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Abstract— We deal with the problem of teaching a robot to
manipulate everyday objects through human demonstration.
We first design a task descriptor which encapsulates important
elements of a task. The design originates from observations that
manipulations involved in many everyday object tasks can be
considered as a series of sequential rotations and translations,
which we call manipulation primitives. We then propose a
method that enables a robot to decompose a demonstrated
task into sequential manipulation primitives and construct a
task descriptor. We also show how to transfer a task descriptor
learned from one object to similar objects. In the end, we
argue that this framework is highly generic. Particularly, it
can be used to construct a robot task database that serves
as a manipulation knowledge base for a robot to succeed in
manipulating everyday objects.

I. INTRODUCTION

Having robots that are capable of doing meaningful jobs in
human environments, such as homes, offices, or restaurants,
has been attracting an increasing amount of attention from
researchers. Not only does it improve the quality of life but
it also frees people from many chores. Several researchers
have proposed methods from different perspectives for robots
to open doors [1], [2], [3], [4], [5]. A group consisting of
researchers from Intel and CMU built Herb [6], which is a
butler robot in a home environment. Other similar robots are
the ARMAR humanoid robot [7], the HRP-2 robot [8], and
the Care-o-bot II [9]. Although these works have provided
robots with more intelligent capabilities, they require explicit
programming by robotics experts and they are pre-designed
for specific tasks. This inherently leaves adaptability of
these capabilities a problem when a robot works in different
environments. The reasons for this are threefold. First, it is
often difficult or even impossible to take into account all the
possible environments robots can work in during the initial
design. Second, specifications of tasks, even similar ones,
can vary dramatically and it is difficult to satisfy different
task specifications in a pre-programmed manner. Third, with
the increasing use of robots, the overwhelming number of
different tasks required for robots makes it impossible for
experts to program every one of them.

To solve this problem, we need a more generic way to
generate robot skills which are adaptive to different working
environments. This solution should have an internal generic
representation of tasks that is comprehensible to robots and
transferable to basic physical robot manipulations. It needs
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to provide a way for automatic robot learning to transfer
human knowledge into an internal generic representation.
It should be easy for non-experts to construct robot skills
and it has to be generic enough for long-term robot learning
and evolution. Programming by demonstration (PbD) is a
promising approach to this end. Instead of programming a
robot through machine commands, the PbD technique allows
end users to teach robots new behaviors by demonstrating
them in the end-user environment. In this framework, robot
learning benefits from the following aspects. First, end users
are most knowledgeable about the exact tasks robots are
intended to accomplish. Second, robot skills are generated
in the exact final working environment. These factors make
the robot learning under the PbD framework more effective
and efficient. In this realm, Calinon et al. presented a PbD
framework for representing and generalizing a task [10].
Dillmann developed an approach for teaching a robot typical
tasks required in everyday household environments [11].
Rusu et. al. built a robot that operates autonomously within
a sensor-equipped kitchen [12]. Ekvall and Kragic proposed
techniques for task level learning and planning [13]. Kober
et. al. [14] and Theodorou et. al. [15] used machine learning
techniques to teach robots motor skills. Other related works
include [16], [17], [18], and [19].

Most of the work discussed above is either at a low level
(i.e. at motor control layer), or a high level, (i.e. at logic
reasoning layer). A notable exception is the work of Prats
et al. [20]. However, there is still a gap between these two
different levels. On the one hand, in order to improve robot
flexibility and adaptability, a generic task representation is
needed. This creates a connection upwards to a high-level
task description. On the other hand, a technique to connect
with a low-level physical motor movement is needed for the
execution of the high-level task description.

Our work is at the middle layer where we design a
framework that is feasible for the high-level task abstraction
and the low-level motion execution. In Section II, we propose
a design of a task descriptor. In Section III and IV, we discuss
about how to obtain each element of a task descriptor. In
Section V, we describe how a task is executed and how a task
descriptor learned on one object can be transferred to similar
objects. Experiments on everyday object manipulations are
shown in Section VI followed by conclusions in Section VII.

