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Abstract

This thesis aims to illustrate the laboratory experience of usingmachine learning techniques to
analyze the physical characteristics (i.e: International Standard Organization layer 1) of a wire-
less cellular channel in order to detect the presence of a jamming signal overlapped to a cellular
communication signal.
Thus, the expected outcome of the project is to construct a binary classifier, which takes as in-
put information on the wireless channel and outputs the state of the channel through a binary
classification: that is, whether the channel is in a state recognized as normal or whether it has
been corrupted by the presence of an attacker.
Lab experiments were carried out using Software Defined Radios, both user-side and attacker-
side. Therefore, themethodologies used to conduct these experiments are explained, specifying
the theoretical background and commenting from a technical point of view on the results ob-
tained.
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1
Introduction

Cellular networks have become an essential part of modern society, transforming the way we
communicate and so access information. Given themass use of smartphones and othermobile
devices, these networks have revolutionized theway people interact and connectwith theworld
around them. Suffice it to say that until 30 years ago the idea of communicating remotely with
other people via a connection that was not wired, such as landline telephones or early Internet
connections via Ethernet, was unthinkable for an ordinary citizen.
The arrival of these devices in the early 1990s thus marked a turning point in the way people
interfaced with the world, allowing them to access more andmore information. Over the years
and with the advancement of information technology, these devices have become more and
more intelligent and capable of storing more and more information. Suffice it to say that in
this decade a person through their smartwatch, is able to receive calls, text messages, and pay at
the supermarket.
Given the enormous potential of these technologies to transmit or receive information, they
are not only used for civilian purposes, but also for industrial ones.
The advent of so-called IoT has made it possible to radically change the way factories are de-
signed and conceived, making the production of themmore efficient.
The market therefore for these technologies has been growing steadily in recent years, in fact:

• Experts expect the global IoT in manufacturing market size to grow from USD 33.2
billion in 2020 to USD 53.8 billion in 2025 at a Compound Annual Growth Rate of
10.1%. [1].
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• Experts highlight that discreteManufacturing, Transportation&Logistics, andUtilities
industries will spend $40B each on IoT platforms, systems, and services.[2]

The advent, therefore, of these technologies in areas considered critical to a business or a
governament has triggered the emergence of new attacks aimed at compromising the integrity
of the proper functioning of these technologies.
Some examples of such attacks are:

• Jamming: is a tool used to prevent wireless devices from receiving or transmitting radio
information.
Jammers block the use of devices by sending jamming radio waves on the same band
used to transmit information. This, for example, causes interference that inhibits com-
munication between mobile devices and repeater towers, paralyzing all network within
its range. On most cellular devices what appears during such jamming is simply a no-
network signal.
In fact, the smartphone interprets the incapability to transmit information as the ab-
sence of a cellular network.

• Covert channel: is defined as any communicationmethodused to communicate and/or
transfer information in a covert and stealthy manner. The primary purpose in using a
covert channel is to overcome the security policies of systems and organizations. There
aremultiple types of cyber threats that can affect themultilevel security (MLS) of ICT in-
frastructure and systems, and they are increasing daily at an impressive rate. Any shared
resource as a bandwidth of a spectrum can potentially be used as a covert channel and
this makes everything more difficult.

After briefly describing the possible attacks that can be carried out, it is easy to deduce that
all companies that want to remain competitive in the market need to develop prevention sys-
tems for these types of attacks, so that a malicious attacker cannot jeopardize, for example, the
continuity of a factory’s production.
This aspect turns out to be very important when entering the economic-business world, since
in the event of a stop in production, the damage done to the company itself can be considerable.
Without going into technical-economic details, for example, inMarch 2022 a Toyota facility in
Japan was cyber-attacked and the production was affected for more than a day and influenced
about 10000 vehicles, which is equivalent to 5% of the production of a month of the group
in Japan.[3] This then primarily explains the reason why the previously described project took
place in the first place, which is to try to study more robust solutions than those currently in
the literature that can go about detecting possible attacks and intruders present in a wireless
cellular network.
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2
Cellular Communications

Awireless channel is the medium through which wireless signals travel between devices, allow-
ing them to communicate without the need for physical connections. Think of it as the invis-
ible pathway that carries data, voice, and multimedia information from one point to another,
often over long distances.
Wireless channels can take many forms, encompassing a wide range of frequencies, from radio
waves used for Wi-Fi and cellular communication (as in this case) to microwaves and infrared
signals for remote controls. Each of these channels has its unique characteristics, advantages,
and limitations, making them suitable for different applications.
Understanding wireless channels involves grasping some essential components and principles:

• Transmitter: the device that generates and sends out the wireless signals. This could be
your smartphone when making a call, a Wi-Fi router broadcasting your home network,
or a satellite transmitting data from space.

• Receiver: the counterpart to the transmitter, the receiver captures and decodes the wire-
less signals. For instance, your smartphone receives signals to display textmessages, aWi-
Fi-enabled laptop connects to the internet, or a radio receiver tunes into your favorite
station.

• Propagation medium: this refers to the physical environment through which the wire-
less signals travel. It can include air, water, or even outer space, and the characteristics of
this medium can significantly impact signal quality and range.
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• Channel characteristics: thewireless channel isn’t always stable; it can be affected by in-
terference, noise, and fading. Understanding these characteristics is crucial for designing
robust wireless communication systems.

• Frequencyband: differentwireless technologies operatewithin specific frequencybands,
which determine the range and speed of communication. For example, 2.4 GHz and 5
GHz are common carrier frequency bands used inWi-Fi.

