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a b s t r a c t

This paper proposes a consensus-based formation tracking scheme for multi-robot systems utilizing
the Negative Imaginary (NI) theory. The proposed scheme applies to a class of networked robotic
systems that can be modelled as a group of single integrator agents with stable uncertainties connected
via an undirected graph. NI/SNI property of networked agents facilitates the design of a distributed
Strictly Negative Imaginary (SNI) controller to achieve the desired formation tracking. A new theoretical
proof of asymptotic convergence of the formation tracking trajectories is derived based on the integral
controllability of a networked SNI systems. The proposed scheme is an alternative to the conventional
Lyapunov-based formation tracking schemes. It offers robustness to NI/SNI-type model uncertainties
and fault-tolerance to a sudden loss of robots due to hardware/communication fault. The feasibility and
usefulness of the proposed formation tracking scheme were validated by lab-based real-time hardware
experiments involving miniature mobile robots.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Negative Imaginary (NI) systems theory was introduced in
anzon and Petersen (2008) and has gradually come into the
imelight due to its potential applications in vibration control
f lightly-damped flexible structures (Lanzon & Petersen, 2008;
iu, Lam, Zhu, & Kwok, 2019), cantilever beams (Bhikkaji, Reza
oheimani, & Petersen, 2012), robotic manipulators (Mabrok,
allapur, Petersen, & Lanzon, 2014), in nano-positioning appli-
ations (Das, Pota, & Petersen, 2014), control of multi-agent NI
ystems (Tran, Garratt, & Petersen, 2020; Tran, Mabrok, Garratt, &
etersen, 2021; Wang, Lanzon, & Petersen, 2015a; Wang, Lanzon,
Petersen, 2015b), in controlling dissipative systems (Bhowmick
Patra, 2017; Kurawa, Bhowmick, & Lanzon, 2021), etc. Sim-

listically, the term NI refers to a class of LTI systems having a
egative imaginary frequency response. That is, the imaginary part
f an NI (SNI) transfer function remains non-positive (negative)
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∀ω ∈ (0, ∞). The NI framework offers a simple closed-loop
stability criterion that depends only on the steady-state gains of
the system. Hence, it becomes useful for designing controllers for
practical systems even when the exact mathematical model is
not available (Bhowmick & Patra, 2020). NI theory has recently
been extended to discrete-time LTI systems (Ferrante, Lanzon, &
Ntogramatzidis, 2017; Liu & Xiong, 2017).

Formation control of multi-robot systems has been an ac-
tive area of research in the robotics and control communities
over the past two decades. Some of the potential applications of
formation control include cooperative exploration, object trans-
portation (Alonso-Mora, Baker, & Rus, 2017; Hu, Bhowmick, &
Lanzon, 2021), search and rescue (Hu, Bhowmick, Jang, Arvin, &
Lanzon, 2021), etc. With the advent of modern algebraic graph
theory, consensus-based cooperative control of multi-agent sys-
tems has witnessed immense progress. Ren and Atkins (2007)
and Ren and Sorensen (2008) did the pioneering work to develop
static formation control techniques for a group of first-order
and second-order agents connected via a graph. Later, the con-
cept of time-varying formation control for linear multi-agent
systems was proposed in Dong and Hu (2016). However, in most
consensus-based formation control schemes, the global infor-
mation of the network (e.g., the Laplacian matrix) is required.
This affects the flexibility of a cooperative control scheme to
handle the inclusion or exclusion of the agents during an ongoing
mission. To overcome this limitation, Hu, Bhowmick, and Lanzon
(2020) proposed a distributed adaptive formation tracking proto-
col for a group of networked mobile robots with multiple leaders,
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here the network topology was not required to be known in
dvance. Subsequently, Hu, Turgut, Lennox, and Arvin (2022),
ehdifar, Bechlioulis, Hashemzadeh, and Baradarannia (2020)
nd Verginis, Nikou, and Dimarogonas (2019) laid significant con-
ributions in developing robust formation control techniques to
eal with the inevitable model uncertainties. However, practical
alidation of such control schemes through real-world robotic
xperiments still poses significant and nontrivial challenges.
The primary motivation of applying NI systems theory to de-

elop a leader-following formation control scheme for networked
ulti-robot systems is that many robotic systems (e.g. two-
heeled mobile robots with nonholonomic constraints (Skeik,
u, Arvin, & Lanzon, 2019)) can be transformed into single inte-
rator dynamics via input–output feedback linearization (Slotine
Li, 1991). Interestingly, a network of single integrator agents,

eing a multi-input–multi-output (MIMO) NI system, can be
onveniently stabilized by a distributed SNI system in a posi-
ive feedback loop. Pioneering research has been done in this
irection in Wang et al. (2015a), Wang et al. (2015b). In Wang
t al. (2015b), a robust output feedback consensus problem for
network of homogeneous NI systems was addressed. There-
fter Wang et al. (2015a) extended the results of Wang et al.
2015b) to deal with a network of heterogeneous NI systems.
ubsequently, Skeik et al. (2019) developed a formation control
cheme, being inspired by Wang et al. (2015b), for networked
ingle integrator agents on a directed, strongly-connected and
alanced graph. Later, Tran et al. (2020) extended the ideas
f Wang et al. (2015a) to develop a particular formation control
ethodology for a group of heterogeneous autonomous vehicles

o facilitate time-invariant switching in a cluttered environment.
The progress and challenges mentioned above motivate us