II. DESIGN OF A TASK DESCRIPTOR

In this section, we first show a collection of everyday
object manipulations and then conclude with a design of a
task descriptor.
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A. Observations

The design of a task descriptor is based on observations
of tasks on everyday objects, such as opening doors, opening
drawers, opening bottle caps, etc. Fig. 1 shows a series of
these everyday objects. A human hand is the end effector in
a task. The trajectory of a human hand during a manipulation
provides most of the information of this task. Considering the
fact that during a task execution the human hand is relatively
still with respect to the object, we can say the motion of rigid
parts of the object also carries equivalent information. This
information tells us what motions are involved to accomplish
the task. By closely examining motions in these tasks, we
can see that most of them can be modeled as a chain of
rotations and translations. In Fig. 1, the rotation axis and the
translation direction are illustrated with solid black lines. For
example, opening a door includes two rotations, along axis
I and along axis II as shown in Fig. 1(f).

B. Manipulation Primitive

Based on the observations above, a task on an everyday
object can be decomposed into a chain of sequential ma-
nipulations represented by rotations and translations. This is
related to the kinematic models of the objects [21], [22] or
related motion between rigid bodies [23]. This manipulation
chain is the most important part in describing a task. It
specifies the motions of each step. We call each of these
rotations or translations a manipulation primitive. We define
manipulation primitive as follows.

Definition 1 (Manipulation Primitive): A manipulation
primitive is a pair of vectors,

P = ⟨pos, dir⟩ (1)

where
• pos = [px, py, pz] is a point in 3D space where the

rotation axis is located. It is ignored in the translation
case.

• dir = [dx, dy, dz] is a direction for both rotation and
translation. In rotation, it denotes the direction of the
rotation axis. In translation, it denotes the translation
direction.

As an example, a door-opening task consists of two
sequential rotation manipulation primitives as is shown in
Fig. 1(f). Both of these rotation axes need to be defined in
the 3D door coordinate system so that a robot can transfer
this chain of notations to a chain of physical motions.

C. Task Descriptor

Based on manipulation primitives above, we can now
synthesize a task. We give the following definition for a task
descriptor.

Definition 2 (Task Descriptor): A task descriptor T , is a
pentuple

T = ⟨O,A,G,M, C⟩ (2)

where
• O refers to the 3D object geometry, e.g. a scanned door

handle model.

• A is an action identifier, e.g. “open”.
• G denotes a representation of the grasp in the demon-

stration, e.g. an eigengrasp [24].
• M = {P1, P2, ..., Pk} is a manipulation chain con-

sisting of k manipulation primitives, where Pi, i ∈
[1, k] denotes the i-th manipulation primitive (e.g. M
for opening a door should contain two manipulation
primitives. One is a rotation on the door handle. The
other is a rotation around the door hinge.)

• C is used for extra information such as task constraints
and transition conditions. The transition conditions de-
fine when the robot should shift from an execution of
the current manipulation primitive to the next. In our
implementation, C stores the moving distance along the
translation direction or the rotation angle around the
rotation axis demonstrated by the end user.

III. LEARNING A MANIPULATION CHAIN

A task can contain more than one manipulation primitive,
combined together as a manipulation chain M inside a task
descriptor T . This section deals with the problem that given
a demonstration by a human, how can a robot automatically
learn from this demonstration the sequential manipulation
primitives and construct a manipulation chain?

A. Human Demonstration

A human demonstration should be as natural as possible.
During the demonstration, the robot should be able to see
how the human is manipulating the object and reason based
on what it sees or records. In our problem, we assume what
the robot sees is the motion of discrete points on the object
and the human hand. If these points sample the object in a
way such that they cover every rigid part of the articulated
object, the information of how the object is manipulated
is embedded in the trajectories of those visible points.
Considering that the human hand is relatively still to the
object as mentioned in Sec. II-A, the trajectory of the human
hand also contains the information of the manipulation.

B. Learning A Translation

Given a trajectory of one marker with n records, say Tr =
{p1, p2, ..., pn}, where pi = [xi, yi, zi]

T , assume they are
all on one individual translation axis. We want to extract
the translation axis ℓt out of this trajectory Tr. We apply
PCA analysis on these records and find out the direction
of the largest covariance. This direction corresponds to the
translation axis. We have dir = ℓt = emax where emax is
the eigenvector of the eigenvalue with the largest magnitude.

Because translation is just a direction, we do not need
a specific point to locate the origin of the motion. A
manipulation primitive learned for a translation only uses the
dir part in P and ignores the pos part, which is PTransl =
⟨undefined, emax⟩

C. Learning A Rotation

Given a trajectory of one marker with n records, say Tr =
{p1, p2, ..., pn}, assume they are produced by a rotation of
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(a) speaker button (b) door handle (c) bottle cap (d) key (e) switch (f) whole door

Fig. 1. Observations on everyday object manipulations. Axis of rotations or translations are annotated in the images.

this marker around an axis ℓr. We want to locate this axis
to specify our manipulation primitive PRot. To specify this
axis, we need six parameters. We first calculate the direction
of the axis, dir, and then locate the axis by calculating a
point, pos, through which the axis passes.

