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Coordination of Multirobot Teams and Groups in Constrained
Environments: Models, Abstractions, and Control Policies

Abstract
Robots can augment and even replace humans in dangerous environments, such as search and rescue and
reconnaissance missions, yet robots used in these situations are largely tele-operated. In most cases, the
robots' performance depends on the operator's ability to control and coordinate the robots, resulting in
increased response time and poor situational awareness, and hindering multirobot cooperation.

Many factors impede extended autonomy in these situations, including the unique nature of individual tasks,
the number of robots needed, the complexity of coordinating heterogeneous robot teams, and the need to
operate safely. These factors can be partly addressed by having many inexpensive robots and by control
policies that provide guarantees on convergence and safety.

In this thesis, we address the problem of synthesizing control policies for navigating teams of robots in
constrained environments while providing guarantees on convergence and safety. The approach is as follows.
We first model the configuration space of the group (a space in which the robots cannot violate the
constraints) as a set of polytopes. For a group with a common goal configuration, we reduce complexity by
constructing a configuration space for an abstracted group state. We then construct a discrete representation
of the configuration space, on which we search for a path to the goal. Based on this path, we synthesize
feedback controllers, decentralized affine controllers for kinematic systems and nonlinear feedback controllers
for dynamical systems, on the polytopes, sequentially composing controllers to drive the system to the goal.
We demonstrate the use of this method in urban environments and on groups of dynamical systems such as
quadrotors.

We reduce the complexity of multirobot coordination by using an informed graph search to simultaneously
build the configuration space and find a path in its discrete representation to the goal. Furthermore, by using
an abstraction on groups of robots we dissociate complexity from the number of robots in the group.
Although the controllers are designed for navigation in known environments, they are indeed more versatile,
as we demonstrate in a concluding simulation of six robots in a partially unknown environment with evolving
communication links, object manipulation, and stigmergic interactions.
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ABSTRACT

COORDINATION OF MULTIROBOT TEAMS AND GROUPS

IN CONSTRAINED ENVIRONMENTS:

MODELS, ABSTRACTIONS, AND CONTROL POLICIES

Nora Ayanian

Vijay Kumar and Daniel Koditschek

Robots can augment and even replace humans in dangerous environments, such

as search and rescue and reconnaissance missions, yet robots used in these situations

are largely tele-operated. In most cases, the robots’ performance depends on the

operator’s ability to control and coordinate the robots, resulting in increased response

time and poor situational awareness, and hindering multirobot cooperation.

Many factors impede extended autonomy in these situations, including the unique

nature of individual tasks, the number of robots needed, the complexity of coordi-

nating heterogeneous robot teams, and the need to operate safely. These factors can

be partly addressed by having many inexpensive robots and by control policies that

provide guarantees on convergence and safety.

In this thesis, we address the problem of synthesizing control policies for navi-

gating teams of robots in constrained environments while providing guarantees on

convergence and safety. The approach is as follows. We first model the configuration

space of the group (a space in which the robots cannot violate the constraints) as

a set of polytopes. For a group with a common goal configuration, we reduce com-

plexity by constructing a configuration space for an abstracted group state. We then

construct a discrete representation of the configuration space, on which we search for

a path to the goal. Based on this path, we synthesize feedback controllers, decentral-

ized affine controllers for kinematic systems and nonlinear feedback controllers for

vi



dynamical systems, on the polytopes, sequentially composing controllers to drive the

system to the goal. We demonstrate the use of this method in urban environments

and on groups of dynamical systems such as quadrotors.

We reduce the complexity of multirobot coordination by using an informed graph

search to simultaneously build the configuration space and find a path in its discrete

representation to the goal. Furthermore, by using an abstraction on groups of robots

we dissociate complexity from the number of robots in the group. Although the

controllers are designed for navigation in known environments, they are indeed more

versatile, as we demonstrate in a concluding simulation of six robots in a partially

unknown environment with evolving communication links, object manipulation, and

stigmergic interactions.
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Chapter 1

Introduction

Every day, soldiers and emergency responders put their life at risk for the greater

good. In such applications as reconnaissance missions, mine detection, and disaster

rescue, groups of robots can augment and even replace humans in order to spare

injury to those that protect us. For example, a group of unmanned aerial vehicles

(UAVs) can be deployed to survey the aftermath of a natural disaster, determining

a safe path for ground vehicles’ approach. A team of robots can be released into

buildings which have been a target of a bioterrorist attack, searching for survivors.

Teams of robots are currently being deployed to detect and disable mines all over

the world [110,135].

During such missions, it may be necessary to maintain communication within the

team of robots, or to maintain communication with a base of operations. Other con-

straints may also be necessary, such as keeping specific robots together or prohibiting

certain robots from entering specific regions in the environment.

The benefits of extended autonomy in these situations are numerous. Robots

are capable of executing many tasks much more accurately than humans. They

can reduce the number of emergency responders which must be sent into dangerous
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environments, and in some situations entirely eliminate the need. Robots can also be

extremely efficient; they can quickly calculate optimal deployments, minimize risk,

and complete a task in less time than humans. Although all of these capabilities

have not yet been achieved in all situations, computers are continually advancing,

and it is only time until robots surpass humans in many tasks.

There are, however, several factors other than computing power standing in the

way of extended autonomy in these situations. First, every situation is unique. For

each different application and workspace, from office buildings to warehouses to city

blocks, we must be able to automatically generate a control policy. Another factor

is scale: how many robots are needed to efficiently complete the task? This leads

to the expense of purchasing multiple robots, and converting existing infrastructure

for compatibility. As we increase the number and type of robots the complexity

also increases, and the capabilities of each robot must be considered. In real-world

situations, the robots will have to deal with dynamic conditions such as weather,

unforeseen obstacles, moving targets, or a period of communication loss, and they

must be empowered with making the right decision, or know when to defer to human

intervention. The robots must be able to guarantee safety, whether it is not causing

harm in reconnaissance missions, bringing victims to safety in search and rescue, or

maintaining their own safety. Finally, time may be a critical factor in all of these

situations. While there are numerous things robots can do faster than humans,

they must somehow be programmed to do them, and waiting for an expert in these

circumstances might mean the difference between saving or losing hundreds of lives.

At least in part, these factors can be dealt with in two ways: increasing the

number of robots, and making controller synthesis automatic. By having many

cheap, less capable robots instead of fewer expensive, more capable robots, one can

address both scale and expense. There are many benefits intrinsic to multiple robots
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working cooperatively, including increased efficiency because of parallelism within

the system. Complexity and situational uniqueness can also be addressed in part

by having many cheap robots with different capabilities. Heterogeneous teams of

robots can accomplish tasks that individual robots cannot perform, such as aerial

and ground approach, sensing and disabling land mines, transporting heavy objects,

etc. Having control policies which deal with these factors by construction, as well

as handling dynamic conditions when necessary, further addresses complexity and

situational uniqueness. Safety can be addressed by using control policies which are

provably correct, guarantee convergence to the goal, prevent collisions, and preserve

communication when critical. Finally, we can minimize the time it takes to deploy

the robots by automatically synthesizing controllers which satisfy all of these criteria.

1.1 Problem statement

We focus in this thesis on automatic synthesis of feedback policies for heterogeneous

groups and teams of robots. We address the problem of coordinating a team of robots

to accomplish a large task which can be divided into smaller parallel subtasks. For

example, sweeping through a building can be divided into subtasks such as sweeping

multiple floors simultaneously, or reconnaissance missions into surveying separate

city blocks concurrently. We adopt definitions of groups and teams of robots from

Anderson and Franks [1], where they are used to describe animal societies. We call

a collection of robots that closely coordinate with each other a group of robots: a

group works on an individual subtask. A collection of groups is called a team: a

team coordinates to ensure that the large task is accomplished. The team of robots

is deployed with some initial organization, describing which robot is in which group.
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The first part of the thesis is concerned with the foundations necessary to co-

ordinate multiple robots while providing guarantees on convergence, maintaining

communication, and preventing collision. Specifically, we model configuration spaces

for multirobot navigation problems where each robot is assigned a specific, distinct

goal in the workspace, as well as configuration spaces for group navigation prob-

lems where a single goal is assigned for the entire group. We develop abstractions

on groups of robots, making the complexity of group navigation independent of the

number of robots in the group. In these spaces, we develop two feedback policies and

demonstrate them in simulation. The first is decentralized affine feedback control for

navigation of kinematic systems, which is decentralized in the sense that the feed-

back of one robot is not dependent on the state of another if they are not in direct

communication. The second is smooth feedback control for navigation of second order

systems, which we couple with a graph embedding to apply to complex dynamical

systems such as quadrotors.

The problem of accomplishing a large task involves a number of challenges be-

yond modeling and robot navigation, including task assignment, rendezvous, object

manipulation, and intergroup coordination. Task assignment involves determining

the order in which subtasks should be completed, the groups that should complete

each subtask, and which robots should belong to which groups. Once the task as-

signment is complete, robots must rendezvous with their new groups and navigate to

their task location, or vice versa. There they must create the structure required for

the task, i.e. some arrangement of the group, such as a formation or encircling of a

target. The task itself may require interaction with the environment, such as manip-

ulating or transporting an object. Additionally, groups must be able to communicate

with other groups to ensure that the overall task is completed. While in-depth ex-

ploration of task assignment, object manipulation, and rendezvous are outside the
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scope of this thesis, we do address them, both in discussion and in simulation, as

any true task will require all of these.

The second part of this thesis presents applications of the foundations we develop

in the first part. First, we present a method by which groups of robots can create

and maintain formations, as well as merge and split. Second, we demonstrate the

capabilities of such controllers to complete dynamic tasks. Finally, we combine con-

figuration space modeling, abstracting groups of robots, and synthesizing feedback

policies in a simulation which involves dynamic conditions, task assignment, object

manipulation, and multirobot coordination by stigmergic interaction. Stigmergy is a

mechanism by which agents coordinate by modifying their local environment, stimu-

lating action in other agents. For example, ants lay pheromone trails to direct other

ants in their colony to the nest.

In summary, the contributions of this thesis are threefold: 1) modeling configura-

tion spaces for multirobot and multigroup coordination, such that desired constraints

will always be maintained; 2) abstractions on groups of robots, which reduce the com-

plexity of multirobot navigation, making it independent of the number of robots; and

3) automatic synthesis of feedback policies which, by construction, maintain the de-

sired constraints. All of these are done automatically : there is no hand tuning and

no expert intervention necessary.

1.2 The case for centralization

The work presented in this thesis requires centralized computations. The argument

can be made that a decentralized approach would reduce the computational power

necessary to solve these problems, as well as enabling robots to truly self-organize.

However, without some centralization we cannot guarantee completeness for the
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 1.1: A challenging problem easily solved with our centralized method. The
simulation starts in (a) with the robots stacked green-blue-red. (b)-(l) show sequen-
tial frames of the simulation, with the robot trajectory since the last frame. In (l),
the robots reach the goal position, red-blue-green.

types of problems we solve in this thesis. Completeness means that a solution will be

found by an algorithm if one exists, and if not, the algorithm will return failure. An

example of a problem which would be impossible to solve with typical decentralized

algorithms is shown in Fig. 1.1. Here, the robots are stacked green-blue-red in a

narrow corridor, and must switch to red-blue-green. Using a decentralized approach,

each robot would attempt minimize (or maximize) some utility function by moving

towards its goal position. However, the red and green robots are blocked from moving

any closer to their goal position by the blue robot, which happens to be in its own

goal position. (Even with two robots, this problem would be extremely difficult to

solve with a decentralized approach.) By using a centralized approach, however, we

can search the state space for a solution to the problem in a fraction of a second.

While it is true that some decentralized methods, such as stochastic approaches,

can solve this problem, it would take much more actual run time on the robots,

which is more costly than computation time on a computer. With the centralized

approach, we increase precomputation time, but can optimize the run time, which

can translate into less expense. However, as the number of robots grows, the benefit

of a centralized approach decreases. To solve this type of problem for 100 robots
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with a centralized algorithm would be impossible with today’s computational power.

With 100 robots, though, it’s probably be much less important what order they are

in; hence, with large group sizes, decentralized approaches are both necessary and

sensible. However, when specific labeled formations or configurations are necessary,

centralized approaches are superior.

1.3 Organization of this work

The thesis is organized as follows. In the following chapter, we discuss multirobot

control as it has appeared in the literature, beginning with foundational work in

single robot control. We also characterize multirobot controllers and discuss appli-

cations and important considerations such as task assignment.

In Part II, Chapters 3 and 4 present the first two major contributions of this the-

sis, modeling configuration spaces for groups of robots and abstractions on groups of

robots. Specifically, Chapter 3 introduces robot configuration space modeling with

constraints such as communication maintenance and collision avoidance, building a

discrete representation of the configuration space, and efficient construction of the

configuration space via heuristic-based graph search on its discrete representation.

Chapter 4 begins with abstractions on groups of robots, then presents modeling the

abstract configuration space which are used for group navigation. The third major

contribution of the thesis, automatic feedback controller synthesis is presented in

Chapters 5 and 6. Chapter 5 formulates decentralized affine feedback controllers

for kinematic systems while Chapter 6 formulates nonlinear feedback controllers for

kinematic and dynamic systems. Chapter 7 introduces alternate controllers devel-

oped by others which we have made use of in this work, and demonstrates their use

on group navigation.
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In Part III, Chapter 8 introduces formations on groups of robots, and a method

for joining and splitting groups. Chapter 9 applies configuration space modeling to

the dynamic task of sorting recyclables. Finally, Chapter 10 incorporates modeling,

abstractions, and controller synthesis in a comprehensive simulation with six robots.

While the methods presented in Chapters 3 through 6 are computationally inten-

sive when used exactly as presented (a complexity analysis is included within these

chapters), they are indeed extremely versatile and useful for real-time planning as

we demonstrate in this chapter. In the simulation, computation is done online and

not in advance. Communication graphs are dynamic, tasks assignment is online and

unknown a priori, and the robots interact with the environment, yet we still provide

the same guarantees of convergence and safety.

The work in Chapters 3 and 5 was previously published in part in [2, 5, 6]. The

abstract configuration space modeling in Chapter 4 was previously published in [4].

The nonlinear feedback control for second order systems presented in Chapter 6

was done in collaboration with Dr. Vinutha Kallem, and has been submitted for

publication [3]. Chapter 8 was previously published in [6]. Finally, Chapter 9 was

previously published in [57], and was done in collaboration with Dr. Hadas Kress-

Gazit, who is responsible for the natural language portion of the work.

We start with Chapter 2, which reviews the robot navigation literature, including

single and multiple robot navigation for small to large groups of robots, formation

control, and cooperative transport, as well as other topics.
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Chapter 2

Literature Review

Multi-robot problems have been discussed in the literature in many forms, including

creating and maintaining formations, using abstractions to lower dimensionality, and

using gradient descent for navigation. Each of these methods is applied for groups

or teams of varying size. Recall that a group is a number of robots working closely

together to accomplish a single task, while a team is a number of groups working

together to accomplish a task comprised of multiple subtasks.

2.1 Single robot controllers

Before discussing multirobot controllers, we will review single robot controllers. Sin-

gle robot controllers have been developed for both holonomic and nonholonomic

robots.

Gradient descent algorithms have been discussed by Rimon and Koditschek in

synthesizing navigation functions [104], which are nonlinear feedback controllers that

guarantee safety (obstacle avoidance) and global convergence. This method generates

a single analytical feedback control law in star-shaped environments with obstacles
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which can be applied to robots. When obstacles are present, hand tuning is necessary

to prevent local minima.

2.1.1 Hybrid systems approaches

These gradient descent algorithms have inspired other hybrid systems approaches.

A hybrid system is one which has both discrete and continuous aspects. Perhaps

the most commonly used hybrid systems approach in robot control is to decompose

the configuration space into obstacle-free cells and synthesize controllers in each cell

to guarantee convergence from any starting configuration to the goal configuration.

In other words, controllers are sequentially composed to drive the system to the goal

configuration. Depending on the controller, the cells can be polygonal, analytical,

rectangular, etc. This simplifies the construction of controllers by creating the gra-

dient using obstacle-free cells, preventing local minima and thus removing the need

for hand-tuning.

In Conner et al., a Laplace heat equation is solved on a 2-dimensional disk, which

is then mapped to the convex polygons [19]. Composing these mappings results

in a smooth controller for a single robot on the 2-dimensional workspace. This

work is not applicable to multi-robot problems without the addition of constraints

(such as prohibiting more than one robot from occupying a room simultaneously)

and requires an analytical function to describe the cells. The function must be

twice differentiable in order to maintain the qualities of the navigation function,

therefore the cell is approximated at the corners with a polynomial. In contrast,

Lindemann and LaValle directly construct a smooth vector field in the obstacle-free

cells, avoiding the analytical construction of the navigation function [71, 72]. Thus,

the controller can be used in large dimensional spaces since construction of a smooth
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approximation of the cell boundary is not required.

While the above controllers were developed specifically for robot control, con-

trollers not necessarily intended for robot control can also be applied to robot control

problems. For piecewise affine systems, Habets and van Schuppen [43] and Roszak

and Broucke [105] synthesize controllers which drive a system in a polytope to a

specified exit facet. Habets and van Schuppen use linear programming to synthesize

controllers inside polytopes and provide guarantees on existence of controllers for

fully actuated systems [43]. Roszak and Broucke extend this work, solving a larger

class of problems on simplices, but their solution requires nonlinear programming,

making it more difficult to implement [105].

2.1.2 Approaches for nonholonomic robots

The previously mentioned controllers are generally derived for holonomic robots,

then are applied to nonholonomic robots using feedback linearization. It is also

possible to synthesize controllers for nonhonolomic robots, such as one with a unicycle

model [18, 73,74].

For nonholonomic systems such as cars, which are limited in their mobility since

they can’t move sideways, generating a controller for a holonomic robot then using

feedback linearization to apply it to the robot can result in some instability. Trees of

trajectories, however, are well suited for such robots, since they can generate paths

that a specific robot can follow, for example, by taking into account a minimum

turning radius. LaValle and Kuffner introduced Rapidly-exploring Random Trees

(RRTs), which construct a tree that rapidly and uniformly explores the state space

according to the constraints on the robot [64]. Much work has expanded on RRTs,
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including Karaman and Frazzoli’s RRT*, which has asymptotic optimality guaran-

tees without a significant increase in complexity over RRTs [50]. Without including

feedback, however, these methods cannot compensate for motor drift or inaccuracies

in robot models. Tedrake et al. introduce LQR-trees, which combine local linear

quadratic regulator (LQR) controllers into a feedback policy [125]. The LQR-trees

probabilistically cover the reachable area with a region of stability, finding a locally

optimal solution at every step; thus, the method does not necessarily produce the

globally optimal solution. While these methods are well suited for nonholonomic

constraints, trees of trajectories and LQR-trees can search forever without finding a

path to the goal and without returning failure.

2.2 Multirobot controllers

Multirobot controllers can be classified using a number of criteria. It will be useful

to define a taxonomy for multirobot controllers to use throughout the discussion

to compare controllers. We will initially classify a controller based on its target

number of robots. While it is difficult to quantify what we classify as small, medium,

and large groups of robots, it will become clear in their description that controller

capabilities enable this distinction. For example, guarantees become difficult to

provide as group size changes from medium to large. Our taxonomy for classification

of multirobot controllers is described in Table 2.1.

Table 2.1 is a starting point for distinguishing between types of multirobot con-

trollers. There are many characteristics which can be classified in many different

types. Furthermore, not all controllers will fall into a distinct category. For exam-

ple, a controller may be automatically generated in some scenarios, but need hand
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Attribute Types Characterization

Number of robots
(a) Small Labeled robots, unique formations, in many

cases guarantees of convergence
(b) Medium Use of virtual structures, some guarantees are

possible
(c) Large Unlabeled robots, convergence to unique for-

mations not achievable, swarms of robots, no
guarantees in the presence of obstacles

Automatic Generation
(a) Automatic No hand tuning necessary, controller is syn-

thesized automatically based on environment
parameters

(b) Not Automatic Controller requires hand tuning to prevent lo-
cal minima, or requires input other than envi-
ronmental parameters

Computations
(a) Centralized All computations are centralized
(b) Partially
Decentralized

Some computations are decentralized, such as
determining individual controllers, however,
other parts are centralized

(c) Decentralized Computations are fully decentralized, each
agent determines its own action

Environment
(a) Known Workspace boundary and all obstacles fully

known, including known moving obstacles
(b) Partially known Unknown moving or stationary obstacles
(c) Unknown Nothing about the environment is known

Convergence
(a) Guaranteed Robots are guaranteed to converge to the goal

location
(b) Qualified Robots are guaranteed to converge given some

criteria (e.g. obstacles no larger than robots)
(c) None No convergence guarantees.

Obstacles
(a) None Does not account for obstacles
(b) Static Accounts for static obstacles
(c) Dynamic Accounts for dynamic obstacles.

Collisions
(a) Prevented Guarantees that robots will not collide
(b) Allowed Collisions between robots are allowed

Level
(a) High Controls behavior, interactions, etc.
(b) Low Directly synthesizes control inputs

System Order
(a) 1st Order Single integrator system
(b) 2nd Order Double integrator

Robot Model
(a) Holonomic Robot can move in any direction
(b) Nonholonomic Robot motion directions limited

Table 2.1: Table of multirobot controller characteristics.
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tuning in others. It is also difficult to categorize the environment in which the con-

trollers can be used. A controller meant for use in a known environment might

lend itself to finding an object whose location is unknown. This is different than a

controller which is designed for use in an environment which may have the correct

environment topology but with nonexact measurements. These are both partially

known environments, but are entirely different. Therefore, while this table is pro-

vided as a taxonomy of multirobot controllers, it is still quite challenging to classify

even existing controllers.

