68 research outputs found

    Ship formation control via output feedback with unknown dynamics

    Get PDF
    研究了仅利用相对位置信息和相对航向信息的船舶编队输出反馈控制问题.首先使用leader-follower策略,建立了船舶编队的运动学模型.然后应; 用微分同胚变换将系统解耦成3个子系统.根据船舶低频运动的特点,在跟随船水动力学模型中粘性水动力和力矩未知以及所有船舶速度都不可测量的假定下,提出; 了一种高增益广义比例积分观测器来估计这些未知和不可测量动态.在高增益广义比例积分观测器的基础上,分别设计了线性输出反馈控制器和输入饱和受限的输出; 反馈控制器,并分析了闭环系统的稳定性.最后仿真结果表明了方法的有效性.This paper focuses on the ship formation control problem via output; feedback, with only the information of the relative positions and; relative heading angles available. Firstly, the kinematic model of the; ship formation is established using the leader-follower strategy. Then; the system is decoupled into three subsystems via the diffeomorphism; transformation. According to the low frequency characteristics of the; ship motion, and the assumption that the viscous hydrodynamic forces and; moments in the hydrodynamic models of the follower ships are unknown and; the velocities of all the ships are unmeasurable, the high-gain; generalized proportion-integral observers are proposed to estimate the; unknown and unmeasurable dynamics. On the basis of the high-gain; generalized proportion-integral observers, the linear output feedback; controllers and the output feedback controllers with input saturation; are designed respectively, and the stability of the closed-loop systems; is analyzed. Finally, the simulation results show the effectiveness of; the proposed approach.国家自然科学基金项目; 福建省自然科学基金项

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle

    Modular Underwater Robots - Modeling and Docking Control

    Get PDF

    Diseño y simulación de un sistema de control de formación de vehículos autónomos marítimos de baja velocidad

    Get PDF
    El presente trabajo tiene por objetivo sentar las bases necesarias para el desarrollo, diseño, control e implementación de un sistema multiagente, específicamente sobre un conjunto de robots marítimos. Este tipo de sistema tiene varias aplicaciones. Desde el punto de vista académico, el proceso de establecer un patrón de formación deseado consiste en una tarea laboriosa y desafiante. Por otro lado, la idea de usar estos robots como un conjunto permite a las industrias navales y agencias meteorológicas reducir horas de trabajos de campo e investigación. Sin embargo, para lograr estos propósitos es necesario saber las características que presentan estos sistemas y las herramientas de software y hardware con las que se cuenta, de manera que se pueda elaborar una estrategia de control de formación. Esta información es detallada en la presente tesis, cuya estructura es la siguiente: El capítulo I presenta el Estado del arte de los vehículos autónomos de superficie. Se explica cómo se inició el interés por el estudio de dichos vehículos y los modelos que se han ido desarrollando en esta área de la robótica marítima. Teniendo en cuenta ello, se presenta adicionalmente un resumen de las técnicas y algoritmos empleados para lograr un adecuado control de formación de un sistema constituido por varios robots, en el que se señalan algunas diferencias. En el capítulo II se obtuvo el modelo matemático de un vehículo de superficie. En él se definen los sistemas de referencia necesarios para describir el movimiento del robot marítimo y se obtienen las ecuaciones cinemáticas y dinámicas mediante el uso de una matriz de rotación, la aplicación de las leyes de Newton, y principios de hidrodinámica e hidrostática. Así también, se explican los modelos usados para las perturbaciones que afectan al robot. El proceso de las pruebas experimentales es detallado en el Capítulo III. Se explica brevemente las características de los sensores y actuadores empleados, y además, se presentan los parámetros a tener en cuenta en las simulaciones desarrolladas. En el capítulo IV se presenta el diseño del controlador de formación. Se usan 2 enfoques para poder comparar los resultados obtenidos con cada una de las estrategias. Asimismo, en cada una de ellas se analiza la controlabilidad y estabilidad del esquema de formación deseado. El modelo que permite relacionar las fuerzas requeridas por el sistema con las fuerzas permitidas por los actuadores se explica detalladamente en el capítulo V. El capítulo VI presenta los resultados obtenidos con los controladores diseñados en el entorno de MATLAB-Simulink. Se muestra también el efecto de las perturbaciones sobre la formación y se distinguen las principales diferencias entre una y otra estrategia. Finalmente, se mencionan las conclusiones generales y trabajos futuros planteados, así como también se sugieren algunas recomendaciones.Tesi
    corecore