10,922 research outputs found

    Cyber-Threat Assessment for the Air Traffic Management System: A Network Controls Approach

    Get PDF
    Air transportation networks are being disrupted with increasing frequency by failures in their cyber- (computing, communication, control) systems. Whether these cyber- failures arise due to deliberate attacks or incidental errors, they can have far-reaching impact on the performance of the air traffic control and management systems. For instance, a computer failure in the Washington DC Air Route Traffic Control Center (ZDC) on August 15, 2015, caused nearly complete closure of the Centers airspace for several hours. This closure had a propagative impact across the United States National Airspace System, causing changed congestion patterns and requiring placement of a suite of traffic management initiatives to address the capacity reduction and congestion. A snapshot of traffic on that day clearly shows the closure of the ZDC airspace and the resulting congestion at its boundary, which required augmented traffic management at multiple locations. Cyber- events also have important ramifications for private stakeholders, particularly the airlines. During the last few months, computer-system issues have caused several airlines fleets to be grounded for significant periods of time: these include United Airlines (twice), LOT Polish Airlines, and American Airlines. Delays and regional stoppages due to cyber- events are even more common, and may have myriad causes (e.g., failure of the Department of Homeland Security systems needed for security check of passengers, see [3]). The growing frequency of cyber- disruptions in the air transportation system reflects a much broader trend in the modern society: cyber- failures and threats are becoming increasingly pervasive, varied, and impactful. In consequence, an intense effort is underway to develop secure and resilient cyber- systems that can protect against, detect, and remove threats, see e.g. and its many citations. The outcomes of this wide effort on cyber- security are applicable to the air transportation infrastructure, and indeed security solutions are being implemented in the current system. While these security solutions are important, they only provide a piecemeal solution. Particular computers or communication channels are protected from particular attacks, without a holistic view of the air transportation infrastructure. On the other hand, the above-listed incidents highlight that a holistic approach is needed, for several reasons. First, the air transportation infrastructure is a large scale cyber-physical system with multiple stakeholders and diverse legacy assets. It is impractical to protect every cyber- asset from known and unknown disruptions, and instead a strategic view of security is needed. Second, disruptions to the cyber- system can incur complex propagative impacts across the air transportation network, including its physical and human assets. Also, these implications of cyber- events are exacerbated or modulated by other disruptions and operational specifics, e.g. severe weather, operator fatigue or error, etc. These characteristics motivate a holistic and strategic perspective on protecting the air transportation infrastructure from cyber- events. The analysis of cyber- threats to the air traffic system is also inextricably tied to the integration of new autonomy into the airspace. The replacement of human operators with cyber functions leaves the network open to new cyber threats, which must be modeled and managed. Paradoxically, the mitigation of cyber events in the airspace will also likely require additional autonomy, given the fast time scale and myriad pathways of cyber-attacks which must be managed. The assessment of new vulnerabilities upon integration of new autonomy is also a key motivation for a holistic perspective on cyber threats

    Full Automation of Air Traffic Management in High Complexity Airspace

    Get PDF
    The thesis is that automation of en-route Air Traffic Management in high complexity airspace can be achieved with a combination of automated tactic planning in a look-ahead time horizon of up to two hours complemented with automated tactic conflict resolution functions. The literature review reveals that no significant results have yet been obtained and that full automation could be approached with a complementary integration of automated tactic resolutions AND planning. The focus shifts to ‘planning for capacity’ and ‘planning for resolution’ and also – but not only – for ‘resolution’. The work encompasses a theoretical part on planning, and several small scale studies of empirical, mathematical or simulated nature. The theoretical part of the thesis on planning under uncertainties attempts to conceive a theoretical model which abstracts specificities of planning in Air Traffic Management into a generic planning model. The resulting abstract model treats entities like the planner, the strategy, the plan and the actions, always considering the impact of uncertainties. The work innovates in specifying many links from the theory to the application in planning of air traffic management, and especially the new fields of tactical capacity management. The second main part of the thesis comprises smaller self-containing works on different aspects of the concept grouped into a section on complexity, another on tactic planning actions, and the last on planners. The produced studies are about empirical measures of conflicts and conflict densities to get a better understanding of the complexity of air traffic; studies on traffic organisation using tactical manoeuvres like speed control, lateral offset and tactical direct using fast time simulation; and studies on airspace design like sector optimisation, dynamic sectorisation and its optimisation using optimisation techniques. In conclusion it is believed that this work will contribute to further automation attempts especially by its innovative focus which is on planning, base on a theory of planning, and its findings already influence newer developments

    Development and Validation of Characterization Method Using Finite Element Numerical Modeling and Advance Laboratory Methods for Western Australia Asphalt Mixes

    Get PDF
    A quantitative understanding of materials characterization of asphalt mixtures is required to determine the appropriate asphalt mixtures so that pavement distress and deformation can be reduced. Various numerical modeling and laboratory tools are used to assess the asphalt mixtures of flexible pavement and provided a significant and novel contribution to understanding of characterization of asphalt mixtures and design of flexible pavement. The contribution to understanding from this thesis shall be integrated in future body of knowledge