We will use some of the attributes in Table 2.1, such as number of robots, compu-

tations, and convergence, to differentiate controllers which specifically drive a group

of agents from one location to another. More specifically, we will discuss controllers

which do so while maintaining desired inter-robot constraints, such as the distance

or relative position of robots from a real leader, virtual leader, or from each other.

2.2.1 Small groups of robots

In small sized groups we can provide guarantees and formal proofs that specific for-

mations can be achieved and maintained, even in the presence of obstacles. Egerstedt

and Hu synthesize controllers for robots to maintain a desired formation in the pres-

ence of obstacles, both for holonomic and nonholonomic systems [29]. Olfati-Saber

and Murray use potential functions to create a unique desired formation of robots

using weakly connected graphs [92]. Desai et al. synthesize feedback controllers to

navigate a group of robots to a goal location, providing proofs of convergence; as the

groups grow, however, formal proofs become prohibitively complex [26].

Navigation functions are developed for multi-robot problems in [28,75,76]. While
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this approach has the advantage of resulting in controllers with almost global con-

vergence and smooth feedback, it is tedious for complex spaces, involves nonlinear

equations, and requires hand-tuning of parameters, making them impractical for a

non-expert user.

2.2.2 Midsize groups of robots

With sizes between small and large groups, one can provide some guarantees while

taking advantage of some reduction in complexity. In Ogren et al. provide proofs

for maintaining desired formations using a virtual leader from which robots must

maintain desired constraints [90]. Leonard and Fiorelli use virtual leaders to create

unlabeled formations of groups of robots, but undesirable local minima can occur

if sufficient virtual leaders are not added [67]. Smith et al. present a decentralized

controller for maintaining formations [114, 115]. In these controllers, no guarantees

are made in the presence of obstacles and, the authors do not provide a stable way

to switch between formations.

2.2.3 Large groups of robots

In large groups, one cannot feasibly synthesize a specialized controller for each robot,

thus achieving specific, labeled formations is not addressed. Some works use abstrac-

tions to control an entire group [11, 87, 130]; in this case, navigation and obstacle

avoidance is at the abstraction level, decreasing computation significantly. However,

we forfeit control over the network topology, which can change as the group moves.

Belta and Kumar do not guarantee safety: robots can collide and escape from the

abstraction [11]. Some limitations of [11] are addressed by Michael and Kumar, but

this still does not enable us to specify formations in the sense of exact shape and
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topology [87]. Yang et al. allow a particular formation to be specified, but the num-

ber of moments which must be supplied to specify a particular formation increases

with the number of robots, and the method is not entirely automatic [130].

Flocking or schooling strategies are inspired by animal societies, where groups of

animals coordinate with relatively little communication [23,95,101]. These observa-

tions can be used to control large groups of robots with relatively little computa-

tion [46, 48, 66, 79, 91, 99, 100, 122, 131]. These strategies stabilize the entire group’s

velocity to a single velocity. However, like the above large scale controllers, they lack

the capability of specifying particular formations; the final shape of the formation

depends on the initial conditions, and cannot be controlled directly. Results also

exist using second order robot models [66,99].

Also inspired by animal behaviors are controllers which use stigmergic interac-

tions to influence agent behavior. Johansson and Saffiotti use writable RFID tags in

the environment to guide robots to a given goal [47]. In task allocation, Meng and

Gan use stigmergic interactions to evenly and efficiently distribute robots [81], while

Borzello and Merkle use “pheromones” to mark tasks so agents are more likely to

choose them [13]. Werfel et al. use stigmergic interactions to perform construction

tasks with robots [127, 128]. Lan et al. take inspiration from stigmergy to generate

clustering behaviors [62].

In shape generation, large groups of robots are stabilized to lines and circles [129],

convex closed loops [94], and more general closed loops [45]. However, the presence

of obstacles in the workspace could cause local minima or deadlock. Additionally,

there is no ordering to the robots on the shape; this is a function of initial conditions.

Along a similar vein, groups are stabilized to patterns in [119,120].
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2.3 Applications

Multirobot controllers are not only used for navigation. They are applicable to many

types of problems, including formation control and cooperative transport, which have

been extensively studied in the literature.

2.3.1 Formation control

Formation control is one of the most studied problems in multirobot systems. Be-

havior based formation control involves assigning specific behaviors to robots in the

group [7, 8, 65]. Virtual structures approaches can involve creating virtual leaders

for the group or treating the entire group as a single entity [10,49,67,68,90]. In the

leader-follower approach, each robot is assigned a leader from which it must maintain

certain constraints [26, 32,82,109,124]

Other approaches also exist, such as using navigation functions [40,123], neighbor

alignment approaches [36], among many other approaches [31,79,132].

2.4 Cooperative transport

Some tasks may require transporting objects in the workspace to a desired location.

Transporting objects using robots has been discussed in the literature by pushing

[78], towing [17], caging [33,34,96,118,126], and other means of object manipulation

[37,88,89]. Some have addressed the aerial transport of objects using cables [35,83].

Others have taken inspiration from ant societies [12, 25,60].
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2.5 Other considerations

The synthesis of controllers to navigate robots to a specific configuration, requires

knowledge of that configuration. The configuration can be assigned by an external

algorithm or it can be assigned by the robots themselves in a distributed way. The

robots can be assigned to different locations, or to rendezvous in one location. Other

considerations, such as the type of environment (urban, warehouse, etc.), can be

critical in choosing an appropriate controller.

2.5.1 Rendezvous

Rendezvous problems are relevant since we would like robots to join new groups upon

task assignment. Rendezvous, in the sense that we will use it, involves a number of

robots meeting at one point. This has been discussed by [21,39,69,70,134]. Kranakis

et al survey mobile agent rendezvous [56].

2.5.2 Task assignment

In swarm assembly, stochastic procedures such as chemical reaction models are of-

ten used, as the complexity of assigning each robot to a task is prohibitive. How-

ever, in these cases, there are many iterations of the same task (such as build-

ing a two-part assembly), and the large number of task-trained robots randomly

walking throughout the space will result in part assembly at a satisfactory rate.

In contrast, when dealing with a mid-sized number of robots and different, non-

repetitive tasks requiring different numbers of robots, task assignment is neces-

sary [42,80,85,85,88,93,111,113,117,121,133].
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2.5.3 Urban environments

In urban environments, we cannot assume that the robots have the state of the

entire group, that the information they have is accurate, or that it can be reli-

ably transmitted over a network. In [15, 16], a group of robots is deployed in an

urban environment, with localization provided by a UAV. Batalin and Sukhatme

present a method for coverage in an urban search and rescue context [9]. In urban

environments with many unknown and unreliable communication, indirect commu-

nication between agents may be more efficient than direct communication. Steele

and Thomas introduce directed stigmergy control, which unlike most works cited

here, allows some operator control, but has the benefit of indirect communication

between robots [116].
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Chapter 3

Robot Configuration Space

Modeling with Constraints

In order to drive multiple robots to a desired location, we must model the configura-

tion space of the group of robots. Since we would like to navigate groups of robots

in cluttered environments, we choose to construct the group’s configuration space

by taking the Cartesian products of the individual robots’ configuration spaces. By

doing so, we can generate a single controller to drive the group to the goal configu-

ration without planning a path and generating a controller for a single robot, then

planning a path and generating a controller for another robot so that it avoids the

original robot, etc, until a path and controller is generated for all robots. Using such

an incremental approach could potentially prevent a solution from being found even

if it is otherwise possible to navigate the group to the goal configuration. By using

our approach to modeling the configuration space, we preserve all possible solutions

in a polygonal environment. The primary disadvantage of our approach is that it is

centralized, and since it is precomputed, the environment must be known and static.

However, by planning in the Cartesian product of the individual configuration spaces,
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we can enable automatic synthesis of controllers which guarantee convergence while

avoiding static obstacles and inter-robot collisions.

This approach to modeling the configuration space allows us to control both high-

and low-level behavior by setting constraints on groups of robots, e.g. maintain a

minimum distance from each other in order to prevent collisions and a maximum

distance to prevent loss of communication, or prevent two or more robots from

entering a region in the space simultaneously, etc.

In this chapter, we compute this group configuration space, which we call the task

configuration space. The task configuration space is a space composed of polytopes,

in which the robots cannot violate the set constraints. To drive the system to the

goal location, we use sequential composition: we find paths on the polytopes to the

goal location and synthesize controllers in each polytope to drive the system to the

subsequent polytope, until the goal polytope is reached. In the goal polytope, we

synthesize a controller to drive the system to the goal configuration.

Consider a group G of n robotic agents Va = {ai|i = 1, . . . , n}. We define a

group as a small number of robots which work closely together (adopted from [1]).

Starting from some initial configuration, the agents must reach a goal configuration

while maintaining constraints between agents and without colliding with each other

or obstacles. The agent ai has the configuration or state xi = [x1
i x

2
i · · · xdii ]T ∈ Rdi

with the dynamics

ẋi = ui, xi ∈ Xi ⊂ Rdi , i = 1, . . . , n, (3.1)

if the agent is kinematic or

ẍi = ui, xi ∈ Xi ⊂ Rdi , i = 1, . . . , n, (3.2)
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if the agent is dynamic.

If each robot has a specific goal location, e.g. each robot is assigned a different

corner of the space, we construct a task configuration space for the group of robots.

A single point in the task configuration space specifies the position of all of the n

robots. The following section describes the construction of the task configuration

space. If a single goal location is specified for the entire group, or if the group is

to transit together from one location to another, we create a virtual boundary for

the group of robots and construct an abstract configuration space to navigate that

boundary to the task location. A point in the abstract configuration space describes

the position, orientation, and shape of the abstraction as it navigates the space. This

is discussed in the following chapter.

3.1 Constraints on robots

In order to safely navigate a group of robots to their goal locations, we must consider

constraints such as collision avoidance. In order to avoid collisions, robots must

maintain a minimum distance from each other and from objects such as walls in

the environment. Furthermore, we would like the robots to maintain a specific

communication graph throughout.

We associate these predetermined proximity constraints for collision avoidance

and communication with collision and connectivity graphs. We use halfspaces to

define the constraints in order to generate a task configuration space composed of

polytopes. Recall that a D-polytope can be defined as the convex hull of finitely

many vertices, or as the bounded intersection of J halfspaces, P = {x | Hx ≤ K},

where H ∈ RJ×D, K ∈ RJ×1, where J is finite.

Definition 3.1.1. The collision graph on the set of agents is a static graph GL =
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Figure 3.1: Sample connectivity graphs.

(Va, EL) where EL is the set of all pairs of agents which cannot occupy the same

coordinates simultaneously. Pairs (ai, aj) ∈ EL must maintain a nonzero minimum

distance |xi − xj| ≥ δi,jmin, where δi,jmin ∈ Rmax(di,dj). This constraint can be written as

λ(xi,xj) = |xi − xj| − δi,jmin ≥ 0 ∀(xi,xj) ∈ EL.

Definition 3.1.2. The connectivity graph on the set of agents is the static graph

GN = (Va, EN) where EN is the set of edges describing agent pairs (ai, aj) ∈ EN that

must maintain a maximum distance |xi − xj| ≤ δi,jmax, where δi,jmax ∈ Rmax(di,dj) to

communicate state information. We call pairs of agents which are adjacent on this

graph neighbors or neighboring agents. The constraint can be written as

ν(xi,xj) = |xi − xj| − δi,jmax ≤ 0 ∀(xi,xj) ∈ EN .

Examples of connectivity graphs for three or four agents are shown in Fig. 3.1.

The connectivity graph provides constraints on the physical proximity of agents,

so that communication links between pairs of agents (ai, aj) ∈ EN can be maintained.

However, this does not necessarily mean that agents cannot pass other agents’ state

information through the graph. For example, in Fig. 3.1e, a1 and a4 are not connected

by an edge, therefore they cannot communicate directly. However, by passing a1’s

state information through a2 or a3 (and vice versa), a1 and a4 would be capable of
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Figure 3.2: Symmetric proximity constraints in the relative space of two agents in
2D. The shaded region indicates configurations that are not allowed. (a) Neighbors
with collision constraint. (b) Neighbors with no collision constraint. (c) Collision
constraint on neighbors.

using each others’ state information for feedback.

Definition 3.1.3. The information graph on the set of agents is the static graph

GI =(Va, EI) where EI is the set of all pairs of agents which can access each others’

state information. State information can be shared through direct communication, if

the pair is connected on GN , or indirect communication, by passing state information

through other agents.

Figure 3.2 illustrates symmetric collision and connectivity constraints on a pair

of 2D agents. For pairs of agents (ai, aj) ∈ EN ∩ EL the intersection of these con-

straints corresponds to a rectangular annulus in the relative space of two agents as

in Fig. 3.2a, where the shaded region denotes illegal configurations. Pairs of agents

(ai, aj) ∈ EN − EL (neighbors without collision constraint) will have only the maxi-

mum distance constraint (Fig. 3.2b). Pairs of agents (ai, aj) ∈ EL−EN (non-neighbors

with collision constraint) will have infinite annuli (Fig. 3.2c).

For groups with complete collision and connectivity graphs, the proximity con-

straints can be viewed as an annulus around every point in the physical space of

an agent, describing the possible locations of other agents. The safe region of a
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Figure 3.3: Intersection of annuli for multiple agents.

third agent, assuming complete collision and connectivity graphs, would be a square

annulus around the original agent intersected with the annulus of the second agent.

This is shown in Fig. 3.3 for up to four agents with complete graphs.

Figure 3.4 illustrates nonsymmetric collision and connectivity constraints in the

relative space of two agents in 2D and 3D. If no communication constraints are

imposed, the regions will be infinite (i.e. δmax =∞). In Fig. 3.4a and 3.4c the regions

are shown numbered to facilitate the graph search in Section 3.2 (numbers are left off

of Figure 3.4b for clarity). Note that as in Figure 3.4b and 3.4c the constraints need

not be symmetric. Any convex decomposition with matching facets is admissible.

By matching facets we mean that any hyperplane supporting two adjacent polytopes

shares the same vertices in both polytopes, and any hyperplane can only support

one facet of that polytope. This is illustrated in Fig. 3.5: decomposition 3.5a is an

illegal decomposition, since facet (1,3) has an extra vertex from polytopes B and

C on the right (i.e. what is one facet on A is two separate facets on B and C).

The decompositions in Fig. 3.5b and Fig. 3.5c are both legal since all facets match

exactly on both sides. Matching facets are necessary to ensure that the state exits

the polytope and predictably enters the next polytope on the path. The controller

we use cannot restrict the state from exiting via a portion of the exit facet; the entire

facet can be used for exit. Thus if the desired path were to enter B from A, then A
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Figure 3.5: Possible decompositions of a space. Panel 3.5a depicts an illegal decom-
position (inconsistent number of facets on (1,3)). Panels 3.5b and 3.5c show legal
decompositions.

must share an entire facet with B or the state could enter C.

Although examples in this work will use proximity constraints of the type |xi −

xj| ∈ [δi,jmin, δ
i,j
max], this framework can be used on any proximity constraints which

can be defined as unions of non-overlapping polytopes with matching facets, such

as those shown in 3.4c. Note that the proximity constraints are defined on pairs

of robots. Therefore, there will be n choose 2, or
(
n
2

)
= n!

2(n−2)!
sets of proximity

constraints.
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Definition 3.1.4. The configuration space Ci of an agent ai is the set of all trans-

formations of the agent. The free space Cfreei of ai is the set of all transformations

of ai which do not intersect with obstacles in the configuration space.

Note that since we model robots as points, the environment must be padded

appropriately to ensure the robots do not collide with obstacles in or the physical

boundary of the environment. Therefore, the free space of a robot must take into

account the extent of the robot and have a reduced size, so that at all configurations

within free space, the robot must not collide with the boundary or an obstacle at

any orientation. Note that to apply these controllers to nonholonomic robots we use

feedback linearization, which will require padding the environment according to the

feedback linearization distance; we discuss this in detail in Chapter 5.

We assume Cfreei is tessellated into pi polytopes with matching facets.

Definition 3.1.5. The group configuration space is the Cartesian product of the

configuration spaces of each agent,

Call = Cfree1 × Cfree2 × · · · × Cfreen

x = [xT
1 xT

2 · · · xT
n ]T ∈ Call.

Thus the configuration of all n agents is described by a single point in Call ∈ RD,

D ≡ ∑n
i=1 di, which contains

∏n
i=1 pi polytopes. In general, the team of agents

can be heterogeneous; thus they might not share the same configuration space or

dimension so di is not necessarily equal to dj.

In the group configuration space, we can enforce other constraints, such as mutual

exclusion.

Definition 3.1.6. The mutual exclusion graph on the set of agents is the static graph

GM = (Va, EM) where EM is the set of all pairs of agents which cannot simultaneously
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occupy the same polytope in Ci = Cj if they share the same decomposition, or in

Cfreei = Cfreej if they share the same free space. The constraint can be written

µ(xi,xj) =

 0, (xi,xj) ∈ EM in same polytope

1, otherwise.

We can also enforce other constraints, such as setting a maximum or minimum

number of robots in a location, excluding certain robots from areas, etc. We represent

all of these constraints as

o(x) ≤ 0.

Note that since we desire a space composed of polytopes, only constraints which can

be constructed of halfspaces are admissible.

We can rewrite all of our constraints with respect to the group configuration

space:

L ≡{x|x ∈ Call, λ(xi,xj) ≥ 0 ∀(ai, aj) ∈ EL},

M≡{x|x ∈ Call, µ(xi,xj) = 1 ∀(ai, aj) ∈ EM},

N ≡{x|x ∈ Call, ν(xi,xj) ≤ 0 ∀(ai, aj) ∈ EN},

O ≡{x|x ∈ Call, o(x) ≤ 0}.

(3.3)

The navigation problem for the group of robots with the above described constraints

is given by Problem 3.1.7 for a kinematic group of robots, and Problem 3.1.9 for a

dynamic group of robots.

Problem 3.1.7 (Full state feedback for kinematic systems). Consider a group of n

kinematic robotic agents with dynamics (3.1). For any initial state, find a piecewise

smooth state feedback policy u(x) that drives the system to the goal configuration xg
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such that:

1. ∀t ∈ [0, T0] x ∈ Call;

2. ẋ = u;

3. x ∈ L ∩M∩N ∩O;

4. x(T0) arbitrarily close to xg.

Note that in Problem 3.1.7 we can let u be any function of the state of the

team. In other words, the team of robots must respect the desired connectivity,

collision, and mutual exclusion graphs, but without limitations on the state infor-

mation available to the agents, so that agents can share all state information through

the communication graph via indirect communication. Problem 3.1.8 restricts the

inputs to each agent to contain only information accessible to that agent through

the information graph.

Problem 3.1.8 (Partial state feedback for kinematic systems). Consider Prob-

lem 3.1.7 with the additional constraint on u

5. ui does not depend explicitly on xj if (ai, aj) /∈ EI .

Problem 3.1.9 (Full state feedback for dynamical systems). Consider a group of n

dynamic robotic agents with dynamics (3.2). For any initial state, find a piecewise

smooth state feedback policy u(x) that drives the system to the goal configuration xg

such that:

1. ∀t ∈ [0, T0] x ∈ Call;

2. ẍ = u;

3. x ∈ L ∩M∩N ∩O;
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Figure 3.6: Example of a combination goal requirement for two agents. Either agent
must reach the goal in polygon 4. Proximity constraints require the other agent to
be in one of the regions a-f .

4. x(T0) arbitrarily close to xg.

In Problems 3.1.8, 3.1.7, and 3.1.9, we do not threshold the inputs u; therefore,

the resulting input can be very high. We can preserve the behavior of the controller

by scaling the entire input to be below a desired threshold. Note that individual

robot inputs cannot be scaled, since this would not preserve the guarantees.

For situations when the goal positions are not specifically assigned to each agent,

for example, when only m of n agents are required to reach a goal location, we have

a finite number of goal nodes as opposed to a single goal node. Let X g be the set of

goal nodes. We can then replace xg by the set X g in Problems 3.1.7–3.1.9 to allow

a set of goal configurations. Figure 3.6 depicts an example where either one of two

agents must reach the goal configuration in polygon 4. The proximity constraints

limit the location of the other agent to the 6 polygons a-f . Thus we have 12 possible

goal nodes, six for each agent at the goal.

To solve Problems 3.1.7, 3.1.8, and 3.1.9, we remove from Call points that violate

the constraints, and synthesize controllers on the resulting space to drive the system

to the goal configuration.
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Definition 3.1.10. The task configuration space CT is the set

CT = Call ∩ L ∩M∩N ∩O. (3.4)

Note that because the constraints (3.3) are described by halfspaces, the task configu-

ration space is composed of polytopes. In CT the robots cannot collide with each other

or obstacles in the space, lose communication, or violate the constraints M and O.

We will also refer to the polytopes in the task configuration space as cells.

We would like to synthesize feedback controllers to solve Problems 3.1.7, 3.1.8,

and 3.1.9. In other words, we ensure that the agents are always inside the group

configuration space CT and that they reach the goal configuration. There are two

stages in this process. First, we pursue a discrete representation of CT and find paths

in this discrete representation. In Chapters 5 and 6, we translate these paths into

feedback controllers.

3.2 Discrete planning on task configuration space

In this section we build a discrete representation of the task configuration space CT
and determine the lowest cost path using a graph search algorithm. The key step is

to define an adjacency graph on the set of polytopes.

Definition 3.2.1. The polytope graph GP = (VP , EP ) on the polytopes in CT is

the pair of sets VP = {P 0, P 1, P 2 . . . }, where Pm is the m-th polytope, and EP =

{em,kP |Pm is adjacent to P k, ∀m, k}, the set of all pairs of polytopes which share a

(matching) facet.

If the number of robots is small (n ≤ 3), it may be possible to compute the
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entire task configuration space. In this case, we can search for a path to the goal

configuration from any initial configuration.

Problem 3.2.2 (Discrete Global Path). For all nodes P k ∈ VP , find a path on the

polytope graph GP to the goal node P g.

