Some activation functions used in DL models

are: sigmoid, tanh, ReLu, PreLu [205, 374]. Dropout is a regularization technique which is utilizable when

overfitting occurs. It has been observed that forgetting weak information increases learning performance.

Some features of the dropout value are as follows; 0.5 is generally used as the dropout value. Situations

where it is used differently are also common. It varies according to the problem and dataset [375].
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7.2.2 Environments, Libraries and Frameworks

It is possible to say that Artificial Intelligence applications have become more mobile with the devices being

equipped with much more powerful elements. AI has become a phenomenon that we see more frequently,

and the number of applications currently developed is expected to increase in the coming years [376]. Google

Colab was utilized in this implementation because of the free GPU support it offers. One of the main

libraries used in this implementation is TensorFlow. As an open source library, Tensorflow facilitates the

implementation of AI branches such as DL and ML, and supports this with its flexible architecture and GPU

[377].

Deployment is the process of transferring the created or pre-trained model to a live environment and

presenting it to users [378]. Many different environments and methods can be used in this process. ML

deployment, or the DL deployment process according to the current research content, is an important step in

meeting the model with users and in using the model created with the use of live data for commercial or other

purposes, since the produced model is located in an offline or in other words, a local environment. This process

is a complex one and many different points should be considered. It is important to prepare the necessary

infrastructures and take the appropriate steps. Creating an user interface by using a microframework was

an element of this implementation. Flask was used for this purpose, when the flash application is built it

is possible to deploy the model to everyone, flask design is a step which should be taken to use deployment

services such as Heroku and Google Cloud.

7.3 Methodology

In order to design a DL-based web application, a DL algorithm must be created, and then the problems

that may arise should be identified to achieve a high success rate. The custom model created later should

be used on the basis of the web application. In the next step, the model needs to be deployed on the basis

of the Flask application. The final stage is the design of a Flask application that can detect the presence of

pancreatic cancer, along with the user interface created after this stage is completed.

7.3.1 Data Acquisition

The ultimate goal in this implementation was to detect pancreatic tumor with high accuracy. For this, first

of all, a suitable dataset must be found. The primary purpose was to use the public resource for reasons

arising from medical data privacy and reliability. Many publicly available datasets contain pancreatic cancer

CT Images and one of them was used in this implementation. The dataset included 2985 non-cancerous
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and 2983 cancerous pancreatic CT images. In order to avoid the imbalanced dataset problem, almost equal

images were used for each class.

7.3.2 Data Pre-Processing

First, the CT data was converted from DICOM format to JPEG format to use the model training part

more effectively by reducing file sizes. With that, the input images were resized to 224x224 pixel to train the

model faster. Data augmentation was applied together with other preprocessing steps using the preprocessing

module of Keras. Data augmentation techniques were applied to extend the dataset for DL applications.

Data augmentation is a technique which can be summarized as increasing the size of the training dataset

with the use of certain parameters from the already existing data. It enlarges the training set by randomly

transforming existing samples into new ones. Data augmentation allows the model to train on large amount

of data that reduces overfitting the DL model.

7.3.3 Model Training

The dataset was split into three separate sets as training set, test set, and validation set. The percentages of

these sets are generally chosen as training dataset is 80 percent, Test and Validation datasets are 10 percent.

However, 70 percent for training, 15 percent for testing and 15 percent for validation proved to be the best

data division for this implementation. Basic modeling experiments were made on the training dataset. The

algorithm was determined by choosing the right model on the training dataset which tried to improve the

model performance. For this, hyperparametric (hyperparameter tuning) applications were used to find the

most optimum coefficients/weights for the classification model. Four convolutional layers were used, with the

number of filters increasing in each layer, the kernel size was chosen as (3,3). Pooling size was (2,2) and max

pooling operation was used. The model architecture was changed according to the results obtained, that

is, hyperparameter optimization was performed. Hyperparameter optimization was carried out by manually

designing the architecture based on a specific sketch according to each result obtained. Overfitting problems

were encountered during model optimization and a regular dropout layer was implemented. The prediction

and ground truth data were compared at the testing phase. Creating a model that will give the most accurate

result and will not generate overfitting was one of the most important stages in this implementation. In the

evaluation phase of the model, the validation accuracy and validation loss values were observed to check the

model overfitting by making a graphical comparison with the Accuracy and Loss values.

203



7.3.4 Build User Interface

After the CNN model was obtained with the desired success rate, the model was used to design a Flask

application that will inference according to the model obtained by taking input from the user. HTML and

CSS codes were used in the design of the Flask application and in the steps for how to use the model in the

application, and as a result, an application was made that takes a CT image from the user and determines

whether the related CT image contains pancreatic ductal adenocarcinoma using the model created.

7.4 Result

When we look at the literature, the general accuracy value of pancreatic cancer detection models is around 80

percent, and the dataset sizes are generally smaller. The aim of this experiment was to increase this accuracy

value and not to encounter unwanted situations such as overfitting and underfitting. In this implementation,

5968 CT images were used, and the dataset was divided into training, validation and test set. The distribution

of dataset into these sets were as follows : 70 percent for Training, 15 percent for Test and 15 percent for

Validation Set. In the created model, tables comparing the training and validation accuracy and loss values

were obtained and observed. Since there was no overfitting or underfitting issues, we passed to final stage.

The success rate of the trained model on the test set was measured, and a confusion matrix was created to

observe this in the best way.

Figure 7.1: Confusion matrix of the model

In Figure 7.1, confusion matrix which was obtained after testing the model can be seen. Confusion

matrix is used to evaluate the model in a classification process, the results are evaluated in 4 main parts:

true positive, true negative, false positive and false negative. After testing the model, actual labels and

predicted labels are compared. This provides the ability to calculate evaluation metrics. Although the most

commonly used evaluation metric is accuracy, there are other metrics that should be specifically examined in
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classification models, such as precision, recall, and F1 score. The formulas used in the calculations of these

metrics are mentioned in 2.1, 2.2, 2.3, and 2.6. According to the formulas mentioned above, each evaluation

metric value can be seen in Table 7.1.

Table 7.1: Evaluation metric scores
Accuracy Precision Recall F1 Score
0.959 0.974 0.944 0.958

Accuracy value was found to be approximately 96 percent, whereas precision,recall and F1 Scores were

found to be 0.974, 0.944, 0.958, respectively. In addition, the loss values obtained from the training results

were examined and it was observed that the loss values were quite satisfactory.

Figure 7.2: Flask application of pancreatic tumor detection

As can be seen in Figure 7.2, a Flask application was developed based on a CNN architecture that does

not have overfitting problems. This application was written with HTML and CSS codes and an interface

was designed. The user uploads the CT image by clicking the ”Pick Image” button, and the loaded image

is evaluated by the created model and the relevant result is returned.

7.5 Conclusion

In this chapter, a DL model is introduced to detect pancreatic cancer with high accuracy in a short time.

A two-class (i.e. cancerous and healthy) dataset containing pancreatic ductal adenocarcinoma, was used a

custom CNN architecture was designed and the model training was completed on the mentioned dataset to

deploy this architecture on a web application. The DL model was created with a CNN architecture that
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has proven itself in image classification problems and gives good results, and at the same time, it provides

a user interface to evaluate CT images. In the creation of this architecture, the literature was frequently

scanned and an architecture was designed in accordance with the structure and the objectives determined.

The dataset was collected from a public source, the necessary pre-processes were made and the model was

created with a high success rate. A Flask application was created for pancreatic cancer detection based

on the web application, which is the ultimate goal of the experiment, and it was observed that the Flask

application compatible with the .h5 model could be used successfully for web application purposes. This

experiment can assist radiologists in the detection of pancreatic cancer and help the healthcare professionals

if it passes the required reliability tests.