o develop a simple, consensus-based, robust formation tracking
cheme for multi-robot systems that can be modelled as (or trans-
ormed into) a network of single integrator agents. The proposed
cheme exploits the inherent NI property of networked single
ntegrator dynamics and guarantees the existence of a distributed
NI controller. This paper also introduces a new methodology to
stablish the asymptotic convergence of the formation tracking
rajectories by utilizing the integral controllability property of the
etworked SNI systems. To do so, we first extend the conven-
ional eigenvalue loci technique (Belletrutti & MacFarlane, 1971;
acFarlane & Belletrutti, 1973) to distributed SNI systems. The
roposed scheme offers robustness to NI/SNI-type model uncer-
ainties and fault-tolerance in the event of a sudden loss of agents.
ab-based experiments were conducted on a group of miniature
wo-wheeled mobile robots to demonstrate the feasibility of the
cheme in practice.
Notation: R and C denote the sets of all real and complex num-

ers, respectively. Rm×n and Cm×n denote respectively the sets of
all real and complex matrices of dimensions (m × n). ℜ(·) and
(·) express the real and the imaginary parts, respectively. A⊤,
∗ and Ā denote the transpose, complex conjugate transpose and
omplex conjugate of a matrix A. RH m×n

∞
denotes the set of all

eal, rational, proper and asymptotically stable transfer function
atrices of dimension (m × n). For a transfer function matrix

M(s), M(jω)∗ = M(−jω)⊤. The real-Hermitian and imaginary-
Hermitian parts of M(s) are given by 1

2 [M(jω) + M(jω)∗] and
1
2j [M(jω) − M(jω)∗]. (A, B, C,D) denotes a state-space realization
of a real, rational, proper transfer function matrix M(s) = D +

(sI − A)−1B. A ⊗ B indicates the Kronecker product of two
atrices.

. Essential preliminaries

In this section, some valuable technical preliminaries, defini-
ions and lemmas are presented which underpin the proofs of the
ain results of the paper.
2

2.1. Definitions for negative imaginary systems theory

In this subsection, we recall the definitions of NI and SNI
systems.

Definition 1 (NI System Mabrok et al., 2014). Let G(s) be the real,
rational, proper transfer function matrix of a finite-dimensional
and square system without any poles in ℜ[s] > 0. Then, G(s) is
said to be NI if

• j[G(jω)−G(jω)∗] ≥ 0 for all ω ∈ (0, ∞) except the values of
ω where jω is a pole of G(s);

• If s = jω0 with ω0 ∈ (0, ∞) is a pole of G(s), then it is at most
a simple pole and the residue matrix lims→jω0 (s − jω0)jG(s)
is Hermitian and positive semidefinite;

• If s = 0 is a pole of G(s), then lims→0 skG(s) = 0 for all k ≥ 3
and lims→0 s2G(s) is Hermitian and positive semidefinite.

Definition 2 (SNI System Lanzon & Petersen, 2008). Let G(s) be
the real, rational, proper transfer function matrix of a finite-
dimensional and square system. Then, G(s) is said to be SNI if
G(s) has no poles in ℜ[s] ≥ 0 and j[G(jω) − G(jω)∗] > 0 for all
ω ∈ (0, ∞).

2.2. Eigenvalue loci theory

Like the Nyquist plot, the eigenvalue loci γi(s) for i ∈ {1, 2, . . . ,
m} of a transfer function matrix P(s) is a conformal mapping of
the function det[P(s)] in a complex plane, known as the eigen-
value loci plane, when s traverses along the s-plane D-contour
n the clockwise direction as shown in Fig. 3(b). For complete
etails of the eigenvalue loci theory, the literature (Belletrutti &
acFarlane, 1971) and MacFarlane and Belletrutti (1973) may be

eferred.

heorem 1 (Belletrutti & MacFarlane, 1971; MacFarlane & Bel-
etrutti, 1973). The negative feedback interconnection of a plant G(s)
nd a controller C(s) is stable if, and only if, the net sum of critical
oint (−1, j0) encirclements of all the eigenvalue loci γi(jω) of the
oop transfer function G(s)C(s) for i ∈ {1, 2, . . . ,m} is counter-
lockwise and equal to the number of RHP zeros of the open-loop
haracteristic polynomial. For open-loop stable cases, none of γi(jω)
hould encircle the critical point in the complex plane.

.3. Graph theory notations

Consider a weighted and directed graph G = (V , E , A ) with
non-empty set of nodes V = {1, 2, . . . ,M}, a set of edges E ⊂

×V , and the associated adjacency matrix A =
[
aij

]
∈ RM×M . An

edge rooted at the ith node and ended at the jth node is denoted
by (i, j), which means that the information can flow from node i
to node j. aij is the weight of the edge (j, i) and aij > 0 if (j, i) ∈ E .
he jth node is called a neighbour of the ith node if (j, i) ∈ E .
he in-degree matrix is defined as D = diag{di} ∈ RM×M where
i =

∑M
j=1 aij. The Laplacian matrix L ∈ RM×M of G is defined as

L = D − A .
Consider a multi-robot system containing M robots and one

target. The target can be observed by a subset of robots in the
network. If the ith robot observes the target, an edge (0, i) is said
o exist between them with a pinning gain pi > 0.

. Stability of an integrator feedback scheme involving net-
orked NI/SNI systems

This section will first discuss under which conditions a net-
ork of SNI systems retains the same property. Subsequently,
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Fig. 1. An illustrative example of target tracking by networked UAVs.

he integral controllability property of networked SNI systems has
een investigated in the homogeneous case. These results are es-
ential prerequisites that will be invoked in Section 4 to develop a
imple distributed formation control scheme for networked single
ntegrator systems applying the NI toolkit.

.1. Properties of networked SNI systems

We will now declare a technical assumption to be satisfied by
he communication graphs corresponding to the network of SNI
ystems considered in this paper.

ssumption 1. The interaction among M agents is described
y an undirected and connected graph G . There always exists a
oot node which represents a leader (or a virtual target) and it
rovides the reference trajectory to the follower agents (at least
o one follower).