For larger groups of robots (n > 3), computing the entire CT can be prohibitively

complex since the maximum number of polytopes is exponential in n, as we discuss

in Section 3.3. Therefore, we use a heuristic-based graph search to find a path from

the configuration to the goal configuration, without computing all of CT . Without

loss of generality, let P 0 be the polytope the state is initially in.

Problem 3.2.3 (Discrete Specific Path). For the node P 0 ∈ VP , find a path on the

polytope graph GP to the goal node P g.

The path to the goal polytope on the polytope graph determines the exit facet

for each polytope.

To solve Problem 3.1.8 specifically, we must triangulate the polytopes P k into

simplices skq due to constraints on sharing state information. The reason for this will

become clear in the discussion of the controller. We now define an adjacency graph

on the set of simplices in each polytope.

Definition 3.2.4. The k-th simplex graph Gk
S = (VkS, EkS) on the simplices skq of

the fixed triangulation of polytope P k is the pair of sets VkS = {sk1, sk2, . . . }, where skq

is the q-th simplex skq ⊆ P k, and EkS = {ek(q,r)
S |skq adjacent to skr , ∀q, r}, the set of

all pairs of simplices which share a facet. We use the simplex graph to determine a

discrete path from each simplex in a polytope’s triangulation to the simplices on its

exit facet.
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Since there are multiple paths to the goal, we can use the usual notion of a

distance on a graph to find the shortest paths in the polytope graph using a graph

search algorithm such as Dijkstra [27] or A* [44]. We can associate with each edge

ek,mP ∈ EP between adjacent polytopes P k and Pm a cost, DIST(P k, Pm), which we

minimize.

To minimize the number of controller transitions between polytopes, one can

choose the path which minimizes the number of polytopes that are visited, therefore

|ek,mP | = 1,∀ek,mP ∈ EP . This is desirable when using the affine feedback control we

will introduce in the following chapter since the controller is discontinuous across

polytope interfaces. Similarly we find the shortest path in the same sense on the

simplex graphs to any of the simplices on the exit facet. In the goal polytope, P g,

we find the shortest path from any simplex to the goal simplex, sg.

Alternatively, when dealing with a dynamical system such as a quadrotor whose

model is an approximation, it may be more desirable to penalize paths which go

through smaller cells.

For larger groups of robots (n > 3), instead of computing all of CT , we simultane-

ously build a discrete representation of the task configuration space and find a path

in this representation using a heuristic-based graph search such as A∗ [44]. A∗ uses a

distance-plus-cost heuristic to determine an order for expanding nodes in the graph;

in our case, each node is a potential polytope in CT , and only as they are visited in

the graph search do we compute the polytopes. We add a node to GP only if the

corresponding polytope is valid. In A*, an admissible heuristic function guarantees

that the found path is optimal. A heuristic is admissible if it provides a lower bound

on the actual cost to go from any single node to any other single node.

We exploit the fact that we are taking Cartesian products of known graphs to

build the polytope graph online. The heuristic is defined by adjacency graphs in
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Figure 3.7: A 2D, two robot example of discrete system pose. (a) The two robots
in the free configuration space, with proximity constraints. Here the discrete pose
is [p2 p4 c1]. (b) The adjacency graph on the agents’ workspaces. (c) The adjacency
graph on the agents’ proximity constraints.

Cfreei and the graph on the agents’ proximity constraints. We use the two robots with

the environment and constraints shown in Figure 3.7a as an example. Figure 3.7b

shows the adjacency graph on Cfreei and Figure 3.7c shows the graph on the agents’

proximity constraints for the example in Figure 3.7a. We generate a discrete system

pose by concatenating the location (cell number) of each robot in its free space with

the relative location of each pair of robots. Each polytope Pm in CT corresponds to

a unique discrete pose Fmd of the system.

In Fig. 3.7a, Fd = [p2 p4 c1], where p2 corresponds to the cell a1 is in, p4 corre-

sponds to the cell of a2, and c1 corresponds to the relative location of a2 with respect

to a1. Using the discrete pose and the adjacency graphs of the free spaces of the

agents, we can generate adjacent cells. By assigning a cost of 1 to each transition,

we are able to generate a cost heuristic for the A∗ algorithm. For example, since p2

is adjacent to p1 and p3, [p2 p4 c1] is adjacent to [p1 p4 c1] and [p3 p4 c1]. Similarly,

since p4 is adjacent to p3 and p5, [p2 p4 c1] is adjacent to [p2 p3 c1] and [p2 p5 c1].

Finally, c1 is adjacent to c2 and c4, generating potential adjacent polytopes corre-

sponding to [p2 p4 c2] and [p2 p4 c4]. However, from Figure 3.7a it is easy to see

these last two cells are not valid, and when we expand the node [p2 p4 c1] in the A∗
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algorithm, we check to ensure the polytope exists before adding it to the open set.

Therefore, finding a path on the polytope graph is equivalent to finding a path on

the discrete poses of the system.

This induces a heuristic cost for going from the initial to the goal formation. If

F0
d = [p0

1 p0
2 · · · p0

n c0
1 · · · c0

(n2)
] and Fgd = [pg1 p

g
2 · · · pgn c

g
1 · · · cg(n2)] are the initial

and desired discrete pose of the system, the minimum cost is

h
(
F0
d ,Fgd

)
=

n∑
i=1

COST(p0
i , p

g
i ) +

(n2)∑
κ=1

COST(c0
κ, c

g
κ),

where COST(p0
i , p

g
i ) and COST(c0

κ, c
g
κ) are the costs of moving from the initial to the

final configurations on the adjacency graph of the workspace for each agent and on

the adjacency graph of the proximity constraints for each pair of agents, respectively.

Since the heuristic estimates the minimum path cost from P 0 to P g without taking

into account empty polytopes (which are subsequently not added to the graph), the

heuristic will always be an underestimate to the actual cost. To minimize the number

of transitions, we set all weights in the graph wpj
≡ wcκ ≡ 1.

Theorem 3.2.5. Problem 3.2.2 has a solution to any goal from any initial configu-

ration if and only if GP is connected.

Proof. CT contains every allowable configuration x in our polytopic world model.

GP contains all the information about the connectivity of CT . Thus, if there is a

solution to Problem 3.2.2 there must exist a path from any node in GP to the goal

node(s). Conversely if there is no path on GP between any two nodes, there is no

solution to Problem 3.2.2.

Corollary 3.2.6. Problem 3.2.3 has a solution from P 0 to P g if and only these

nodes are connected on GP .
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Figure 3.8: Distant pairs of polytopes.

3.3 Task configuration space complexity

The computational complexity of computing the task configuration space, in its

entirety, is determined by the number of polytopes in CT , which scales exponentially

with n. Call ∈RD contains
∏n

i=1 pi polytopes, where pi is the number of polytopes

in Cfreei . Assuming the proximity constraints shown in Fig. 3.2, for each pair of

agents with collision constraints we have one annulus with 4 regions, resulting in a

maximum of 4n(n−1)/2 proximity regions intersected with Call. Thus, the maximum

number of polytopes in CT is

Pmax = 4n(n−1)/2

n∏
i=1

pi. (3.5)

This is a worst-case scenario, as the proximity constraints are dependent

(x1
1 < x1

2, x
1
2 < x1

3 =⇒ x1
1 < x1

3). Additionally, a portion of these polytopes

will violate proximity constraints. If the physical space is larger than the maximum

communication distance and two agents are neighbors, then they cannot be at oppo-

site ends of the space. Figure 3.8 depicts a situation of this type for two neighboring

agents. If one agent is in region 1, the other cannot be in region 4 since no point

in 4 is within the constraints, and vice versa (similarly for regions 3 and 6). Any

product of polytopes in neighboring agents’ configuration spaces that are beyond
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the maximum connectivity limit will be eliminated when intersecting Call with the

proximity constraints (3.3) to create CT .

Table 3.1: Complexity of constructing the task configuration space.

Task Complexity Ref

Construct Cfreei O(vi + min{vi, r2
i , r

4
i }) [51]

Construct CT O(Pmax · LP (hi + 1, d)) [38]

Plan on polytopes in CT O(|EP |+ Pmax logPmax) [20]

Triangulation, per polytope O(|Vk|D/2) [38]

Plan on simplex graph GkS O(|EkS |+ |Sk| log |Sk|) [20]

Table 3.1 specifies the complexity of every step in the process of constructing the

entire CT . Here, vi (resp. ri) is the total number of vertices (resp. reflex vertices) in

Cfreei , represented by a quasi-in-simple polygon. LP(c, d) represents the complexity

of a linear program in d dimensions and c constraints. hk is the number of inequalities

used to describe a polytope in CT . |Vk| is the number of vertices in polytope P k. |Sk|

is the number of simplices in the Delaunay triangulation of P k.

The computational expense of the process depends largely on the methods used

for decompositions, Cartesian products, and intersections, as well as the number of

agents, connectivity, and complexity of the space.

There are several ways to decrease the computation time required. Combinations

of polytopes which violate proximity constraints can be ruled out before taking

the Cartesian product. Using a heuristic-based graph search can also reduce the

computation.

3.4 Remarks

This chapter presented a method for constructing the configuration spaces for a

group of robots. The task configuration space we construct is a space composed of
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polytopes, where the agents cannot collide, lose communication, or violate any of

the set constraints. Any state that is within the task configuration is considered a

safe state.

We choose to model the configuration space as the Cartesian product of the

configuration spaces of the individual robots in order to preserve as many solutions

as possible. Since the task configuration space is a space composed of polytopes with

matching facets, we can automatically synthesize controllers on this space which drive

the group to the goal configuration without exiting the space in Chapters 5 and 6.

This means the group will avoid violating any of the set constraints, inter-robot

collisions, and collisions with the environment.

One limitation of this algorithm is that the complexity is exponential in the

number of agents. Because of the size of Pmax, constructing CT is the most time

consuming portion of preprocessing. By using a heuristic-based graph search such

as that presented in Section 3.2, we can significantly decrease precomputation time.

Furthermore, although Pmax is exponential in the number of agents n, the proximity

constraint dependency combined with connectivity constraints significantly decrease

the number of polytopes in the space, as we will show in Chapter 5.

In the following chapter, we construct a different configuration space specifically

for a group of robots without unique goal positions. Then, we will translate the paths

on the polytope and simplex graphs into feedback controllers to solve Problems 3.1.7,

3.1.8, and 3.1.9.
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Chapter 4

Group Configuration Space

Modeling

In this chapter we construct configuration spaces specifically for groups of robots

by using an abstraction. The abstraction defines a virtual boundary for the group

of robots which is used to navigate the group through the space. By this construc-

tion, we are naturally able to establish bounds on the positions of the robots. This

allows us to guarantee safety–the controllers are designed so that the virtual bound-

ary associated with the abstraction does not pass through the obstacles. Thus the

complexity of the problem of synthesizing controllers is independent of the number

of robots, which promises scalability to large groups.

4.1 Problem formulation

Consider again a group G, of n kinematic agents with dynamics (3.1). The group

must together navigate an obstacle-filled environment to a specified task location.

Since the group is working closely together, we assume that communication occurs
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very rapidly within the group, so that control can be centralized over the group.

We use an abstraction on the group of robots to reduce the computational com-

plexity of the problem of navigating n robots. Our abstraction defines a virtual

adaptive boundary for the group of robots, while controllers at the robot level ensure

the robots stay within the boundary. The abstraction boundary is determined by

automatically synthesized controllers, and the robots react to the changing size and

shape of the abstraction boundary. Thus, a group of robots can navigate a space

knowing only the boundary and the local (within the boundary) state of the group,

decoupling planning and control of the agents from the physical environment. The

dimension of the abstraction is independent of the number of robots n. We discuss

in detail the specific abstraction we use in Section 4.2.

Figure 4.1 is a graphical representation of the hierarchical structure of the ap-

proach. At the bottom level, individual robots execute the continuous controllers

that are designed to satisfy specifications and desired formation properties. At the

middle level, individual robots interact with each other to maintain constraints (this

level may not be necessary for all problems). At the top level, the abstracted group

navigates the space while maintaining constraints designed to ensure there is enough

room for the robots. We sum controllers at these levels to generate the input for the

individual robots. We assume for now that there are no obstacles within the group

boundary.

Our hierarchical control system enables a multiple time scale approach, as shown

in Fig. 4.1, to eliminate the possibility of local minima which may occur when sum-

ming two controllers. Group dynamics (motion within a group) are assumed to evolve

on a much faster time-scale than abstraction dynamics (overall motion of an entire

group); sufficient time scale separation between group and abstraction dynamics

ensures the two controllers can be designed independently.
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Figure 4.1: Hierarchical structure. At the bottom level, robots implement the con-
tinuous controller. At the top level, the abstracted group navigates the space.

Since the abstraction is independent of the robots’ configuration, synthesis of and

planning in the abstraction workspace occurs in advance. At least one robot must

have knowledge of the evolution of the abstraction over time. This information, as

well as individual robot state information, propagates through the group rapidly via

explicit communication.

4.2 Geometric abstraction

The abstraction defines a virtual boundary for the group of robots; the boundary,

in turn, defines an obstacle-free configuration space for the individual robots in the

group. Since group navigation is handled by a high-level controller, which treats the

abstraction as a single deforming robot, the individual robots must only keep up

with the group motion while they interact with each other to maintain the desired

constraints. We use a rectangle for this virtual boundary; however, this is only one

example of the possible choices for abstractions.

Definition 4.2.1. The group abstraction A is a triple

A = (xA, θ, s) ∈ SE(2)× R2, (4.1)
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Figure 4.2: Examples of possible abstraction boundaries. We choose a rectangle
since it can be described by width and height alone.

where xA is the center of the group abstraction, θ is the angular orientation, and s is

a shape vector representing the boundary and size of the abstraction which encloses

the group of robots. We assign the abstraction dynamics

Ȧ = uA, (4.2)

where uA can be considered a virtual input.

In this work we choose a rectangle as the abstraction boundary since a rectangle

can be described by two parameters, width sw and height sh, so that the shape

vector is the pair s = (sw, sh). Although we choose a rectangle, it is important to

note that the rectangle can be replaced by any convex polytopic shape, as we show

in Fig. 4.2, provided the shape vector contains enough information to describe a

unique boundary.

We treat the abstraction as a single robot which can change shape and orienta-

tion while navigating the space. Shape constraints limit the size and shape of the

abstraction in order to ensure we have enough room for the number of robots in the

group. We set bounds on sw and sh, as well as bounds on perimeter, (sw + sh). We

can write these constraints:

Hss ≤ Ks. (4.3)

We choose perimeter bounds instead of area since perimeter is a linear constraint.
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The reason for linear constraints will become clearer in Section 4.3.

The input to each agent in the global reference frame is

ui = R(θ) uri + ux,yA , (4.4)

where ux,yA is the translational component of the abstraction input, R(θ) is the ro-

tation matrix at θ, and uri is the individual input of robot ai in the local coordinate

frame defined by the abstraction.

4.3 Abstract configuration space

We would like to drive the abstraction through the physical workspace using a con-

troller that can be synthesized automatically. To that end, we build a polytopic

configuration space based on the parameters which define the abstraction.

Definition 4.3.1. The configuration space of the abstraction, C, is the set of all

transformations, including rotations, of the virtual boundary defined by A. The free

space of the abstraction, Cfree, is the set of all transformations, including rotations,

of the virtual boundary defined by A which do not intersect with obstacles in the

configuration space.

To simplify building and planning on Cfree, we take a hierarchical approach to

constructing it. First, we slice the angular component of the configuration space into

θ-slices, Θk = [(k − 1)∆θ, k∆θ], k = {1, . . . , q}, so that q∆θ = 2π, and tesselate the

R2 workspace into districts Dm,m∈{1, . . . , p}, (Fig. 4.3a). Each district is described

by constraints:

Hm
DxA ≤ Km

D , m ∈ {1, . . . , p}. (4.5)
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Figure 4.3: (a) A decomposition of the workspace into districts (Obstacles are
shaded) (b) We take the Cartesian Product of each district Dm with each θ-slice
Θk. (c) Our choice for overestimating the abstraction.

Representing the free space exactly is not possible with a finite number of poly-

topes, since the free space includes curves due to the angular component of the

abstraction. Therefore, we seek to underestimate Cfree with CfreeA , such that CfreeA ⊂

Cfree. We do this by overestimating the abstraction for each Θk with AΘk :

AΘk(xA, s) ⊃ {A(xA, θ, s)|θ ∈ [(k − 1)∆θ, k∆θ]}, k ∈ {1, . . . , q − 1}.

AΘk(xA, s) must be a union of convex polygons, the vertices of AΘk must be linear

functions of xA and s, and the outward normals must not be a function of s. This is

necessary for computing the applicability conditions for types A and B contact [63].

We choose to overestimate the abstraction with a rectangular superset of the

abstractions through an angular interval ∆θ. Figure 4.3c shows the abstraction

overestimate that we choose, which is a rectangle rotated to angle ∆θ/2 (smallest

rectangular superset of the abstractions). The overestimate shown is appropriate for

small ∆θ; with large ∆θ, this overestimate becomes excessive and another overesti-

mate should be chosen.

Workspace obstacles Ol, l ∈ {1, . . . , o} must be represented as a finite unions of
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convex polygons (note that the boundary of the workspace is considered an obstacle).

Obstacles in the workspace map to C-obstacles in the configuration space for each

Θk. The C-obstacle for each θ-slice is computed using the specific overestimate for

that θ-slice.

To construct C-obstacles, we follow an algorithm originally proposed by Lózano-

Perez [77] and discussed by Latombe [63]. To do so, we must project the vertices and

outward normals of the boundary into polyhedral space, thus the outward normals

cannot depend on the shape vector. Here we follow Latombe’s notation closely.

Let the vertices of the overestimated abstraction be represented αkj (xA), where

j = 1, . . . , 4 for slice Θk, and the outward normal for the facet between αkj (xA) and

αkj+1(xA) as −→n αk

j (xA). Similarly, let the vertices of obstacle Ol be represented βlj,

with the outward normal for the facet between βlj and βlj+1 as −→n βl

j .

The C-obstacles are computed by calculating for each Θk the applicability con-

ditions for type A contact (we drop the superscripts k and l for clarity),

APPLαi,j(xA) =
[−→n α

i (xA) · (βj−1 − βj) ≥ 0
]∧[−→n α

i (xA) · (βj+1 − βj) ≥ 0
]
.

If APPLαi,j(xA) holds, then add to C-obstacle the constraint

fαi,j(xA) ≡ −→n α
i (xA) · (βj − αi(xA)) ≤ 0. (4.6)

Similarly, we calculate

APPL
β
i,j(xA) =

[
(αi−1(xA)− αi(xA)) · −→n β

j ≥ 0
]∧[

(αi+1(xA)− αi(xA)) · −→n β
j ≥ 0

]
.
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If APPLβi,j(xA) holds, then add to the C-obstacle the constraint

fβi,j(xA) ≡ −→v β
j · (αi(xA)− βj) ≤ 0. (4.7)

For more details on the applicability condition and the constraints fαi,j(xA) and

fβi,j(xA), refer to [63].

This generates obstacles in R4×N for each θ-slice, which we can extrude through

the interval Θk to get Ol,k ∈ R2 × SE(2). We can represent Ol,k

H l,k
O xA ≤ K l,k

O , k ∈ {1, . . . , q}. (4.8)

As depicted in Fig. 4.4b, the C-obstacles will generally not coincide at the θ-slice

interfaces. Since our controller requires facets to match on adjacent polytopes, we

reconcile this by considering each interval Θk with corresponding R4 obstacles, and

any intersecting districts. In each district, before removing obstacles, we extend

all obstacle hyperplanes in the intersection of the obstacle and the district for the

adjacent θ-slices. For example, in Θ3 × D7, we intersect the polytopes with the

extended hyperplanes for the Θ2 × D7, Θ3 × D7, and Θ4 × D7. This results in a

union of polytopes in 4D for each district and θ-slice.

Finally, the resulting polytopes in each district are extruded into their θ-slices to

construct θ-districts : DΘk
m ,m ∈ {1, . . . , p}, k ∈ {1, . . . , q}. In each θ-district we re-

move the polytopes which intersect with obstacles. Since the supporting hyperplanes

of the intersections of the 4-dimensional districts with every obstacle in every θ-slice

were extended into the district before extending into θ-space, the polytopes within

each θ-district have matching facets. Furthermore, any pair of polytopes across a

θ-slice interface which are adjacent will have matching vertices, ensuring that we

48



0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

x
1

x
2

Student Version of MATLAB

(a)

Student Version of MATLAB

(b)

Figure 4.4: Configuration space obstacles for θ-slices. (a) C-obstacles generated for
a rectangular abstraction with fixed length, width, and angle (shown in the bottom
left corner). (b) C-obstacles for θ-slices do not coincide on the interface.

cannot drive the abstraction into prohibited regions.

Thus, the overestimated free space is CfreeA :

Cfree
A =

q⋃
k=1

d⋃
m=1

Cfree,k,m
A , (4.9)

Cfree,k,m
A =

o⋂
l=1

(
DΘk
m ∩Ol,k

)
.

CfreeA is a union of polytopes in which the abstraction cannot collide with any obsta-

cles or the boundary of the space.

Problem 4.3.2 (Control for group abstraction). Consider the system (4.2) and goal

group abstraction state Ag. Find an input function uA : [0, T0]→ UA for some initial

group abstraction state A0 ∈ Cfree,k0,m0

A ⊂ CfreeA such that

1. for all time t ∈ [0, T0], A ∈ CfreeA and A(T0) arbitrarily close to Ag,

2. Ȧ = uA.
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4.3.1 Discrete planning on abstract configuration space

As we did in Section 3.2 in the previous chapter for the task configuration space, we

will now seek a discrete representation of the abstract configuration space.

