417 research outputs found

    Continuum Robots for Space Applications Based on Layer-Jamming Scales with Stiffness Capability

    Get PDF
    Continuum robots, which have continuous mechanical structures comparable to the flexibility in elephant trunks and octopus arms, have been primarily geared toward the medical and defense communities. In space, however, NASA projects these robots to have a place in irregular inspection routines. The inherent compliance and bending of these continuum arms are especially suitable for inspection in obstructed spaces to ensure proper equipment functionality. In this paper, we propose a new solution that improves on the functionality of previous continuum robots, via a novel mechanical scaly layer-jamming design. Layer-jamming assisted continuum arms have previously required pneumatic sources for actuation, which limit their portability and usage in aerospace applications. This paper combines the compliance of continuum arms and stiffness modulation of the layer jamming mechanism to design new hybrid layer jamming continuum arms. The novel designs use an electromechanical actuation which eliminates the previous need for pneumatic actuation therefore making the hardware compact and portable

    Design methodology for the development of variable stiffness devices based on layer jamming transition

    Get PDF
    Variable stiffness mechanisms as Jamming Transition draw huge attention recently in Soft Robotics. This paper proposes a comprehensive design methodology for developing variable stiffness devices based on layer jamming. Starting from pre-existing modelling, we highlight the design parameters that should be considered, extracting them from literature and our direct experience with the phenomenon. Then we validated the methodology applying the design process to previous layer jamming cases presented in literature. The comparison between the results obtained from our methodology and those presented in the analyzed previous works highlights a good predictive capability, demonstrating that this methodology can be used as a valid tool to design variable stiffness devices based on layer jamming transition. Finally, in order to provide the scientific community with an easily usable tool to design variable stiffness structures based on layer jamming transition, we have elaborated a Matlab script that guides the user through the main design parameters implementing the proposed methodology in an interactive process

    Precise Packet Loss Pattern Generation by Intentional Interference

    Get PDF
    Abstract—Intermediate-quality links often cause vulnerable connectivity in wireless sensor networks, but packet losses caused by such volatile links are not easy to trace. In order to equip link layer protocol designers with a reliable test and debugging tool, we develop a reactive interferer to generate packet loss patterns precisely. By using intentional interference to emulate parameterized lossy links with very low intrusiveness, our tool facilitates both robustness evaluation of protocols and flaw detection in protocol implementation

    Granular Pressure and the Thickness of a Layer Jamming on a Rough Incline

    Full text link
    Dense granular media have a compaction between the random loose and random close packings. For these dense media the concept of a granular pressure depending on compaction is not unanimously accepted because they are often in a "frozen" state which prevents them to explore all their possible microstates, a necessary condition for defining a pressure and a compressibility unambiguously. While periodic tapping or cyclic fluidization have already being used for that exploration, we here suggest that a succession of flowing states with velocities slowly decreasing down to zero can also be used for that purpose. And we propose to deduce the pressure in \emph{dense and flowing} granular media from experiments measuring the thickness of the granular layer that remains on a rough incline just after the flow has stopped.Comment: 10 pages, 2 figure

    Physical Layer Jamming detection: a Machine Learning Approach

    Get PDF
    openThis paper aims to illustrate the laboratory experience carried out during March-July 2023 at Hochschule Darmstadt having as its goal the writing of a master’s thesis. The initial goal of the project was to use machine learning techniques to analyze the physical characteristics (i.e:ISO/OSI layer 1) of a wireless cellular channel in order to detect the presence of an attacker. Thus, the expected outcome of the project is to construct a binary classifier, which takes in input information from the wireless channel and outputs the state of the channel through a binary classification: that is, whether the channel is in a state recognized as normal or whether it has been corrupted by the presence of an attacker. Lab experiences were carried out using software to implement SDR, both user-side and attacker- side. Therefore, the methodologies used to conduct these experiments will be explained, speci- fying the theoretical background and commenting from a technical point of view on the results obtained.This paper aims to illustrate the laboratory experience carried out during March-July 2023 at Hochschule Darmstadt having as its goal the writing of a master’s thesis. The initial goal of the project was to use machine learning techniques to analyze the physical characteristics (i.e:ISO/OSI layer 1) of a wireless cellular channel in order to detect the presence of an attacker. Thus, the expected outcome of the project is to construct a binary classifier, which takes in input information from the wireless channel and outputs the state of the channel through a binary classification: that is, whether the channel is in a state recognized as normal or whether it has been corrupted by the presence of an attacker. Lab experiences were carried out using software to implement SDR, both user-side and attacker- side. Therefore, the methodologies used to conduct these experiments will be explained, speci- fying the theoretical background and commenting from a technical point of view on the results obtained

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Structural Optimization of Adaptive Soft Fin Ray Fingers with Variable Stiffening Capability

    Get PDF
    Soft and adaptable grippers are desired for their ability to operate effectively in unstructured or dynamically changing environments, especially when interacting with delicate or deformable targets. However, utilizing soft bodies often comes at the expense of reduced carrying payload and limited performance in high-force applications. Hence, methods for achieving variable stiffness soft actuators are being investigated to broaden the applications of soft grippers. This paper investigates the structural optimization of adaptive soft fingers based on the Fin Ray® effect (Soft Fin Ray), featuring a passive stiffening mechanism that is enabled via layer jamming between deforming flexible ribs. A finite element model of the proposed Soft Fin Ray structure is developed and experimentally validated, with the aim of enhancing the layer jamming behavior for better grasping performance. The results showed that through structural optimization, initial contact forces before jamming can be minimized and final contact forces after jamming can be significantly enhanced, without downgrading the desired passive adaptation to objects. Thus, applications for Soft Fin Ray fingers can range from adaptive delicate grasping to high-force manipulation tasks
    • …
    corecore