Considering a marker rotating around one fixed axis, we
know ideally all the points on its trajectory should be on
one plane, which is orthogonal with respect to the rotation
axis. Thus, we know for point locations in this trajectory,
there must exist one dimension where the variance of points
is significantly small, theoretically zero. This dimension
corresponds to the eigenvector of the eigenvalue of the
smallest magnitude. Then when we apply PCA analysis on
a trajectory of a rotation, the eigenvector corresponding to
the eigenvalue of the smallest magnitude is the rotating axis.
We have dir = emin where emin is the eigenvector of the
eigenvalue with smallest magnitude.

We need to determine a point in space, pos, where this
axis passes through. This is done by circle fitting in the
plane, which is spanned by the eigenvectors of the two largest
eigenvalues in magnitude, to locate the center in this plane
and reverse projecting it to the original space.

D. A Translation or A Rotation

Given a trajectory, we need to decide whether it is a trans-
lation or a rotation before we apply any analysis described
above. If it is a rotation, the points should be on a plane
spanned by two orthogonal directions. If it is a translation,
the points should be on a single line spanned by one
direction. So, we apply PCA analysis on the trajectory and
compare the magnitude of the three eigenvalues. We define a
threshold T0 ∈ [0, 1] to distinguish rotation from translation
via the following function. We assume the magnitude of the
eigenvalues are already ordered such that λ1 ≥ λ2 ≥ λ3,
where λi is the magnitude of the i-th eigenvalue.

Motion =

 rot if λ3 < T0S & λ2 > T0S
transl if λ1 > (1− T0)S

undefined if otherwise
(3)

where S =
∑3

i=1 λi.

E. Learning A Manipulation Chain

The raw data observed by a robot is a sequence of 3D
locations of markers. These trajectories can contain multiple
manipulation primitives and we need to segment records
from different manipulation primitives.

(a) Opening a rotating door. (b) Opening a sliding door.

Fig. 2. Trajectory Segmentation

TABLE I
TRAJECTORY SEGMENTATION

Input: {(p1, t1), ...(pi, ti), ...(pn, tn)}, where pi = [xi, yi, zi] and k

Output: {k1, ...ki, ...kn}, where ki ∈ [1, k]

1. compute affinity matrix A as

Aij = exp (−||pi − pj ||2/2δ2p − ||ti − tj ||2/2δ2t )
2. construct matrix L = D

1
2 AD− 1

2 where Dii =
∑N

j=1 Aij

3. compute matrix E = [e1, ..., ek], where ei is normalized first k

largest eigenvectors of L

4. treat each row of E as a point in Rk , cluster them into k clusters by

K-Means clustering algorithm

5. assign the original point to cluster i if row j of E was assigned to

cluster i

1) Trajectory Segmentation: Given a trajectory of n
records, Tr = {(x1, y1, z1, t1), ..., (xn, yn, zn, tn)}, the tra-
jectory segmentation algorithm divides it into k segments
such that each segment corresponds to one individual ma-
nipulation primitive. We use spectral clustering [25] to do
the segmentation. In Table I, we illustrate the algorithm
in detail. Fig. 2 shows several segmentation results based
on this algorithm. The parameter k is set by the end user
depending on how many different segments that may exist
in the demonstrated trajectory.

2) Constructing A Manipulation Chain: Based on the
trajectory segmentation result, we have divided the whole
trajectory into k segmented trajectories, i.e. Tr =
{Tr1, T r2, ...T rk}. Each of these k trajectories is from one
manipulation primitive. We apply our analysis as described
in Sections III-B and III-C to each trajectory Tri and get
the corresponding manipulation primitive Pi. Putting them
together in their original temporal order, we can construct a
manipulation chain M = {P1, P2, ..., Pk}. Fig. 4 shows the
results of the learned manipulation primitives. Sometimes, a
trajectory is in fact neither a rotation nor a translation, e.g.
the hand approach trajectory in Fig. 2(b). In these cases the
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motion is classified as undefined and the algorithm will delete
this trajectory and eliminate it from the final manipulation
chain.