Each polytope in CfreeA is associated with a θ-district DΘk
m . We define two adja-

cency graphs: one on CfreeA at the θ-district level, and one on each θ-district at the

polytope level.

Definition 4.3.3. The upper-adjacency graph on CfreeA is the triple

GU = (VU , EU , CU), where VU = {[1 1], [1 2], . . . , [q p]}, EU is the set of all pairs

(DΘk
m , D

Θ′
k

m′ ) of θ-districts which share an interface, and CU is the cost associated

with each edge in EU .

Definition 4.3.4. The lower-adjacency graph on each DΘk
m is the triple Gk,m

L =

(Vk,mL , Ek,mL , Ck,m
L ), where Vk,mL = {P k,m

1 , P k,m
2 , P k,m

3 , . . . }, where P k,m
i is the i-th poly-

tope in DΘk
m , Ek,mL is the set of all pairs of polytopes which share a facet, and Ck,m

L is

the cost associated with each edge in Ek,mL .

We set the cost Ck,m
L = 1 ∀k,m to minimize transitions within each Cfree,k,mA .

Problem 4.3.5 (Discrete Abstraction Path). For the initial group abstraction state

x0
A, find a path on GU and corresponding paths through θ-districts to the goal group

abstraction state xgA.

Again, we use a graph search algorithm such as Dijkstra or A∗ to determine the

lowest cost path to the goal. We first find a path on the upper-adjacency graph

to the goal θ-district . Then we determine a path from every polytope in DΘk
m to

D
′Θ′
k

m on the lower-adjacency graph. The heuristic is similar to the one discussed

in Section 3.2, except the discrete pose in the abstract configuration space consists

of the districts Dm and θ-slices Θk instead of the individual robot free space cells
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and relative location of robots. Additionally, it must be verified that the interface

between the θ-districts exists before an edge is added to the upper adjacency graph.

4.4 Complexity

The complexity of this method is independent of the number of robots. It is domi-

nated by the number of polytopes in CfreeA . We extend the hyperplanes which support

the intersections of districts with obstacles. The boundary of 2D C-obstacles is made

of at most O(vα, vβ) edges where vα is the number of vertices in the abstraction,

and vβ the number of vertices in the obstacle. We construct C-obstacles in R4, since

we consider changing sizes of the abstraction. Since each hyperplane may divide the

existing polytopes into two, the maximum number of polytopes in one θ-slice of CfreeA

is O(2vαvβq) where q is the number of θ-slices.

4.5 Remarks

In this chapter, we presented a method for modeling groups of robots using an

abstraction, and constructing the abstract configuration space. The key difference

from Chapter 3 is that the goal configuration lends itself to navigating as a group

or is not finely specified, whereas in Chapter 3, each robot had an individual goal

configuration.

In the following chapters we translate the paths on the upper-adjacency and

lower-adjacency graphs into feedback controllers to solve Problem 4.3.2.
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Chapter 5

Decentralized Affine Feedback

Control

In this chapter, we synthesize controllers to solve Problem 3.1.8 once the paths on

the polytope and simplex graphs are identified. The synthesis procedure is similar

in spirit to those discussed in [18,43,72,105], but is closest to the one developed by

Habets and van Schuppen [43] for determining a centralized affine state feedback that

satisfies a set of inequalities on a polytope. In their paper, they derive controllers

that drive a linear system from any initial condition in a polytope through a desired

exit facet of the polytope while guaranteeing the system does not leave the polytope

from any other facet. We modify this algorithm to design a decentralized affine

controller within each simplex.

5.1 Local polytope controller

We now consider the subproblem of steering states in a simplex to a specified exit

facet without limiting state information.
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Problem 5.1.1 (Continuous Subproblem, Full Feedback). Consider the system (3.1)

on simplex skq ∈ P k ∈ CT , where skq is the q-th simplex in P k, the k-th polytope on

a path to the goal, and xg /∈ skq . Let skr be the next simplex on the path. Let Φq

be the facet shared by skq and skr with normal vector nq pointing out of skq . For any

initial state x0 ∈ skq , we have to find a time-instant Tq ≥ 0 and an input function

u : [0, Tq] → U, where u is realized by the application of a continuous feedback law

u(t) = Fx + g, F ∈ RD×D, g ∈ RD×1, such that

1. ∀t ∈ [0, Tq] : x(t) ∈ skq ,

2. x(Tq) ∈ Φq, and Tq is the smallest time-instant in the interval [0,∞) for which

the state reaches facet Φq,

3. nT
q ẋ(Tq) > 0, i.e. the velocity vector ẋ(Tq) at x(Tq) ∈ Φq has a positive com-

ponent in the direction of nq.

Note that Problem 5.1.1 naturally implies that all agents have access to the full

state since the information graph is complete. We now consider the subproblem of

steering states in a simplex to a specified exit facet with limited state information.

Problem 5.1.2 (Continuous Subproblem, Limited Feedback). Consider

Problem 5.1.1 with the additional constraint:

4. matrix F , composed of matrices F ij∈Rdi×dj , i, j = 1, . . . , n, is such that F ij =

0 if (ai, aj) /∈ EI .

In the goal simplex sg, we solve the equation

ẋ|x=xg = Fxg + g = 0. (5.1)
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Assume (without loss of generality) that the exit facet for each simplex has index

1, outward normal n1, and contains vertices {v2, . . . ,vD+1}. Problem 5.1.1 is solved

on the simplex by the linear program

min 0T[uT
1 uT

2 . . . uT
D+1]T

s.t. nT
1 u|vc > 0, c ∈ {2, . . . , D + 1}

nT
b u|v1 ≤ 0, b ∈ {2, . . . , D + 1}

nT
b u|vc ≤ 0, b, c ∈ {2, . . . , D + 1}, b 6= c,

(5.2)

where {u|v1 , . . . ,u|vD+1
} are the inputs evaluated at the vertices. The linear program

(5.2) generates the inputs at the vertices of each simplex, which must be interpolated

within the simplex (for more detail see [43]). Every point in a simplex is described

by a unique convex combination of the vertices. The same convex combination of

the inputs at the vertices is used to evaluate the controller within each simplex, and

determines the calculation of F and g. The feedback matrix F and vector g must

be solved in each simplex, and thus are constant in each simplex.

Theorem 5.1.3. Problem 3.1.7 has a solution if and only if Problem 3.2.2 has a

solution.

Proof. This proof is a straightforward extension of the results in [43].

Theorem 5.1.4. Problem 3.1.8 has a solution if Problem 3.2.2 has a solution and

there exists a corresponding solution to Problem 5.1.2 for each simplex skq ∈ CT , as

well as a solution to (5.1) for the goal simplex sg.

Proof. If there is a solution to Problem 3.2.2, there exists a path from any node

in GP to the goal node(s). For each polytope P k which does not contain the goal,

there exists a path in Gk
S to the exit facet of P k defined by the solution to Prob-

lem 3.2.2, since the triangulation of a polytope results in a connected graph. Also,
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there trivially exists a path on the simplex graph in P g to the goal simplex sg. Paths

on the simplex graphs define the exit facet for each simplex in CT . If there exists

a solution to Problem 5.1.2 for the particular exit facet for each of these simplices,

and a solution for (5.1) in sg, then Problem 3.1.8 has a solution.

The constraint (4) in Problem 5.1.2 can be formulated as a supplementary equal-

ity constraint on the linear program used to solve for the inputs at the vertices of

each simplex. Without requirement (4), F and g are calculated after solving the

linear program, by using the equation


FT

—–

gT

=WU (5.3)

where

W ≡


v1

T 1

...
...

vD+1
T 1


−1

≡


W1

T

...

WD+1
T

 ,

U ≡


u|v1

T

...

u|vD+1
T

 ≡ [U1 · · · UD+1] .

However, since we know certain entries of F must be zero, we restrict solutions of

U accordingly. To more easily impose these constraints on F , we solve for U at the

simplex level. (If we fix the triangulation, it is possible to solve for U at the polytope

level by calculating the constraints on U at the simplex level but solving F at the

polytope level; however, we do not explore this idea any further since we do not
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object to non-differentiable controls at the facets.) Then we can write

F ij =

 W2j−1
TU2i−1 W2j−1

TU2i

W2j
TU2i−1 W2j

TU2i

 .
The linear program to solve Problem 5.1.2 is:

min 0T[uT
1 uT

2 . . . uT
D+1]T

s.t. nT
1 u|vc > 0, c ∈ {2, . . . , D + 1}

nT
b u|v1 ≤ 0, b ∈ {2, . . . , D + 1}

nT
b u|vc ≤ 0, b, c ∈ {2, . . . , D + 1}, b 6= c,

F ij = 0, i, j∈{1, . . . , n}, (ai, aj) /∈EI , i 6= j.

(5.4)

The equality constraint in (5.4) results directly from Problem 5.1.2 constraint

(4). The linear program (5.4) has 2D(D + 1) constraints: D(D + 1) inequality

constraints and D(D+ 1) equality constraints. Since we have 2D(D+ 1) unknowns,

(2D entries of F , D entries of g, and RD inputs at each of the D + 1 vertices), we

cannot guarantee that a solution to Problem 5.1.2 will be found. However, if in some

simplex a solution is not found for a particular exit facet, it is possible to “reroute”

the path on the simplex graph so that all states that enter that simplex exit through

a different exit facet. Furthermore, it is possible to build GP and all Gk
S based on

the existence of controllers which drive the system to particular exit facets.

5.1.1 Algorithm for multi-robot navigation

In summary, the algorithm for controller synthesis or the solution to Problem 3.1.7

(resp. 3.1.8) involves the following four steps:
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Algorithm 5.1.5.

1. Construct the task configuration space CT (Definition 3.1.10).

2. Find paths on the polytope graph GP and all simplex graphs Gk
S.

3. Solve Problem 5.1.1 (resp. 5.1.2) on all simplices except sg.

4. Solve Equation (5.1) in sg.

5.2 Simulations and experiments

In this section, we solve several multi-agent coordinated control problems to illustrate

the application of the technique. Preprocessing of the controller is done in Mat-

lab using the Multi-Parametric Toolbox for polytope computations [61]. Three-

dimensional dynamic simulation of the robots is done using Gazebo, part of the

Player/Stage/Gazebo project [41]. Gazebo is an open source multi-robot sim-

ulator, designed to accurately simulate a small population of robots with high fidelity.

We use a Matlab API [86] which interacts directly with Gazebo and Player to

provide real-time control in Simulations and experiments, respectively.

The robot we use is the Scarab robot, shown in Fig. 5.1a, which is a nonholo-

nomic platform. Although the controller is designed for robots with the dynamics of

(3.1), we use feedback linearization to provide inputs to the robots in (v, ω) form [52].

Fig. 5.1c shows the effect of feedback linearization on the proximity constraints and

when calculating the free space. In the differential drive Scarabs, we track the

reference point Pi which is offset from Po by a feedback linearization distance, FB.

The entire robot lies within a circle centered at Pi of radius S = FB + r, where r is

the original radius of the robot. Since the radius enclosing the robot at the reference

point is much larger than the radius of the robot itself, we must increase the size

of the obstacles by the new radius S to prevent collisions, as well as decrease our
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(a) (b)

!"
FB 

Po 
Pi 

(c)

Figure 5.1: The Scarab robot , the platform for simulations and demonstrations of
the decentralized affine feedback controller. (a) A photograph of the Scarab. (b)
Screen capture of three Scarabs mid-simulation in the dynamic simulator Gazebo.
(c) Feedback linearization on the Scarab.

maximum and increase our minimum proximity constraints. We translate the linear

velocity commands which are output by the controller to linear and angular velocity

by inverting the equations below (for FB > 0):

 ẋi

ẏi

 =

 cos θi −FB sin θi

sin θi FB cos θi


 v

w

 . (5.5)

5.2.1 Three agents negotiate passage through a corridor

Figure 5.2a and 5.2b show a simulation in which the agents successfully traverse a

narrow corridor which requires the agents to traverse it in a single-file formation,

making the proximity constraints difficult to preserve. Note that no formation is

specified. Only the collision graph (complete), connectivity and information graphs

(both as in Fig. 3.1c) are specified (δmin = 0.7ft, δmax = 1.6ft).
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Figure 5.2: Three agents through a narrow corridor. The black boxes on the upper
right show the symmetric proximity constraints, δmin = 0.7ft, δmax = 1.6ft. The thick
black outline denotes the physical workspace, with the gray areas representing the
areas of the configuration space which are within δmin of the workspace boundaries.
(a) Intermediate state. (b) Final State.

5.2.2 Matlab simulations through a complex and real space

Figure 5.3 shows a simulation of a real world problem where vehicles with realistic

ranges of connectivity (150m in Fig. 5.3b and 250m in Fig. 5.3c) navigate through an

urban environment to their respective destinations while keeping within the specified

range. Figure 5.3b has two ground vehicles with complete connectivity, collision, and

information graphs. Figure 5.3c shows two ground vehicles with one aerial vehicle

with a very large connectivity range (greater than 1000m).
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Figure 5.3: A team of unmanned vehicles navigates an urban environment. (a) An
aerial view of the urban environment used in the simulation. (b) Results with a
team of 2 ground agents. (c) Results with two ground agents and one UAV. In
(b),(c) buildings are enclosed by black polygons. The bar on the bottom left shows
δmax for each simulation. In 5.3c, one agent is a UAV, which has a long range of
connectivity.

5.2.3 Three agents in Matlab and Gazebo

In a space which is multiply connected, agents have more than one route to the goal;

depending on initial conditions and constraints, the agents will choose different paths.

A simple multiply connected space is shown in Fig. 5.4a and 5.4c. The thick black

outline and black box in the center denotes the physical workspace, with the gray

areas representing the areas of the configuration space which are within δmin of the

workspace boundaries. The black boxes in the corners denote proximity constraints

δmin = 0.7m and δmax = 2.5m. In these simulations, the agents share the same

configuration space, collision graph (complete), start and goal configurations, and

proximity constraints. In the centralized case (Fig. 5.4a and 5.4b), the connectivity

and information graphs are complete; in the decentralized case (Figures 5.4c and

5.4d) they are not complete (both as in Figure 3.1c, with agent 1 red, agent 2 green,

and agent 3 blue). In Fig. 5.4a and 5.4c, solid lines show the position of the robot

and dotted lines show the position of the feedback linearization point. The distances

between the solid lines and the black dotted lines at the starting point are due to
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feedback linearization distances (centralized: 0.3m, decentralized: 0.4m). The agents

take different routes to the goal since the feedback linearization points for the two

cases are initially in different polytopes.

Figures 5.4b and 5.4d show distance between agents in each case: red depicts

inter-robot position, green depicts distance between feedback linearization points,

and dotted blue marks the maximum allowable distance. The first row corresponds

to agents 1 and 2, the second to agents 2 and 3, and the third to agents 1 and 3.

The left column shows Euclidean distance between pairs of agents; center and right

columns show distance in the x-direction and y-direction, respectively. The plots

show that proximity constraints are maintained. In the center plot in Fig. 5.4d, the

red line depicting inter-robot distance dips below the dashed blue line, indicating that

the inter-robots distance has exceeded the limit; the distance between the feedback

linearization points, however, does not. Since sufficient security margin was built

into the inter-robot distances, the robots do not collide. This shows the importance

of building in sufficient security margin of at least the robot radius plus the feedback

linearization distance, as shown in Fig. 5.1c.

5.2.4 Experiments with two agents

For experiments, we have used two Scarab robots in the environment pictured

in Fig. 5.5 and 5.6. Overhead cameras, accurate within 3cm, were used for robot

tracking. Obstacles were padded (Fig. 5.5a) according to the feedback linearization

distance of 18cm.

Figures 5.5a and 5.5b show the results of one experiment. The thick black outline

of the workspace and the thick black lines within the workspace denote the physical

workspace, with the gray areas representing the areas of the configuration space
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Table 5.1: Critical values in our simulations

Pmax P = |CT |
∑P

i=1 Vi/P
∑P

i=1 Fi/P

Fig. 5.3b 12, 996 2572 18 9

Fig. 5.4a 4096 464 92 15

which are within δmin = 0.5m of the workspace boundaries and obstacles (δmax =

3m). Figure 5.5b shows distance between the two robots and the distance between

the feedback linearization points (δmin = 0.5m, δmax = 3m). Figure 5.6 shows

sequential still frames of the experiment. This experiment demonstrates that the

controller can successfully be applied to real robot navigation problems.

5.3 Computational complexity

Now we discuss the computational complexity of our method. The worst case com-

plexity is mostly determined by the number of polytopes in CT , which scales expo-

nentially with n, as discussed in Section 3.3. However, actual numbers observed are

much lower.

Table 5.1 presents critical values from our simulations. Although Pmax is expo-

nential, the actual number of polytopes in CT is much lower. The table also presents

average number of vertices and facets per polytope.

There are several ways to reduce complexity in the controller synthesis phase.

5.3.1 Distant pairs of polytopes

Given a connectivity graph, it is possible to rule out some combinations of polytopes

before taking the Cartesian product. An example was shown in Fig. 3.8. This does

not decrease the number of polytopes in CT , however, it decreases the computation

time it takes to generate CT .
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5.3.2 Lazy evaluation

If an initial configuration is given, and the agents cannot initiate in another polytope,

find a controller only in the polytopes which are on the path from the initial to

final polytope. Although this will not reduce the number of calculations to find

CT , it will significantly decrease the number of polytopes for which controllers must

be found. More generally, given a limited number of polytopes which contain all

possible initial configurations of the agents, solve only in those polytopes which they

will pass through.

5.4 Remarks

We presented a method for synthesizing decentralized affine feedback controllers on

polytopes. The feedback controllers obtained by this method provide guarantees of

convergence to a goal in any known polygonal environment. When combined with the

configuration space model constructed in Chapter 3, it guarantees communication

maintenance, collision avoidance, and compliance with other set constraints.

We demonstrated the method on groups of multiple heterogeneous agents navi-

gating a known environment with obstacles, including navigating a narrow corridor

as well as an urban environment. In experiments as well as 3D dynamic Gazebo sim-

ulations, the controllers, although not specifically designed for nonholonomic robots,

successfully drive agents with limited system state information to goal sets while

avoiding collisions and maintaining specified proximity constraints. Additionally, we

have shown in experiments that the controllers can be successfully applied to real

robot navigation problems.

One limitation of this algorithm is that the complexity is exponential in the

number of agents. However, we can reduce the complexity of controller synthesis in
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two ways: (1) constructing the task configuration space by considering the distance

between polygons in the free space (Section 5.3.1); (2) by using lazy evaluation for

controller synthesis (Section 5.3.2). Furthermore, by using an informed graph search

method in configuration space construction along with lazy evaluation in controller

synthesis, we can significantly reduce computation.

Although our algorithm does not require exact knowledge of the position of non-

neighbor robots, all robots must have knowledge of the simplex the state is currently

in, to determine which controller to apply. This may seem infeasible, however,

some limited information about position can be passed through neighbors in the

connectivity graph. This would require state information to flow across the robot

network, but not at the bandwidth required for a complete information graph. Since

exact position need not be known, latency in the network will likely not result in a

safety violation.
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Figure 5.4: Gazebo simulations in a multiply connected space with identical prox-
imity constraints (agent pair (1,3) not connected) with centralized and decentralized
controllers. (a) Results of centralized simulation. (b) Distances between agents in
centralized simulation. (c) Results of decentralized simulation. (d) Distances be-
tween agents in decentralized simulation.
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Figure 5.5: An experiment with 2 Scarab robots in a multiply connected space.
(5.5a) Experimental results. Solid lines show the position of the robot and dotted
lines show position of the feedback linearization point. (5.5b) Distances between
robots. Red depicts robot position, green depicts the feedback linearization point,
dotted blue marks the maximum allowable distance.

(a) (b) (c)

Figure 5.6: Sequential still frames of the experiment on two Scarab robots. (a)
Start configuration. (b) Intermediate configuration. (c) Goal configuration.
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Chapter 6

Feedback Control for Dynamical

Systems

Now that we’ve solved Problems 3.1.7 and 3.1.8 by synthesizing feedback controllers

for limited-information kinematic systems, we switch to dynamical systems and Prob-

lem 3.1.9. In this chapter, we synthesize controllers to drive a second-order system

to the desired coordinates by translating the discrete path on the polytope graph

into state trajectories using local cell-based controllers.

Without any loss of generality, let the polytopes be numbered such that the

global path planned by the discrete planner is {P 0, P 1, · · · , P g} and P g is the goal

polytope. For m ∈ {0, 1, . . . , g−1}, Pm is in the discrete plan and it has a successor

polytope in the global plan, Pm+1, such that Pm and Pm+1 share a common facet.

Hence the feedback controller in Pm should prepare the system for the controller in

Pm+1 so that the robot is driven successively to the goal cell. In the goal cell, P g, the

controller should drive the system to the goal position. Below we develop smooth

controllers for both of these situations that are based on navigation functions on

star-worlds [102].
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6.1 Local polytope controllers

Definition 6.1.1. [24,54,102] Let Q be a D-dimensional compact, simply connected

manifold with boundary and let qg ∈ Q be a unique point. A function ϕ : Q 7→ [0, 1]

is a navigation function if it

• is twice differentiable on Q;

• achieves a unique minimum of 0 at qg ∈ Q;

• is uniformly maximal on the boundary, i.e. evaluates to 1 on the boundary;

and

• is Morse.

Navigation functions defined above have been shown, in [102], to be useful in

kinematic systems (ẋ = u) for generating controllers to drive the system to the goal

position qg by choosing the control law

u = −∇ϕ(x)

while staying inside the manifold Q at all times. Convergence of this control law can

be shown by taking V (q) = ϕ(q) as a Lyapunov function.

Let us first consider the case of kinematic agents, where the equations of motion

of each robot is given by (3.1).