2.1 Channel model

To model the wireless channel, in this case, we will start from how a signal x is received at the
destination: if we consider the attenuation ai and the delay τi for the ith transmission path are
not frequency dependant, it is possible to use the superposition of effects tomodel the received
signal as follows:

y(t) =
n∑

i=0

ai(t)x(t− τi(t))

doing that, we assume that the system is linear. It should be remarked then that although the in-
dividual attenuations are supposed to be frequency indipendent, the overall channel response
can still vary with the frequency.
We can switch from the discrete world to the continuos one:

y(t) =
n∑

i=0

ai(t)x(t− τi(t))⇒ y(t) =
∫ ∞

−∞
h(t− τ)x(t− τ)dτ

and the impulse response is:

h(t, τ) =
n∑

i=0

ai(t)δ(t− τi(t))

In a stationary environment we have:

h(τ) =
n∑

i=0

aiδ(t− τi)
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We can then define the Fourier transform of h:

H(f, t) =
∫ ∞

−∞
h(τ, t)e−j2πfτdτ =

n∑
i=0

ai(t)ej2πfτi(t)

One way of interpretingH(f, t) is to think of the system as a slowly varying function of twith
a frequency responseH(f, t) at each fixed time t. This is a feasible and useful way of thinking
aboutmanymultipath fading channels, as the time-scale at which the channel varies is tipically
much longer than the delay spread (amount ofmemory) of the impulse response at a fixed time.

2.2 Baseband equivalent model

In the realm of telecommunications and signal processing, the Baseband Equivalent Model
stands as a fundamental concept with far-reaching implications. This model serves as a bridge
between the abstract realm of signals and their practical implementation in communication
systems. By simplifying complex signal processing tasks and enabling the analysis of signals in
a more intuitive form, the baseband equivalent model plays a pivotal role in modern commu-
nication systems, ensuring efficient data transmission and reception.
In brief, from a communication system design point of view, it is most useful to have a base-
band equivalent representation of a system.
Let s(t)be a real signalwith Fourier transformS(f)bandlimited in [fc−W/2, fc+W/2], where
W is the bandwidth. We define the complex baseband equivalent sb(t) as the signal having the
Fourier transform defined as follows:

√
2S(f+ fc) if f+ fc > 0

0 if f+ fc ≤ 0
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Figure 2.1: Example of a baseband equivalent model of a general signal: as we can see, the signal is shifted around a gen‐
eral carrier frequency and it loses its symmetrical aspect, but there is not any loss of information.

To reconstruct the signal s(t) from sb(t)we observe that:

√
2S(f) = Sb(f− fc) + S*b(f+ fc)

Taking then the inverse Fourier transform we get:

1√
2
sb(t)ej2πfct + s*b(t)e−j2πfct = 2R{sb(t)ej2πfct}

When we try to a relationship between the baseband equivalent input signal and the baseband
equivalent output signal there is a theorem that states that the baseband equivalent of the chan-
nel is a linear time-varying system; hb(τ, t) is then modelled as follows:

hb(τ, t) =
n∑

i=0

ab,i(t)(τ− τi(t))

where:
ab,i(t) = ai(t)ej2πfcτi(t)

and then the baseband equivalent output signal is:

yb(t) =
n∑

i=0

aib(t)xb(t− τi(t))

Some important observations are then required:

• The phase of ai(t) changes by π/2 when the delay of the path τi changes by 1
4fc

• The Fourier transform Hb(f, t) of hb(τ, t) for a fixed t is simply H(f + fc, t), i.e., the
frequency response of the original system (at a fixed t) shifted by the carrier frequency.
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2.2.1 Discrete-time baseband model for the channel

To compute the discrete-time baseband model we assume that the input waveform is bandlim-
ited toW.
The baseband equivalent is then limited toW/2 and can be represented as:

xb(t) =
∑
n

x[n]sinc(Wt− n)

where x[n] is given by xb(n/W) and sinc(t) is defined as:

sinc(t) =
sin(πt)
πt

Since we know that yb(t) =
∑n

i=0 aib(t)xb(t− τi(t)), the baseband output is:

yb(t) =
∑
n

x[n]
∑
i

aib(t)sinc(Wt−Wτi(t)− n)

Defining then y[m] = yb(m/W) the sampled outputs are given by:

y[m] =
∑
n

∑
i

aib(m/W)sinc[m− n− τi(m/W)W]

By defining
hl[m] =

∑
i

aib(m/W)sinc[m− n− τi(m/W)W]

We can rewrite y[m] as:
y[m] =

∑
l

hl[m]x[m− l]

We denote then hl[m] as the lth complex channel filter tap at timem; its value is a function of
mainly the gains aib of the paths, whose delays τi(t) are close to l/W.
With the addition of AWGN y[m] becomes:

y[m] =
∑
l

hl[m]x[m− l] + w[m]

where w[m] is the low-pass filtered noise at the sampling instantm/W, which is real and imag-
inary components i.i.d. Gaussians with variancesN0/2w[n] ∈ CN(0, σ2), where σ2 = E[|w|2]

7



Now that we have characterized the wireless channel at its physical layer, from the previous
equations it comes out how y[m] has two components, a real one and an imaginary one: those
two components will later be called the i-q components of a signal. A set of i-q samples taken
over a window of time is called i-q plot or i-q diagram.(see Figure 4.1)
The othermainway to describe a signal at the physical layer is the so calledPower SpectralDen-
sity: it is a mathematical representation that describes how the power of a signal is distributed
across different frequencies. In essence, it shows how the power of a signal is distributed or
concentrated in the frequency domain.(see Figure 4.2)

2.3 OFDM

Since it will be mentioned later and is one of the pillars of cellular communications, it is im-
portant to briefly describe what OFDM is and its advantages that have led to its adoption in
fourth- and fifth-generation cellular networks.
Orthogonal FrequencyDivisionMultiplexing is a keymodulation andmultiplexing technique;
it is a powerful method for transmitting data over wireless channels with high efficiency, ro-
bustness against multipath interference, and improved spectral efficiency. OFDM relies on
two basic elements:

• OFDMcombines two fundamental techniques: frequencydivisionmultiplexing (FDM)
anddigitalmodulation. FDMinvolves dividing the available spectrum intomultiple sub-
carriers, each carrying a portion of the data. Each subcarrier is orthogonal to others in
the frequency domain, meaning they do not interfere with each other.

• The key to OFDM’s success lies in the orthogonality of subcarriers. Orthogonal subcar-
riers have no cross-talk or interference between them, even when they are closely spaced
in frequency. This allows OFDM to achieve high spectral efficiency.

Without going deeply into details, we can summarize briefly howOFDMworks:

• To a sequence of symbols a[i] in the frequency domain is applied the Inverse Discrete
Fourier Transform tomove them to the time domain. Each symbol is transmitted using
a different carrier frequency.