206



Chapter 8

A comparative study of different

pre-trained deep learning models and

custom CNN for pancreatic tumor

detection

8.1 Introduction

In this chapter, a DL based classification model is proposed for detecting the cancerous CT images from

healthy CT images with a dataset of pancreatic ductal adenocarcinoma CT images containing 5968 cancerous

and non-cancerous/healthy images. A web application is developed to upload and process CT images for

cancer detection with a CNN. The framework pre-processes the images with standard image pre-processing,

data augmentation and then the CNN model extracts the features from the image to classify it into one of two

classes (i.e., cancerous or non- cancerous). The proposed model achieved about 96% detection accuracy with

97% precision without overfitting or under- fitting the DL model. The major contribution of this chapter is

developing a web application for medical professionals to detect pancreatic cancer from CT images with an

efficient, accurate and precise DL model. Three DL models namely VGG-16, ResNet and custom CNN are

applied on 5968 publicly available CT images for pancreatic cancer detection. Basic pre-processing steps are

used on the collected data to remove noises and enhance the image features and then the three DL models

are applied to classify the images into cancer and non-cancer classes.
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The rest of the chapter is organized as follows- Section 8.2 presents some relevant background researches

on pancreatic cancer image analysis, and Section 8.3 presents the methodology with the system architecture,

data processing and DNNs. Section 8.4 shows the experimental setups and results, and finally Section 8.5

discusses the conclusion of the research and possible future scopes.

8.2 Background

Researchers have been experimenting with different ML and DL models on medical images for pancreatic

tumor detection to improve the performance of the classification task. Gupta et al. [379] provided a review

on pancreatic cancer with the types, stages and severity of pancreatic cancers and summarized the ML

and DL models used in pancreatic cancer detection. They included the techniques, datasets, performances,

limitations of artificial neural network, Bayesian model, random forest model and genetic algorithms used

in different research for pancreatic cancer detection and showed the comparisons between the performances

(i.e., AUC, specificity and sensitivity) of the existing researches. Ma et al. [380] also proposed a CNN

based pancreatic cancer detection model. They created three datasets from 3494 CT images based on their

phases and implemented a binary classifier to detect cancer and non-cancer classes, and a ternary classifier to

detect non-cancer, cancer at tail or body, and cancer at head or neck of pancreas classes. They used a simple

CNN with three convolution layers each followed by batch normalization and max pooling and added a fully

connected layer for output generation. The binary classifier and ternary classifier achieved 95% and 82%

accuracy respectively. Another CNN based pancreatic cancer detection model was provided in [381] that

used Gaussian Mixture model (GMM) and Expectation-Maximization (EM) model for feature extraction.

They lump feature extraction algorithm to observe features in the region of interests (ROIs) using size,

width, depth and shape scores and created a Region of Interest Database (RID). The extracted features with

GMM and EM were stored into another database called Feature Database (FD). Then a basic CNN model

was applied for classification and tumor spread. Their proposed model provided a future research scope to

specify and track the tumor spread in continuous evaluation of patients.

A pancreatic tumor detection model with Feature Pyramid Networks (FPN) and R-CNN was proposed

in [382] for enhancing the feature extraction process to improve the detection of the tumor. A pre-trained

ResNet-101 was used for feature extraction from the input CT images to create a feature pyramid. Then a

bottom0up approach was applied for feature hierarchy enhancement and finally a Region Proposal Network

(RPN) was applied on the enhanced feature pyramid for self-adaptive feature fusion to extract multi-level

information from enlarged ROIs. 2890 CT images collected from the affiliated hospital of Qingdao University

were used for training and testing the proposed model. The approach was able to classify tumor images
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with 90% accuracy outperforming R-CNN, mask R-CNN, cascaded R-CNN, YOLO, DetNet and RetinaNet

by almost 15%. The comparison between applying the proposed feature enhancement and basic detection

classifier showed about 15% improvement for the proposed model due to the pre-processing for feature

extraction and enhancement to generate more detailed information on the ROIs. Hussein et al. [383] proposed

a novel supervised and unsupervised 3D CNN model for both lung and pancreatic tumor detections from

CT and MR images. They provided two models- one supervised module with CNN and Graph Regularized

Sparse multitask learning and an unsupervised module with clustering and proportion-SVM and trained both

modules for lung nodules characterization and Intraductal Papillary Mucinous Neoplasms (IPMN) cysts. The

supervised module provided a malignancy score based on the input images classified with the multitask model

that used the outputs generated through multiple 3D CNN feature extractions. The unsupervised module on

the other hand applied feature extraction using the clustering model to generate initial labels for the images

and then after applying label proportions, the images were finally classified by a support vector machine

(SVM) model. The supervised module achieved 91% accuracy whereas the unsupervised module provided

58% accuracy for IPMN classification and 78% accuracy for lung nodule detection.

8.3 Methodology

The methodology employed in this chapter involves three key steps: data acquisition, data pre-processing,

and model training. The same dataset as the previous chapter was used in this experiment by applying the

following data pre-processing. The third step, Model Training, involved training the VGG-16, ResNet, and

Custom CNN models, along with hyperparameter tuning. During this stage, the accuracy and loss values

of both the training and validation sets were monitored manually from the performance scores and graphs

discussed in the Results section to detect any potential overfitting or underfitting issues. It is important

to note that the steps per epoch value is detected automatically based on the number of augmented data

by Keras, which was 17, and the batch size was 256 for training dataset. Finally, the Custom CNN and

pre-trained models were utilized on the test set to evaluate their effectiveness in addressing the objectives.

8.3.1 Data Pre-processing

In order to efficiently carry out the training process, data pre-processing is a crucial step in DL applications.

After the image format conversion and data resizing with the same steps as the previous chapter, data

augmentation was applied. This class enabled the application of various data augmentation techniques, such

as rotation, width and height shifting, shearing, and zooming, to the training data. Moreover, horizontal

flipping was applied to the images in the ImageDataGenerator to artificially increase the size of the training
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set. Additionally, rescaling was per-formed to reduce the range of pixel intensity values in the images. The

preprocessed training data was obtained using the ImageDataGenerator class, which was used to convert the

images into batches. The target size of the images was set to (224,224) and the batch size was set to 256.

The obtained batch data was then used for training the DL models. Similarly, the test and validation data

were preprocessed using the ImageDataGenerator class with a target size of (224,224) and a batch size of

32. It is noteworthy that the shuffle parameter was set to True for the training and validation data, which

randomizes the order of the images in each epoch. Moreover, the seed parameter was set to 42 to ensure

reproducibility of the results. The class indices of the image batches were printed to confirm the mapping of

the class labels to the corresponding numerical values. The preprocessed training, test, and validation data

was then used to train and evaluate the VGG-16, Resnet, and Custom CNN models, and hyperparameter

tuning was carried out to improve the performance of the models.

8.3.2 Model Training

The dataset used in this experiment was split into three sets instead of the conventional two, as this par-

titioning resulted in better outcomes. Specifically, the dataset was separated into 70 percent training, 15

percent validation, and 15 percent testing sets. Basic modeling experiments were carried out on the training

set, with the validation set being used for model selection and refinement. To this end, hyperparameter

tuning was employed to determine the optimal coefficients/weights for the chosen model. To evaluate the

model’s performance, the validation accuracy and loss values were graphically compared with the accuracy

and loss values. This comparison allowed for the assessment of whether overfitting occurred during the

training process. This procedure was followed for all the models which are used for this implementation.