6.1.1 Controllers for kinematic robots

Let the system currently lie in the polytope P 1 and let the next polytope in the dis-

crete plan be P 2. The whole group dynamics, given by concatenating the equations
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Figure 6.1: Adjacent polytopes P 1 (orange, left) and P 2 (right, blue), which form
star S12.

of motion of individual agents, is

ẋ = u, x ∈ CT ⊂ RD. (6.1)

Corollary 6.1.2. There exists a navigation function based controller that drives the

system in (6.1) from a polytope P 1 to its adjoining polytope P 2.

Proof. The two adjoining polytopes, P 1 and P 2 share a common facet. The union

of these two polytopes is a star-shaped object1 whose center can be any point on the

interior of the common facet. Let this star be denoted by S12. For example, in two

dimensions, if in Figure 6.1 the orange-colored polygon on the left-hand side is P 1

and blue-colored polygon is P 2, then the union is of the these is the star, S12.

Now, pick as local goal position, xl ∈ S12 that lies in the polytope P 2. Following

the proof by Rimon and Koditschek [102], there exists a navigation function, ϕ, with

xl as the unique minimal point. As in navigation function literature, the controller

u = −∇ϕ(x) (6.2)

will drive the system given by (6.1) to the local goal position xl which lies in P 2.

1Star shaped sets are closed sets that consists of a “center point” from where any ray crosses the
boundary of the set once and only once. They are topologically equivalent to spheres of the same
dimension. Common examples of such sets include convex polygons, star polygons, and spheres.
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This means that the system has to cross the common facet between polytopes P 1

and P 2 implying that this controller will asymptotically drive the system from P 1

to the adjoining polytope P 2.

6.1.2 Controllers for robots with second order dynamics

Now let us consider the case of dynamic agents, where the equation of motion for

each robot is given by (3.2). As before, let the system currently lie in polytope P 1

with P 2 as the next polytope in the discrete plan. The whole group dynamics is

given by concatenating the equations of motion of individual agents and is given by

ẍ = τ, x ∈ CT ⊂ RD. (6.3)

Given the construction of the star S12 and a choice of local goal position xl ∈ P 2 ⊂

S12 as in the kinematic agents’ case, the same navigation function is also valid for

the second order case. The control law

τ = −∇ϕ(x)− Γẋ, (6.4)

where Γ ∈ RD×D is a symmetric positive definite matrix, drives the system to the

goal xl while remaining inside S12 at all times. Convergence of this controller can

be shown by using V (x, ẋ) = ϕ(x) + 1
2
ẋTẋ as a Lyapunov function.

The above controller drives the second order system to the goal location, but the

velocity profile will be very different than that obtained in the corresponding first

order system, ẋ = −∇ϕ(x). If a similar velocity profile as the first order case is
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desired for the second order system, the following controller can be used,

τ = −Γ (ẋ +∇ϕ(x))−∇ϕ(x)− ∂2ϕ(x)

∂x2
ẋ, (6.5)

where Γ ∈ RD×D is a symmetric positive definite matrix. Convergence of this con-

troller can be shown by using V (x, ẋ) = ϕ(x) + 1
2

(ẋ +∇ϕ(x))T (ẋ +∇ϕ(x)) as

a Lyapunov function [55]. Such a requirement is desired in highly dynamic sys-

tems such as quadrotors. Since the quadrotor is a 12-dimensional system, we use

a second-order approximation instead of taking multiple products of 12-dimensional

state spaces. Using the graph embedding (6.5) on top of this approximation allows

the quadrotor to “act” more like a first order system, providing better response. We

demonstrate the application of this embedding in Section 6.3.5.

6.1.3 Goal-polytope controller

Given the polygonal workspace, polygonal obstacles and proximity constraints de-

scribed above, the controllers of Sections 6.1.1 and 6.1.2 can be used to drive the

robots to the polytope containing the goal state. Once the goal polytope is reached,

the controllers can be used with the star being the goal polytope itself and with the

local goal as the desired goal configuration of the entire group.

6.2 Construction of navigation functions

The efficient construction of navigation functions in large dimensions is an important

aspect of using the controllers of Section 6.1. Here we propose one method which we

have succesfully used in our implementations on a variety of simulations described

in Section 6.3. Note that other methods such as those described in [24, 103] can be
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used for navigation function construction.

To begin, consider a convex polytope with r facets, with a goal location xl inside

it. Let each of the facets be given by ci ≡ ki − hix = 0 for i = 1, 2, · · · , r where

hix ≤ ki is the ith row of the halfspace representation of the polytope, so that ci > 0

inside the polytope. The boundary of the polytope is given by c1c2 · · · cr = 0. Note

that for small ε > 0, the set given by β = c1c2 · · · cr−ε > 0 is always contained inside

the polytope and approximates the polytope increasingle better as ε > 0 becomes

smaller and smaller. This allows us to choose the navigation function

ϕ =
||x− xl||2

(||x− xl||2µ + β)
1
µ

(6.6)

for some µ > 0, µ ∈ R, to drive the system to xl. This construction enables the

navigation of the system to reach a desired goal location in the convex polytope

while staying inside the convex polytope.

For the purpose of local controllers in Section 6.1, we need to construct navigation

functions on the union of two adjoining convex polytopes, which is a star and need

not be convex. However, since the polytopes have a matching facet at the interface

between them, we can construct a convex polytope extension whose intersection

with one of the polytopes is exactly that polytope. Consider adjacent polytopes Pm

and Pm+1 that share a matching facet. In other words, there exists a hyperplane

that supports both polytopes, and at the interface, Pm and Pm+1 share the exact

same vertices. Let the halfspace representation of Pm and Pm+1 be Hmx ≤ Km

and Hm+1x ≤ Km+1, respectively. Without loss of generality, assume the shared

hyperplane is the first row in both Hm, Km and Hm+1, Km+1, so that hm1 x ≤ km1

and hm+1
1 x ≤ km+1

1 . Then hm1 = −hm+1
1 and km1 = −km+1

1 . Let Hm, Km contain rm
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rows, and Hm+1, Km+1 contain sm+1 rows. Construct the transitional polytope

Pm
m+1 = {x | hmr x ≤ kmr , r = 2, . . . , rm,

hm+1
s x ≤ km+1

s , s = 2, . . . , sm+1}.

Note that Pm
m+1 is a convex polytope such that Pm

m+1 ⊂ (Pm ∪ Pm+1) and

(Pm+1 ∩ Pm
m+1) \ ∂(Pm+1 ∩ Pm

m+1) 6= ∅. Now construct the polytope Pm
E , which

is a convex extension of polytope Pm into polytope Pm+1, by

Pm
E ≡ Pm ∪ Pm

m+1. (6.7)

We synthesize a navigation function on Pm
E , and by placing the local goal at xl in

the interior of Pm+1 ∩ Pm
m+1, we drive the system to the next polytope (the cen-

troid or the center of the Chebyshev ball of the polytope Pm+1 ∩ Pm
m+1 are good

choices). It is important to ensure that the local goal xl is within the boundary of

the approximation of the next polytope.

An example of constructing the extended polytope Pm
E , as well as the navigation

function is shown in Fig. 6.2. This construction makes the regions of attractions

of the individual controllers of the sequential composition overlap; this is an advan-

tage over other non-overlapping sequential composition methods used in multi-robot

problems as the velocity of the system will decrease as it approaches the goal. In

dynamic systems, this lowers the risk of crossing the interface at high speed and

overshooting the next polytope. These benefits are most strongly exhibited in mi-

croprocessor systems where control is not truly continuous and a slight lag in control

input can result in violation of constraints.
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(a) (b) (c) (d)

Figure 6.2: An example of constructing convex extensions of polytopes. (a) Adjacent
polytopes Pm (orange, left) and Pm+1 (right, blue). (b) The transitional polytope
Pm
m+1 in green, and the local goal xl(black-dot). The convex extension Pm

E of Pm is
the union of the orange and green polytopes. (c) A smooth approximation of the
boundary of Pm

E . (d) A contour plot of the navigation function (6.6) of Pm
E .

6.2.1 Complete algorithm for multi-robot navigation

Algorithm 6.2.1. (Construction of piecewise smooth controllers for kinematic and
dynamic systems)

1. Find a path on GP and construct CT (Definition 3.1.10) simultaneously using
heuristic-based graph search.

2. Construct polytopes Pm
E as in (6.7) for each polytope on the path except the

goal polytope.

3. Synthesize navigation functions (6.6) in each polytope on the path.

Theorem 6.2.2. Algorithm 6.2.1 is complete based on the constraints (3.3).

Proof. For each pair of adjacent polytopes on the path, an extended polytope can

be found, as in (6.7). Since Pm
m+1 ∩ Pm+1 6= ∅, there exists a point in Pm+1 which

can be chosen as the local goal xl. Since xl ∈ (Pm
m+1− ∂Pm

m+1), ∃ ε > 0 such that xl

is guaranteed to be within the boundary of the approximation of both polygons. By

definition, since there are no obstacles in the polytope Pm
E , a navigation function can

be constructed without local minima which drives the state to the next polytope. In

the goal polytope, a navigation function can be constructed without local minima

which drives the state to the goal configuration xg. Therefore, if a path exists, we
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are guaranteed to find a controller to drive the system to the goal configuration. By

Theorem 3.2.6, we are guaranteed to find a path if one exists given the constraints

(3.3). Therefore, Algorithm 6.2.1 is complete.

6.3 Simulation results

Now we present several illustrative examples of the successful application of the

controller to groups of unmanned ground vehicles (UGVs), unmanned aerial vehicles

(UAVs) and quadrotors. Simulations are conducted in Matlab, using second order

models for all robots. For UGVs and UAVs, we use the model

ẍi = ui, xi ∈ Rdi , (6.8)

where di = 2 for UGVs and di = 3 for UAVs and quadrotors. Since a quadrotor is a

12-state dynamical system (three each of positions, linear velocities, orientation, and

angular velocities) with four inputs (rotor velocities) [84], using the full model would

be prohibitively complex for multiple quadrotor navigation. Therefore, the control

for quadrotors is designed for (6.8), an abstraction of the full 12-state dynamical

model. The abstraction is obtained by linearization of the full 12-state model around

the nominal hover state, generating the control input τ of (6.4) or (6.5), as is desired.

The input τ is then converted into motor thrusts and moments following [84], where

the reader is referred for further details on the model. Because the abstraction is

not an exact model of the full system, it is important for the control algorithm to be

robust to modeling errors. As can be observed in the simulations in Sections 6.3.3,

6.3.4, and 6.3.5, the controller is robust to these errors due to its cell-based nature

as well as the second-order lift using Lyapunov functions.

Proximity constraints for all simulations are δmin = 0.5m in the x, y plane, while
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on the z axis, the minimum clearance above is 0.5m and below is 1m, to compensate

for air flow between quadrotors. We run the control loop at 100Hz. All simulations

were done on a MacBook Pro, with 2.53 GHz Intel Core 2 Duo processor, 4GB 1067

MHz RAM, running Matlab R2009b. Polytope computations were done using the

MultiParametric Toolbox [61] for Matlab. To achieve faster convergence to the

goal, once inside the next polytope, the controller is switched after ensuring ground

robots were sufficiently close to the local goal and quadrotor velocity was below a

specified threshold.

6.3.1 Six robots in a circle

Figure 6.3 shows six ground robots in a circle switch to a position directly across

from their current position on the circle while avoiding collisions. The simulation in

Fig. 6.3a is not communication constrained, while that in Fig. 6.3b has a maximum

communication distance of 3m for each pair of robots. Each color denotes a single

robot, which starts at the large dot and ends at the smaller dot. In these simulations,

we favor large polytopes in the A* search by considering the transition cost

1 + Lmax/ρLmin (6.9)

for each polytope, where Lmax and Lmin are the largest and smallest lengths, re-

spectively, of the smallest hyperrectangle containing the next polytope, and ρ is the

radius of the largest ball inscribed in the next polytope. Note that while this cost

penalizes small “skinny” polytopes, it does not remove any polytopes from CT , there-

fore connectivity is preserved. For the heuristic we use the cost of 1 per transition,

which is admissible since each transition has at least a cost of 1, increasing precom-

putation time (146s and 194s for the simulations without and with communications
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constraints, respectively) because of heuristic accuracy. A more accurate heuristic

would lead to faster computations.

(a) (b)

Figure 6.3: Six ground robots (2D) in a circle switch to opposite positions. (a) No
communication constraints enforced. (b) Maximum distance of 3m communication
constraint enforced.

6.3.2 Four UAVs in 3D with obstacles

Figure 6.4 presents the results of an illustrative simulation with four UAVs in an

environment with obstacles (depicted in yellow, note that the obstacles meet in the

center). Directional changes are due to the fact that we plan a path on the polytope

graph, and not on the workspace itself. Although we forfeit some control over the

path of the robots, this simplifies the planning process, and allows us to plan more

easily for larger groups of robots. Each color represents a UAV, and colors brighten

as time increases. Figure 6.4a shows a 3D view of the simulation, and Fig. 6.4b shows

a top-down view. Starting positions are depicted by large dots and final positions

by smaller dots. Precomputation time for this simulation was 15s.
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(a) (b)

Figure 6.4: Four UAVs in an environment with obstacles (yellow). Each color rep-
resents a single UAV, and the colors brighten as time increases. (a) 3D view of the
simulation. (b) Top down view of the simulation.

6.3.3 Single quadrotor among buildings

In Fig. 6.5, a single quadrotor navigates through an obstacle filled environment. The

quadrotor takes off from the top of the yellow building and hovers at the intersection

by the blue building. The top-down view of the quadrotor trajectory is shown for

clarity in Fig. 6.5b. Figures 6.5c and 6.5d show the x, y, z position and velocity,

respectively, while 6.5e shows the angular coordinates in time. Precomputation time

for this simulation was 11.3s.

6.3.4 Two ground robots and one quadrotor

Figure 6.6 shows two examples of the application of our controller to simulations

on groups of cooperating heterogeneous robots in an urban environment, with and

without communication constraints. Precomputation time was about 11s for both
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(a) (b)

(c) (d) (e)

Figure 6.5: A single quadrotor simulation in an obstacle filled environment. The
quadrotor takes off from the top of the cyan building, and hovers at the intersection
by the yellow building. (b) The x, y, and z position (meters) in time. (c) Velocity
in x, y, and z directions, in m/s. (d) Roll, pitch, and yaw in degrees.
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(a) (b)

Figure 6.6: A quadrotor (red) and UGV (green, blue) simulation in an urban en-
vironment. The robots are deployed from the left front corner in both simulations.
(a) The robots are deployed to different intersections without communication con-
straints. (b) The robots navigate to the same intersection while maintaining a max-
imum horizontal distance of 6.5m between all pairs of robots. UGVs are in green
and blue, and the quadrotor is in red.

simulations. In Fig. 6.6a the robots deploy to different intersections without commu-

nication constraints. Figure 6.6b corresponds to a simulation with communication

constraints enforced. Robots must maintain a maximum distance of 6.5m in x, y,

and z. The trajectory of the 2 UGVs are in green and blue and that of the quadrotor

is in red.

6.3.5 Three quadrotors through a window

Figure 6.7 shows the application of our controller in simulation to three cooperating

quadrotors that must switch to opposite sides of a window. We enforce collision

constraints, however no communication constraints are considered in this simulation.

Because quadrotors are highly dynamic and the process model has uncertainties, we

again favor large polytopes in the A∗ search using the cost (6.9), which leads to an

increased precomputation time of 50s.
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Figure 6.7: Three quadrotors must switch to opposite sides of a window. Each
quadrotor is represented by a different color in green, blue and red.

6.4 Complexity

The complexity of the resulting controller depends on the number of robots and the

complexity of the free space, as in (3.5). There are
∏n

i=1 pi polytopes in Call. In

2 dimensions, the number of proximity regions is 4n(n−1), while in 3D, it is 6n(n−1).

Therefore the maximum number of polytopes in CT is 4n(n−1)
∏n

i=1 pi for 2D sys-

tems, and 6n(n−1)
∏n

i=1 pi for 3D systems. However, we need not explore all of these

polytopes. By using the heuristic derived in Section 3.2, we selectively calculate the

space, thus significantly reducing the computational burden of the decomposition

method.
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6.5 Remarks

This chapter presented the development of a novel navigation function-based feed-

back controller that drives a group of robots with second order dynamics in an

obstacle filled environment to a goal location. The controller is the result of the

sequential composition of navigation functions in polytopes. Because the polytopes

are a tessellation of the task configuration space of the robots, the resulting con-

troller is guaranteed to be free of local minima. Furthermore, the method we have

proposed is complete: it is guaranteed to find a solution if one exists.

The controller has been successfully applied in simulation to teams of second

order fully actuated robots in both 2D and 3D environments. We have shown sim-

ulations on multiple quadrotors in an environment with obstacles, and a simulation

on a heterogeneous group of robots, a quadrotor and two UGVs, with and with-

out communication constraints. Since the controller is free of local minima, it does

not require tuning for continuous systems, however, tuning improves performance in

discrete implementations of control loops.
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Chapter 7

Intra-group Controllers

The controllers introduced in Chapters 5 and 6 solve Problems 3.1.7, 3.1.8, and 3.1.9.

They can also be used to solve Problem 4.3.2, although there is little reason to use

the decentralized controller in Chapter 5 on the virtual boundary. In this chapter

we introduce controllers for intra-group control within the virtual boundary and an

alternate controller for virtual boundary control. We demonstrate these controllers

on group navigation using an abstraction. We begin by introducing an alternate

polytope-based controller developed by Lindemann and LaValle.

The vector field approach developed by Lindemann and LaValle in [71] results

in smooth feedback control on polytopes. The general idea of the controller is to

automatically generate a vector field which behaves like ∇ϕ instead of constructing

ϕ then differentiating. The approach is to assign a vector field to each facet of the

polytope which points inward on invariant facets and points outward on the exit

facet. On the Generalized Voronoi Diagram (GVD) of the polytope, assign a vector

field which points out of the exit facet. An example of such a field is one directed

toward a point in the interior of the exit facet. The fields on the facets and on the

GVD are then smoothly blended using a bump function.
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Unlike the decentralized feedback controller presented in Chapter 5, this con-

troller is smooth across the interfaces. It requires tessellating each polytope into a

Generalized Voronoi Diagram (GVD) which is less computationally intensive than

triangulation, which is required in the decentralized controller. In contrast, the navi-

gation function approach in Chapter 6 does not require tessellation of the polytopes.

In addition, this controller cannot be decentralized to accommodate for missing

edges in the information graph (this is also true of the potential-function approach

for second-order systems). Although this approach results in navigation-function-like

trajectories, it is impossible to use the graph embedding (6.5) for dynamical systems

such as quadrotors since it is not analytical.

We choose this controller since it is easy to generate a constant velocity vector

field using this approach, which may be desirable in situations such as the group

navigation examples we present below.

7.1 Group control using an abstraction

Once the paths on the upper- and lower- adjacency graphs have been determined,

i.e. once Problem 4.3.5 (Discrete abstraction path) has been solved, we translate

that path into feedback controllers.

Theorem 7.1.1 (Necessary and Sufficient condition). Problem 4.3.2 (Control for

group abstraction) has a solution iff Problem 4.3.5 has a solution.

Proof: CfreeA contains every allowable configuration xA in our polytopic world model.

GU and GL together contain all the information about the connectivity of CfreeA .

Thus, if there is a solution to Problem 4.3.2, there must exist a path from the start

node in Gk0,m0

L to the goal node in Gkg ,mg

L . Conversely, if there is no path on the
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graph between the start node and the goal node, there is no solution to Problem

4.3.2.

Corollary 7.1.2 (Completeness). Problem 4.3.5, and therefore Problem 4.3.2, has

a solution if the start and goal nodes on the polytope graph GU are connected.

7.1.1 Inter-robot constraints

Since the boundary restricts the allowable space for the robots, the robots’ config-

uration space is local and decoupled from the cluttered physical workspace. The

input to each robot ai in the local reference frame is a function

ui = ui
(
xl1,x

l
2, . . . ,x

l
n, s
)
,

where xli is the position of ai in the local reference frame (fixed to and rotating with

the center of the group abstraction) and s is the shape vector.

To solve the local robot navigation problem within the virtual boundary, we can

impose interrobot constraints much like those introduced in Chapter 3.1 and use the

controllers introduced in Chapters 5 and 6. Alternatively, we can use methods which

are reactive to the changing workspace boundaries.

We demonstrate the use of a flexible formation strategy in Sec. 7.2.1. In a flexible

formation, we would like the robots to maintain a specific structure or lattice, as in

the 3×3 formation in Figure 7.1a. The robots must remain in this formation for the

duration of the group navigation. To do so, we use a navigation function within each

sub-rectangle which will draw the robots to their assigned location, and keep them

from escaping their respective regions by increasing the feedback infinitely as they

approach the boundaries. In other words, each robot has a copy of the navigation
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(a) (b)

Figure 7.1: A flexible formation within a rectangular virtual boundary. (a) A 3× 3
flexible formation. (b) A contour plot of a navigation function for a sub-rectangle of
the formation.

function in Figure 7.1b which keeps it in position, and which scales with the size of

the virtual boundary.

A Voronoi coverage type controller [22, 97, 112] would be useful if the group was

being used for sensing or surveillance of different spaces (demonstrated in Sec. 7.2.2.

If maintaining a specific shape is required we can parametrize the controller in [45]

to stabilize the robots on an orbit in that shape. For stricter formations, [29,67] and

Chapter 8 provide a more structured organization of robots.

It is critical that the group dynamics evolve on a sufficiently faster time scale than

abstraction dynamics to guarantee safety. Summing controllers without sufficient

time scale separation could result in local minima.