According to Assumption 1, we have L + P > 0 where
= diag{p1, p2, . . . , pM} > 0 is the pinning-gain matrix. We
ill use the shorthand LM = L + P throughout this paper.
he following lemma proves that a network of homogeneous LTI
ystems exhibits SNI property if and only if an unit system is SNI.

emma 1. Consider a group of M SNI agents G(s) ∈ RH m×m
∞

onnected via a network topology G satisfying Assumption 1. Then,
¯ (s) = LM ⊗ G(s) is SNI if and only if G(s) is SNI.

roof. (Sufficiency). Since G(s) is SNI, it satisfies j[G(jω)−G(jω)∗] >

∀ω ∈ (0, ∞). Now we have j[Ḡ(jω)− Ḡ(jω)∗] = j[LM ⊗ G(jω)−
⊤

M ⊗ G(jω)∗] = LM ⊗ j[G(jω) − G(jω)∗] > 0 ∀ω ∈ (0, ∞) [since
M = L ⊤

M > 0] by applying the Kronecker product property
⊗ B > 0 for A = A∗ > 0, B = B∗ > 0 (Horn & Johnson, 2012).
(Necessity). j[Ḡ(jω) − Ḡ(jω)∗] > 0 ∀ω ∈ (0, ∞) implies

[G(jω) − G(jω)∗] > 0 ∀ω ∈ (0, ∞) since LM = L ⊤

M > 0 due
o Assumption 1. This completes the proof. ■

For better understanding of the network topology used in this
aper, a practical example is shown in Fig. 1, where a team
f unmanned aerial vehicles (UAVs) are navigated through a
luttered unknown environment via local information. Suppose
hat UAV 1 with advanced sensors can detect the position of
he final destination (which can be viewed as a pinning node),
hus an edge represented by the red single arrow is generated
ith a positive pinning gain. Other connected UAVs without goal
etectors can only rely on neighbouring position information to
each the goal, the communication links among each other are
epresented by green double arrow with different positive edge
eights.
3

.2. Eigenvalue loci of networked SNI systems

So far in the literature, the eigenvalue loci theory (Belletrutti
MacFarlane, 1971; MacFarlane & Belletrutti, 1973) has been

efined for a single LTI system. In this paper, being inspired by the
evelopments of Bhowmick and Lanzon (2021) and Bhowmick
nd Patra (2018), the eigenvalue loci technique has been ex-
ended to homogeneous networked NI and SNI systems. The
ollowing lemma reveals that the eigenvalue loci of a homoge-
eous network of SNI systems stay within the third and fourth
uadrants of a complex plane, termed as the eigenvalue loci
lane, including (excluding) the real-axis in the open positive
requency interval, i.e., ∀ω ∈ (0, ∞).

emma 2. Consider a group of M SNI agents G(s) ∈ RH m×m
∞

onnected via a network topology G satisfying Assumption 1. Denote
¯ (s) = LM ⊗ G(s). Then, the eigenvalue loci γi(jω) of Ḡ(s) ∈

H Mm×Mm
∞

lie strictly below the real-axis of the eigenvalue loci
lane ∀ω ∈ (0, ∞) and ∀i ∈ {1, 2, . . . ,Mm}.

roof. We start this proof by recalling that Ḡ(s) = LM ⊗ G(s) is
NI if and only if G(s) is SNI via Lemma 1. Assume (λi, xi) be an
igenvalue–eigenvector pair for (LM ⊗ G(jω)) ∈ CMm×Mm for ω ∈

0, ∞) where λi ∈ C for i ∈ {1, 2, . . . ,Mm} and 0 ̸= xi ∈ CMm.
ote that in the case of repeated eigenvalues of (LM ⊗ G(jω)) at
n ω ∈ (0, ∞), only the linearly independent eigenvectors need
o be considered. Now,

x∗

i (LM ⊗ G(jω)) xi

x∗

i

[
LM ⊗ [

1
2
(G(jω) + G∗(jω)) + j

1
2j

(G(jω) − G∗(jω))]
]
xi

=x∗

i (LM ⊗ A) xi + j x∗

i (LM ⊗ B) xi (1)

where A =
1
2 [G(jω) + G∗(jω)] and B =

1
2j [G(jω) − G∗(jω)].

onsidering an orthonormal eigenvector ∥xi∥2 = 1, without loss
of generality, we obtain

x∗

i (LM ⊗ G(jω)) xi = λi(x∗

i xi) = λi∥xi∥2 = ℜ[λi] + jℑ[λi]. (2)

pon comparing (1) and (2), we have ℜ[λi] = x∗

i (LM ⊗ A) xi
nd ℑ[λi] = x∗

i (LM ⊗ B) xi, both of which are real and scalar
uantities since A = A∗, B = B∗ and LM = L ⊤

M > 0. Now,
< 0 ∀ω ∈ (0, ∞) since G(s) is SNI using Definitions 1 and 2. This

hen implies λi[LM ⊗B] = λj[LM ]λk[B] < 0 ∀ω ∈ (0, ∞) and ∀i ∈

1, 2, . . . ,Mm} via the distributive property of the eigenvalues of
he Kronecker product of two matrices (Horn & Johnson, 2012).
herefore, for SNI systems, we have ℑ[λi{LM ⊗G(jω)}] < 0 ∀ω ∈

0, ∞) and ∀i. This hence proves that all γi(jω) of the network of
omogeneous SNI systems lie strictly below the real-axis of the
igenvalue loci plane ∀ω ∈ (0, ∞). ■

Note that although the eigenvalue loci of the SNI systems
(s) ∈ RH m×m

∞
do not touch the real axis of the eigenvalue loci

plane for any ω ∈ (0, ∞), each locus originates from (at ω = 0)
and terminate to (at ω = ∞) the real axis since G(0) = G(0)⊤ and
G(∞) = G(∞)⊤.