IV. GRASP PLANNING

Once the task primitives and manipulation chain have been
learned, we need to compute a grasp on the object for the
task. This is an example of task-oriented grasp planning [26]
[27]. This approach takes into account the specific task and
hence may result in a more effective grasp for the task.
Adaptability is an important aspect in object manipulation
and task-oriented grasp planning is important for robots
working in environments which are constantly changing.

To compute our grasp, we use knowledge learned from the
human demonstration of the task. During the learning phase,
we can track the human wrist position using a 6 DOF pose
sensor (e.g. Flock-of-Birds magnetic sensor). This provides
us with an approach and orientation vector for the grasp. To
select the actual grasp with the robotic hand, we cannot use
the human grasp finger positions as our robotic end-effector
will have different kinematics than a human hand.

A solution is to use our online eigengrasp grasp planner
which is a part of our GraspIt! simulator [24], [28]. This
planner takes the wrist position of the hand V and a model
of an object to be grasped O and computes a stable grasp. It
works in real-time by using eigengrasps which dramatically
reduce the dimensionality of the search for a stable grasp.

We now describe our method for the example of opening
a door (see figure 3). The user’s wrist position is tracked in
3D space during the learning phase using the Flock-of-Birds
sensor. To generate an object model, we use a Microscribe
3D digitizer to get a model of the handle. The on-line
eigengrasp planner then plans a stable grasp using the wrist
position of the robotic hand specified and the modeled object
O. In our case, the physical robot hand used is a Barrett hand.
This grasp is stored in the task descriptor and used by the
task execution module which executes the learned task.

This user-interactive grasp planning approach allows us
to combine the user’s prior knowledge on the selection
of good grasp locations and the power of the eigengrasp
planner. Since the process is interactive and real-time, users
can modify the grasp candidate as they change approach
directions. For the grasp representation G we use the first
two eigengrasps which we store along with the 6 DOF of the
wrist position as G = [a1, a2, wrist pos] where a1 and a2 are
the amplitudes along the first two eigengrasp directions and
wrist pos ∈ R6 specifies the extrinsic DOFs to determine
the position and orientation of the wrist. This very compact
representation makes the task extensible to other robotic
hands, and allows us to transfer this learned grasp from one
robotic hand to another.

V. TASK EXECUTION AND TRANSFER

We discussed how to learn a task and construct the
corresponding task descriptor from a human demonstration.
With such a task descriptor, a robot can execute this learned
task. Also, this task descriptor allows us to transfer tasks
learned from one object to similar objects.

(a) Planned grasp (b) A closeup

Fig. 3. Grasp planning using the on-line grasp planner

A. Task Execution

Given a required task T , which is associated with an action
A and an object O, the robot first registers the object in the
real world with its internal geometry representation of the
object O. It then goes to the position specified by G and
applies this grasp. After this, the robot generates the required
motion of the hand according to the manipulation chain M
and executes the task.

B. Task Transfer

Consider opening a bottle cap as illustrated in Fig. 1(c) as
an example. We want to apply a task descriptor learned on
it to similar bottles. We formalize this problem as follows:
given a task descriptor T and an object O′ which is geo-
metrically similar to O ∈ T , how can a robot build a task
descriptor T ′ on O′ which has the same semantic meaning
as T ? To transfer a task descriptor T to T ′, we need to
transfer the motion primitives M ∈ T as well as the grasp
G ∈ T and construct M′ and G′.

The transformation can be obtained by aligning the two
objects. We use the Iterative Closest Point algorithm (ICP)
[29] to compute the transformation between the two objects
O and O′. Let Tr be the transformation from O to O′.
Then, generating the new motion primitives can be done by
applying Tr to the old ones. The corresponding location and
orientation of the new grasp can be computed in the same
way. Based on this, a new task descriptor is constructed. We
note that this is dependent on how good the alignment is. In
the following section, we show an example of transferring a
bottle-cap-opening task.

VI. EXPERIMENTS AND INITIAL RESULTS

A. Experiment setups

We have done three experiments for task execution and one
experiment for task transfer. During human demonstration,
a motion capture system (optiTrack) was used to record 3D
marker trajectories. These markers were placed on the experi-
mental objects by the end user. Trajectories of these markers
were then fed as input to the manipulation chain learning
algorithm discussed in Section III. For grasp planning, a
Flock-of-Birds sensor was used for locating hand wrist. An
accurate geometrical model of the object was obtained with
a Microscribe 3D digitizer and was provided to the grasp
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(a)

(b) (c)

Fig. 4. 3-D objects with the manipulation primitive annotations.

planner discussed in section IV. Once we had learned the
manipulation chain and computed the grasp, we were able to
effect task execution. In the task execution, we again used the
3D digitizer to manually register the object with the robot’s
coordinate system and the motion capture system.