Custom CNN Model

The model is instantiated by creating a Sequential object from the Keras API. The Sequential object is

utilized as a linear stack of layers, which are added to in order to build the CNN. Firstly, a Conv2D layer

is added with 4 filters, a kernel size of 3x3, and a ReLU activation function. The input has the shape of

(224,224,3), representing 224x224 RGB images. A MaxPooling2D layer is then added with a pool size of 2x2

to downsample the feature maps and reduce the spatial dimensions of the output. Next, another Conv2D

layer with 8 filters and a kernel size of 3x3 is added, followed by another MaxPooling2D layer. This process

is repeated with a Conv2D layer with 16 filters and a kernel size of 3x3, followed by another MaxPooling2D

layer. Afterwards, a Dropout layer with a dropout rate of 0.7 is added to prevent overfitting. The Dropout

layer randomly drops some of the connections between neurons during training, forcing the network to learn
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more robust features. The output of the last MaxPooling2D layer is flattened, and a Dense layer with 64

units and a ReLU activation function is added. Another Dropout layer is then added with a dropout rate of

0.8 to further prevent overfitting. Finally, a Dense layer with a single unit and a sigmoid activation function

is added. This will output a probability between 0 and 1 indicating the likelihood that the input image

belongs to a certain class. The model is then compiled using the binary crossentropy loss function, the

Adam optimizer, and the accuracy metric.

VGG-16 Model

The pre-trained VGG-16 model was used in the transfer learning process using the Keras API. The include

top parameter is set to False to not include the upper layers of the VGG-16 model, which is a pre-trained

model. The weights that were previously trained on the imagenet dataset were started, and they were also

used to monitor the validation loss values in the early stopping callback training process and to prevent

overfitting. To avoid retraining the pre- trained layers of VGG-16, a pre-trained model, they were frozen

with an iterative loop on each layer of this model. Custom layer addition was made on top of the pre-trained

model, the first layer was the flattened layer, the dense layer with ReLU activation function was installed

after the flatten layer. To find the optimal hyperparameters, Optuna is used, it was decided to assign the

dropout layer with a value of 0.8. Two fully connected layer is used in this model, first one is 32 neurons.

After the normalization layer was added, a dense output layer, which is the second fully connected layer,

using the sigmoid activation function was added to the architecture, this was done in the name of binary

classification. The resulting transfer learning model was compiled with the binary-cross entropy function

after these stages, using the optimum learning rate value found as 5.194856185393038e- 05 as a result of

grid-search. Evaluation metrics are used to monitor the performance of the model, in this process accuracy

was used as an evaluation metric. This model provided a training process with a high success rate by utilizing

pre- trained weights using the transfer learning technique.

ResNet

ResNet50 is a very popular pre-trained DL model. ResNet, one of the models used in this implementation,

can show very high success rates in image classification processes. The pre-trained layers were frozen in the

first stage, then custom layers were added and adjusted to be successful in PDAC detection. Custom layer

addition was made on top of the pre-trained model, the first layer was the flattened layer, the dense layer

with ReLU activation function was installed after the flatten layer. Custom layers consisting of two fully

connected layers, one is with 133 neurons whereas the other has 47 neurons, and dropout layer is added with

the rate of 0.17359436988893012. The learning rate for compiling the transfer learning model with Adam
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optimizer is set to 0.0008158991855105919. The hyperparameters are determined by using Optuna, which is

a very useful tool to find optimal hyperparameters in ML and DL applications.

8.4 Result

In this experiment, tables comparing the training and validation accuracy and loss values were obtained and

observed for all models.

8.4.1 Custom CNN

As it can be seen from Figure 8.1, the training and validation accuracy is obtained for Custom CNN model

in 5 epochs. The epoch number is determined after finding the optimal one which does not cause overfitting

and underfitting issues and also gives good accuracy values.

Figure 8.1: Training and validation accuracy plot of the custom CNN model

Figure 8.2: Confusion matrix of the custom CNN model

In Figure 8.2, confusion matrix which was obtained after testing the model can be seen. Confusion

matrix is used to evaluate the model in a classification process, the results are evaluated in 4 main parts:

true positive, true negative, false positive and false negative. After testing the model, actual labels and
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predicted labels are compared. This provides the ability to calculate evaluation metrics. It can be seen

from this figure that the model gives an accuracy value which is relatively high, but some mispredictions

are made on positive and negative class. The TP predictions are 439 whereas TN value is 430, model gives

false negative values which are indicating the actual label was positive but by the model these samples are

predicted as negative, which is unwanted situation for cancer prediction tasks, since it is wanted that the

model to accurately label positive-label cancerous images with as much accuracy as possible.

8.4.2 VGG-16

As it can be seen from Figure 8.3, the training and validation accuracy is obtained for VGG-16 model

which is trained for 5 epochs. The epoch number is determined after finding the optimal one which is not

causing overfitting and underfitting issues and also gives good accuracy values. The steps per epoch number

is determined automatically from Keras API since Data Augmentation was used as a method to increase

the dataset artificially. When we look at the figure, the training and validation accuracy values show good

performance, as the number of epochs increases, the model learns better, and the values increase. At the

time the model started training, the validation accuracy was relatively high compared to the train- ing

accuracy, but then during the model learning process, by learning better in each epoch, the model learns

better. Training accuracy was 0.9592, and the lowest loss was 0.13. Training and validation loss values

were also observed, and it was observed that it started from 0.7 levels and decreased to 0.1 levels in both.

Considering all these, it can be said in general that the model does not encounter overfitting problems, since

the difference between the training and validation accuracy and loss values is not large, the model learns

more in each epoch, and the loss values decrease in general.

Figure 8.3: Training and validation accuracy plot of the VGG-16 model

In Figure 8.4, confusion matrix was obtained after testing the VGG-16 model. As it can be seen from the

figure, prediction made by VGG-16 model is fairly accurate, and the mispredictions are made so infrequently.

213



Figure 8.4: Confusion matrix of the VGG-16 model

8.4.3 ResNet

The training and validation accuracy for the ResNet-16 model, which is trained for 10 epochs, is shown in

Figure 8.5. The epoch number is established after determining the ideal one that does not cause overfitting or

underfitting concerns while still providing high accuracy values. Since Data Augmentation was employed to

artificially augment the dataset, the number of steps per epoch is chosen automatically using the Keras API.

The training and validation accuracy values in the figure demonstrate strong performance; as the number of

epochs grows, the model learns better and the values improve. The validation accuracy was relatively high

before the model began training compared to the training accuracy, however the model learns better during

the model learning process by learning better in each epoch. The discrepancy in validation accuracy has

been reduced. The training accuracy was 0.9748, with a loss of 0.0867. Training and validation loss values

were also measured, and it was discovered that the trend and the value of these are almost same. Taking all

of this into account, it is safe to say that the model does not suffer from overfitting because the gap between

training and validation accuracy and loss values is small, the model learns more in each epoch, and the loss

values decrease in general.

Figure 8.5: Training and validation accuracy plot of the ResNet model

The confusion matrix in Figure 8.6 was derived after testing the ResNet model. As seen in the graph,
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Figure 8.6: Confusion matrix of the ResNet model

Resnet model predictions are fairly accurate, with mispredictions occurring very seldom.

Although the most commonly used evaluation metric is accuracy, there are other metrics that should be

specifically examined in classification models, such as precision, recall, and F1 score. The formulas used in

the calculations of these metrics are defined in 2.1, 2.2, 2.3, and 2.6.