7.1.2 Setting shape constraints

Choosing shape constraints (4.3) is critical to ensure there is enough space in the

abstraction to maintain the desired formation. Knowing the shape of the abstraction,

we can determine the minimum size of the abstraction so that it is large enough to

contain the number of robots in the group. The minimum size of the abstraction

will depend on the number of robots in the group, n, the desired formation, and a
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(a)

δ
min

(b) (c)

Figure 7.2: Abstraction shape constraints. (a) Maximum number of agents which
fit into the abstraction with communication and collision constraints. (b) Minimum
size of a rectangle is a function of δmin and n. (c) Two formations with the same
number of robots require different shape constraints.

minimum distance collision constraint δmin, if desired. It is indeed possible that two

formations with the same number of robots require different shape constraints.

For a rectangular abstraction and using the infinity norm for collision constraints,

n ≤ (bsw(n)/δminc+ 1) (bsh(n)/δminc+ 1) . (7.1)

(The delimiters b·c denote the floor.) If we would like to additionally ensure graph

completeness in the abstraction, we can enforce {sw, sh} ≤ δmax, where δmax is the

maximum distance at which communication can occur. An example of the maximum

number of robots in a group is shown in Fig. 7.2a. Here, δmax/δmin = 4, so that

nmax = (4 + 1)2 = 25 is the maximum number of robots in the group. An example of

the minimum of sw(n) is shown in Fig. 7.2b. Here, b√nc = 4, so the minimum width

is 4δmin. Although these are general guidelines, choosing the shape constraints relies

heavily on the robot formation.
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7.2 Simulations

In this section we demonstrate two lower level controllers, a flexible formation and

voronoi coverage, in the same workspace. In both simulations, ∆θ = 20◦, the start

location is in district D3 at A = (xA, θ, s) =
(
[2.5 2.5]T, 0, [3.3 3.8]T

)
, and the goal

location is in district D7, at A = (xA, θ, s) =
(
[13 4]T, 0, [2.5 4]T

)
(units in meters).

7.2.1 Flexible formation simulation

In the flexible formation each robot is assigned part of a uniform 3×3 grid in the

boundary, parametrized by sw and sh. To prevent inter-robot collision, we enforce

2.1m≤{sw, sh} and 4.2m≤sw + sh≤8m, so that the distance between robots would

ideally be a minimum of 0.7m. (Maintaining this inter-robot distance is not guar-

anteed using this robot controller. However, using other controllers, such as those

presented in the previous chapters, it is possible to guarantee inter-robot distances.)

The navigation functions, coupled with the faster time scale at the robot level, en-

sure the robots do not escape the boundary. The simulation is shown in Fig. 7.3.

Each edge on the upper adjacency graph has a cost of 1; therefore the path with the

minimum transitions is chosen.

7.2.2 Voronoi coverage simulation

In this simulation, we use navigation functions to drive robots to the centroid of their

Voronoi regions. With this type of controller, the bearing of the robots relative to

each other will change as the abstraction boundary changes. The constraints on this

simulation are 1m≤{sw, sh}, 4m≤sw + sh≤8m. The Voronoi coverage type control

allows us to set a much lower minimum on width and height of the boundary, since

the formation of the robots will adapt as the group navigates the space, as shown
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Figure 7.3: A simulation of 9 robots navigating a complex space while maintaining
a flexible formation inside the abstraction.

in Fig. 7.4. Here we double the cost of changing theta slices so that the lowest cost

path travels through more rooms.

89



Figure 7.4: Simulation of 9 robots navigating a complex space while using Voronoi
region coverage methods inside the abstraction.
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Part III

Applications
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Chapter 8

Formation Control

In this chapter we apply the polytope-based feedback controllers to a team of robots,

enabling automatic creation of desired labelled formations with constraints on col-

lision and communication and without local minima. The method provides global

guarantees on shapes, communication topology, and relative positions of individual

robots. We also use formation control to merge and split groups, forming groups of

desired size and shape for a specific task.

We use the hierarchical approach introduced in Chapter 4 to decouple the group

navigation and internal formation control. The abstraction models the extent of

the formation, while the controllers on the robot level ensure that the bounds of

the abstraction are satisfied. Therefore, a group of robots can reconfigure from

one formation to another knowing only the limits of the abstraction, decoupling the

agents from the physical space. Since the multi-group navigation problem is identical

to the multi-robot navigation problem, we focus in this chapter on merging groups of

robots into groups of arbitrary numbers of robots and constructing desired formation

shapes. We use path planning to navigate the groups to their rendezvous point and

then to their goal locations.
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Figure 8.1: Hierarchical structure. At the top level, groups interact with limited
knowledge about other groups. At the lowest level, individual robots implement the
continuous controllers.

8.1 Problem formulation

Consider a team with multiple groups, Gζ , ζ = {1, . . . , ξ}, of nζ kinematic agents

V ζ
A = {aζi |i = 1, · · · , nζ}. The team must form a group of ng ≤ ∑ξ

ζ=1 n
ζ agents to

accomplish a large task. Each agent has the configuration or state xζi ∈ R2 with the

dynamics:

ẋζi = Uζ
i , xζi ∈ Xζ

i ⊂ R2, i = 1, . . . , nζ , ζ = {1, . . . , ξ}. (8.1)

The input to each agent is (4.4).

Figure 8.1 is a graphical representation of the hierarchichal structure of our ap-

proach. At the top level, groups interact with limited knowledge of other groups. At

the middle level, there is interaction between individual robots in order to maintain

the formation. At the lowest level, individual robots execute the continuous con-

troller. In the examples we present, we assume that there are no obstacles within

the group boundary. However, should an obstacle appear within a group boundary,

the group can split appropriately, then rejoin in a location without obstacles.
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The number of agents required for the task, the goal formation shape, and the

environment are known to all agents. We assume each agent is capable of synthesizing

controllers (both for group navigation and reconfiguration), its group’s abstraction,

and whether certain criteria are satisfied (such merging criteria). This information

propagates through the group rapidly through explicit communication, therefore we

are not concerned with which agent is responsible for these calculations. Agents

observe relative state of their neighbors and exchange this information with other

neighbors to construct a complete group configuration. Groups are capable of long-

range communication in short bursts to determine a rendezvous point; once the

rendezvous point is determined, they no longer use long-range communication.

8.2 Formation shape controllers

In this section we develop the formation shape controllers, which both reconfigure

the robots and maintain the formation once it is achieved.

Let the set of all agents be VA ≡ V 1
A ∪ V 2

A ∪ · · · ∪ V ξ
A. (Hereafter, for simplicity,

where we describe a property for all agents ∪ξζ=1∪n
ζ

i=1 a
ζ
i , we will drop the superscript

ζ.) Connectivity between all agents VA is modeled by a single connectivity graph

across all groups, while the collision graph is defined on individual groups. We

assume that within groups, the information graph is complete.

To accomplish the task, a specific formation shape is required of the new group.

The formation shape can be provided in continuous (exact) form, or discrete (ap-

proximate) form. In defining the discrete robot formation shape, we desire a non-

overlapping partition of the square annulus whose union is the entire region. The

description must also contain information about connectivity.

Definition 8.2.1. A robot formation shape F of n robots describes the relative
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Figure 8.2: The shape descriptors (regions) for discrete robot formation shapes.
(a) For pair (aζi , a

ζ
j) the shape descriptor represents the location of aζj with respect

to aζi . Here, the region is c1. (b) We can use this discrete system to build an
adjacency graph. (c) Overlapping proximity regions of a group of three robots.
Dashed (dotted) lines correspond to boundaries of proximity regions for aζ1 (aζ2).
Letters A-F correspond to possible polytopes through which aζ3 would pass to get to
F ζd = [c1 c1 c1].

locations of the set of robots, specified exactly using continuous shape variables. F is

a
(
n
2

)
-tuple of vectors F =

[
r(1,2) r(1,3) . . . r(n−1,n)

]
where r(i,j) = xj − xi. We use a

superscript (F ζ) to refer to the subset corresponding to group Gζ.

Definition 8.2.2. The discrete robot formation shape Fd of n robots describes ap-

proximate relative locations of the set of robots using discrete shape descriptors. The

shape descriptors are node names corresponding to regions of the tessellation of the

annulus. Fd is a
(
n
2

)
-tuple of these node names, Fd =

[
f(1,2) f(1,3) . . . f(n−1,n)

]
. For

each pair of robots (ai, aj), i < j, f(i,j) describes the position of aj with respect to ai,

according to Fig. 8.2a. Regions c1 to c4 correspond to communication between the

pair (i.e. (ai, aj) ∈ EN). Regions c5 to c8 correspond to no direct communication

between the pair ((ai, aj) 6∈ EN). We use a superscript (F ζd ) to refer to the subset

corresponding to group Gζ.

An example discrete formation shape for a group of three robots is shown in
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Fig. 8.2c. Here, f ζ(1,2) = c1, f ζ(1,3) = c4, and f ζ(2,3) = c3, so that F ζd = [c1 c4 c3].

This is the same as the discrete pose introduced in Section 3.2, except here we do

not include the location of each agent in the workspace, since they are all within the

obstacle-free virtual boundary.

As discussed in Chapter 4, the free configuration spaces of the robots are simply

the area contained within the abstraction boundary in the local abstraction frame.

We generate the task configuration space for each group, CζT , identically to Sec-

tion 3.1, by taking into account the proximity constraints. Note that each group’s

task configuration space is independent of other groups; that is, robots in a group rely

only on each other’s positions. Thus, reconfiguration of a group from one formation

to another is entirely decoupled from other groups. Each discrete group formation

corresponds to a unique polytope in CζT . By planning and synthesizing controllers on

CζT , we drive the robots to the desired formation and keep them there as the group

navigates the space.

Problem 8.2.3 (Formation Control). For any initial group formation F ζ,0, consider

the system (8.1) on R2nζ , with goal formation F ζ,g and metric ρ. Find an input

function uζ : [0, Tζ ]→ U for any xζ,0 ∈ F ζ,0 ⊂ CζT such that

1. for all time t ∈ [0, Tζ ], xζ ∈ CζT and F ζ |t=Tζ = F ζ,g,

2. ẋζi = uζi ,

3. xζ(t) ∈ Lζ ∩N , ∀t ∈ [0, Tζ ].

Problem 8.2.4 (Discrete Formation Path). For the initial discrete group formation

shape F ζ,0d , find a path to the goal discrete formation shape F ζ,gd , such that we

minimize the cost

h
(
F0
d ,Fgd

)
=

(n2)∑
κ=1

COST(c0
κ, c

g
κ).
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Theorem 8.2.5 (Necessary and Sufficient condition). Problem 8.2.3 has a solution

iff Problem 8.2.4 has a solution.

Proof. CζT contains every allowable configuration xζ in our polytopic world model.

Gζ
P contains all the information about the connectivity of CζT . Thus, if there is a

solution to Problem 8.2.3, there must exist a path from the start node in Gζ
P to the

goal node. Conversely, if there is no path on the graph Gζ
P between the start node

and the goal node, there is no solution to Problem 8.2.3.

Corollary 8.2.6 (Completeness). Problem 8.2.4, and therefore Problem 8.2.3, has

a solution if the start and goal nodes on the polytope graph Gζ
P are connected.

8.2.1 Controller synthesis

After a path to the goal is determined, we want to be able to synthesize feedback

controllers to drive the system through those polytopes to the goal. We choose

to use the controller developed by Lindemann and Lavalle which we discussed in

Chapter 7. We set the vector field on each facet except the exit facet to be a unit

inward normal; on the exit facet, we set the vector field to the unit normal pointing

outward. For each polytope on the path to the goal formation, we implement the

controller using the Chebyshev center of the exit facet as the attractor for the vector

field on the GVD. In the goal polytope, if an exact formation shape is prescribed, we

decompose the polytope so that the vertices of each polytope in the decomposition

are the vertices of a facet along with the goal point. Then we set all facet vector

fields to be pointing inward, and the field on the faces of the decomposition always

pointing to the goal.

If a discrete formation shape is prescribed, we set the attractor field in the goal
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polytope to point to the Chebyshev center of the polytope, satisfying the require-

ments set in [71] to guarantee convergence. There are several advantages to using

the Chebyshev center. First, it allows a minimum radius around the attractor, pro-

viding some robustness (for disturbances or feedback linearization for nonholonomic

robots). Second, the Chebyshev center lies on the GVD, so we do not need to use

a separate decomposition that would force us to enumerate the vertices of the poly-

tope, which is computationally expensive. To smoothly stabilize the system at the

Chebyshev center, we normalize the attractor field until it is within the radius of the

Chebyshev ball. Once within the Chebyshev ball, we use a second bump function to

drive the input to zero as we approach the center.

We use the controller for the goal polytope to maintain the desired group for-

mation as the group moves through the space, inside the bounds of the abstraction.

In these examples, we do not allow the abstraction to rotate, and once a size has

been determined for a group’s abstraction, we do not allow the size to change. Other

than during the merging process, we let sζ ≡ sζw(nζ) ≡ sζh(n
ζ), so that the boundary

during group navigation is a square. During merging, we let the boundary be the

smallest rectangle enclosing the boundaries of the individual groups. This ensures

that there is enough space for all robots while requiring less space than a square.

To emulate the cost of sharing information across large spaces, we place restric-

tions on communication between groups of robots on three levels based on inter-group

distances. The lowest level of communication occurs at the largest distances, above

the threshold tmax,

|xζA − xηA|∞ > tmax.

At this level, groups communicate as necessary to negotiate rendezvous points.
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The mid-level of inter-group communication occurs below the threshold tmax,

|xζA − xηA|∞ ≤ tmax,

where groups perceive position relative to each other (xζA − xηA).

Once two groups are close enough that explicit inter-group communication is

established (i.e. a member from one group is able to communicate directly with a

member of the other group), groups can share both the number and position of each

group’s agents by passing this information through the robot formation graph. Once

the group is within a pre-specified distance of the other groups,

|xζA − xηA|∞ ≤ tmin, ζ, η ∈ {1, · · · , ξ}, ζ 6= η (8.2)

the groups are able to commence the merging process.

We treat the abstraction as a single robot. Because multiple abstractions share

one workspace, we need a multi-robot controller to ensure they do not collide. As

discussed in Chapter 2, there are many controllers applicable to multi-robot prob-

lems, including those we have presented in Chapters 5, 6, and 7. However, the

inter-group communication restrictions as well as the real-time nature of this prob-

lem require a decentralized controller to bring the groups to the rendezvous area. (In

our simulations, we have used path-planning to determine a path for each group to

the rendezvous point.) Once the groups are close enough to know relative position

(|xζA − xηA| ≤ tmax), a more demanding controller may be used to drive them close

enough to communicate and merge (until they satisfy (8.2)). Then, they must recon-

figure into the desired formation, and continue to the task location while maintaining

that formation.
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8.3 Merging and splitting groups

In this section we describe the process of merging groups. Once the groups have

satisfied (8.2), they combine their boundaries into the smallest boundary of the

specified shape that contains all of the groups’ boundaries. This will now be the

boundary for the reconfiguration discussed in Sec. 8.2.

The desired formation can be either connected or disconnected. If we have just

the right number of robots, the resulting graph is connected. If we have more than

needed for the task, the formation graph is disconnected, and a group of robots break

away.

If we have the exact number of robots required for the task, once they have

reconfigured into the desired formation, the boundary size must be adjusted. The

boundary is resized to within some small ε of the smallest rectangle centered at the

centroid of the group and enclosing all the robots. If it is possible to resize directly

to the desired size then we are finished, and the group can continue to the task

location. If not, we allow the robots to stabilize to the Chebyshev center of the

formation using the new boundary size. Then, we re-evaluate the boundary size,

and iterate until we get to the desired size. Because we are decreasing the size of

the virtual boundary, the formation will get tighter until the group can be enclosed

as desired.

If we have more robots than required, the group reconfigures into a formation

shape such that the required robots’ subgraph is the one required for the task, and

the rest of the robots are connected to that subgraph by one edge. An example of

this is shown in Fig. 8.3. The dotted line in the example depicts where the group

will split. The desired formation is achieved after reconfiguration in Fig. 8.3a. The

discrete formation shape node relating a1
3 to a1

7 is f 1
3,7 = c1. In Fig. 8.3b, the groups
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Figure 8.3: An example of a desired robot formation shape and the splitting process
when the task requires less robots than the total number in all groups.

separate, until f 1
3,7 = c5, meaning there is no direct communication between a1

3 and

a1
7. This is when the group splits into two as in Fig. 8.3c.

In summary, the algorithm for our approach involves the following six steps.

Algorithm 8.3.1.

1. Construct the goal controller for formation maintenance in CζT for each group.

2. Drive the groups toward each other in the space while using the formation
maintenance controller.

3. When (8.2) is satisfied, solve Problem 8.2.4 while selectively constructing the
task configuration space for the joint group of robots.

4. Solve Problem 8.2.3 on all polytopes on the path, and solve for a goal controller
in the goal polytope.

5. If
∑ξ

i=1 n
ζ > ng, break the team into two separate groups and construct the

task configuration space and goal polytope controller for the new groups.

6. Drive the newly formed group(s) to the task location while using the new goal
polytope controller to maintain the formation.

8.4 Simulations

We simulate a two-group example where the groups merge into the correct number

of robots required for the task, and a three-group example where there are more

robots than necessary to complete the task. The simulations run on Matlab, using

the Multi-Parametric Toolbox for polytope computations [61].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.4: A two group simulation. Dashed lines represent communication links
(omitted in (h)), dotted lines represent the path, and the star represents the task
location. (a) Initial condition. (b) Direct inter-group communication established. (c)
Merging criterion satisfied. (d) A single group is formed. (e) Mid-reconfiguration.
(f) At the desired formation. (g) The boundary is reshaped. (h) At the task location.

8.4.1 Two groups merging and continuing to task location

In this example (Fig. 8.4) a group of four robots and a group of three robots join

to form a single group for a task which requires seven robots. Once the groups

are merged and in the desired boundary shape and size, they proceed to the task

location. We used as parameters δmax = 2.5, δmin = 0.2, tmax = 5, tmin = 0.2,

ε = 0.1, and sζh = sζw = 2.5− 2/nζ .

8.4.2 Three groups merging and splitting

In this example (Fig. 8.5), two tasks require seven and two robots each. Nine robots

are available across three groups of three. The three groups merge, then split into a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.5: A three group simulation. Dashed lines represent communication links
(omitted (g)-(j) where graphs are complete), dotted lines represent the path, and
stars represent task locations. (a) Initial conditions. (b) Inter-group direct commu-
nication established. (c) Merging criterion satisfied. (d) One group is formed. (e)
Prior to disconnection. (f) Groups split. (g) Boundaries are resized. (h) At the task
locations.

group of seven and a group of two robots. The groups then proceed to their respective

task locations. Here we used the same parameters as above (except tmin = 0.5).

8.5 Complexity

In this section we discuss the complexity of our method. For each pair of agents with

collision constraints we have one annulus with eight regions, resulting in a maximum

of

Pmax = 8n
ζ(nζ−1)/2
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polytopes in CζT . Although this scales exponentially with the number of robots in the

group, we only construct the polytopes as we expand nodes in the polytope graph.

To solve Problem 8.2.4, we use an A∗ algorithm. In an A∗ algorithm, the number

of nodes expanded is exponential in the actual path length, unless the error of the

heuristic grows no faster than the logarithm of the actual cost [106]

∣∣∣h(F ζ,0d ,F ζ,gd
)
− h∗

(
F ζ,0d ,F ζ,gd

)∣∣∣ ≤ O(log h∗(nζ)).

Although we do not have a bound for our heuristic error, empirically we have found

that there exists a path to the goal of the heuristic cost. If there exists a path to the

goal, then there likely exist other paths of the same length to the goal (though in the

case of differently weighted transitions, equal length may not correspond to equal

cost). For example, consider Fig. 8.2. If the start formation is F ζ,0d = [c1 c4 c3] and

the goal formation F ζ,gd = [c1 c1 c1], then h(F ζ,0d ,F ζ,gd ) = 3. There exist three paths

with cost h∗(F ζ,0d ,F ζ,gd ) = 3: ABDF, ACDF, and ACEF in Fig. 8.2c. In general,

since the graph is cyclical, it is likely that a path exists with the exact cost of the

heuristic. If the graph is weighted such that each edge is not of equal cost, this is

not generally the case.

We synthesize a controller in each polytope on the path to solve Problem 8.2.3.

The vector field can be computed in O(
∑2N i

d=0 Ψd) time, where Ψd is the total number

of d-dimensional cells in the GVD [71]. For bounds on Ψd for a certain class of

polytopes, see [53].

The complexity increases linearly in the number of concurrent merging and re-

configuring processes, since each group computes its own controllers.
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8.5.1 The effects of group size and congestion on complexity

We have already discussed that the complexity of the method is exponential in the

number of robots. However, we have not yet explored the effects of congestion on

the graph search. One can imagine that a large number of robots in a small space

may cause difficulty in finding a solution, since some discrete formation shapes may

not be achievable. To analyze this, we ran numerous trials to test the effect of robot

group size and the ratio of size of the individual configuration space (Ci) to the size

of the robots.

In these trials, the configuration space is square and obstacle free. We calculate

the size ratio as the length of the side of the square to the robots’ radius (the group

of robots here is homogeneous). For robot group size ranging from four to twelve,

and size ratio also from four to twelve, we ran trials with randomly generated initial

and final configurations. For each pair of group size and size ratio, 30 trials were

run and averaged. The most congested of the trials is that with twelve robots with a

size ratio of four. Here, 12 robots maneuver in a space that can only accommodate

16 robots when fully packed. The results indicate that congestion in the space has

little discernible effect on the time spent searching and constructing the graph.