3.3. ‘Integral controllability’ of networked SNI systems

This subsection investigates the asymptotic stability of an
integrator feedback control scheme (Fig. 2) containing networked
SNI systems when the integral gain factor k is varied within a
finite range. This property is referred to in this paper as integral
controllability (IC) of networked SNI systems. This result (derived
in Lemma 3) will be utilized later in Section 4 to develop a
simple distributed formation control scheme for networked single
integrator agents.
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Fig. 2. An integrator feedback control scheme for networked SNI systems.

Fig. 3. (a) All the eigenvalue loci γi(jω) of LM ⊗
1
s C(s) remain confined within

the Yellow coloured region ∀ω ∈ R∪ {∞} when C(s) is an SNI transfer function
aving C(0) > 0; and (b) Nyquist D-contour in the s-plane. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

emma 3. Consider a group of M SNI systems C(s) ∈ RH m×m
∞

ith C(0) > 0 connected via a network topology G that satisfies
ssumption 1. Then, there exists a finite k⋆ > 0 such that the

egative feedback interconnection of LM ⊗ C(s) and IMm ⊗
k
s
, in

ig. 2, remains asymptotically stable for all k ∈ (0, k⋆
].

roof. In this proof, the notation γi(s) is used to represent the
igenvalue loci of the loop transfer function matrix

(
LM ⊗

1
s C(s)

)
.

he negative feedback closed-loop networked interconnection of

LM ⊗ C(s)] and
k
s
IMm, remains asymptotically stable for any k in

the range (0, k⋆
] if none of the eigenvalue loci γi(jω) intersects

the negative real-axis of the eigenvalue loci plane at any ω ∈

[−∞, ∞]. The above condition implies that none of the γi(jω)
will encircle the critical point (− 1

k + j0) for any k ∈ (0, k⋆
]

using Theorem 1. Note that the upper limit k⋆ > 0 depends on
the maximum eigenvalue of the DC loop gain of [LM ⊗ C(s)] in
ig. 2. Let the Nyquist D-contour in the s-plane be indented at
he origin to exclude the pole of the integrators. As shown in
ig. 3(b), we denote the points on (i) the semi-circle around the
rigin having infinitesimal radius by Ω0, (ii) the rest of the jω-axis
y Ω±j and (iii) the RHP semi-circle having infinite radius by ΩR;
athematically,

0 = {s| s = εejθ , ε ∈ R>0, ε → 0+, −
π

2
≤ θ ≤

π

2
},

±j = {s| s = jω, ω ∈ (−∞, 0) ∪ (0, ∞)},

R = {s| s = Rejθ , R ∈ R>0, R → +∞, −
π

2
≤ θ ≤

π

2
}.

e will now establish via Parts I, II and III that all the eigenvalue
oci γi(s) stay within the Yellow coloured region in Fig. 3(a).

art I: When s ∈ Ω0 Below, we show that the eigenvalue loci
i(s) of

(
LM ⊗

1
s C(s)

)
, where C(s) is an SNI transfer function with

(0) > 0, lie within the Yellow semicircle having infinite radius
(at the right-hand side of the imaginary axis), as shown Fig. 3(a),
when the complex frequency variable s makes a complete traver-
sal along the D-contour in the s-plane [see Fig. 3(b)], which is an
 i

4

union of the sets Ω0, Ω±j and ΩR. The eigenvalue loci γi(s) can
be approximately expressed as

γi(s)|s∈Ω0 ≃ λi [LM ⊗ C(0)]
1
ε
e−jθ (4)

∀i ∈ {1, 2, . . . ,Mm}, which can be further simplified as

γi(s)|s∈Ω0 ≃
mi

ε
ej(φi−θ )

∀i ∈ {1, 2, . . . ,Mm} (5)

on setting λi [LM ⊗ C(0)] = miejφi where φi = 0 ∀i as C(0) > 0
and LM > 0. Therefore, γi(j0+) ≃

mi
ε
e−j π2 → +∞̸ −

π
2 as

ε → 0+ and when θ =
π
2 and similarly, γi(j0−) → +∞ ̸ +

π
2 .

his implies −
π
2 ≤ ̸ γi(jω) ≤

π
2 when s ∈ Ω0. Hence, no infinite

crossover occurs on the negative real-axis when each eigenvalue
locus γi(jω) encloses the zero-frequency points γi(j0−) and γi(j0+)
ia a semicircular arc of infinite radius in the clockwise direction,
s illustrated in Fig. 3(a).

art II: When s ∈ Ω±j Let λi [LM ⊗ C(jω)] = miejφi at each
ω ∈ (0, ∞) and for all i ∈ {1, 2, . . . ,Mm}. Since C(s) is SNI,
φi(ω) ∈ (−π, 0) ∀ω ∈ (0, ∞) and hence, ̸ γi(jω) = (φi −

π
2 ) ∈(

−
3π
2 , − π

2

)
∀ω ∈ (0, ∞) and similarly, for all ω ∈ (−∞, 0),

̸ γi(jω) ∈
(
−

3π
2 , − π

2

)
as eigenvalue loci are symmetric with

respect to real-axis. Therefore, when s ∈ Ω±j, all γi(jω) stay
within the Yellow rectangular region (at the left-hand side of the
imaginary axis) marked shown in Fig. 3(a).