• To the output of this operation is applied a Cyclic Prefix insertion (copy of the first sam-
ples of the IDFToutput). To the resulting signal is applied a Parallel to Serial conversion
in order to obtain the symbol x[i] symbol to transmit. CP insertion helps in avoiding in-
tersymbol interference caused by reflections and delayed signal components.
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• The transmitted signal is sent through the wireless channel h(k); with the addition of
noisew[i], the symbol is finally received at its destination.

• At the receiver, all the inverse operations are done in order to reconstruct the original
symbol: at first, at y[m] is applied a Serial to Parallel block, then it is performed a CP
removal operation and at the end it is done a Discrete Fourier Transform to return to
the frequency domain. The result of these operations b[i] is the decoded symbol. It
is important then to highlight that computations show the decoding of b[i] does not
depend on any symbol other than the i-th one: inter-symbol interference, is so avoided.

a[1]

a[N]

IDFT

P/S

CP
insertion

x[m]
h(k)

z[m]
+

w[m]

y[m]

Figure 2.2: Schematic representation of the first half of OFDM.

This kind of modulation scheme, then, present many advantages that led to its adoption in
cellular networks:

• Scalability: OFDM is scalable and can adapt to various channel conditions and data
rate requirements by adjusting the number of subcarriers and modulation schemes.

• High spectral efficiency: The orthogonality of subcarriers and the avoidance of inter-
symbol interference allows for efficient use of available bandwidth, leading to high spec-
tral efficiency.

• Resource allocation: OFDMalso allows to allocate portions of time and bandwidth to
different users, giving so a deterministic access to resource to a specific user. This feature
is very useful in Iot applications, where there are devices that can handle critical tasks
where there is the need of a deterministic access to the communication resource.

All the notions in this chapter were taken from the book Fundamentals of Wireless Com-
muntications by David Tse and Pramond Visvanath.
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3
Machine Learning

3.1 Introduction

The term Artificial Intelligence (henceforth AI) was invented by JohnMcCarthy in 1956, at a
two-month seminar (which he organized at Dartmouth College inHanover, NewHampshire,
USA) that had themerit of acquainting 10U.S. scholars (on automata theory, neural networks
and intelligence) with each other, and of giving the imprimatur to the term ”Artificial Intelli-
gence” as the official name of the new field of research.[4]
Since then, AI has established itself and evolved; today it is recognized as a branch autonomous,
although connected to computer science, mathematics, cognitive science, neurobiology and
philosophy.
Artificial Intelligence therefore represents a field of research and development that aims to cre-
ate systems that are able to emulate and automate some human cognitive functions.
AI then is the ability of a machine tomimic some of the human cognitive functions, including
machine learning, reasoning, planning, sensory perception, natural language understanding,
and social interaction. AI can be divided into two main categories: weak AI, which focuses
on specific and limited tasks, and strong AI, which aims to develop a machine with general
intelligence comparable to human intelligence.
These goals nowadays are reached in two ways:

• As a first approach, AI can be created by telling to a model the rules to follow to solve
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problems or to take decisions.
This is the case with the implementation of a machine attempting to play chess: here
the chessboard is modeled and each possible move in the subsequent rounds is ranked
according to its quality (via trees for example; see figure below) by predetermined heuris-
tic algorithms, and the machine is required to choose the move that is rated most conve-
nient, so as to maximize the probability of victory.
It is clear then that only simple-modelled problems can be solved by setting some rules to
make the machine behave as a human; when it comes to deal with more complex struc-
tures (such as images, videos or texts) this approach shows its limits.

• The most common way nowadays to deal with more complex data structures is the so
calledMachine Learning, a branch of AI that allows machines to learn from data with-
out being explicitly programmed to solve that specific problem, thus making a model
trainable to solve multiple problems.
It is easy to see that ML radically changed the approach to solve problems: whereas be-
fore we tended to study a problem to find the rules for solving it, now we tend to create
a model to which we feed solved examples of that problem so that it learns to solve that
problem on its own.
The machine learning literature nowadays is widely developed and includes various ap-
proaches, ranging froma simple linear separator such as the perceptron to themoremod-
ern and now commonplace artificial neural networks, which allow extremely complex
data structures to be handled and have extremely high performance.
Without going into details (which will be explained later), it is possible to describe NNs
as models that try to replicate the behavior of the human brain: a set of neurons (main
elements of the network) are connected in order to take a datum as input and make a
prediction or a decision attempting tominimize an error that is specified a priori during
the training phase.
A simple example will be shown below.

12



(a) Example of a decision tree for chess playing:
in this case, the AI analyzes the current situation
on the chessboard, expands some possible
moves and basing on some given heuristics it
computes the goodness of a choice.

(b) Example of a simple feed forward NN: this
model takes its input throught the input layer,
processes it in the inner layers and then outputs
the result. In contrast of the example of the
chessboard, the model has no pre‐loaded heuris‐
tics to take a decision, but it has to be trained on
several samples.

Figure 3.1: Two examples of AI.

As it was said before, the goal of the project was to apply a machine learning model in order
to detect a jamming attacker; to understand the reasons why some models have been preferred
to other ones, the most commonMLmodels will be briefly explained.

3.2 Perceptron

The perceptron algorithm is a simple supervised learning problem that tries to solve a binary
classification problem of linearly separable data.
The input of the model is a set X = (x1, ...., xn) of data and Y = (y1, ...., yn) of the corre-
sponding labels. The goal of the algorithm is to find a vector W = (w1, ....,wn) of weights
representing a separating hyperplane such that the classification error is avoided. Whenever a
classification error is found, the vectorW is updated. [5]
Recall that data is linearly separable if, given the training set composed by Xand Y and the
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halfspace defined by (w, b)we have:

∀i : (< w, xi > +b)yi ≥ 0

i.e.: it perfectly separates all the data in the training set.
Here below a pseudocode of the iterative algorithm:

Algorithm 3.1 Perceptron algorithm
Require: X = (x1, ...., xn),Y = (y1, ...., yn)
w1 ← (0, ..., 0)
for t← 1 to ...
if ∃i s.t. < wi, xi > yi ≤ 0
wt+1 ← wtyi

end if
else
return wt

end for

From the pseudocode above it is easy to see that this algorithm could be easy implemented
in any high level programming language nowadays and it is also demonstrated that if data is
linearly separable the algorithm will stop in a finite number of steps.[6]
This model, however, shows its limitations:

• First of all, the convergence is not guaranteed when it is not dealing with a linearly sepa-
rable training set, which is possible in more complex data structures.