Figure 8.6 presents the results of our trials. Figure 8.6a depicts the average time,

in seconds, spent searching and constructing the graph for each pair of size ratio

and number of robots. While the time spent increased markedly as the number of

robots increased, the effect of congestion was quite small. The average path length

determined by the A* search is presented in Figure 8.6b. The increase in path length

is not as dramatic as the increase in computation time, although it does increase, as

expected, as the number of robots increases. We can also see that the path length

does not change much as the congestion increases. In fact, in the most congested
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trial of 12 robots with a size ratio of 4, the path length is comparable to the rest

of the trials with 12 robots. Finally, Fig. 8.6c compares the number of nodes which

are expanded in the graph search (left) with the number of those nodes which are

actually valid and hence added to the graph (right). We can see from these plots that

results are quite comparable along the axis of size ratio. However, in a congested

space, the resulting polytopes will be quite small in comparison to those in a less

congested space, so they may be less desirable for approximate models, like our

model of the quadrotors.

8.6 Remarks

In this chapter, we have presented a method for controlling multiple groups of robots

to create, reconfigure, and maintain formations under communication constraints.

We provide guarantees of safety, preventing inter-robot collisions and collisions with

obstacles in the workspace. Our controller is entirely automatic, and requires in-

formation about the space, the desired formation, and the task location. We have

discussed briefly the complexity of our approach, which in the worst case scales

exponentially in nζ and h∗
(
F ζ,0d ,F ζ,gd

)
.

The algorithm is complete based on the choice of abstraction boundary. Since

the abstraction is an overestimate of the area occupied by the robots, it is possible

that some solutions will be lost. This is especially the case when fixing the boundary

of the abstraction while the group is navigating through the space.
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Figure 8.6: Effects of congestion and group size on the graph search. (a) The average
time spent to find a path to the goal configuration. (b) The average resulting path
length. (c) The left panel shows the number of nodes expanded in the graph search,
while the right panel shows the number of those nodes which are valid and hence
added to the graph.
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Chapter 9

Natural Language Specifications

In this chapter we consider a group of n kinematic robots in a polygonal workspace.

The robots have a set of sensors which capture high-level information about the

space, and actions, such as transmitting messages or sounding alarms. A high level

task is given as a set of Structured English sentences which describe the desired

behavior of the robots and the assumptions on sensor information.

Each robot has a set of sensors Sen = {siS|i = 1, . . . , n; S = 1, . . . , mi} that

capture high level information about the world (e.g. whether a person is seen or a fire

is detected). The robots may also have a set of actions Act={actiA|i = 1, . . . , n; A =

1, . . . , li} such as picking up objects, transmitting messages, or sounding alarms. In

this paper we assume such actions do not have explicit time constraints (minimal or

maximal duration).

In addition, we consider a high level task σ given as a set of Structured English

sentences that the team must achieve. This task describes the desired behavior of

the robots and assumptions on the sensor information.

Problem 9.0.1. Consider a group of robots in RD, D =
∑n

i=1 di with dynamics

(3.1), sensors Sen and actions Act and a high level specification σ. For any possible

108



(a) (b)

Figure 9.1: Overview of method (a) and workspace (b).

initial state {x0, Sen0, Act0} such that {x0, Sen0, Act0} |= σ find a control law u and

an action activation policy π : t → 2Act that for each time t specifies which actions

should be active, such that

1. ẋi = ui;

2. an action actiA is activated at time t if and only if actiA ∈ π(t);

3. if siS(t) |= σ, ∀t ≥ 0, iS (the sensors satisfy the assumptions on their behavior)

then {xi(t), actiA(t)} |= σ, ∀t ≥ 0, i, iA (the robots satisfy the task);

if such a system exists.

9.1 Task controller

Now we must transform a multi-robot high-level task, captured by Structured English

instructions and the discrete representation of the workspace, into a hybrid controller

guaranteed to drive the robots according to the desired behavior. The method is

demonstrated with a recycling example.
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Figure 9.1a shows the three main steps of the approach. First, the user specifica-

tion and assumptions regarding the environment (the behavior of the sensor inputs,

Sen) are captured using Structured English sentences. These are then translated

automatically into linear temporal logic (LTL) formulas [30] and combined with a

discrete abstraction of the workspace to create the formula σ which belongs to a spe-

cific fragment of LTL [59, 98]. Next, an automaton A is automatically synthesized

such that every execution of A satisfies σ. Finally, a hybrid controller based on the

the automaton A is created.

We illustrate these steps with the following scenario. Three robots, a1, a2 and

a3, share a free configuration space Cfreei ⊂ R2 with ten districts, shown in Fig

9.1b. Initially a1 (blue square) is in District 1, a2 (green triangle) is in District 3

and a3 (magenta circle) is in District 5. The high-level task requires robots to pick

up different items from predesignated locations in District 6 and 7, which can be

metal, glass, or paper. The items must be deposited, according to composition, in

the correct location (metal in District 8, glass in District 9, paper in District 10)

while avoiding collisions and deadlocks. Additionally, we impose that there be at

most one robot in District 6 and 7 at a time, for the recyclers’ peace of mind.

The first step, translation, builds upon [58]. There, the user must first define two

sets of binary propositions. One set, Sen in Problem 9.0.1, represents information

robots gather through sensors and communication. The other represents the state

of the robots, controlled by the system, including locations and possible actions

Act. All these propositions are then used to write the task using Structured English

sentences that are automatically translated to an LTL formula.

A task description can be divided into three components, initial conditions, goals,

and transitions. The initial conditions capture the state of the environment and

system the moment the system is turned on. Goals include assumptions about

110



the environment and desired behavior for the system. Transitions contain assumed

constraints on the changes in sensor information from one time step to the next and

constrain possible moves the system can make.

The tasks here involve continuous robot motion. To capture the motion of the

robots using the discrete LTL formalism, we partition the workspace into district

and create propositions that relate the location of the robots to these districts. For

example, a proposition [2 3 8] is true if a1 is in District 2, a2 is in District 3 and a3 is in

District 8 and false otherwise. Then, based on adjacency of the regions and allowable

room combinations we restrict the changes in these propositions, constraining robot

motion to a feasible behavior. Given the decomposition, adding these restrictions to

the transitions component of the LTL formula is automatic.

Here the sensor propositions, Sen, are: pu6, pu7 there is an available item in

Districts 6 and 7, respectively; m1,g1,p1,m2,g2,p2,m3,g3,p3 composition of the

item ai just picked up (metal, glass, paper, respectively). The system propositions

relate to different robot actions Act: a1PU, a2PU, a3PU ai should pick up an

item; a1Carry, a2Carry, a3Carry ai is carrying an item; a1D, a2D, a3D ai

should deposit the item it has been carrying; as well as robot motion (locations).

The latter correspond to all district combinations: for example, [1 3 5] is true when

a1 is in District 1, a2 is in District 3 and a3 is in District 5. Our workspace contains

ten districts and three robots; thus there are 1000 possible combinations in general.

Once the propositions are defined, the task must be specified using Structured

English sentences. The sentences capture assuptions about sensor or system behav-

ior. We present two example sentences here; the first (S3) captures assumptions

about sensor behavior, and the second (S7) which captures desired system behavior.

S3 “if you activated a1Carry and you sensed m1 then always m1” (same for g and
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p): Once the material type of a carried item is determined, it does not change.

S7 “activate a1PU if and only if you did not activate a1Carry and (you are in

[6 X X] and you are sensing pu6 or you are in [7 X X] and you are sensing pu7)”

- If the robot is not carrying an item and it is in a district with an available

item, it should pick it up.

These sentences refer to a1 but the full specification contains the same sentences for

a2 and a3. In all, for our example there are 14 sentences to define the behavior of

the system for each robot, five relating to sensor assumptions and nine relating to

system behavior [57].

The next two steps (automaton synthesis and hybrid controller creation) follow

the work in [59]. The synthesis algorithm [98] automatically generates an automaton

A that implements the desired behavior, if this behavior can be achieved. The states

of this automaton contain the truth values of the system propositions while the

truth values of the sensor propositions guard its transitions. Every execution of the

automaton, based on sensor information, is guaranteed to satisfy the desired system

behavior.

A portion of the automaton is shown in Fig. 9.2. Circles represent the automaton

states; robot propositions written inside each circle are those that are true in that

state. Edges are labeled with all sensor propositions that are true when that transi-

tion is enabled. In the top most state, the robots are in district combination [6 3 7],

a1 is picking up an item, and a3 is carrying an item. If there are no more items to

pick up (left and right branches, in both pu6 and pu7 are false) the robots proceed

to the drop off location (in the right branch, a3 drops the paper item in District 10,

as required). If there are more items (middle branch, pu7 is true) a2 proceeds to

pick up the item.
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Figure 9.2: A portion of the automaton for our example.

The final step is to construct the hybrid controller that continuously executes A,

based on the sensor inputs. Recall, from Problem 9.0.1, that we need to construct a

motion control law u as well as an action activation policy π.

The continuous motion control u is generated by creating a database of controllers

for switching from each room combination to every adjacent room combination. This

database of controllers is then used, according to the sensor inputs and the automaton

states, to drive the system to the next room combination. As for the actions, for

each time t the action policy π(t) is the set of all system propositions that are true

at the current automaton state.

It is important to note about automata and hybrid controllers created using this

method that goals are satisfied cyclically, that is, the first goal written is reached,

then the second, and finally after the last goal is achieved the automaton satisfies

the first goal again and so on. In our example, this results in the robots first picking
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(a) (b) (c) (d)

Figure 9.3: Simulation of the automaton segment of Fig. 9.2. (a) Left branch. (b)
Middle branch. (c) Right branch, first snapshot. (d) Right branch, second snapshot.

available items until either all robots are carrying something or there are no more

items, and only then the robots deposit the items.

Figure 9.3 depicts part of a simulation run and illustrates both the continuous

execution of the automaton segment shown in Fig. 9.2 and that using the same

automaton, the behavior of the system varies significantly based on events in the

environment.

9.2 Feedback controllers

This section addresses the synthesis of multi-robot feedback controllers that drive

robots from one location to another while guaranteeing safety (collision avoidance)

and other specified inter-robot constraints. The controller we use is the centralized

version of the controller presented in Chapter 5, in other words, we do not limit

communication between agents.

Consider the team of n robots VA with dynamics (3.1) in some district combina-

tion D = [p1 p2 . . . pn], where pi denotes the district in which robot ai is located.

One robot, the active robot, must transition to a new room without collisions or

without any other robots transitioning to a new room (the reason for this will be-

come clear in Section 9.2.1).
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The configuration spaces are defined exactly as in Chapter 3, with symmetric

collision constraints and a communication range at least as large as the workspace.

Therefore the proximity constraints correspond to an infinite square annulus in the

relative space of pairs of agents, as in Figure 3.2c. Thus, CT = Call ∩ L (i.e. we

consider only collision constraints).

9.2.1 Feedback controllers on the task configuration space

We now consider a subproblem of Problem 9.0.1.

Problem 9.2.1 (Controller Synthesis). For any initial configuration x0 ∈ D0 ⊂

CT , consider the system (3.1) on RD, where D =
∑n

i=1 di, with goal configuration

xg ∈ Dg ⊂ CT , and D0 is adjacent to Dg. Find a piecewise affine input function

u : [0, T0]→ U for any x0 ∈ D0 such that

1. ∀t ∈ [0, T0], x ∈ D0 ∪ Dg, x(T0) arbitrarily close to xg,

2. ẋi = ui,

3. x(t) ∈ L, ∀t ∈ [0, T0].

Note that Problem 9.2.1 is for driving the state from one district combination to

an adjacent one, and not for generating a path on all of CT . Since the controllers

developed in earlier chapters direct states through a facet, not an edge, only one

robot will cross a room threshold at any time. Thus, we restrict the automaton

to commands which result in room change for only one robot, limiting the path

on the polytope graph to the polytopes in the initial and final room combination.

Once in the polytope containing the goal configuration we steer states to the goal

configuration.
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Figure 9.4: A partial view of a polytope graph for three robots.

To solve Problem 9.2.1, we first build a hierarchical discrete representation of the

task configuration space and find paths in this discrete representation. Second, we

translate these paths into feedback controllers.

In the first stage, we associate each polytope with a district combination,

S$1 ··· $n = {P k|x ∈ P k ⇒ x1 ∈ $1, · · · ,xn ∈ $n}, where P k is a polytope in

CT . We define the upper adjacency graph on these district combinations and we de-

fine the polytope graph, GP as usual. A sample polytope graph is shown in Fig. 9.4.

GP is used in the creation of the automaton; thus, the automaton cannot give in-

structions that violate the collision constraints (and communication constraints, if

included).

For all transitions from one district combination to another, we determine a

discrete path from each polytope in the original district combination to the next

district combination. For example, referring to Fig. 9.4, the paths from S2 2 2 to

S1 2 2 may be P 19→ P 18→P 14 and P 21→P 20→P 18→P 14. If the active robot

must stay in a district (to pick up/deposit) we determine a discrete path from each

polytope in the current room combination to the goal polytope. Inactive robots stay

in their current rooms and go to a goal position, (the goal position is described for

every robot). We are not concerned with whether the inactive robots reach their

goal position.

We use an algorithm such as Dijkstra to choose a path which minimizes the
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number of polytopes visited, which minimizes the number of transitions between

polytopes. Since we do not limit the state information available to the robots, we

can guarantee that all paths on the graph can be translated into feedback controllers

to solve Problem 9.2.1 by using either the centralized version of the controller in

Chapter 5, the potential function controllers in Chapter 6, or the vector field con-

troller by Lindemann and LaValle introduced in Chapter 7.

In summary, the algorithm for controller synthesis or the solution to Problem

9.2.1 involves the following steps:

Algorithm 9.2.2 (Controller Synthesis).

1. Construct task configuration space CT , taking into account collision and other
desired constraints.

2. Construct the polytope graph, GP , associating each polytope to a district com-
bination.

3. For each district combination, find paths from every polytope P k in D0 to every
adjacent district combination.

4. For each possible exit facet for each polytope P k, synthesize a controller which
drives every state inside P k to the exit facet.

5. For each P k which contains a goal state, synthesize a controller which drives
every state inside P k to the goal configuration.

This algorithm will create a database of controllers for all possible commands

from the automaton.

9.3 Simulation

In this section we show a Matlab simulation and demonstrate how different tasks

can easily be accommodated using the same controllers but a different automa-

ton. The atomic controllers were designed in Matlab using the Multi-Parametric
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Toolbox for polytope computations [61]. The automata were synthesized using a

prototype of the JTLV system [107].

Figure 9.5 depicts a sample simulation. In this scenario, there is always something

to pick up (denoted as a purple X) in both locations. The robots a1 (blue square),

a2 (green triangle), and a3 (magenta circle) start in Districts 1, 3, and 5 respectively.

First a3 goes to District 7 and picks up an object (Fig. 9.5a), then a2 picks up

in District 7 (Fig. 9.5b) then a1 picks up in District 6. Note that as discussed

in Section 9.2.1, for every discrete transition in the automaton only one robot is

changing the region it is in.

Once all robots have identified their carried item (Figs. 9.5b and 9.5c) they drop

it off appropriately: a3 drops off the paper item (Fig. 9.5d), a1 (a2) drops off a glass

(metal) item (Fig. 9.5e). Since there are more items to pick up, the robots move

towards the pickup rooms and a3 picks up more paper in District 7 (Fig. 9.5f).

Adding robot motion constraints can be done in two ways. One is to explicitly

state such constraints in the user specifications. The other is to remove nodes and

transitions from the discrete representation of CT .

Example 9.3.1. Add a “baby sister” constraint requiring robot a2 to always follow

robot a1, i.e. they must always be either in the same or adjacent rooms.

Adding this constraint reduces the number of lower-level controllers from 944 to

256 and the resulting automaton contains 6,874 states.

Sensor inputs as well as system outputs can be added in a very flexible way

as long as the added specification does not create a logical contradiction with the

previously specified task or results in an infeasible motion request.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.5: Simulation of recycling example. (a) a3 picks up in Room 7. (b) a2 picks
up in District 7. (c) a1 picks up in District 6. (d) a3 drops off a paper object. (e) a1

and a2 drop off a glass and a metal object respectively. (f) a3 picks up in District 7
again .
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9.4 Remarks

We have presented an application of the methods described in Chapters 3 and 5

to designing provably-correct control policies for robot teams that achieve complex

high-level tasks which are described in Structured English while providing low-level

guarantees of collision and deadlock avoidance. This involves creating a discrete

automaton satisfying the task and a database of controllers which can continuously

implement every possible transition in the automaton.

Given a workspace decomposition and the robots’ capabilities, the method is

entirely automatic and “recyclable” with minimal additional computation. Further-

more, changing the specification and adding more sensor information or different

robot actions is simple. This results in an extremely flexible system that allows

non-experts to design complex systems that perform a large variety of interesting

tasks.

Although this method requires an initial preprocessing stage to create the low-

level controllers (which can be computationally expensive) the method requires only

up-front user input (the space, number of robots, proximity constraints and the high-

level specification) and no hand-tuning. Furthermore, the controllers are reused to

accommodate a wide variety of high-level tasks.

By using a different, less computationally expensive controller, such as the non-

linear controller presented in Chapter 6, it is possible to calculate controllers online,

which significantly reduces the overhead necessary for this application. Since the

controller is guaranteed to have a solution for every possible exit facet, we still avoid

deadlock situations. Furthermore, it is not necessary to calculate more than the free

configuration space of each robot and the associated adjacency graph in advance.

This we present in the next chapter.
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Chapter 10

Dynamic Conditions and Object

Manipulation

In this chapter, we present a simulation which involves dynamic team organization

and communication graph, manipulating objects in the environment, ongoing task

assignment and re-assignment, and stigmergic interactions. We do this using the

tools developed in Part II, but with feedback controllers synthesized online instead of

a priori. This is preliminary work; it is included to demonstrate the versatility of the

work presented in this thesis and its potential to be applied without precomputation,

in partially unknown environments, and to object manipulation.

Six robots, Va = {a1, . . . , a6} with dynamics (3.1) and configuration

x = [xT
1 · · ·xT

6 ]T are tasked with finding and transporting two circular objects into

designated positions. We set the minimum distance between robots as δ = 0.5m.

The environment as well as the object to be moved are padded by 0.15m.

We assume that the initial tesselation of the padded workspace, shown in Fig. 10.1a,

is given. We also assume that initially no robots are in districts 8, 9, 10, or 14, and

that the robots are capable of calculating the adjacency graph shown in Figure 10.1b.
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Figure 10.1: Workspace for six robot simulation. (a) Robots are shown at the start
configuration in district 11, and possible locations of objects to be moved are shown
as red dots in districts 1,3,4, and 6. (b) The adjacency graph of the workspace.

Each circular object requires four robots to move. The robots are aware of four pos-

sible locations for the two objects, in districts 1, 3, 4, and 6, marked with red dots.

The initial task is to explore these four districts to find the objects. Next, two robots

must push open the door to district 10 while four robots cage the object to move it

to one of the goal locations in district 10, marked with black stars in Figure 10.1a.

Finally, four robots move the second object while the two remaining robots return

to the start position.

The robots do not know which of the four possible districts will contain the two

objects which must be moved. Additionally, it is not known in advance which robots

will explore which areas; task assignment is done online based on the state of the

system, and can be done in a decentralized way. We assume each robot is capable of

calculating their cost-to-go for each task location. The robot with the lowest cost for
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any of the tasks is assigned first, followed by the lowest cost among the remaining

untasked robots, and so on. This assignment algorithm lends itself well to auctioning

methods.

Once the initial task assignment is complete, the remaining tasks are assigned by

combining stigmergic interactions (which we discuss in more detail in Section 10.2)

and cost-to-go calculations. The cost-to-go is calculated as a weighted combination

of distance on the graph, where the cost of each edge is the distance between the

centroids of each cell plus the Euclidean distance (without taking into account obsta-

cles) to the task location. Although this is how tasks are assigned in this simulation,

any task assignment algorithm will do.

10.1 Dynamic communication graph

We assume that robots can only communicate with each other if they are in adjacent

districts. This means that the communication graph changes as the agents move

throughout the space. We also assume that robots can pass information through the

communication graph. For example, if a1 is neighbors with a2 which is neighbors

with a3, then a1 can receive state information about a3 and vice versa. If there is no

chain of adjacent agents between a pair of agents, then they do not have access to

each others’ state. In this way, robots can avoid collisions while reducing complexity.

However, there do exist configurations such that two robots are not in adjacent cells

but can collide. For example, near the shared vertex of districts 16 and 4, two robots

can be within collision distance. This situation can be avoided by using a different

decomposition or by employing a rule which allows robots to communicate based on

the specific cells they are in rather than a blanket rule of adjacent cells. (Note that

the rules for communication cannot change once motion has commenced, as that

123



could cause cycling and instabilities.)

Agents explore a district by entering and navigating to the potential object lo-

cation. Once they are within a specified threshold of the where the object would

be located (here, 0.8m from the object center), they can sense whether the object

is there (by bump sensors, sonar, vision, etc.). Although this is how objects are

detected in this simulation, there is no reason why other methods could not be used,

such as sweeping the district until either the object is found or the entire district has

been covered.

10.2 Stigmergic interactions

To lessen the communication burden, we include stigmergic interactions. Recall that

stigmergy is a mechanism by which agents modify their local environment, thereby

affecting the actions of other agents. Each of districts 1, 3, 4, and 6 are equipped

with indicator lights which are visible from the main hall (districts 11, 12, 15); every

agent has access to network nodes which can modify the status of these indicator

lights by sending packets of data to the nodes (i.e. pinging the node). The indicator

light nodes control the color of an indicator light according to the number of packets

received, which determines the status of the district. The indicator lights have one

of four states: off, green, yellow, or red.

All lights start in the off position. When an object is found in a district, the

agent pings the indicator node, which changes the light to green, indicating that the

district contains one of the objects to be moved, and has no robots yet assigned to

it. Once a single robot has assigned itself to an object, it pings the indicator, which

turns the light yellow. The indicator remains yellow until four robots have assigned

themselves to it (i.e. five packets received). Once four robots have committed to
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moving an object, the indicator is changed to red, indicating that there are a sufficient

number of robots committed to moving the object. The remaining robots must open

the door to the storage districts 8, 9, and 10.