Part III: When s ∈ ΩR For s ∈ ΩR, the eigenvalue loci γi(s) where
i ∈ {1, 2, . . . ,Mm} can be expressed as

γi(s)|s∈ΩR ≃ λi [LM ⊗ C(∞)]
e−jθ

R
=

mi

R
ej(φi−θ ) (6)

upon denoting λi [LM ⊗ C(∞)] = miejφi . Now, γi(+j∞) can have
hree distinct positions depending on C(∞): (i) γi(+j∞) → 0̸ −
π
2 when C(∞) > 0; (ii) γi(+j∞) → 0̸ −π when C(∞) = 0; and
iii) γi(+j∞) → 0̸ −

3π
2 when C(∞) < 0. This then follows that

each γi(jω) encloses the infinite frequency points γi(+j∞) and
γi(−j∞) through a semicircular arc of infinitesimal radius in the
counter-clockwise direction [the Green and Red coloured dashed
arcs drawn around the origin in Fig. 3(a)].

Parts I, II and III jointly prove that all γi(s) stay within the Yel-
ow coloured region shown in Fig. 3(a) and no infinite crossover
ccurs on the negative real-axis. This hence implies that there
lways exists a finite range of the integral gain factor k ∈ (0, k⋆

]

uch that the critical point (− 1
k + j0) is never encircled by

any γi(s). This guarantees the asymptotic stability of the nega-
ive feedback integrator-feedback scheme (in Fig. 2) via Theo-
em 1. ■

emark 1. This paper extends the integral controllability (IC)
roperty of NI and SNI systems, proposed in Bhowmick and
atra (2018) and Bhowmick and Lanzon (2021), to networked
I and SNI systems. Lemma 3 has exploited the IC property of
networked SNI system with positive definite DC-gain matrix,
hich is then invoked in Section 4 to develop a robust and

ault-tolerant formation tracking scheme for feedback linearized
obotic systems. An IC scheme facilitates asymptotic tracking and
nsures closed-loop asymptotic stability for a finite range of the
ntegral gain factor k ∈ (0, k⋆

] instead of the conventional PI con-
roller that works only for particular values of

(
kp, ki

)
. The main

dvantage of the IC-based tracking scheme is that the closed-
oop stability depends only on the positive definiteness of DC-gain
atrix of the plant. Interestingly, all stable NI systems (including
NI as well) enjoy the symmetric DC-gain matrix property [as
(0) = −CA−1B+D = −CA−1(−AYC⊤)+D = CYC⊤D = C(0)⊤ via
I lemma (Lanzon & Petersen, 2008) and on noting that D = D⊤

s an assumption for all NI systems] and most of the practical SNI



J. Hu, B. Lennox and F. Arvin Automatica 140 (2022) 110235

[
v

w

P
t
n
a
f
f
d

E

I
c
t

Fig. 4. A formation tracking scheme for a group of networked single integrator
systems applying SNI theory.

systems have positive definite DC-gain. A networked SNI system
preserves the positive definite DC-gain matrix property when the
underlying graph Laplacian matrix satisfies the property LM =

L + P > 0. Another advantage of using an IC-based tracking
scheme is that it offers a convenient way of handling stable
NI/SNI-type uncertainties depending only on their DC-gain (refer
to Theorem 3).

4. A formation tracking control scheme for networked robotic
systems using the SNI theory

This section presents this paper’s main contribution, which
develops a distributed formation control scheme for a class of
multi-robot systems that can be modelled as (or transformed
into) a group of networked single integrator agents with NI/SNI-
type uncertainties. Note that many robotic systems can be feed-
back linearized into single integrator agents, e.g., two-wheeled
mobile robots (please see Antonelli, Arrichiello, Caccavale, and
Marino (2014), Ren and Sorensen (2008) and Tzafestas (2013) for
more details). As a network of single integrator agents inherently
satisfies the NI property with a pole at the origin, the formation
tracking objectives can be effectively met by a distributed SNI
controller depending only on the positive definiteness of the
DC-gain matrix of the controller.

Before discussing the scheme, we declare the set of admissible
reference input signals r(t) (generated by the leader node) to be
followed by the agents.

Assumption 2. Let r(t) = 1Mr(t) ∈ RM
∀t ≥ 0 be the given

tracking reference where r(t) is continuous and bounded ∀t ≥ 0
and limt→∞ r(t) = 1Mrss ≜ rss where rss ̸≡ 0 denotes the steady-
state value of the reference signal r(t) generated by the leader
node.

Theorem 2, given next, will establish that, under the appli-
cation of a MIMO, decoupled SNI controller diag{C(s), . . . , C(s)}
where C(s) is a single-input–single-output (SISO) SNI transfer
function with C(0) > 0, a group of single integrator agents
connected via a graph topology G satisfying Assumption 1 will
asymptotically reach the desired formation and continue to track
the leader.

Theorem 2. Let M single integrator agents be connected via
the topology G , which satisfies Assumption 1. The set of admis-
sible reference inputs r(t) satisfies Assumption 2 and let h =

h1 h2 · · · hM ]⊤ ∈ RM be the desired formation configuration
ector. Let C(s) be an SNI transfer function with C(0) > 0. Then,

there exists a finite k⋆ > 0 such that for any k ∈ (0, k⋆
], the
5

single integrator agents (in Fig. 4) achieve formation tracking by the
following distributed SNI output feedback control law

ui = kC(s)
M∑
j=1

aij
(
(yi − hi) − (yj − hj)

)
+ pi(yi − hi − r) (7)

here i ∈ {1, 2, . . . ,M}.

roof. In this proof, the notations E(s), Y(s), R(s) will represent
he Laplace transform of the real-valued, time-domain vector sig-
als e(t) = [e1(t) e2(t) · · · eM (t)]⊤, y(t) = [y1(t) y2(t) · · · yM (t)]⊤

nd r(t) ∀t ≥ 0. Note that the controller C(s) is an SNI transfer
unction with C(0) > 0. With respect to Fig. 4, we define the
ormation trajectory tracking error as e(t) ≜ r(t) + h − y(t) and
enote r̂ ≜ r + h. Now, we have

(s) =

[
I + (LM ⊗

k
s
C(s))