According to the formulas given in the previous chapter, each evaluation metric value can be seen in the

table below for all the models-

Table 8.1: Performance scores.
Custom CNN VGG-16 ResNet

Accuracy 0.9709 0.9933 0.9933
Precision 0.964 0.9955 1.0000
Recall 0.977 0.9911 0.9866
F1-score 0.9712 0.9933 0.9933

Table 8.1 shows the evaluation metric scores for the three different models used. Precision, Recall, F1

Score and Accuracy are the evaluation metrics used to evaluate the success of this implementation. Starting

with the Accuracy values, the custom CNN model has an accuracy value of 0.9709, besides, the accuracy

values of the VGG-16 and ResNet models are the same, showing 99.33 percent accuracy, these two models

made a better prediction than the custom CNN model. The classifications were made more accurately by

these two pre-trained models and at this point they became more preferable than the custom model. When

we look at the precision values, the custom CNN model got a score of 0.964, this precision value shows us

that 96.4 percent of the data that the model labeled as positive label after the testing period had positive

actual labels. The precision score of the VGG-16 model was obtained as 0.9955, indicating that it is more

successful at this point than the non-pre-trained model. It is worth emphasizing that the precision score of

the ResNet model was obtained as 1.0, which indicates that all samples that the model has labeled positively

also have true labels, at which point ResNet performed well. We can say that the recall metric is a metric

that is essential to be used in the detection of diseases such as cancer and is more important than relative
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precision, the reason for this is the meaning underlying the recall metric. Recall is the ratio of the samples

that the model predicts positively to the actual number of samples that are positively labeled. A more

detailed explanation may be required at this point, to exemplify the situation, the fact that a patient has

PDAC despite being diagnosed as not having cancer is the most undesirable situation due to the nature of

the disease. At this point, with the recall score, it can be seen how far away from these unwanted situations

is. The Custom CNN model achieved a precision score of 0.977, while the VGG-16 achieved a precision score

of 0.9911 and the ResNet model achieved a precision score of 0.9866. At this point, it would not be wrong

to say that VGG-16 made the most successful prediction. Finally, the F1 score of all models was obtained,

another metric obtained by taking the harmonic average of the F1 score Recall and Precision metrics. At

this point, ResNet and VGG-16 achieved an F1 score of 0.9933, outperforming the custom CNN model on

this metric basis. In summary, when the table is examined, we see that the VGG-16 and ResNet models

achieve very high metric values. Although the Custom CNN model also has relatively high values, it can be

said that it is more unsuccessful compared to these two models.

8.5 Conclusion

This chapter introduces three CNN models that are trained to detect pancreatic ductal adenocarcinoma

with high accuracy and in an automated and much faster way than traditional healthcare systems. In this

chapter, a special CNN architecture was designed, as well as transfer learning was performed using VGG-16

and ResNet pre-trained models. A general CNN architecture that has proven itself in image-related problems

and gives good results has evaluated CT images with at least 95 percent accuracy in each model. During

this experiment process, recent methods and projects with the same purpose were frequently examined in

the literature, and the data set was obtained from public sources on the internet, thus avoiding privacy

issues. The generalizable aim of the experiment was to create a custom model, to obtain accuracy and

other evaluation metrics, and to compare the performance rate and other metrics of pre-trained model-

based models by using the transfer learning technique to be a source for future research in this area and

to contribute to the literature. This implementation tested how different models, more specifically, three

different architectures and two separate methods perform on pancreatic cancer detection on a given set of

tests.
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Chapter 9

Report Generation

9.1 Introduction

The previous chapters discussed about the abnormality detection in medical images, and segmenting the

tumor/infections from the images with deep learning algorithms. The interactive frameworks for both Covid

and brain tumor analysis included separate visual interfaces to upload, pre-process, and analyze images

for tumor/infection detection, segmentation with the options of receiving feedbacks on the detection and

segmentation from professionals to improve the future analysis. Another task related to the medical image

analysis is a comprehensive text report generation from the results on tumor/infection properties. The ideal

scenario would be generating a report containing all possible information on the input image like the pres-

ence of any abnormality, their location, area, volume, centroid, ratio, contrast, concavity, disease progress,

frequency of occurrence, severity, morality rate, gender, ethnicity, different statistics data on abnormality

for both the detection and segmentation outputs. The major limitation of achieving all these properties

was to find dataset containing all patient information including their clinical data, medical images, personal

information, regular updates and proper way of validating the analysis results. Due to the limitations, the

report generation process implemented here included few basic properties from different brain tumor image

datasets. The framework for the report generation system is shown in Figure 9.1. The image features are

different in 2D and 3D datasets, hence two different models were used for 2D image report generation and

3D image report generation. The algorithms are discussed in this chapter.

The rest of the chapter is organized as follows- Section 9.2 and Section 9.3 discuss the tumor properties

extraction process from 2D and 3D input images respectively. Finally, Section 9.4 shows the process of tumor

type detection.
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Figure 9.1: Workflow of report generation.

9.2 2D Image Tumor Properties

The report generation process for 2D MRI properties was applied on the figshare [322] dataset that include

3064 MRIs in 2D formats in three different planes -axial, sagittal and coronal. The 2D report generation

framework was added after the tumor was detected and segmented. Figure 9.2 shows an example of a

MRI where the tumor was detected, segmented and the tumor region was shown with green contouring and

Figure 9.3 shows the corresponding text report for the tumor image. The computation process is shown in

Algorithm 19. The MRI, tumor detection output and tumor segmentation output were used as inputs for

the report generation process. Both the MRI and segmented tumor image were pre-processed separately by

converting them into grayscale and applying binary and Otsu’s thresholding methods. Then the number

of non-zero pixels were counted from both images, and the number of total pixels was computed from the

image size. The count score from tumor segmentation image was used to decide whether there was tumor

in the MRI or not. Then the count scores were used to compute the ratio of the tumor (i.e., percentage)

with respect to the whole brain and skull and the whole image. Then the tumor centroid was computed and

the centroid location was decided from dividing the image into four equal parts. The names of the locations

were more generic instead of a brain region name as the MRIs had three different planes and the input image

could be any of them. After extracting the location, the number of tumors in the image was computed from

the regions of connected pixels from the segmented image. A contouring module was applied to draw the

tumor contour in the original MRI. Finally, the region properties of the tumor were calculated to extract

the solidity of the tumor to show as the concavity.
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Algorithm 19 2D Tumor report generation

Require: MRI, Tumor detection output, Tumor segmentation output
t← segmented tumor image
m←MRI
t← Convert t into grayscale
t← Apply binary and Otsu′s thresholding on t
non zerot ← Count non− zero pixels from t
area t← Compute area of non− zero pixels in t
m← Convert m into grayscale
m← Apply binary and Otsu′s thresholding on m
non zerom ← Count non− zero pixels from m
area m← Compute area of non− zero pixels in m
area i← Compute area of whole image
if non zero t = 0 then

tumor presence← 0
else

tumor presence← 1
end if
tumor skull ratio← (area t/area m) ∗ 100
tumor mri ratio← (area t/area i) ∗ 100
tumor centroid← Compute tumor centroid from t
Divide image area into four equal parts
Define (x, y) coordinate values for upperLeft, lowerRight, lowerLeft, upperRight
centroid location← Compute centroid location from tumor centroid
num tumor ← Count number of tumors
Draw tumor contour
region t← Compute all region properties from t
concavity t← Extract solidity from region t
Combine all properties and print as a report
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Figure 9.2: Sample MRI output with report showing the tumor region.

Figure 9.3: Sample 2D text report.

9.3 3D Image Tumor Properties

The 3D report generation was applied on the BRATS2021 dataset [283] where each patient had MRIs of four

modalities - T1, T1ce, T2 and FLAIR and the segmented tumor had tissues mentioning enhancing tumor,

non-enhancing tumor, without edema. Figure 9.4 shows the different types of tissues in tumor for a sample

patient from the dataset and Figure 9.5 shows the corresponding report for the 3D tumor. Algorithm 20

shows the steps of the report generation for 3D images. This algorithm used the FLAIR MRIs, detection

output and segmentation (i.e., whole tumor) as inputs. Then a 3D U-Net similar to the tumor segmentation

in Chapter 6 was applied but for the different tissue segmentation this time. Then each type of tissue images

were stored separately. The middle 70 slices of the FLAIR MRI were extracted, resized, and expanded in

dimension. The tumor volume was computed from the whole tumor image and then the area of the brain,
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whole tumor, non-enhancing tumor, without edema tumor and enhancing tumor were computed to calculate

the ratio (i.e., percentage) of each tumor tissue and whole tumor, and each tumor tissue and brain. All of

the calculated scores were then combined to generate the text report.