• This algorithm can output different solutions depending on the starting values of the
vectorW.

• The output of this classifier can only be a binary classifier, and so cannot be used in
multiple class classification problem.

3.3 Support VectorMachine

After recalling the definition of linearly separable data (see section above) before talking about
SVM, it is useful to definine the concept of margin, which will be useful later.
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Given a separating hyperplane defined by L:

L = {v :< v,w > +b = 0}

and a sample x, the distance between x and L is:

min{||x− v|| : v ∈ L}

The margin then, is defined as the minimum distance between a sample and L. [7]
The closest samples are called support vectors.
Here below an example of how SVMworks:

Figure 3.2: Representation of how SVM works in 2D dimensional space.

SVMs are also divided in two types:

• Hard SVM: a linear model that works with linearly separable data.

• Soft SVM: a linear model that works with non-linearly separable data.

3.3.1 Hard SVM

Hard SVM seek for the separating hyperplane with the highest margin, under the assumption
that the data is linearly separable. The mathematic formulation of Hard SVM is expressed as
follows:

argmax
(w,b):||w||=1

min
i
| < w, xi > +b |

15



3.3.2 Soft SVM

As mentioned earlier, hard SVM has the main problem that it assumes linearly separable data,
which is impossible in most problems found in case studies.
Soft SVM therefore relaxes the previously set constraints taking into account their violation at
the same time.
This implies in relaxing the constraints as follows:

• First of all, a set of slack variables are introduced: ξ = (ξ1, ..., ξn) : ξi ≥ 0 ∀i.

• For each i = 1 to n the constraint becomes : (< w, xi > +b)yi ≥ 1− ξi ∀i.

• The model then tries at the same time to minimize the norm of w (to maximise the
margin) and the average of ξi (to minimize the violations of the constraints).

• The objective function of the optimization problem then becomes:

min
(w,b,ξ)

(λ||w||2 + 1
n
∑

ξi)

Subject to the constraint defined before.
It is clear then that a large λmakes the algorithm focus on themargin, while a small value
of the variable makes the model to minimize the constraint violations.

This reformulation of the SVMmodel thus represents a way to solve a binary classification
problem while having more complex data structures, however, which are not always linearly
separable.[8]

3.4 Neural Networks

As mentioned earlier, neural networks are models whose structure is inspired by the function-
ing of an animal brain.
As a first general overview, a neural network can be regarded as a non linear mathematical func-
tion which transforms a set of input variables into a set of output variables. [9]
The network can me modeled as an acyclic graphG = (V,E), divided into layers :

• The vertexes of the graph are the neurons, which take in input the sum of the outputs
of the connected neurons from previous layer weighted by the edge weights and applies
to this result a simple scalar function called activation function.
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• The edges of the graph connect a neuron to other neurons of the next layer; to each
edge is associated a weight. This implies also that the edges are directed and the flow is
performed only in one direction.

The computation of the output is done by processing the input at each layer and forwarding
it to the next layer, until the output layer is reached.
The activation functions of the neurons are defined a priori and cannot be changed during the
training phase, making so the weights the trainable parameters.
Given a training set composed byX = (x1, ..., xn) and Y = (y1, ..., yn), where X is the training
dataset and Y is the set of labels associated to the data of X and given a loss function l, the goal
of theNN is to find the optimal values of theweights in order tominimize the lossL computed
on the training set, that is:

L =
1
n
∑

l(xi, yi)

Todo that, themost commonwaynowadays is the so-calledbackward propagation algorithm:
at each epoch, the loss of the output is computed, and after that, it is propagated backwards to
the input. Using the gradients calculated during error back-propagation, the network weights
are updated. The update rule for the weights is defined as follows:

wij
(t)[s+1] = wij

(t)[s] − η
∂L

∂wij
(t)[s]

Where wij
(t)[s+1] stands for the weight at layer t computed at iteration s+ 1 at the arc (i, j).

The gradient so is computed for each weight of the network, but after having computed the
output at the last layer.
This procedure is repeated for many iterations, after a stopping criteria is reached, that could
be:

• The maximum number of iterations.

• The reaching of a value in the training loss.

• The increasing of the validation loss for n epochs. (Recall that the validation set is a set
with the same distribution of the training set but on which the NN is not trained; it is
often used to set hyperparameters the MLmodels).

The simplest example of NN that can be shown is the so called feedforward: in this case
each neuron is connected to every neuron of the next layer and the output is propagated from
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the input layer throught the hidden layers and then to the output layer; an example was shown
above in figure 3.1.b.
Here below will be shown a graphical representation of how a neuron works:

Figure 3.3: Representation of how a neuron works.

3.4.1 Convolutional Neural Networks

A convolutional neural network is one of the most significant networks in the deep learning
field. Since CNN made impressive achievements in many areas, including but not limited to
computer vision and natural language processing, it attractedmuch attention fromboth indus-
try and academia in the past few years.[10]
The CNN is a kind of feedforward neural network that is able to extract features from data
with convolution structures. Different from the traditional feature extraction methods, CNN
does not need to extract features manually.
Themain problem that occurs in feedforwardNNs is the fact that themodel does not take into
account that a neuron can be more related to others and less to other ones; in fact, in this case
every neuron is connected to each neuron of the next layer, without taking into account any
kind of correlation.
CNNs then use some structures to achieve feature extraction:

• Local connections: each neuron is no longer connected to all neurons of the previous
layer, but only to a small number of neurons, which is effective in reducing parameters
and speed up convergence.

• Weight sharing: a group of connections can share the same weights, which reduces
parameters further.