The indicator lights determine how robots in the main hall, which can observe

the lights, will behave. If a robot is waiting in the main hall and senses a green

light, it assigns itself to that object by pinging the indicator light node. If a robot

senses both green and yellow lights, it favors the object in the room with the yellow

light, which already has at least one robot assigned to it. Should a robot sense a red

light, that indicates that four robots are already assigned to an object, therefore, it

assigns itself to open the door to the storage area, since the door must be opened

before objects can be moved into districts 8, 9, and 10. If our simulation included

more than six robots, it would be possible for a robot to assign itself to move another

object; however, with four robots needed to move an object and two robots needed

to open the door, the only option is to open the door once four robots have been

assigned to an object. The first three robots which sense the yellow indicator light

assign themselves to moving the object in that district.

Once an agent explores a district, it sets the indicator light state, then returns

to the main hall. Though we assume each robot has the ability to ping an indicator

light node, the robots could also navigate to a light switch inside each district and

activate it. It is important to return to the main hall even if an object is found in that

district since other agents might already have assigned themselves to another object.

Any agents which currently have no assignment and are waiting in the main hall

can ping an indicator light to signal that they have chosen that task. Agents choose

tasks based on cost-to-go; therefore, if two indicator lights turn green at exactly the

same moment or if an agent senses two green lights at the same moment, it chooses

the task with the lowest cost-to-go.
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The door to the storage area has a handle which extends in the y-direction when

the two robots are in position and requires two robots to push open. The start

positions to open the door are shown as blue diamonds in Figure 10.1. To maintain

contact with the door handle, the robots must stay within a specified distance of

the door. Once open, the door stays open, and the handle is returned to its original

position. The agents are then free to assign themselves to other tasks.

10.3 Abstractions and object manipulation

To move the circular object, the four agents must surround it so that it cannot

escape, or cage the object. To get around the object without collision, the agents

must subdivide the districts near the object, and remove from the object from the

free space. Since the object is circular, it is overestimated as a square rotated to 45o.

We assume that the size of the objects are known, although their extents could be

perceived by robots equipped with the proper vision capabilities. We also assume

that the robots are capable of tessellating the workspace around the object.

To properly cage the circular object, interrobot distances must comply with the

constraints shown in Figure 10.2a. We linearize the constraints to those in Fig-

ure 10.2b, where the outer red boundary is the virtual boundary for the group,

and each robot must stay within its respective red-shaded square within the virtual

boundary.

Once the object is caged, the group must navigate together to the deposit point

in district 10, marked with stars in Figure 10.1a. The robots in the group must

calculate the abstract configuration space, shown in Figure 10.3b. Here the original

free configuration space boundaries are shown in grey, while the black border shows

the reduced area for group navigation. The shape vector for the virtual boundary is
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Figure 10.2: Interrobot constraints required to cage the object with four robots. (a)
The full set of constraints. (b) The reduced set of constraints used. (c) The local
configuration space inside the abstraction boundary, lengths in meters.

scage = (sw, sh) = (1.4m, 1.4m), and the abstract configuration space takes approxi-

mately 8s to compute.

To open the door to the storage area, a pair of robots must move along the

horizon until the door is fully open. Since the maneuver is very constrained, the

size of the virtual boundary is constant, at sdoor = (0.5m, 1m), and the center of the

agents’ virtual boundary must stay within the colored areas in Figure 10.3c. The

group motion to open the door is shown in Figures 10.4i and 10.5a.

Due to the constrained nature of the tasks in this simulation, we do not consider

deformable or rotating virtual boundaries, however, the boundaries can be made

deformable or rotatable for other tasks.

10.4 Discrete path planning

At any point in time, the graph for the team may be connected or disconnected.

Any robots which are connected on the communication graph together plan a joint

path on their discrete task configuration space. Our strategy is to allow the robot

with the longest discrete path to transition first. For example, in Figures 10.4a and
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(a) (b) (c)

Figure 10.3: Further tessellations of the workspace. (a) To get around the circular
object without collision, both when initially caging it and depositing it, the space
must be subdivided. (b) The abstract configuration space for the group of robots
while caging the object. (c) The abstract configuration space for the group of robots
which must push open the door to the storage area.

10.4b, the cyan robot is assigned to check district 4 for an object, which corresponds

to the longest discrete path; therefore it transitions to district 12 first. An example

of a disconnected graph is shown in Figure 10.4c, where at the current time, the

cyan, magenta, and blue robots are connected so they plan together, the red and

green robots are connected so they plan together, and the yellow robot plans on its

own.

Each connected subset of robots plans a path until the robot with the longest

discrete path transitions to an adjacent district. The connected subset of robots

replan when either (a) the designated robot has transitioned to an adjacent district,

or (2) the communication graph changes. The communication graph can change if

another robot (or group of robots) enters communication range.

Groups are treated as large robots that can communicate with any external robots

in districts adjacent to any robot within the group. For example, in Figure 10.5a,
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the group reference point in district 13 and the yellow and magenta robots are in

district 11, yet since the cyan and green robots are in district 12, which is adjacent to

district 11, they can communicate. Robots which can communicate with the group

do not take into consideration how many robots are in the group or the configuration

of robots within the group. They need only the extent and coordinates of the virtual

boundary and any external connected robots to plan a path together.

We allow groups to have precedence over individual robots; however, the task of

opening the door always has precedence over any other task. Although this works

in our example, it may not make sense in other applications; this is for the user to

decide.

10.4.1 Switching strategy

Switching strategy is extremely important to providing convergence guarantees.

Since a path is planned for transitioning through districts and not individual poly-

topes, we can guarantee that at each switch of the path and hence the underlying

controller, the team is consistently making forward progress toward the goal. Since

we measure progress by the same measure for all subgroups of robots (that an agent

or group has crossed a district threshold in the correct direction), we can think of

this progress measure as a discrete Lyapunov function which is always decreasing.

If the Lyapunov function of a switched system decreases upon each switch, we can

guarantee stability [14].

10.5 Controller synthesis

Control synthesis is done entirely online, using the navigation function approach

presented in Chapter 6. This simulation presents a few challenges with respect to
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control synthesis.

Firstly, in order to prevent many small polytopes from appearing in the con-

figuration spaces and unnecessary increases in computation time, we have refrained

from slicing the abstract configuration space and the subdivided configuration spaces

around the object so that all polytopes have matching facets (see Figs. 10.3a and

10.3b). Instead, we take a hierarchical approach to constructing the adjacency graph,

much like the upper and lower adjacency graphs introduced in Chapter 4. For the

subdivided spaces around the objects, we ensure that (1) the object is contained in

an obstacle which still allows for caging, and (2) there are matching facets inside

the two districts that make up the room. For the abstract configuration space in

Fig. 10.3b, we ensure that there are matching facets within each district, and drive

the group to the interface. We plan a discrete path on the districts, then a secondary

path through these further tessellated polytopes. Since we are using the navigation

function controllers presented in Chapter 6, we must choose a goal point that is in-

side the next polytope. To do this, we consider the next polytope as the intersection

of the next district with the subdivided cells (this can be a group of polytopes). We

then extend the current polytope into this group of polytopes by removing the con-

straint at the interface as in Fig. 6.2, and choose a goal point within this overlapping

area (again we choose the Chebyshev center).

We take a conservative approach to caging the object, by limiting the possible

relative locations of the agents more than necessary. Figure 10.2c shows the local

configuration space within the abstraction boundary, the goal locations of each robot

within the boundary (black dots), as well as the limits of each robots possible location

in the local configuration space (this is shown by the black boundaries).

130



10.6 Simulation

In this section we present the results of the simulation we have discussed. All compu-

tations were done on a MacBook Pro with 2.53 GHz Intel Core 2 Duo processor, with

4GB 1062 MHz DDR3 memory, running Matlab 7.11.0. All polytope computations

we done using Multiparametric Toolbox for Matlab [61].

Figures 10.4 and 10.5 present sequential frames of the simulation. For clarity, we

switch notation so that Va = {ar, ag, ab, ac, am, ay} where subscripts correspond to

the first letter of the agents’ color. Figure 10.4a shows the initial configuration, and

the intial assignment of robots to tasks. Task locations for each robot are shown with

color-coded triangles. Each sequential screenshot shows the color-coded trajectory

each robot has taken since the last screenshot, and the current location of the robot

with a black circle. In Fig. 10.4b, ac has discovered there is no object in district 4,

and must return to the main hall. Each agent has a waiting location in district 15,

and returns there when its task is complete in order to wait for a different task. In

Fig. 10.4c, ay discovers an object in district 1, pings the indicator light node to turn

green, and since ar and ag are waiting with no task assignment in the main hall, they

assign themselves to moving this object by pinging the indicator node which changes

the light to yellow. Figure 10.4c also shows the waiting locations for ay and ac. In

Fig. 10.4d, ab has discovered an object in district 6, and pinged the indicator node

for the district, turning the indicator light to green. Also, ac has just entered the

main hall, and sensing the yellow indicator for district 1, assigns itself to the task.

Figure 10.4e shows that ab is the next agent to return to the main hall and sense

the yellow indicator for district 1, assigning itself. Now, since 4 agents have been

assigned to district 1, the light is turned to red, and am assigns itself to opening the

door.
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Figure 10.4f shows the robots beginning to surround the object in district 1, and

ay assigning itself to opening the door. Figure 10.4g shows progress on caging the

object in district 1. In Fig. 10.4h, the object is successfully caged, and the group

of robots build the abstract configuration space. Figure 10.4i shows ay and am have

reached their goal location and form a group to open the door.

In Fig. 10.5a, ay and am have opened the door and now assign themselves to

moving the other object. Here the group which has caged the object takes precedence

while ay and am wait for the group to pass in Fig. 10.5b. Once the group is out of

communication range, in Fig. 10.5c, ay and am can now move freely to their task

locations.

Once the first object has been deposited at the desired location as in Fig. 10.5d,

ar, ag, ab, and ac dissolve their abstraction and move to their waiting areas in

district 15 to check if another task is available. They move around the object via

the tessellation of districts 8, 9, and 10, as shown in Fig. 10.5e. Once ar and ag

have reached the main hall and sense the yellow indicator for district 6, they assign

themselves to that task by pinging the node, turning the indicator to red as in

Fig. 10.5f. Now, all that remains for ac and ab once entering the main hall is to

return to their start location, while the remaining agents cage the last object in

Fig. 10.5g. The group cages and moves the object, which enters into communication

with ac and ab in Fig. 10.5h. This causes some motion for ac and ab, which is reversed

once they are no longer in communication with the group as in Fig. 10.5i. Finally,

in Fig. 10.5i, the group has transported the object to its designated location.
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10.7 Remarks

In this chapter we presented a simulation which utilizes many of the tools presented

in this thesis, as well as displaying the versatility of these tools by utilizing them

in ways we have not previously presented. We have shown that task configuration

spaces for multirobot problems can be generated online using an A∗ algorithm with

a valid heuristic. Abstract configuration spaces can also be computed online, as we

have computed the entire abstract configuration space for the group of four robots in

approximately 8 seconds. Controller synthesis, when using the navigation function

based method, can also be done online (the decentralized feedback control, since

it requires triangulation, cannot be synthesized in real time). We have also shown

that the communication graph need not be static as we have previously stated; in

our simulation, not only did the communication graph change, but the number of

agents changed, as robots came in and out of connectivity and groups of robots were

represented as a single entity.

We have used stigmergic interactions to lessen the communication burden by sig-

naling task locations and task status with indicator lights. We have demonstrated

that these controllers can be used for caging and transporting objects in the envi-

ronment. Additionally, we have shown that it is not necessary to have a database

of controllers to use when a task is assigned as we had in Chapter 9, and that tasks

can be assigned and groups can be formed on the fly.

Finally, all of this was entirely automatic, requiring no hand tuning.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.4: Selected sequential frames of the simulation. The robots’ current loca-
tions are shown with small black circles, while their trajectory since the last frame
is shown as a colored line. Objects are shown as large black circles.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.5: Selected sequential frames of the simulation, continued.

135



Chapter 11

Concluding Remarks

Autonomous multirobot coordination poses challenges which impede its expansion

into real-world scenarios such as search and rescue, reconnaissance, and construction.

We can address these challenges in two ways: by increasing the number of robots and

decreasing their individual capabilities, and having provably correct, automatically

synthesized feedback policies which provide global guarantees on convergence and

safety. We have addressed the problem of automatic synthesis of feedback policies for

multirobot problems with these guarantees. The controllers we have developed have

been demonstrated in situations of limited communication, on dynamical systems

such as quadrotors, and on heterogeneous teams of robots. Furthermore, we have

addressed the complexity of group navigation by developing an abstraction on groups

of robots, rendering the complexity of group navigation independent of the number

of robots in the group.

While feedback policies which provide these types of guarantees are, in general,

computationally complex, requiring Cartesian products of configuration spaces, we

have demonstrated their ability to be used in real-time in Chapter 10. The ability

to rapidly subdivide a space online and use the subdivision for navigation enables
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these controllers to function in partially unknown environments while still providing

the same guarantees as in known environments.

The feedback policies we developed are also extremely versatile. As we have

demonstrated in Chapter 10, they can adapted to dynamic communication graphs,

partially unknown environments, and object manipulation. Furthermore, we have

shown that these traditionally communication-heavy algorithms can be lightened by

using stigmergic interactions instead of direct communication, while still providing

the same guarantees.

11.1 Contributions

The contributions of this thesis are three-fold:

Configuration space modeling for groups of robots

We present two methods of modeling configuration spaces for groups of robots. The

first models the case when robots are assigned individual goals, and have geometric

inter-robot constraints, such as collision, communication, and mutual exclusion con-

straints. Any constraints which can be encoded as halfspaces are admissible, which

allows for a wide range of constraints and capabilities of this model. By exploiting

the fact that we are taking Cartesian products of known graphs, we also generate

a heuristic which can be used for an informed graph search, significantly reducing

precomputation time.

Abstractions on groups of robots

The second models the case when the goal orientation is not finely specified, or the

goals lend themselves to navigating as a group. In this case, we use an abstraction

on the group to decouple the navigation and inter-robot coordination problems. The

abstraction defines a virtual boundary for the group of robots, which deforms and
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rotates as it navigates the environment. To accommodate for rotations and still result

in a configuration space composed of polytopes, we slice the angular component and

overestimate the virtual boundary in each slice. Within the virtual boundary, the

robots coordinate to ensure the desired internal behavior is achieved.

Synthesis of feedback policies with convergence and safety guarantees

Finally, once we have modeled the configuration space, we build a discrete represen-

tation of it, on which we find a path. This path determines the flow through the

polytopes, which is used for sequential composition of feedback controllers. We have

proposed two feedback controllers. The first, decentralized affine feedback, is a vec-

tor field solution. We solve for inputs at the vertices of a simplex, then interpolate

inside to generate the vector field. The controller is decentralized in a sense that if

two agents are not communicating, their feedback does not depend on each others’

state. The controller is solved by linear programs, but requires triangulation of the

space, which in turn requires enumerating the vertices of the polytope, and hence is

cost prohibitive in higher than 6 dimensions. The second is a nonlinear, analytical

feedback for dynamical systems. This controller requires only the halfspace descrip-

tion of polytopes, which enables its use in higher dimensions (we have shown its use

in as high as 12 dimensions). Unlike vector field approaches, the analytical approach

lends itself to a graph embedding that causes second order systems to behave more

like first order systems, making it desirable for highly dynamical systems such as

quadrotors.

Our approach guarantees convergence to the goal. Furthermore, it guarantees

safety: in other words, the system will satisfy all of the set constraints, including

collision avoidance, communication maintenance, mutual exclusion, and any others.

While our approach is computationally complex when used to find global solu-

tions to the navigation problem, we have demonstrated its use in real-time as local
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navigation solutions in the final simulation. Furthermore, we have demonstrated the

versatility of this approach, by demonstrating its use to manipulate objects in the

environment, incorporating stigmergic interactions, creating and dissolving groups

online, and modifying communication graphs based on location in the environment.

11.2 Combinatorics of task assignment

A major contributor to complexity of multirobot problems is task assignment. While

algorithms to assign agents to specific tasks are beyond the scope of this thesis, this

is still extremely important. The problem of efficient task assignment is critical in

many applications. The more efficient the task assignment, both in computation and

in end result, the faster all tasks can be completed. There are two main aspects to

task assignment. First is the representation of the organization of robots. We seek

an elegant representation of the breakdown of groups, so that we know the current

organization and the desired organization. Second is determining the most efficient

sequence of organizations to solve the problem.

11.2.1 Representating organizations

To represent organizations, we borrow notation from symmetric group theory [108].

The symmetric group, Sn, is the set of all bijections from {1, 2, . . . , n} to itself.

Elements in Sn are permutations π. A Young’s tableau provides a visual organization

of partitions of a team of robots λ. For example, the tableau

t1 =
1 2

3 4
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has partition λ = (2, 2) and is row equivalent (t1 ∼ t2) to

t2 =
2 1

3 4
,

since the corresponding rows contain the same elements. A set of all row equivalent

tableaux are a Young’s tabloid

{t} =

 1 2

3 4
,

1 2

4 3
,

2 1

3 4
,

2 1

4 3

 =
1 2

3 4
.

The Young’s tabloid provides an effective way of representing an organization of

robots, where each group is contained in a row, without ordering within the group.

The Hasse diagram for partitions allows us to order partitions by dominance. The

Hasse diagram for partitions of 4 is

(4) (3, 1) (2, 2) (2, 1, 1) (14)� � � �

While the Hasse diagram provides a visual representation of some transitions from

one organization to another, it does not describe effectively all possible transitions.

For example, it is possible to transition (2, 1, 1)→ (3, 1). However the strict ordering

of Hasse diagrams does not allow this. Therefore, it may be desirable to create a
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new diagram, representing an adjacency of partitions.

(14)

(4) (3, 1) (2, 1, 1)

(2, 2)

-� -�
�
�
�
��3

+

Q
Q
Q
Qs

k

This diagram in conjunction with permutations on the tabloids can be used to

determine optimal ways to assign robots to different groups for different tasks.

11.2.2 Task assignment in the literature

In the simulation presented in Chapter 10, task assignment was determined by min-

imizing a weighted sum of discrete and Euclidean distances to the task location.

However, the example is not limited to this type of task assignment. One can op-

timize a utility function for the group, which could also take into account battery

status, robot fitness for a particular task type, quality of network connectivity, etc.

Determining the most efficient assignment of robots to subtasks has been ad-

dressed in the literature for many types of problems [42, 80, 85, 88, 93, 113, 117, 121].

Gerkey and Mataric provide a taxonomy and formal analysis of task allocation for

multirobot systems [42]. There exists a full spectrum of the level of communication

required to determine the assignment, as demonstrated in the multiple algorithms

in [80]. Perhaps the most desirable aspect of any task assignment algorithm is de-

centralization [85, 93, 113]. The type of task also makes a large impact on the most

efficient assignment, such as specialization for cooperative transportation tasks [88].
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11.3 Future work

We have already established the versatility of this methodology by synthesizing con-

trollers online, transporting objects, incorporating stigmergic interations, and form-

ing and dissolving groups online as necessary. However, we have only touched on the

last three of these issues. These are directions which I would like to explore in the

future, in addition to formalizing the preliminary work presented in Chapter 10.

11.3.1 Interaction with the environment

True interaction with the environment is much more than object manipulation, which

is in turn more than transporting a circular object. Transporting a general geometric

object is much more complex, since rotations of the object can mean the difference

between successful caging and object escape. We can address rotations by ensuring

that the robots maintain a formation which not only cages the object in its current

orientation, but prevents the object from rotating beyond the capabilities of the cur-

rent “cage”. Interacting with the environment can also refer to constructing objects.

The controllers presented in Chapter 6 are particularly well suited to quadrotor con-

struction tasks, where objects must be deposited in specified locations. Since the

controllers can be calculated online, and hence task assignment can be ongoing, as we

have shown, we can construct complex objects which require building in a particular

order, without predefining tasks for each of the robots.

11.3.2 Abstractions for multirobot control

By using abstractions, we can control the behavior of large groups without generating

individual controllers for each agent. I would like to extend my work in Chapter 4 to

a number of applications, including creating network topologies, controlling satellite
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clusters, and automated warehouse systems.

• Generating network topologies: To generate a specific network topology we

can design an abstraction such that it contains only the lattice structure of

the network and let this propagate throughout the network, so that all agents

create the desired lattice with their neighbors.

• Satellite clusters: With current research thrusts in switching from monolith

satellites to clusters, there is a need to avoid damage from space debris while

maintaining network topology and functionality. Including the network topol-

ogy requirements in the abstraction and using the abstracted state to control

the orbit of the entire cluster can provide an effective method of switching

orbits and returning to the original after the threat has passed.

• Automated warehouse systems: The typical warehouse was not designed for the

demand of small, unique drop shipments prompted by advent of e-commerce.

Robots are being used in existing warehouses to bring shelves of items to pack-

ers, but digging out a shelf from behind hundreds of others can be challenging

if we have to determine a path for each one. By moving them in groups, using

an abstraction, the computation can be made much simpler.

11.4 Final remarks

In conclusion, we acknowledge the need for more flexible inter-robot and inter-group

coordination. Environments may not always be fully known, communication will

not be perfect inside a square annulus and drop to zero outside it, and robots will

not always have perfect state information. However, we have taken steps toward

alleviating the first two of these issues, by allowing obstacles in the free space and
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enabling the robots to subdivide the space, and by modifying the communication

graph so that it is determined by the agent pair’s location in the environment instead

of their relative position. It is a challenge to overcome the requirement for perfect

state information, therefore it may be difficult to use this approach in cluttered out-

door environments. The key point, however, is that this approach can be used in real

time in partially unknown environments, and still provide guarantees of convergence

and safety.
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