B. Opening a microwave - Learning a rotation

In this experiment, three markers were placed on the door
of the microwave. Fig. 4(a) shows a texture-mapped 3D
model of the microwave with the rotation axis learned by
our algorithm overlaid on it. Fig. 5(a) to 5(e) show the task
execution when a robot rotated the microwave door open.

C. Opening a sliding door - Learning a translation

In the PbD phase, four markers were placed on the sliding
door and one marker was placed on the thumb of the user.
Markers on the thumb have two major trajectories. The
first part corresponds to the reaching action. The second
part corresponds to the sliding action. Fig. 2(b) shows the
segmentation of the trajectory of a marker on the thumb. Fig.
4(b) shows the 3D model with the translation axis learned
by our algorithm. Fig. 5(f) to 5(j) show the task execution
when a robot slid the cabinet door open according to the task
descriptor learned.

D. Opening a door - Learning two rotations

In the PbD phase, three markers were placed on the door
and the handle. Markers on the handle have two main trajec-
tories, i.e. one rotation along the handle hinge and another
along the door hinge. Fig. 2(a) shows the segmentation of the
trajectory of a marker on the door handle. Fig. 4(c) shows the
3D model with the rotation axes learned by our algorithm.
We did not do task execution on this since the door is not
within the working space of the robot.

E. Task Transfer - Transfer a bottle-cap-opening task

Opening the left bottle in Fig. 5(k) was performed by the
user and the corresponding task descriptor was constructed.
This experiment was meant to transfer this task descriptor to

another similar but novel bottle, which is on the right in Fig.
5(k). The digitizer was used to model the two bottle caps.
The method discussed in Section V-B was applied to align
the two bottle caps and transfer the learned task descriptor
to the new bottle. We did not use the whole bottle data for
the alignment, because only the bottle caps are the functional
part of the bottle during the task. There is a 6-degree offset
between the transferred rotation axis and the ideal axis. The
axis passes through the bottle cap at a distance of 4mm from
its surface center. Fig. 5(l) to 5(o) show an experiment when
a robot executes this new task descriptor to open the novel
bottle. We see the error in the alignment was accurate enough
and the task was successfully executed.

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework for Robot Learning by Demon-
stration is proposed. This framework goes from a high level
task abstraction to a low level motion generation. First, a
generic task descriptor is designed based on observations of
everyday object manipulations. Then, a method for robots to
automatically learn from human demonstration and construct
such task descriptors is developed. In our experiments, we
showed results for this design and implementation.

Although the task descriptor proposed in this paper cannot
model all the tasks in our everyday life, it works for many
of those we encounter. To make it more generic, we will
be working on more motion primitives, e.g. B-splines and
spiral curves and more comprehensive representation of the
task constraints as in C. We argue that this framework is
extendable by taking advantage of recent shape matching
advances in robot manipulation. Considering different ob-
jects with similar functions, such as different door handles
in Fig. 1(d) and 1(f), we should expect them to share very
similar geometries - they all have a horizontal bar and it can
be rotated. With shape matching techniques, task descriptors
can be transfered between objects with similar geometries.
This makes our framework extendable to a more general
case where task descriptors are generated based on one
specific object but are capable of being applied to many other
similar objects. In Section VI-E, we showed an experiment
of task transfer on opening a bottle cap. As we mentioned in
Section V-B, task transfer relies on good alignment between
objects. Our current ICP method does not handle scaling
or shearing between objects very well. To alleviate this
problem, we are currently implementing advanced shape
matching and alignment techniques from our previous work
[30]. In the trajectory segmentation algorithm, the parameter
k is set by the user. In the future, we will be working on
algorithms to make this process automatic. One solution is
using techniques developed by Lihi Zelnik-manor and Pietro
Perona [31]. In the task execution phase, we registered the
object to the robot manually and we will also be working on
automating this process using vision techniques.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. Experiments. 5(a) to 5(e) show the robot opening a microwave. 5(f) to 5(j) show the robot sliding open a cabinet. 5(l) to 5(o) show the robot
rotating open the bottle cap based on the task descriptor transfered from the bottle-cap-opening task learned on the vitamin bottle (left in 5(k)).
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