• Downsampling dimension reduction: a pooling layer harnesses the principle of image
local correlation to downsample an image, which can reduce the amount of data while
retaining useful information. It can also reduce the number of parameters by removing
trivial features.
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These three appealing characteristics make CNN one of the most representative algo-
rithms in the deep learning (see definition below) field.
Pooling layers were at first used to reduce computational complexity, but turned out to
be crucial to improve performance inmany applications since they increase the receptive
field of the inner layers. One of themost common pooling layer is themax-pooling, that
it takes in input a window of samples and outputs the highest value of it.

Figure 3.4: Graphical representation of the difference in terms of connections between feedforward NNs and CNNs.

Figure 3.5: Graphical representation of how a convolutional filter can be viewed to process a 2D matrix.

Figure 3.6: Graphical representation of a max pooling layer applied to a 2D matrix.
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From figure 3.5 it is easy to see how convolutional filters can be represented as windows that
slide along the input data.
To design a better CNN, it will be very important to set properly the size of the windows
and their stride: in a Convolutional Neural Network, the ”stride” refers to the step size at
which the convolutional filter moves across the input data during the convolution operation.
A larger stride value means the filter skips more pixels as it moves, resulting in a smaller output
featuremapwith reduced spatial dimensions. Conversely, a smaller stride value leads to a larger
output feature map with more detailed spatial information. Stride is a hyperparameter that
can be adjusted when designing a CNN architecture to control the trade-off between spatial
resolution and computational complexity.
The term deep learning was previously mentioned: it is a branch of machine learning that
defines all models of NNs that have many layers.

3.5 Training, Validation and Test Set

As it was said before, machine learningmodels need a training phase to work; the training rules
for each model are described above, but in this section how to create properly the training,
validation and test sets in order to achieve better performances. [11]

• The training dataset contains the sample of data used to fit the model (wheights and
biases in the NN case). In this case, so, the model sees and learns only from this data.

• At each epoch themodel tries tominimize a loss function on all the samples of the train-
ing set.

• The validation dataset are the samples of data used to provide an unbiased evaluation of
a model fit on the training dataset while tuning model hyperparameters.
It is also useful during the training of the model to avoid the overfitting problem, that
is the case in which the model makes good predictions on the training set but not on
the other sets, due to a loss of generalization. By setting a monitor on the loss on the
validation set (recall that the model is not trained on validation data, and so a constant
increasing of the loss on the validation set may indicate a loss of generalization) it is pos-
sible to avoid this case.
The validation dataset has a size of 30% of the training set and it should follow its same
distribution, and so it should present the same kind (and relative percentage) of samples
as they were present in the training.
Supposing the task of an hypothetical NN is to distinguish apples and oranges and the
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training set is composed of 500 oranges and 500 apples, the ideal validation set is com-
posed of 150 oranges and 150 apples.

• At the end, the test set are the samples of data used to provide an unbiased evaluation of
a final model fit on the training dataset.
The test set provides the gold standard used to evaluate the model. It is only used once
a model is completely trained (using the train and validation sets).
Usually the test set has a size similar to the validation set.
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4
Jamming detection with machine learning

As mentioned in Chapter 2, the informations that can be obtained from a wireless channel at
level 1 of the ISO/OSI stack are two:

• The power of the signal among a bandwidth, the so called spectrogram.

• The sampling of the signal in two coordinates (in phase and quadrature) along a time
interval. The result of this operation leads to the realization of the so-called i-q diagram.

Figure 4.1: Example of an i‐q diagram with 8psk modulation.
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Figure 4.2: Example of a plot of a the power spectral density of a general signal.

The goal of the project, then, is to use this informations to create amodel that candistinguish
a channel in states deemed trusted from a channel corrupted by the action of a jammer.
This allows us to say that the goal of the project will be to solve a binary classification problem:
the output of the ML model will be the predicted class of the wireless channel, that will be:
trusted or jammed / anomal.

4.1 Jamming detection on i-q diagrams

An i-q diagram is a collection of i-q samples over a period of time; the more the time resolution
is high, the less there will be i-q samples in our plot.
To make it more clear, it is easy to think that for a given sampling rate collecting the double of
the samples will take the double of the time.
After having determined the time resolution, it is necessary to decide the way to represent an
i-q diagram in a computer; there are two ways:

• The first one is to represent our n samples as an array of tuples of length two (recall that
each sample has two coordinates: in phase and quadrature), then use this data structure
to classify the input data.
This task can possibly be done by all of the MLmodels explained in Chapter 3.
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• The second one is to plot the samples in a 2D plane and use the plot to classify the chan-
nel. This kind of problem can be easily linked to an image classification problem, which
is well implemented in the state of the art by CNNs.

After having clear in mind of how the data can be represented, the next choice to be done is
the MLmodel that will be able to solve the binary classification problem explained above.

• At first, the choice to use the perceptron algorithmwas discarded, due to the high dimen-
sionality of the input data (recall that it would be represented as an array of n samples
and each sample will have two coordinates ) and the not guaranteed convergence during
the training phase.

• The SVM model was also discarded because it is reported that SMV with high dimen-
sional data tends to use a lot ofmemory and loose performance in terms of accuracy.[12]

The choice therefore fell between the standard feedforward NNs and the CNNs.
Due to the advantages of the CNNs explained above, it was chosen to represent data as actual
i-q plots (images) and feed aCNNwith that kind of data to solve the binary classification prob-
lem.
Using images to represent i-q plots also allows to train the same model on different time reso-
lution cases, due to the fact that the images will have the same spatial resolution.
This will allow later to use the same model and compare 3 different time resolutions, which
would not be possible if there were used other kind of data representations.
Modern literature shows two ways to solve this problem of image classification for jamming
detection:

• The first one is the standard deep learning image classification model: it consists into
taking as an input an image, apply several convolutional and pooling layers and end the
NN with a final feedworward part that will have as the last layer n neurons, where n is
the number of classes of the dataset.
The output of the NNwill be an array of probabilities that the input belongs to a class,
and the predicted class will be the one with the highest score.