Figure 9.4: Sample tissue classification from 3D tumor.

Algorithm 20 3D Tumor report generation

Require: FLAIR MRI, Tumor detection output, Tumor segmentation output
t← segmented tumor image
m← FLAIR MRI
r ← Apply 3D U −Net to segment each tissue type of t
whole tumor ← Extract whole tumor from r
nonenhancing tumor ← Extract non− enhancing tumor tissue from r
woedema tumor ← Extract without edema tumor tissue from r
enhancing tumor ← Extract enhancing tumor tissue from r
m← Extract slices 60− 130 from m
m← Resize m and apply slice dimension expansion
volume tumor ← Compute tumor volume from m
area w ← Compute area of non− zero pixels in whole tumor
area n← Compute area of non− zero pixels in nonenhancing tumor
area d← Compute area of non− zero pixels in woedema tumor
area e← Compute area of non− zero pixels in enhancing tumor
area m← Compute area of non− zero pixels in m
whole tumor brain ratio← (area w/area m) ∗ 100
nonenhancing tumor brain ratio← (area n/area m) ∗ 100
woedema tumor brain ratio← (area d/area m) ∗ 100
enhancing tumor brain ratio← (area e/area m) ∗ 100
nonenhancing tumor whole tumor ratio← (area n/area w) ∗ 100
woedema tumor whole tumor ratio← (area d/area w) ∗ 100
enhancing tumor whole tumor ratio← (area e/area w) ∗ 100
Combine all properties and print as a report

9.4 Tumor Type Detection

Due to the unavailability of tumor type labeled dataset, the tumor type classification task was done on the

‘Kaggle Multiclass Brain Tumor Classification’ dataset [384]. The dataset contains data from three public

datasets - figshare [322], SARTAJ [385], and Br35H [386]. The dataset contains 7023 MRIs including glioma,

meningioma, pituitary and no tumor/healthy images. The tumor type classification based on this dataset
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Figure 9.5: Sample 3D text report.

was a four class classification problem. The images in the dataset varied in dimensions and types, so the first

step was to convert each image into 2D format and then resizing them into 256x256 dimensions. Then the

dataset was split into training and testing sets keeping 80% as training data and 20% as testing data. Then

both training set and testing set images were normalized between 0 to 1 by dividing the pixel values by 255.

Each set was then randomly shuffled and one-hot encoding [387] was applied on them separately to convert

the categorical data into numerical data. Then the images in the training dataset were flipped horizontally

as part of data augmentation and added them to the training data with the ImageDataGenerator and 10%

of the training data was separated as validation dataset. The CNN model was then trained and validated

and finally the test dataset was used for testing the trained classifier to classify brain MRIs into one of the

four classes (i.e., no tumor, glioma, meningioma, pituitary). Algorithm 21 shows the steps of the tumor type

detection process.

A simple CNN was used for the tumor type detection. The model had three 2D convolution layers, three
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Algorithm 21 Tumor type detection

Require: MRI, Tumor type label
Convert image into 2D format
Resize image into dimension 256X256
Split dataset into training and testing set(i.e., 80− 20)
Normalize training image pixels between 0 to 1
Normalize testing image pixels between 0 to 1
Shuffle training set randomly
Shuffle testing set randomly
Convert categorical training data with one− hot encoding
Convert categorical testing data with one− hot encoding
Apply image augmentation on training set using ImageDataGenerator
Split augmented training dataset into training and validation set(i.e., 90− 10)
Apply data to train CNN model
Save CNN model weights, performance scores
Test trained mode with testing dataset

max pooling layer, two dense layers, one flatten layer and one dropout layer. The total number of parameters

were 14,775,524 and all of them were trainable. The inputs were of size (256, 256, 3) and the model was

trained for 100 epochs with batch size 8. The model was compiled with Adam optimizer with learning rate

0.001 and applied categorical crossentropy as the loss function. The CNN used three convolution layers each

followed by a max pooling layer. The first two convolution layers had kernel size 3x3, filter size 32, ReLU

as the activation function and the max pooling layers had 2x2 as pool size. The third convolution layer had

the same kernel size and activation function, but the filter size was 64, whereas the third max pooling layer

also used pool size 2x2. Then a flatten layer was added to modify the dimensions and a dense layer with

unit 256 and activation function ReLU was included. After a dropout layer with 0.5 dropout, the final dense

layer with a softmax activation function for the four class classification was added to the CNN model. Table

9.1 shows the CNN model structure.

Table 9.1: CNN model structure for the tumor type detection model.
Layer Type Output Shape Kernel Size

1 Convolution (ReLU) (254, 254, 32) 3x3
2 Max pooling (127, 127, 32) 2x2
3 Convolution (ReLU) (125, 125, 32) 3x3
4 Max pooling (62, 62, 32) 2x2
5 Convolution (ReLU) (60, 60, 64) 3x3
6 Max pooling (30, 30, 64) 2x2
7 Flatten 57600 -
8 Dense (ReLU) 256 -
9 Dropout 256 -
10 Dense (Softmax) 4 -

The CNN model used 5712 images as training and validation sets, 1311 images as test data. Figure 9.6

shows some sample input MRIs and their tumor types and Figure 9.7 shows the data distribution. Figure
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9.8 shows some sample output images generated by the model including some test data, their true label, and

predicted label. The average test accuracy of the CNN model was 98.32%, whereas the average training and

validation accuracies were 95.46% and 94.04% respectively. The test data performance showed high precision

(i.e., 0.99) for all classes other than meningioma. The performance scores for meningioma classification was

also slightly lower in case of recall and F1-scores. The pituitary tumor and healthy MRIs classification recall

scores were 1.00 and the F1-scores were 0.99 representing that the classification performance of these two

classes in the test dataset were the highest. Glioma achieved 0.97 and 0.98 as recall and F1-score achieving

the second highest performance and meningioma had slightly lower precision, recall and F1-score as 0.97,

0.96, and 0.97 respectively. Table 9.2 and 9.3 show the performance scores of the CNN and the confusion

matrix is shown in Figure 9.9.

Figure 9.6: Sample input images and their tumor types.

Table 9.2: Accuracy of the CNN model for tumor type classification.
Test Acc Trn Ac Val Acc

98.32 95.46 94.04
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Figure 9.7: Data distribution for the classifier.

Figure 9.8: Sample output of tumor type detection.

Table 9.3: Performance scores of the CNN model for tumor type classification test data.
Class Precision Recall F1-score

Glioma 0.99 0.97 0.98
Meningioma 0.97 0.96 0.97
Pituitary 0.99 1.00 0.99
No tumor 0.99 1.00 0.99

9.5 Disease Progression Report

Another part of the comprehensive report would be tracking the disease progression of the same patients

over time. The implementation and analysis were not included in this thesis due to the lack of benchmark

brain MRI datasets of same patients over a specific time period. But in case such datasets were available (in
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Figure 9.9: Confusion matrix for the test data.

real time hospital or medical centers), the progression decisions would be included as part of the report with

some visualization and analysis. Generally, patients with brain tumors have multiple visits to the medical

centers for checkups, tests, surgeries (if necessary), medications, etc. and the medical center/hospital keeps

all these records in the patient file. Healthcare professionals check these to analyze the patient history to

check the progress of the patient and decide on the next course of actions. If all these data are available to

use as inputs for the automated report generation system, and domain experts are available to contribute

to the data annotation, training and validation phases, then it would be possible to implement the following

steps-

• Storing data for each patient into multiple categories, such as all brain scan images with corresponding

time data in category one, all other clinical test reports with corresponding time data in category two,

patient data like age, gender, ethnicity, etc. in category three, all surgery information (if any) with

corresponding time data in category four, all previous comments by the physicians with corresponding

time data in category five, all medication data with corresponding time data in category six, etc.

