60 research outputs found

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    Mechanical engineering challenges in humanoid robotics

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 36-39).Humanoid robots are artificial constructs designed to emulate the human body in form and function. They are a unique class of robots whose anthropomorphic nature renders them particularly well-suited to interact with humans in a world designed for humans. The present work examines a subset of the plethora of engineering challenges that face modem developers of humanoid robots, with a focus on challenges that fall within the domain of mechanical engineering. The challenge of emulating human bipedal locomotion on a robotic platform is reviewed in the context of the evolutionary origins of human bipedalism and the biomechanics of walking and running. Precise joint angle control bipedal robots and passive-dynamic walkers, the two most prominent classes of modem bipedal robots, are found to have their own strengths and shortcomings. An integration of the strengths from both classes is likely to characterize the next generation of humanoid robots. The challenge of replicating human arm and hand dexterity with a robotic system is reviewed in the context of the evolutionary origins and kinematic structure of human forelimbs. Form-focused design and function-focused design, two distinct approaches to the design of modem robotic arms and hands, are found to have their own strengths and shortcomings. An integration of the strengths from both approaches is likely to characterize the next generation of humanoid robots.by Peter Guang Yi Lu.S.B

    Robotic Grasping: A Generic Neural Network Architecture

    Get PDF

    Manipulation of unknown objects to improve the grasp quality using tactile information

    Get PDF
    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approachPeer ReviewedPostprint (published version

    Manos Robóticas Antropomórficas: una revisión

    Get PDF
    This paper presents a review on main topic regarding to anthropomorphic robotic hands developed in the last years, taking into account the more important mechatronics designs submit on the literature, and making a comparison between them. The next chapters deepen on level of anthropomorphism and dexterity in advanced actuated hands and upper limbs prostheses, as well as a brief overview on issues such as grasping, transmission mechanisms, sensory and actuator system, and also a short introduction on under-actuated robotic hands is reported.Este artículo presenta una revisión de los principales desarrollos que se han hecho en los últimos años en manos robóticas antropomórficas. Las primeras secciones tratan temas como el grado de antropomorfismo y de destreza en las manos robóticas más avanzadas, incluyendo una comparación entre ellas. También se abordan temas como la capacidad de agarre de los efectores finales, los mecanismos de trasmisión, el sistema actuador y sensórico, así como una breve introducción al tema de manos robóticas sub-actuadas. Dirección de correspondencia: Carrera 11 # 101-80, Bogotá (Colombia)

    Structured manifolds for motion production and segmentation : a structured Kernel Regression approach

    Get PDF
    Steffen JF. Structured manifolds for motion production and segmentation : a structured Kernel Regression approach. Bielefeld (Germany): Bielefeld University; 2010

    Modeling and control of an anthropomorphic robotic hand

    Get PDF
    Mención Europea en el título de doctorThis thesis presents methods and tools for enabling the successful use of robotic hands. For highly dexterous and/or anthropomorphic robotic hands, these methods have to share some common goals, such as overcoming the potential complexity of the mechanical design and the ability of performing accurate tasks with low and efficient computational cost. A prerequisite for dexterity is to increase the workspace of the robotic hand. For this purpose, the robotic hand must be considered as a single multibody system. Solving the inverse kinematics problem of the whole robotic hand is an arduous task due to the high number of degrees of freedom involved and the possible mechanical limitations, singularities and other possible constraints. The redundancy has proven to be of a great usefulness for dealing with potential constraints. To be able to exploit the redundancy for dealing with constraints, the adopted method for solving the inverse kinematics must be robust and extendable. Obviously, addressing such complex problem, the method will certainly be computationally heavy. Thus, one of the aims of this thesis is to resolve the inverse kinematics problem of the whole robotic hand under constraints, taking into account the computational cost. To this end, this thesis extends and reduces the most recent Selectively Damped Least Squares method which is based on the computation of all singular values, to deal with constraints with a minimum computational cost. New estimation algorithm of singular values and their corresponding singular vectors is proposed to reduce the computational cost. The reduced extended selectively damped least squares method is simulated and experimentally evaluated using an anthropomorphic robotic hand as a test bed. On the other hand, dexterity depends not only on the accuracy of the position control, but also on the exerted forces. The tendon driven modern robotic hands, like the one used in this work, are strongly nonlinear dynamic systems, where motions and forces are transmitted remotely to the finger joints. The problem of modeling and control of position and force simultaneously at low level control is then considered. A new hybrid control structure based on the succession of two sliding mode controllers is proposed. The force is controlled by its own controller which does not need a contact model. The performance of the proposed controller is evaluated by performing the force control directly using the force sensor information of the fingertip, and indirectly using the torque control of the actuator. Finally, we expect that the applications of the methods presented in this thesis can be extended to cover different issues and research fields and in particular they can be used in a variety of algorithm that require the estimation of singular values.This work was partially supported by the European project HANDLE, FP7-231640, and by the Spanish ministry MICINN through FPI scholarship within the project DPI-2005-04302.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Anis Sahbani.- Secretario: Fares Jawad Moh D Abu-Dakka.- Vocal: Claudio Ross
    corecore