• The secondone is toperforman anomalydetectionproblemusing adeep learningmodel
called autoencoder: an autoencoder is a deep learning model that takes an input data
and by performing several operations in the inner layers tries to reconstruct the original
input.
The model is composed by two parts: the encoder, which takes the original input and
transform it to a lower dimensional space data until it reaches the latent space.
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The decoder them takes as input the latent space and tries to reconstruct the original
input.
This kind of model implies that the classification is performed not on the labels of the
input data, but on the reconstruction error (e.g.: MSE): is during the training phase the
model is fed only with trusted images, it will learn how to reconstruct in a proper way
only that kind of data, which implies that the so called anomal datawill be reconstructed
with an higher error. This implies also that the training phase is indipendent on the
anomaly data.
For the reasons explained above, themodel choosen to perform the classification task on
the cellular channel was the autoencoder.

By setting a threshold on the reconstruction error, the classification task between trusted and
anomal data can be easily implemented, here below a pseudocode example:

Algorithm 4.1 Autoencoder classification task
Require: X = INPUT_DATA,Model = AUTOENCODER(),Threshold
recon_error_x←Model.compute_reconstruction_error(X)
if recon_error_x > Threshold
return 0

end if
return 1

From this pseudocode it easy to see that with this approach is not possible to perform a
multiple classification problem (even if the trusted cases belong to multiple classes), but it is
possible to perform only an anomaly detection problem, which perfectly fits into the task of
the project: in fact, it is better that themodel knows only the normal behaviours of the wireless
channel, in order to have a better response on attacks of different kind.
Here below an example of a simple CNN for image classification task and of an autoencoder:
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Figure 4.3: Example of a CNN for image classification: here then it is clear that the first layers are dedicated to the feature
extraction task (pooling and convolutional layers) and then the NN in the last parts becomes feedforward and ends with n
neurons, three in this case

Figure 4.4: Example of an autoencoder.

Here above then is clear how the model reduces the input dimensionality to a latent space
(output layer of the encoder) and then tries to reconstruct the original input.
For the reasons explained above, it was chosen to use a Convolutional Auto Encoder to per-
form anomaly detection on the images of the i-q plots, structured as follows:
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• The first layerswill be convolutional, in order to perform feature extraction on the image
and reducing its dimension.

• Then, there will be some fully connected layers until it will be reached the latent space
to add parameters to the network and so perform better generalization, due to the fact
that convolutional layers contain less trainable parameters than fully connected ones.

• The structure of the decoder (from the latent space to the output layer) will be symmet-
rical to the one of the encoder, with some upsampling operations in order to have in the
output layer the same dimension of the input layer.

Due to the fact that the network is trying to reconstruct an image, the chosen loss function
will be the MSE, computed as follows:

SE(x, y) =
∑

(i,j)∈M

[x(i, j)− y(i, j)]2

MSE = E[SE(x, y)]

Where:

• M is the input image, which is seen as a matrix from the model perspective.

• x and y are respectively the input image and the reconstructed image.

• i and j are the pixel raw and column indexes.

• x(i, j) and y(i, j) are respectively the value of the pixel in the input image and in the
output image.

The details and the performance of this CAE adopted will be analyzed in the next chapter.

4.2 Jamming detection onwaterfall plots

As it was said before, the other physical layer aspect that describes the wireless channel is the
spectral power.
Using this aspect as inputdata, toperform jammingdetection therewill be created and analyzed
the so-calledWaterfall Plots.
Waterfall plots as a first approach can be seen as a sequence of PSD arrays stacked in order to
create a matrix, built in this way:
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• The X axis is the frequencies axis, centered on the carrier frequency, such as PSD arrays.

• The Y axis is the time axis.

• The value contained in the matrix represents the spectral density in a binned frequency
range in a time slot.

Due to the description given above, it is clear that waterfall plots represent the evolution
of the power spectral density over the time of the wireless channel. Using this kind of data
structure, there will be explained the aspects of the channel that will be investigated in order to
see if there is the presence of a jammer or not.
Waterfall plots can be represented in two ways:

• The first one is a rawmatrix containing the power values for each cell of thematrix. This
data structure is fast to compute, but is not so well human-readable.

• The second one is to convert the values of the matrix into a colorscale, which implies to
convert thematrix into an image, usually RGB. This kind of data structure implies a bet-
ter human-readability, but it involves the disadvantage of having an higher computation
time, due to the fact that each information contained in the matrix has to be converted
into a pixel of the output image.

Figure 4.5: Example of a waterfall plot with the colorspace representation.

During the data creation phase, it was noticed that creating waterfall plots with the col-
orspacewasmore time consuming compared to creating rawmatrixeswith the rawpower values
inside each cell of the matrix.
In fact, creating a datasetwith four thousands images took about 2 days, while creating a dataset
with the same number of matrixes took about 15 minutes.
For this reason and due to the fact that both representations are 2D structures (and so the same
ML structures can be used to analyze them), it was chosen to use a dataset composed by raw
matrixes.
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Due to the nature of the input data explained above, it was chosen to use also in this case a
CAE, which is structured in a similar way as explained above in the i-q plots case.
While the model to analyze data is the same, the way how results will be seen is different. In
the first case, the goal of the model was to distinguish between a trusted i-q plot and a jammed
one; here instead the goal is to find out portions of the spectrum that result anomal according
to the normal behaviour.
For example, in this case is not so meaningful to identify a globally jammed waterfall plot, be-
cause a smart jammer could act on a tiny portion of the spectrum, which in this case could lead
a reconstruction error that could be below a given threshold. It will be more useful then to
highlight the portion of the waterfall plot where the reconstruction error is high, highlighting
then the corrupted parts of the spectrum.
It is also useful to explain a reasoning that was done before the data analysis on these plots:
due to the fact that looking at the power in the mainband is not so meaningful to detect the
presence of a jammer, it is expected that the higher reconstruction errors will be present in the
sidebands of the channel, where usually our device tends to leak less power.
To simplify this concept, it is useful to imagine ourselves as the watchdog that is looking at the
power of the channel in order to see if there is or not the presence of a jammer: if normally the
system tends to transmit at 1 mW in the mainband and the attacker transmits random noise at
1.1 mW, no noticeable anomaly will be detected.
If instead the jammer also transmits in the sidebands of the wireless channel, where the device
in the network tends to leak a very low amount of power, it will be easy to see the presence
of a jammer that transmits at the same power detected in the mainband. In the case the jam-
mer became smart and started injecting noise only in the mainband of the wireless channel, it
could be highlighted that no filter in the real world is ideal, and so there will be an increasing
amount of power detected in the sidebands of the channel, which according to our system can
be meaningful or not.
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5
Experiments

5.1 Scenario

The scenario underwhich the experimentswere conducted involves a static configuration, with
the following elements present:

• The cellular base station, which has to provide a reliable cellular communication be-
tween itself and the cellular device.