• Analyzing data of each category to check the differences or similarities of the test results/scans, medi-
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cations, physician comments, etc. over time.

• Generating progression chart on the brain scans/MRIs for the same patient over time by segmenting

and calculating the tumor area from each scan and keeping track of the tumor progression (i.e., the

tumor area is shrinking or is increasing or is the same as before).

• Generating visualizations (i.e., graphs/charts) to show the differences of patient data over time.

• Tracking the disease progression (positive, negative or neutral) over time for the same patient.

• Comparing the data of different patients and their disease progression to find patterns based on tumor

type, tumor area, medication, surgery, age of the patient, gender of the patient, ethnicity of the patient

etc. to help with future decision making.

• Generating spread charts/graphs to represent the spread of the tumor of a patient with respect to the

comparative analysis of similar cases.

• Applying different machine learning and deep learning algorithms to train the automated system with

different category datasets for automatic classifications and decision generations.

• Providing comprehensive text comments for the physicians summarizing the decisions generated by the

comparisons and analysis.

• Incorporating the latest patient data in all of these analysis above to update and refine the automated

system.
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Chapter 10

Conclusion & Future Works

Medical image analysis with segmentation and classification is a well-known research area that have been

explored using manual, semi-automatic and automatic approaches to increase the precision of the medical

decisions to help both patients and healthcare workers. Medical image analysis used thresholding, supervised

machine learning, unsupervised machine learning, deep learning methods and was able to achieve high

accuracy on limited amount of available datasets. Although the existing systems performed well, there are

still lots of challenges to medical image analysis researches. Small amount of available datasets, datasets with

unavailable ground truths, noisy data, datasets with inconsistent data, randomness of abnormalities, possible

variations of abnormalities, shape and area variations of human organs, uniqueness of human organs and

abnormalities etc. are some of the examples of the challenges. These issues makes it difficult to provide one

set of rules or conditions for all data of the same organ that creates the requirement for complex systems, and

the complexity increases exponentially if more than one organ data are included. To efficiently and effectively

analyze medical data for producing correct outputs, the complex system needs to define multidimensional

constraints and apply several types of features to cover all the characteristics.

The goal of this research is to identify all these issues properly and address as many of them as possible

with multiple approaches from different perspectives to achieve better results for medical image analysis.

The main idea behind this research is to explore the possibilities of different approaches in medical image

detection, segmentation, classification and report generation that can be applied on different types of medical

images collected from different organs. After exploring different health issues and their image analysis, this

research started with brain tumor, then added Covid infections and pancreatic tumors afterwards to develop

automated systems for abnormality detection, segmentation, classification, and report generation. Experi-

menting with conventional, ML and DL approaches showed that DL models provide better performances for
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all of them. Hence, the automated interactive frameworks were generated with DL-based models fro brain

tumor detection, Covid detection, pancreatic tumor detection, brain tumor segmentation, Covid infection

segmentation, and brain tumor based report generation. The experiments showed promising outcomes that

provide the pathway to apply the approaches for all types of medical images and that is one of the future

work for this thesis.

10.1 Concluding Remarks

The thesis on medical image analysis for abnormality detection, segmentation and report generation with

three types of medical images (i.e., Covid chest CT, brain MRI, and pancreatic CT) lead to extensive

literature review on the domain, proposing and developing automated systems for abnormality analysis

using various AI models. The previous chapters discussed these in detail and provided some valuable insights

towards the research domain.

Chapter 1 introduced the research idea, basics of Covid-19, brain tumor, and pancreatic cancer medical

images and summarized the thesis with brief discussions on each of these. It also discussed different types

of medical images, tumor basics, and medical imaging techniques to provide some general idea needed to

understand the following chapters more clearly.

Chapter 2 provided a literature review on AI based Covid medical image analysis by including researches

published in the first half of the year 2022 on Covid detection, infection segmentation, diagnosis, performance

analysis with popular Covid image datasets and other similar surveys on Covid image analysis. The literature

review not only summarized the existing researches, but also discussed their contributions and limitations,

and included the challenges and future research scopes from the above mentioned limitations. The review

also helped to extract the AI models that performed better for Covid CT image analysis for future researches.

The limitations of existing researches and the performance comparisons of AI models encouraged the

development of an interactive framework for Covid detection, segmentation with feedback facility that was

presented in Chapter 3. A web application was developed to analyze Covid CT images from direct inputs

or by connecting to existing medical databases and used Mask R-CNN, U-Net, and U-Net++ models for

the image analysis showing the performance differences of each model for the same input image. The

performance differences represented the opportunity to the users to choose the best model for each CT

image. The feedback facility feature provided a platform to receive the feedbacks on the result of the web

application from the domain experts to identify the false positives and false negatives for the Covid detection,

and the corrected infection region for the infection segmentation to improve the application.

The promising results from Chapter 3 encouraged the development of a similar system for brain tumor
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analysis. But before developing the interactive application, an extensive literature review was done on brain

tumor image analysis in Chapter 4. The review included relevant researches from almost last 10 years and

discussed the contributions and limitations of various conventional and AI models. The brain MRI features,

benchmark datasets, performance metrics, current challenges, and future research scopes were discussed.

The survey provided some possible future research ideas in the domain with showing the performances of

existing approaches for the researchers.

Chapter 5 experimented on brain tumor segmentation using a less explored domain (i.e., computational

geometry) for brain image analysis. A novel heuristic based Convex hull model was proposed, implemented

and tested with two benchmark datasets to show that although the novel heuristic based method performed

better than conventional Convex hull method for brain tumor segmentation from brain MRIs, the more

recent ML and DL models performed better in general. The experiments with the novel approach showed

that some variations of conventional approach can still perform well for brain tumor image analysis by

providing comparable performance scores with respect to recent ML models.

Chapter 6 represented an enhanced interactive framework using similar idea of the Covid framework from

Chapter 3. But the brain tumor web application was extended to include detection and segmentation models

for both 2D and 3D brain MRIs. The application detected brain tumor with the options of choosing the

whole image properties or some specific features, and provided U-Net and U-Net++ (both 2D and 3D) for

tumor region segmentation. The application also included the feedback facility to refine the future training

by incorporating comments of domain experts on the current results. The options for both 2D and 3D input

images in jpeg, png, dicom, nifti formats added more flexibility to the application for managing real-time

medical system data received from hospitals or medical centers in future.

Another type of medical image used in this thesis was pancreatic CT images and they were discussed in

Chapter 7 and Chapter 8 based on a similar idea as the interactive frameworks for brain tumor and Covid.

Although currently the frameworks for pancreatic cancer images are not as advanced as the other two and

works on detection part only, similar extensive interactive framework will be developed for pancreatic cancer

images in future. Custom CNN, VGG-16, and ResNet models were applied for detecting pancreatic cancer

from CT images and the performances on benchmark datasets showed promising results to enhance the

framework to include other features similar to the Covid and brain tumor frameworks.