]−1

R̂(s). (8)

t is already established in Lemma 3 that the positive feedback
onsensus scheme shown in Fig. 4 is asymptotically stable under
he application of the distributed SNI control law for all k ∈

(0, ∞). The steady-state formation tracking error is found to be

ess = lim
t→∞

e(t) = lim
s→0

sE(s) (9a)

= lim
s→0

s
[
IM +

(
LM ⊗

k
s
C(s)

)]−1

R̂(s)

= lim
s→0

s [sIM + (LM ⊗ kC(s))]−1 (sR̂(s))

= [LM ⊗ (kC(0))]−1
(
lim
s→0

sIM

)(
lim
s→0

s
[
R(s) +

1
s
h
])

= [0 0 · · · 0]⊤ (9b)

since C(0) > 0, LM > 0 and limt→∞ r(t) = 1Mrss = rss
via Assumption 2. The asymptotic convergence property of the
trajectory tracking error, that is limt→∞ e(t) = 0 implies y(t) →

r̂ss = (rss + h) as t → ∞. ■

Remark 2. In Tran et al. (2020), the authors utilized the ideas
of Wang et al. (2015a), Wang et al. (2015b) to develop a consen-
sus scheme for a group of heterogeneous autonomous vehicles
considering time-invariant topology switching. Although the re-
sults of Wang et al. (2015a), Wang et al. (2015b) and Tran et al.
(2020) can be applied to solve the consensus problem for net-
worked single integrator dynamics, the closed-loop state-space
realization of the networked control system (i.e. the consen-
sus scheme) used in Wang et al. (2015a), Wang et al. (2015b)
and Tran et al. (2020) loses minimality due to a rank deficiency of
the Laplacian matrix of an undirected graph, which may violate
the internal stability of the scheme. On the contrary, the proposed
consensus scheme in this paper does not face this problem as it
considers a leader-following case for which L + P > 0.

Remark 3. In contrast to the Lyapunov stability approach used
in most of the consensus-based formation control schemes, the
proposed methodology relies on integral controllability theory
and eigenvalue loci technique to prove asymptotic convergence
of the formation trajectories. The proposed scheme also exhibits
robustness to stable NI/SNI-type uncertainty when appears in
input/output-multiplicative structure and L2-bounded external
disturbances. Different from the conventional formation control
strategies (e.g. Dong and Hu (2016), Hu, Bhowmick, Jang, et al.
(2021) and Ren and Sorensen (2008)) that impose a particular
distributed control law, the proposed NI-based scheme requires
choosing only an SNI transfer function C(s) with C(0) > 0.

The asymptotic convergence is guaranteed for any SNI controller
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Fig. 5. (a) None of the eigenvalue loci γi(jω) of LM ⊗
1
s C(s) does encircle the

ritical points (− 1
ki

, j0) for any ki ∈ [0, k⋆
]; and (b) All eigenvalue loci γi(jω) of

M ⊗C(s)[ 1
s + δ(s)], where δ(s) is stable NI with δ(0) > 0, δ(∞) ≥ 0 and C(s) is

NI with C(0) > 0, stay within the Yellow coloured region. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

(s) with C(0). Hence, in this paper, the proposed scheme of-
ers greater flexibility to choose any structure of the controller
o meet the desired performance specifications, which can be
iewed a significant advantage over traditional consensus-based
ormation controllers.

.1. Fault-tolerance to loss of robots

In the context of cooperative control of multi-robot systems,
erious problems can be encountered following the sudden loss
f agents, resulting from hardware faults or network failure. In
uch situations, it is essential to investigate how to preserve the
tability of a network. Utilizing the ideas of Bhowmick and Patra
2018) and Bhowmick and Lanzon (2021), we will now establish
hat the proposed formation tracking scheme offers robust to a
udden loss of agents (i.e. robots). That is, upon occurrence of a
ault, the control scheme maintains the overall stability of the
etwork and also, a new stable operating condition is reached
fter an autonomous reconfiguration of the network, excluding
he faulty agents. In the control scheme, the loss of an agent is
odelled by making the gain of that particular channel equal to
ero.

emma 4. Under the suppositions of Theorem 2, the network of M
ingle integrator agents in Fig. 4 achieves formation tracking by the
istributed SNI output feedback control law (7) with k being replaced
y ki ∈ [0, k⋆

] ∀i ∈ {1, 2, . . . ,M} where k⋆ > 0 is finite.

roof. From Theorem 2, asymptotic stability of the formation
racking scheme for networked single integrator agents in Fig. 4
s guaranteed by the distributed SNI control law (7) for any
i ∈ (0, k⋆

] and for each i ∈ {1, 2, . . . ,M}. This is equivalent to
ulfilling the requirement that none of the eigenvalue loci γi(s) of
M ⊗

1
s C(s) encircles the critical point (− 1

ki
, j0) for any value of

i ∈ (0, k⋆
]. When ki → 0+ for some i ∈ {1, 2, . . . ,M}, the critical

oint (− 1
ki
, j0) approaches (−∞, j0) as depicted in Fig. 5(a). Ac-

ording to Theorem 2, all the eigenvalue loci γi(jω) remain within
he Yellow coloured region in Fig. 5(a) and therefore, no infinite
rossover occurs on the negative real-axis. This hence ensures
hat none of the critical points (− 1

ki
, j0), where ki ∈ [0, k⋆

], will be
encircled by the eigenvalue loci γi(jω). This implies that closed-
loop stability remains preserved even when some of the channels
are broken (indicated by ki = 0). This completes the proof. ■

Remark 4. This paper has conceptualized the decentralized
integral controllability (DIC) property of networked SNI systems
taking the inspiration from (Bhowmick & Patra, 2018) that first
6

Fig. 6. An SNI-based formation tracking scheme for networked single integrator
agents with a set of stable NI uncertainties δ(s) satisfying δ(0) > 0 and δ(∞) ≥ 0.

ocussed on the DIC property of stable NI and SNI systems. DIC is
n extended notion of IC, which gives the provision to vary the
ntegral gains of each of the channels individually and allows even
ero value of k, that is, DIC uses ki ∈ [0, k⋆

] ∀i ∈ {1, 2, . . . ,M}

nstead of k ∈ (0, k⋆
] used in case of IC. In the case of a sudden

oss of agents due to hardware/communication failure, it is of ut-
ost importance to maintain the stability of the overall network
ithout readjusting the other parts. A loss of agent (for instance
he ith agent) can be theoretically modelled by putting ki = 0.
he DIC property of a network ensures that the overall closed-
oop stability remains preserved in the event of losing some of
he agents [ki = 0 for those i] without changing the controller or
djusting any part of the network.

