272 research outputs found

    A Framework and Architecture for Multi-Robot Coordination

    Get PDF
    In this paper, we present a framework and the software architecture for the deployment of multiple autonomous robots in an unstructured and unknown environment with applications ranging from scouting and reconnaissance, to search and rescue and manipulation tasks. Our software framework provides the methodology and the tools that enable robots to exhibit deliberative and reactive behaviors in autonomous operation, to be reprogrammed by a human operator at run-time, and to learn and adapt to unstructured, dynamic environments and new tasks, while providing performance guarantees. We demonstrate the algorithms and software on an experimental testbed that involves a team of car-like robots using a single omnidirectional camera as a sensor without explicit use of odometry

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Human-Multirobot Collaborative Mobile Manipulation: the Omnid Mocobots

    Full text link
    The Omnid human-collaborative mobile manipulators are an experimental platform for testing control architectures for autonomous and human-collaborative multirobot mobile manipulation. An Omnid consists of a mecanum-wheel omnidirectional mobile base and a series-elastic Delta-type parallel manipulator, and it is a specific implementation of a broader class of mobile collaborative robots ("mocobots") suitable for safe human co-manipulation of delicate, flexible, and articulated payloads. Key features of mocobots include passive compliance, for the safety of the human and the payload, and high-fidelity end-effector force control independent of the potentially imprecise motions of the mobile base. We describe general considerations for the design of teams of mocobots; the design of the Omnids in light of these considerations; manipulator and mobile base controllers to achieve useful multirobot collaborative behaviors; and initial experiments in human-multirobot collaborative mobile manipulation of large, unwieldy payloads. For these experiments, the only communication among the humans and Omnids is mechanical, through the payload.Comment: 8 pages, 10 figures. Videos available at https://www.youtube.com/watch?v=SEuFfONryL0. Submitted to IEEE Robotics and Automation Letters (RA-L

    Consensus Control for Leader-follower Multi-agent Systems under Prescribed Performance Guarantees

    Full text link
    This paper addresses the problem of distributed control for leader-follower multi-agent systems under prescribed performance guarantees. Leader-follower is meant in the sense that a group of agents with external inputs are selected as leaders in order to drive the group of followers in a way that the entire system can achieve consensus within certain prescribed performance transient bounds. Under the assumption of tree graphs, a distributed control law is proposed when the decay rate of the performance functions is within a sufficient bound. Then, two classes of tree graphs that can have additional followers are investigated. Finally, several simulation examples are given to illustrate the results.Comment: 8 page

    Coordination of Multirobot Teams and Groups in Constrained Environments: Models, Abstractions, and Control Policies

    Get PDF
    Robots can augment and even replace humans in dangerous environments, such as search and rescue and reconnaissance missions, yet robots used in these situations are largely tele-operated. In most cases, the robots\u27 performance depends on the operator\u27s ability to control and coordinate the robots, resulting in increased response time and poor situational awareness, and hindering multirobot cooperation. Many factors impede extended autonomy in these situations, including the unique nature of individual tasks, the number of robots needed, the complexity of coordinating heterogeneous robot teams, and the need to operate safely. These factors can be partly addressed by having many inexpensive robots and by control policies that provide guarantees on convergence and safety. In this thesis, we address the problem of synthesizing control policies for navigating teams of robots in constrained environments while providing guarantees on convergence and safety. The approach is as follows. We first model the configuration space of the group (a space in which the robots cannot violate the constraints) as a set of polytopes. For a group with a common goal configuration, we reduce complexity by constructing a configuration space for an abstracted group state. We then construct a discrete representation of the configuration space, on which we search for a path to the goal. Based on this path, we synthesize feedback controllers, decentralized affine controllers for kinematic systems and nonlinear feedback controllers for dynamical systems, on the polytopes, sequentially composing controllers to drive the system to the goal. We demonstrate the use of this method in urban environments and on groups of dynamical systems such as quadrotors. We reduce the complexity of multirobot coordination by using an informed graph search to simultaneously build the configuration space and find a path in its discrete representation to the goal. Furthermore, by using an abstraction on groups of robots we dissociate complexity from the number of robots in the group. Although the controllers are designed for navigation in known environments, they are indeed more versatile, as we demonstrate in a concluding simulation of six robots in a partially unknown environment with evolving communication links, object manipulation, and stigmergic interactions

    Robust Formation Control for Networked Robotic Systems Using Negative Imaginary Dynamics

    Get PDF
    This paper proposes a consensus-based formation tracking scheme for multi-robot systems utilizing the Negative Imaginary (NI) theory. The proposed scheme applies to a class of networked robotic systems that can be modelled as a group of single integrator agents with stable uncertainties connected via an undirected graph. NI/SNI property of networked agents facilitates the design of a distributed Strictly Negative Imaginary (SNI) controller to achieve the desired formation tracking. A new theoretical proof of asymptotic convergence of the formation tracking trajectories is derived based on the integral controllability of a networked SNI systems. The proposed scheme is an alternative to the conventional Lyapunov-based formation tracking schemes. It offers robustness to NI/SNI-type model uncertainties and fault-tolerance to a sudden loss of robots due to hardware/communication fault. The feasibility and usefulness of the proposed formation tracking scheme were validated by lab-based real-time hardware experiments involving miniature mobile robots

    A Framework for Collaborative Multi-task, Multi-robot Missions

    Get PDF
    Robotics is a transformative technology that will empower our civilization for a new scale of human endeavors. Massive scale is only possible through the collaboration of individual or groups of robots. Collaboration allows specialization, meaning a multirobot system may accommodate heterogeneous platforms including human partners. This work develops a unified control architecture for collaborative missions comprised of multiple, multi-robot tasks. Using kinematic equations and Jacobian matrices, the system states are transformed into alternative control spaces which are more useful for the designer or more convenient for the operator. The architecture allows multiple tasks to be combined, composing tightly coordinated missions. Using this approach, the designer is able to compensate for non-ideal behavior in the appropriate space using whatever control scheme they choose. This work presents a general design methodology, including analysis techniques for relevant control metrics like stability, responsiveness, and disturbance rejection, which were missing in prior work. Multiple tasks may be combined into a collaborative mission. The unified motion control architecture merges the control space components for each task into a concise federated system to facilitate analysis and implementation. The task coordination function defines task commands as functions of mission commands and state values to create explicit closed-loop collaboration. This work presents analysis techniques to understand the effects of cross-coupling tasks. This work analyzes system stability for the particular control architecture and identifies an explicit condition to ensure stable switching when reallocating robots. We are unaware of any other automated control architectures that address large-scale collaborative systems composed of task-oriented multi-robot coalitions where relative spatial control is critical to mission performance. This architecture and methodology have been validated in experiments and in simulations, repeating earlier work and exploring new scenarios and. It can perform large-scale, complex missions via a rigorous design methodology

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings
    • …
    corecore