Finally, Chapter 9 presented the novel idea of a comprehensive report generation for brain tumor image

analysis combining all possible features of the tumor. The experiments on 2D and 3D brain MRIs provided

reports with different tumor properties like location, area, volume, ratio etc. The tumor ratio were computed

using the segmented tumor and the skull area for the 2D images. But as the 3D nifti MRIs had more

information on different types of brain tumor tissues, the tumor ratio for 3D MRIs computed the ratio of

230



all tumor tissue types to generate more specific information to represent the tumor. Another part of tumor

report detected the type of brain tumor using DL model. The properties of the tumors were extracted

from different datasets in different manners and showed a major limitation and future research scope in

comprehensive report generation. Although the lack of combined brain tumor datasets containing most

features, types and tissues led to multiple implementations for multiple tumor properties extraction, the

experimental results show that generating a complete and comprehensive report is possible with the proper

dataset.

To summarize the insights gained from the whole study-

• the literature reviews provided information regarding the current status of the researches with the

performances, contributions, limitations, datasets, features, etc.,

• the interactive frameworks developed for Covid and brain tumor image analysis showed the possibilities

of developing similar automated systems for other medical images and medical data analysis,

• the Convex hull based brain tumor image analysis represented the prospects of applying variations of

conventional models as ML model alternatives,

• the pancreatic cancer image detection model performances showed that complete interactive frame-

works can be developed for pancreatic cancer CT image analysis by applying similar frameworks as

Covid and brain tumor, and

• the report generation research showed the limitations of the current research on the topic as discussed

above and the experimental results on few datasets showed the possibilities of developing a complete

automated system with comprehensive report generation that can be achieved by future researches to

overcome the aforementioned limitations.

10.2 Future Research Plan

As mentioned above, there are still many challenges in the research area of AI-based medical image analysis

that also provide us with some possible future research scopes. The reviews on the existing researches on

Covid and brain tumor medical images discussed the current challenges and the possible future research

scopes created by those challenges. The interactive frameworks for both Covid and brain tumor image

analysis can be extended to allow any images of any dimension and format, to add more new DL models

as options for the users to apply on the images and including more detail properties of the tumors and/or

infections in the results. Analyzing the CT images and MRIs more to detect and segment separate infection
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and tumor tissues, computing various infection and tumor features (i.e. spatial, biological, etc.), disease

severity prediction will be added in future extensions of these researches. Similarly, a possible future extension

of the research on brain tumor segmentation with Convex hull would be to define a better heuristic-based

approach using other region properties and their combinations to extract only the tumor region from the

image. This would include other image properties like texture, shape and applying brain-based pre-processing

as skull stripping. For the pancreatic ductal adenocarcinoma image analysis, the experiments will be extended

to create similar interactive applications like Covid and brain tumor to automatically detect and segment

the tumors from different types of medical images and to assist the healthcare professionals. Additional

information like the scalability of the system would be included for the automated systems by including

and comparing the computational times for the DL models for the detection, segmentation and classification

on datasets of different sizes, modalities and other characteristics. The automated systems would also be

adjusted based on the datasets. Currently, the interactive frameworks work on limited amount of benchmark

datasets. The framework would be adjusted to accommodate big data analysis in future by modifying the

data pre-processing, augmentation and storage with appropriate resource allocation for large amount of real

time medical images and other types of medical data.

The disease progression report discussed in the previous chapter also mentioned the limitation of data

access of patients over time to track their disease progression. If all necessary data are available, analyzing

and generating comprehensive report on disease progression of each patient and comparative analysis of all

patients for decision making will be a promising research area. Another possible future research plan will

be developing an advanced interactive system for prostate cancer detection and segmentation from different

types of patient data. An interactive application similar to the brain tumor and Covid is already being

developed for prostate cancer CT image analysis and the system is enhanced to incorporate not only medical

images, but also other patient data and their gene expression data to combine all for more specific report

generation on prostate cancer. As the prostate cancer research is being implemented with the collaboration

of domain experts in prostate cancer, the system will be enhanced using real time patient data collected from

the collaborators and they will contribute to provide feedbacks on the outputs of the automated system to

improve the performance of the abnormality detection, segmentation, classification and report generation.

The real-time data will also help to test the accuracy of the developed system and improve the false positives

and false negative results.

Currently, due to the diversities of image types, organ characteristics and types, one single framework

to combine all types of health issues for every organ is a challenging task. Another issue with developing

such a system is the unavailability of larger and complete benchmark annotated datasets combining medical

images and clinical data of the patients to train the DL models. Generating consistent benchmark datasets

232



for all organs so that they all have similar data formats, and include all possible previous and current

information about the patient necessary for health issue analysis is a necessary research domain that should

be explored by doctors, radiologists, and other healthcare professionals to create the possibility of developing

a generalized system for any health issues. Developing a complete framework that can store both clinical

data and medical image data of patients, keep track of regular updates of the patients, and can automatically

generate comprehensive reports not only on disease detection, segmentation and classification, but also on

every aspect of all data for the patients as well as tracking their disease progressions by image processing

and natural language processing will be a possible future research domain.
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[1] Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for covid-19

medical image analysis. Medical Biological Engineering Computing, pages 1–41, 2023.
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proach for brain tumor classification and segmentation using a multiscale convolutional neural network.

Healthcare, 9(2):153, 2021.

[220] Sharif M, Amin J, Raza M, Yasmin M, Satapathy SC. An integrated design of particle swarm op-

timization (pso) with fusion of features for detection of brain tumor. Pattern Recognition Letters,

129:150–157, 2020.

[221] Verma H, Verma D, Tiwari PK. A population based hybrid fcm-pso algorithm for clustering analysis

and segmentation of brain image. Expert Systems with Applications, 167:114121, 2020.

[222] Wadhwa A, Bhardwaj A, Verma VS. A review on brain tumor segmentation of mri images. Magnetic

Resonance Imaging, 61:247–259, 2019.

[223] Magadza T, Viriri S. Deep learning for brain tumor segmentation: a survey of state-of-the-art. Journal

of Imaging, 7(2):19, 2021.

[224] Rehman HZ, Hwang H, Lee S. Conventional and deep learning methods for skull stripping in brain

mri. Applied Sciences, 10(5):1773, 2020.

252



[225] Fatima A, Shahid AR, Raza B, Madni TM, Janjua UI. State-of-the-art traditional to the machine-and

deep-learning-based skull stripping techniques, models, and algorithms. Journal of Digital Imaging,

33:1443–1464, 2020.

[226] Ilhan U, Ilhan A. Brain tumor segmentation based on a new threshold approach. Procedia Computer

Science, 120:580–587, 2017.

[227] Devanathan B, Venkatachalapathy K. An optimal multilevel thresholding based segmentation and

classification model for brain tumor diagnosis. 2020 4th International Conference on Electronics and

Communication and Aerospace Technology (ICECA), IEEE, pages 1133–1138, 2020.

[228] Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S. Fast level set method for glioma brain

tumor segmentation based on superpixel fuzzy clustering and lattice boltzmann method. Computer

Methods and Programs in Biomedicine, 198:105809, 2021.

[229] Khalil HA, Darwish S, Ibrahim YM, Hassan OF. 3d-mri brain tumor detection model using modified

version of level set segmentation based on dragonfly algorithm. Symmetry, 12(8):1256, 2020.

[230] Islam MM, Kashem MA. Parametric active contour model-based tumor area segmentation from brain

mri images using minimum initial points. Iran Journal of Computer Science, 4:1–8, 2021.

[231] Shivhare SN, Kumar N, Singh N. A hybrid of active contour model and convex hull for automated

brain tumor segmentation in multimodal mri. Multimedia Tools and Applications, 78(24):34207–34229,

2019.

[232] Alipour N, Hasanzadeh RP. Superpixel-based brain tumor segmentation in mr images using an ex-

tended local fuzzy active contour model. Multimedia Tools and Applications, 80(6):8835–8859, 2021.