.2. Robustness to model uncertainty

This subsection examines the robustness of the NI-based for-
ation tracking scheme against model uncertainties of the agents
aused by either imprecise modelling or inexact feedback lin-
arization. This study is particularly useful for the multi-robot
ystems that can be feedback linearized into single integrator dy-
amics along with an uncertainty appearing in
dditive/multiplicative form.

heorem 3. Let G∆ be an uncertain LTI system that can be
odelled as G∆(s) =

1
s + δ(s) where δ(s) is stable NI with δ(0) >

and δ(∞) ≥ 0. Consider a network of M such G∆ agents
onnected via the topology G , that satisfies Assumption 1. The set
f admissible reference inputs r(t) satisfies Assumption 2 and let
= [h1 h2 · · · hM ]⊤ ∈ RM be the desired formation configuration

ector. Then, there exists an SNI transfer function C(s) with C(0) > 0
nd a finite k⋆ > 0 such that for any k ∈ (0, k⋆

], the agents achieve
ormation tracking in the presence of δ(s) by the distributed SNI
utput feedback control law (7).

roof. The negative feedback closed-loop networked system
hown in Fig. 6 remains asymptotically stable in presence of any
table NI uncertainty δ(s) with δ(0) > 0 and δ(∞) ≥ 0 if none
f the eigenvalue loci γi(jω) of LM ⊗ C(s)[ 1s + δ(s)] encircles the
ritical point (− 1

k , j0) for any k ∈ (0, k⋆
]. The proof proceeds along

the similar track of Theorem 2. We will first show that all γi(s) lie
within the Yellow coloured region, illustrated in Fig. 5(b), in the
presence of any δ(s), as described above.

When s ∈ Ω0, following the techniques adopted in Lemma 3,
γi(s) can be expressed as

i(s)|s∈Ω0 = λi

[
LM ⊗ C(0)

(
1
ε
e−jθ

+ δ(0)
)]

(10)

i ∈ {1, . . . ,M}, which can be closely approximated as

i(s)|s∈Ω0 ≃ λi

[
LM ⊗ C(0)

1
e−jθ

]
, (11)
ε
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Fig. 7. (a) Mona robot (Arvin, Espinosa, Bird, West, Watson, & Lennox, 2019) used in the experimental validation; and (b) The hardware control loop implemented
n our experiment. The experimental set-up also includes a camera tracking system and a host computer.
here LM > 0, δ(0) > 0, ε → 0+ and θ ∈ [−
π
2 , π

2 ]. Therefore,
he infinite frequency points are computed as γi(j0+) → ∞̸ −

π
2

when θ =
π
2 , and similarly, γi(j0−) → ∞̸ π

2 with θ = −
π
2 .

herefore, no infinite crossover takes place on the negative real-
xis when the eigenvalue loci γi(jω) enclose the zero-frequency

points γi(j0−) and γi(j0+) through a semicircular arc of infinite
adius in the clockwise direction, as illustrated in Fig. 5(b).

When s ∈ Ω±j, all the eigenvalue loci γi(s) reside within
he Yellow coloured region shown in Fig. 5(b) since ̸ γi(jω) =[
C(jω)( 1

jω + δ(jω))
]

∈
(
−2π, 0

)
∀ω ∈ (0, ∞) on noting that

C(jω) ∈ (−π, 0) ∀ω ∈ (0, ∞) as C(s) is SNI and ̸ δ(ω) ∈

−π, 0] ∀ω ∈ (0, ∞) since δ(s) is stable NI. It is important to note
here that although, during this interval, γi(jω) intersect both the
egative and positive real axes one/many times at finite distances
rom the origin, no infinite crossover takes place.

When s ∈ ΩR, each γi(s) connects the infinite-frequency points
i(+j∞) and γi(−j∞) [see Fig. 5(b)], as explained in the proof of
heorem 2. This ensures that there always exists a finite upper
ound of the integral gain k⋆ > 0 such that for any k ∈ (0, k⋆

],
he critical point (− 1

k +j0) remains unencircled by all γi(s). Hence,
losed-loop stability of the formation tracking remains preserved
n the presence of any additive, stable NI uncertainty δ(s) with
(0) > 0 and δ(∞) ≥ 0.
Then, following Theorem 2, the formation tracking error is

iven by E(s) =
[
I + (LM ⊗ kC(s)( 1s + δ(s)))

]−1 R̂(s) where e(t) =

(t) + h − y(t) ∀t ≥ 0 and denoting r̂ = r + h. Finally, the
steady-state formation tracking error is given by

ess = lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

s
[
IM +

(
LM ⊗ kC(s)(

1
s

+ δ(s))
)]−1

R̂(s)

= [0 0 · · · 0]⊤ ,

since C(0) > 0, δ(0) > 0, h is constant and limt→∞ r(t) =

1Mrss via Assumption 2. This hence confirms that the group of
networked single integrator agents G∆(s) =