• The watchdog, which has to collect passively data from the wireless channel and deter-
mine the presence of a jammer. In addition, the watchdog is intended as a separated ele-
ment from the base station. The watchdog is supposed to take raw i-q samples (OFDM
symbols) from the channel without performing any kind of signal processing (such as
channel equalization). Then, in order to collect i-q samples from the channel the watch-
dog has to be synchronized to the cellular base station, requiring so OFDM-symbol syn-
chronization.

• The jammer, which has to inject noise into the wireless channel in order to achieve a
denial of service (DoS) in the network.

• The cellular device, which has to transmit data whenever it needs to do that.

Here below a scheme of the described scenario:

31



Figure 5.1: Considered security scenario: Blue arrows indicate legitimate cellular communications and red arrows indicate
the jamming signals

This kind of described scenario present some advantages:

• Simplicity: this approach requires no further digital signal processing functions than
OFDM-symbol synchroniza- tion and IQ-sampling. Inparticular,weneitherneed equal-
ization, synchronization to the any kind of Physical Resource Block structures, nor de-
coding or control on data symbols.

• Generalization: OFDM is and will remain an important building block in wireless sys-
tems, such as 5G-NR, DECT-2020, and WiFi. Our detection model is based solely on
data obtained during normal operation and is deliberately not customized to a specific
jamming attack, but it relies only on normal behaviour of the system operations.

• Simple integration: the watchdog operates as a separate network element. This makes
it an easily deployed element in the network. In fact, the data that thewatchdog needs to
be trained are i-qmeasurements from the channel in all the operating cases of the cellular
device.

In a future commercial deployment, the watchdog will be brought to the cellular network
that is willing towatch over; its installationwill require only passive traffic inspection, data gen-
eration and training. After that, it will be able to operate online in the network by inspecting
real time traffic, without any other kind of human supervision or intervention.
Because the data acquisition and training phases do need human supervision, in the next sec-
tions there will be described all themethods and details that lead to the realization of thewatch-
dog, explaining then its performances with comments on the obtained results.

5.2 Setup andData Acquisition

All the roles described in the previous chapter were implemented in the real world as follows:
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• The setup is running a private 5G network in the frequency band n78 with cen- ter fre-
quency fc = 2.56GHz (uplink of the channel) and a 18.43MHzbandwidth operating in
time division duplex (TDD) mode. The base station implements 5G-NR as a software-
defined radio (SDR), based on srsRAN 23.5[13] and on the bladeRF 2.0 micro xA4
radio frequency (RF) frontend.[14]
The core network functionality is providedbyOpen5GS2.6.4[15], running on the same
generic computer as srsRAN.The resulting system operates as a 5G standalone network
(without 4G core) and complies with theRelease 17.4.0 of the 3GPP Series 38 standards.

• The Cellular device is an unmodified 5G smartphone, namely the SamsungGalaxy A90
(model version: SM-A908B).

• Jammer and watchdog are each implemented as an SDR, based on GNURadio and on
the ADALM-PLUTORF fron- tend (hardware revision B, firmware 0.35).[16]
Themeasurements inGNURadio are outputted as a binary file descriptor of i-q samples
full of float32s in IQIQIQ order.
Both devices operate roughly at f-c within 40 MHz bandwidth due to the a sampling
rate of 41.44MHz. Using this bandwidth, the jammer permanently transmits complex
noise, as specified below, while the watchdog permanently records i-q samples from the
file descriptor written by GNURadio.

• In this lab setup, all devices employ a conventional dipole antenna with approximately
0 dBi gain and are placed approximately 1 m apart. At such close distance, the SNR be-
tween the cellular device and the base station is consistently above 30 dB and, thus, not
a relevant factor in our experiment. The jammer injects into the channel noise interfer-
ence with the approximate power of 7 dBm, which is clearly measurable but not high
enough to reduce the 5G data rate in this scenario.

• To process data the PC of the lab was using Ubuntu 22.04 LTS as operative system,
mounting a SLI of RTXQuadro 5000 as GPU.
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Figure 5.2: Experimental setup: 5G device (indicated as UE) and 3 computers with their respective RF frontends, operating
as SDRs for the base station (indicated as gNB), the jammer and the watchdog. The shown distance is for illustration
purposes only. During measurements, the antennas were placed 1 m apart.

Data was taken from the three operating situations in which the system can occur:

• Base station ON but the cellular is not transmitting any kind of data.

• Base station ON and the cellular is transmitting data using a speedtest.

• Both of the cases were replicated but with the jammer that is active and transmitting
noise.
The transmitted noise was implemented in two ways: uniform noise and Gaussian
noise.

5.3 Dataset

After the data collection phase, conducted as described above, i-q file descriptors were used to
created both data structures, using Python 3.10 programming language.
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5.3.1 I-Q Plots

For the i-q plot data structure, the dataset was structrured in the following way:

• First of all, the number n of samples in the plot was decided by prior.
In this case, n can be: 256, 1024 or 2048.

• The training set was composed by 4000 images: half of them were representing the case
in which the cellular device was not transmitting any kind of data, half of them were
representing the other case.

• The validation set was composed by 600 images, distributed in the same way as before.

• A set composed only by i-q plots in the jammed case with 500 images was also created.
This set has not to be considered a validation set because it does not have the same distri-
bution of the training set, but it was used to havemore information about performances
of the model before conducting the final test.
For example, after the training phase, it was checked the ratio between the reconstruc-
tion error of the validation set and the jammed set. If the reconstruction error was close
to 1, it meant that the model was not trained properly, and so conducting other tests
was useless.

• The test set is composed by 800 i-q diagrams, containing 400 diagrams in the jammed
case that were randomly selected either from the empty or busy subset. The remaining
400 diagrams of the test set are not jammed and, again, equally distributed in the same
way of the training and validation set.