[233] Sheela CJ, Suganthi GJ. Morphological edge detection and brain tumor segmentation in magnetic

resonance (mr) images based on region growing and performance evaluation of modified fuzzy c-means

(fcm) algorithm. Multimedia Tools and Applications, pages 1–14, 2020.

[234] Bharathi AS, Manimegalai D. 3d digital reconstruction of brain tumor from mri scans using delaunay

triangulation and patches. ARPN J. Eng. Appl. Sci, 10:9227–9232, 2015.

[235] Shally HR, Chitharanjan K. Tumor volume calculation of brain from mri slices. International Journal

of Computer Science & Engineering Technology (IJCSET), 4(8):1126–1132, 2013.

[236] Roy S, Nag S, Maitra IK, Bandyopadhyay SK. Artefact removal and skull elimination from mri of

brain image. International Journal of Scientific and Engineering Research, 4(6):163–170, 2013.

253



[237] Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation:

achievements and challenges. Journal of Digital Imaging, 32:582–596, 2019.

[238] Cheplygina V, de Bruijne M, Pluim JP. Not-so-supervised: a survey of semi-supervised, multi-instance,

and transfer learning in medical image analysis. Medical Image Analysis, 54:280–296, 2019.

[239] Al-Galal SA, Alshaikhli IF, Abdulrazzaq MM. Mri brain tumor medical images analysis using deep

learning techniques: a systematic review. Health and Technology, pages 1–16, 2021.

[240] Abd-Ellah MK, Awad AI, Khalaf AA, Hamed HF. A review on brain tumor diagnosis from mri

images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging,

61:300–318, 2019.

[241] Han C, Rundo L, Araki R, Furukawa Y, Mauri G, Nakayama H, Hayashi H. Infinite brain mr im-

ages: Pggan-based data augmentation for tumor detection. Neural Approaches to Dynamics of Signal

Exchanges, pages 291–303, 2020.

[242] Shapiro LG, Stockman GC. Computer vision. Upper Saddle River: Prentice–Hall, 2001.

[243] Smith SW. The scientist and engineer’s guide to digital signal processing (vol 14). San Diego: California

Technical Pub., 1997.

[244] Ayodele TO. Types of machine learning algorithms. New Advances in Machine Learning, 3:19–48,

2010.

[245] Ray S. A quick review of machine learning algorithms. In 2019 International Conference on Machine

Learning, Big Data, Cloud and Parallel Computing (COMITCon), IEEE, pages 35–39, 2019.

[246] IBM. What is machine learning? Available at https://www.ibm.com/topics/machine-learning

(28/04/2023).

[247] Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access, 7:53040–

53065, 2019.

[248] Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: A review.

Neurocomputing, 187:27–48, 2016.

[249] Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H. Cnn variants for com-

puter vision: history, architecture, application, challenges and future scope. Electronics, 10(20):2470,

2021.

254



[250] Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-net and its variants for medical image segmen-

tation: a review of theory and applications. IEEE Access, 9:82031–82057, 2021.

[251] Malhotra P, Gupta S, Koundal D, Zaguia A, Enbeyle W. Deep neural networks for medical image

segmentation. Journal of Healthcare Engineering, 2022.

[252] Nazir M, Shakil S, Khurshid K. Role of deep learning in brain tumor detection and classification (2015

to 2020): a review. Computerized Medical Imaging and Graphics, 91:101940, 2021.

[253] Wikipedia. Otsu’s method. Available at https://en.wikipedia.org/wiki/Otsu\’smethod

(28/04/2023).

[254] Graham RL, Yao FF. Finding the convex hull of a simple polygon. Journal of Algorithms, 4(4):324–331,

1983.

[255] Srinivasa Reddy A, Chenna Reddy P. Mri brain tumor segmentation and prediction using modified

region growing and adaptive svm. Soft Computing, 25(5):4135–4148, 2021.

[256] Thayumanavan M, Ramasamy A. An efficient approach for brain tumor detection and segmentation

in mr brain images using random forest classifier. Concurrent Engineering, 29(3):266–274, 2021.

[257] Pitchai R, Supraja P, Victoria AH, Madhavi M. Brain tumor segmentation using deep learning and

fuzzy k-means clustering for magnetic resonance images. Neural Processing Letters, 53:1–14, 2020.

[258] Arunkumar N, Mohammed MA, Abd Ghani MK, Ibrahim DA, Abdulhay E, Ramirez-Gonzalez G,

de Albuquerque VH. K-means clustering and neural network for object detecting and identifying

abnormality of brain tumor. Soft Computing, 23(19):9083–9096, 2019.

[259] Angulakshmi M, Priya GL. Walsh hadamard transform for simple linear iterative clustering (slic)

superpixel based spectral clustering of multimodal mri brain tumor segmentation. Irbm, 40(5):253–

262, 2019.

[260] Wikipedia. Fast walsh–hadamard transform. Available at https://en.wikipedia.org/wiki/Fast\

_Walsh\%E2\%80\%93Hadamard\_transform (28/04/2023).

[261] Anantharajan S, Gunasekaran S. Automated brain tumor detection and classification using weighted

fuzzy clustering algorithm, deep auto encoder with barnacle mating algorithm and random forest

classifier techniques. International Journal of Imaging Systems and Technology, 31(4):1970–1988, 2021.

255



[262] Kumar DM, Satyanarayana D, Prasad MG. Mri brain tumor detection using optimal possibilistic

fuzzy c-means clustering algorithm and adaptive k-nearest neighbor classifier. Journal of Ambient

Intelligence and Humanized Computing, 12(2):2867–2880, 2021.

[263] Lin F, Wu Q, Liu J, Wang D, Kong X. Path aggregation u-net model for brain tumor segmentation.

Multimedia Tools and Applications, 80:22951–22964, 2021.

[264] Aboelenein NM, Songhao P, Koubaa A, Noor A, Afifi A. Httu-net: hybrid two track u-net for automatic

brain tumor segmentation. IEEE Access, 8:101406–101415, 2020.

[265] Zhang J, Zeng J, Qin P, Zhao L. Brain tumor segmentation of multi-modality mr images via triple

intersecting u-nets. Neurocomputing, 421:195–209, 2021.

[266] Sharif MI, Li JP, Khan MA, Saleem MA. Active deep neural network features selection for segmentation

and recognition of brain tumors using mri images. Pattern Recognition Letters, 129:181–189, 2020.

[267] Sun J, Peng Y, Guo Y, Li D. Segmentation of the multimodal brain tumor image used the multi-

pathway architecture method based on 3d fcn. Neurocomputing, 423:34–45, 2021.

[268] Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y. Cross-modality deep feature learning for brain

tumor segmentation. Pattern Recognition, 110:107562, 2021.

[269] Chen H, Qin Z, Ding Y, Tian L, Qin Z. Brain tumor segmentation with deep convolutional symmetric

neural network. Neurocomputing, 392:305–313, 2020.

[270] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[271] Amin J, Sharif M, Raza M, Saba T, Sial R, Shad SA. Brain tumor detection: a long short-term

memory (lstm)-based learning model. Neural Computing and Applications, 32(20):15965–15973, 2020.

[272] Zhang J, Jiang Z, Dong J, Hou Y, Liu B. Attention gate resu-net for automatic mri brain tumor

segmentation. IEEE Access, 8:58533–58545, 2020.

[273] Zhou X, Li X, Hu K, Zhang Y, Chen Z, Gao X. Erv-net: an efficient 3d residual neural network for

brain tumor segmentation. Expert Systems with Applications, 170:114566, 2021.

[274] Moeskops P, Wolterink JM, Van Der Velden BH, Gilhuijs KG, Leiner T, Viergever MA, Išgum I. Deep
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