    New Perspectives on Electric Vehicles

    Get PDF
    Modern transportation systems have adverse effects on the climate, emitting greenhouse gases and polluting the air. As such, new modes of non-polluting transportation, including electric vehicles and plug-in hybrids, are a major focus of current research and development. This book explores the future of transportation. It is divided into four sections: “Electric Vehicles Infrastructures,” “Architectures of the Electric Vehicles,” “Technologies of the Electric Vehicles,” and “Propulsion Systems.” The chapter authors share their research experience regarding the main barriers in electric vehicle implementation, their thoughts on electric vehicle modelling and control, and network communication challenges

    Mitigating TCP Degradation over Intermittent Link Failures Using Intermediate Buffers

    Get PDF
    This thesis addresses the improvement of data transmission performance in a challenged network. It is well known that the popular Transmission Control Protocol degrades in environments where one or more of the links along the route is intermittently available. To avoid this degradation, this thesis proposes placing at least one node along the path of transmission to buffer and retransmit as needed to overcome the intermittent link. In the four-node, three-link testbed under particular conditions, file transmission time was reduced 20 fold in the case of an intermittent second link when the second node strategically buffers for retransmission opportunity

    A method of ATFCM based on trajectory based operations.

    Get PDF
    This thesis describes a method towards a more proactive approach for Air Traffic Flow and Capacity Management (ATFCM) Demand and Capacity Balancing (DCB). This new ATFCM DCB method focuses on reducing the expected Air Traffic Control (ATC) Separation Management (SM) tactical interventions. It is based on the identification of “hotspots” and mitigating them at pre-flight phase by applying minor adjustments on aircraft’s Times of Arrivals (TOAs) at points of conflict located at en-route crossing and merging junctions (hotspots). The adjustments of TOAs are achieved through optimal speed changes in aircraft speed profiles, applied before and after each junction whilst maintaining each aircraft’s flight time and the entropy of the whole traffic network. The approach postulates that the TOA adjustments may be transformed into a pre-tactical ATFCM DCB measure. This can be achieved by translating TOA adjustments into time constraints at junctions, issued by the Network Manager (NM) in the Reference Business Trajectories (RBTs) to produce de-randomized and well-behaved (conflict free) traffic scenarios to reduce the probability of conflicts. Several real high-density scenarios of the current and forecasted traffic in European Civil Aviation Conference (ECAC) airspace network are simulated using specialized modelling tools to validate the method. A novel Linear Programming (LP) optimisation model is formulated and used to compute optimal speed changes that remove all conflicts in the scenarios with minimum cascading effect. This method should enable a reduction in ATC workload, leading to improvements in airspace capacity, flight and network efficiency as well as safety. This approach is fully aligned to Trajectory Based Operation (TBO) principles. As a holistic solution, this new ATFCM DCB method should change the conventional capacity-limiting factor, currently established by the number of aircraft simultaneously entering each sector (sector count) to another factor where the level of traffic complexity, flying towards junctions is identified and mitigated at pre-flight phase.PhD in Aerospac

    International Conference on Civil Engineering,Infrastructure and Environment

    Get PDF
    UBT Annual International Conference is the 8th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: – Computer Science and Communication Engineering– Management, Business and Economics– Mechatronics, System Engineering and Robotics– Energy Efficiency Engineering– Information Systems and Security– Architecture – Spatial Planning– Civil Engineering , Infrastructure and Environment– Law– Political Science– Journalism , Media and Communication– Food Science and Technology– Pharmaceutical and Natural Sciences– Design– Psychology– Education and Development– Fashion– Music– Art and Digital Media– Dentistry– Applied Medicine– Nursing This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBTUBT – Higher Education Institutio

    МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ВОЗДУШНЫЙ ТРАНСПОРТ»

    Get PDF
    Key words: economic security, enterprise, region, security system, Resourcesecurity, flow security, threats.In the article the types of economic security of the enterprise considered, the effect of the region and the state as a whole on the formation process of economic security of the enterprise analyzed, and alsoinvestigated the effect of other factors and threats (external and internal), which can be a barrier to the effective development of the company

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione

    An integrated approach for on-demand dynamic capacity management service in U-space

    Get PDF
    This paper presents an integrated approach for on-demand Dynamic Capacity Management (DCM) service to be offered in U-space. The approach involves three main threads, including flight planning (demand), airspace configuration (capacity) and demand-capacity balancing (DCB). The flight planning thread produces UAS (unmanned aerial systems) trajectories for each flight that together reflect the estimated traffic demand. The airspace configuration thread defines the fundamental airspace structure and proposes dynamic adjustment schemes that determine the capacity distribution. It also enables the flight planning to reschedule alternative trajectory options to route away from possible congested areas. The last DCB thread takes the previous inputs and then computes for the optimal slot allocation and trajectory selection, as well as the optimal airspace configuration. Simulation case studies have been performed through mimicking an envisioned U-space operating scenario. Results suggest that the integrated approach can achieve the best outcome in almost all the key performance areas than any other cases where only partial functions are realised
    corecore