1
s + δ(s) achieve

asymptotic formation tracking in presence of any additive-type
δ(s) described above. ■

5. Experimental validation

To examine the feasibility and effectiveness of the proposed
NI-based formation control scheme, small-scale hardware exper-
iments involving miniature, two-wheeled mobile robots [Mona
(Arvin et al., 2019) shown in Fig. 7(a)] were conducted. The
hardware control loop is shown in Fig. 7(b) along with the experi-
mental set-up, which utilizes a camera tracking system and a host
computer. The position tracking system used in this experiment
is an open-source multi-robotic localization system developed
in Krajník, et al. (2014). The camera tracking system can track
the positions and orientations of the robots by identifying the
7

unique circular tags attached on top of the robots. The position
information is transmitted to the controller via the ROS com-
munication framework. An input–output feedback linearization
technique was applied to transform the nonlinear kinematics of
each two-wheeled mobile robot (Mona) into a decoupled two-
input–two-output single integrator system ( 1s I2) following (Hu,
Bhowmick, Jang, et al., 2021). Each robot had a safe zone of 0.1 m
radius and was repelled from other robots entering within its safe
zone. For simplicity, all the weight gains of the communication
links are specified to be equal to 1. The control objectives con-
sidered in the experiment were to (i) first achieve a triangular
formation by six mobile robots with respect to a given virtual
target, (ii) then to keep tracking a planar moving target (in a
straight line) without disrupting the formation, and (iii) to test
the robustness of the proposed scheme against sudden loss of
robots due to hardware/communication issues. The first experi-
ment (Experiment 1) was done to validate the first two objectives,
while the second one (Experiment 2) was conducted to validate
the third objective. The video of the experiments can be found at
https://www.youtube.com/watch?v=5V49vgJ3An0.

5.1. Experiment 1

This experiment was carried out using a group of six net-
worked Mona robots to test the formation trajectory tracking
under the application of a distributed SNI controller C(s) =

s2+s+1
(s+1)(2s+1)(s2+2s+5)

I2 with C(0) > 0. Fig. 8(a) shows the initial
positions of the robots and the virtual target (marked by •) on
the arena. The communication graph is represented by green
lines. Fig. 8(b) suggests that a triangular formation has been
attained by those six robots surrounding the virtual target. As
the virtual target moves from the left to the right side of the
arena, the entire formation assembly keeps tracking it. Fig. 8(c)
depicts that the triangular formation containing all six robots
has reached the middle of the arena. Fig. 8(d) shows that the
robots’ formation finally reaches the right end of the arena and
keeps tracking the virtual target. Fig. 9 plots the velocities of
the left and right wheel motors acquired by the robots during
the formation tracking. Fig. 10(a) and Fig. 10(b) portray the X-
axis and Y -axis components of the formation tracking error εi =

yi − hi − r ∀i ∈ {1, 2, . . . , 6} during the experiment. It can
be noticed that the tracking error εi decays almost to zero after
25s, which implies that all six robots have achieved the desired
formation surrounding the virtual target.

5.2. Experiment 2

This experiment was performed with four Mona robots to test
the robustness of the proposed formation tracking scheme to a
sudden loss of agents. The experiment started with the objective
of achieving a square formation by the robots with respect to the
given virtual target (marked by •). Fig. 11(a) shows the initial

https://www.youtube.com/watch?v=5V49vgJ3An0
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a

Fig. 8. Progress of the formation tracking mission being achieved by a team of
six mobile robots during Experiment 1.

Fig. 9. Time-variation of the velocities of the left and right wheel motors
cquired by the robots during the process of achieving the desired formation.

Fig. 10. Time evolvement of the formation trajectory tracking error εi(t) =

ri + hi − yi(t) of all six robots during the experiment. (a) Errorx represents the
component of εi along X-axis; (b) Errory represents the component along Y -axis.

configuration of the robots on the arena, while Fig. 11(b) suggests
that the desired square formation was attained by those four
robots surrounding the virtual target. Fig. 11(c) shows that the
entire formation kept on moving towards the centre of the arena
following the moving virtual target. Fig. 11(c) gave rise to a situ-
ation when one of the robots (marked by X) stopped functioning
due to a sudden fault. Fig. 11(d) shows that despite a sudden loss
of one robot, the remaining three were able to tackle the situation
and attained a new triangular formation with respect to the given
target. Please note here that the switching from square formation
to triangular formation was made possible via an autonomous
network reconfiguration (implemented via a Matlab program) of
the existing robots when one of them stopped operating due to a
fault. During the transient phase, upon the occurrence of a fault,
8

Fig. 11. Experiment 2 shows that a square formation is first attained by four
Mona Robots, which is then switched to a triangular formation after a sudden
loss of one robot.

Fig. 12. Position trajectories of the robots during the formation tracking mission
in Experiment 2.

the overall stability of the network is guaranteed via Lemma 4.
Fig. 12 complements the results depicted in Figs. 11(a)– 11(d) by
showing the spatial variation of the position trajectories of the
robots during the experiment.

6. Conclusion

This paper has developed a consensus-based formation track-
ing scheme for a class of networked robotic systems that can be
modelled as (or feedback linearized into) a team of single integra-
tor agents. Owing to the NI property of networked single integra-
tor agents connected via an undirected graph, a distributed SNI
controller facilitates a formation tracking scheme with asymp-
totic convergence. The eigenvalue loci technique is used as an
alternative to the conventional Lyapunov-based approaches to
derive a theoretical proof of the proposed scheme. Lab-based ex-
periments involving small-scale two-wheeled mobile robots were
performed to show the feasibility of the scheme. In the future,
the proposed scheme may be extended to handle the formation
tracking problem for networked positive systems taking the ideas
from Liu, Lam, and Shu (2020) and Yang, Yin, and Liu (2019).
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