Here below few sections of the code developed to implement these tasks:

1 empty_channel = np.fromfile(open("empty_channel"), dtype=np.complex64)
2 tx_channel=np.fromfile(open("tx_channel"), dtype=np.complex64)
3 jammer=np.fromfile(open("jammed_channel"), dtype=np.complex64)
4 ## reading file descriptors
5

6 training_set_dim=2000
7 validation_set_dim=300
8 test_set_dim=200
9 ## setting dimensions

1 lower=0
2 upper=1024 ## 1024 samples for plot
3 label_string="0_" ## labelling the image
4 img_index=0
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5 while(img_index<training_set_dim):
6 dataset=empty_channel[lower:upper]
7 x = [ele.real for ele in dataset] ## selecting real and imaginary part
8 y = [ele.imag for ele in dataset]
9 plt.scatter(x, y)
10 plt.axis("off")
11 plt.savefig("./data/clean/images/"+label_string+ str(img_index)+".png") ##

plotting and saving
12 plt.clf()
13 lower+=1024
14 upper+=1024
15 img_index+=1
16

17 while(img_index<training_set_dim+validation_set_dim):
18 dataset=empty_channel[lower:upper]
19 x = [ele.real for ele in dataset]
20 y = [ele.imag for ele in dataset]
21 plt.scatter(x, y)
22 plt.axis("off")
23 plt.savefig("./data/clean_validation/images/"+label_string+ str(img_index)+".png

")
24 plt.clf()
25 lower+=1024
26 upper+=1024
27 img_index+=1
28

29

30 while(img_index<training_set_dim+validation_set_dim+test_set_dim):
31 dataset=empty_channel[lower:upper]
32 x = [ele.real for ele in dataset]
33 y = [ele.imag for ele in dataset]
34 plt.scatter(x, y)
35 plt.axis("off")
36 plt.savefig("./data/test/images/"+label_string+ str(img_index)+".png")
37 plt.clf()
38 lower+=1024
39 upper+=1024
40 img_index+=1
41 ## same procedure as before

As it is reported from the code, the plots are saved asRGB images (640x480 format); in order to
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save computational complexity and avoiduseless information, the imageswere at first converted
to the grayscale colorspace (the color of the dots in the plot has no meaning for this purpose)
and then downsampled to a 128x128 format.
The images were also labeled for each case in the following way:

• 0 for the empty channel case

• 1 for the transmitting channel case

• 2 for the jammed channel case

Also, at each image was assigned a progressive number, in order to have unique identifiers.
It is then useful to report that during this plotting phase it was also possible to fix the axis size;
this information will become useful later.
Some examples of the plots created using this code are reported in Figures 5.3 and 5.4:

Figure 5.3: Plots in the no transmission case with n=256: on the left the plot with axis normalization, while on the right the
plot with the axis range fixed.
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Figure 5.4: Other examples of plots for n=256 case: the first one represents the transmitting channel case, the second one
an uniform jammed channel and the third one a Gaussian jammed channel.

The data plotted has shown then that the system in the transmission case is using a 4-QAM
constellation scheme. It is easy to see how the most majority of samples are concentrated into
the four corners of a rectangle.

5.3.2 Waterfall Plots

Regarding the waterfall plot data structure, the number of data structures contained in the
respective training, validation and test set was the same as described before, due to the fact that
in both cases a CAE was adopted to perform data analysis.
It is then useful here describe how waterfall plots were structured and stored:

• The PSD array was computed as follows: PSD = |fft(x)|2/(n× sampling_rate).[17]
Where x was an array containing n i-q samples. This then leads to an array with length
n; in this case, n was set to 1024.

• The waterfall plots were composed by 50 stacked PSD arrays, in order to create a 50×
1024 matrix.
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• As itwas said before, due to the high computational complexity of representing the plots
as images, the images were stored as numpy matrices, so no graphical representation is
available here.

Tomake the reader better understand the different behavior of the channel in different states
in terms of power, examples of PSD (for n = 1024) in the four different states that were con-
sidered will be shown below.
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Figure 5.5: On the left, a plotted PSD in the case: ”empty channel”; on the right, a plotted PSD in the case: ”transmitting
channel”.
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Figure 5.6: On the left, a plotted PSD in the case: ”uniform jammed channel”; on the right, a plotted PSD in the case:
”Gaussian jammed channel”.

As can be seen from fig 5.5 and 5.6, the empty channel is easily distinguished because of the
low levels of spectral density present on all frequencies; the transmitting channel, on the other
hand, can be distinguished by looking at the sidebands, as it tends to leak little energy compared
to that being transmitted in the mainband.
Here below a section of the code developed to implement this task:
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1 wat_size=50
2 num_waterfall_train=2000
3 num_waterfall_val=300
4 num_waterfall_test=200 ## setting the parameters
5 n=1024
6 index=0
7 lower=0
8 upper=lower+n
9 label="0"
10 for i in range(num_waterfall_train): ## creating and saving the waterfall plots as

numpy matrices
11 mat=np.zeros((wat_size,n)) ## empty matrix to fill
12 for j in range(wat_size):
13 x=empty_ch[lower:upper]
14 PSD = np.abs(np.fft.fft(x))**2 / (n*samp_rate) ## PSD computation
15 PSD_shifted = np.fft.fftshift(PSD) ## centering around fc
16 for p in range(n):
17 mat[j:]=PSD_shifted
18 lower+=n
19 upper+=n
20 np.save("matrices/clean/"+label+str(index),mat)
21 index+=1

Also here matrix were labeled for each case with a unique ID as before.

5.4 Data Analysis

5.4.1 I-Q Plots

After having created the dataset as described above, the next task was to create and train a ML
model that was capable of distinguishing an i-q plot taken from a channel in a trusted state and
from a jammed one; here below a table that shows the layers adopted to build the model: The
model, so can be summarized in as follows:

• The model takes as input a 128 × 128 × 1 data structure, and so a grayscale 128 × 128
image.

• The first 2 layers are two classical convolutional layers with stride equal to two in order
to reduce the size of the input data.
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Table 5.1: Structure of the employed CAE

Layer Output size No. of parameters

En
co
de
r

Input 128× 128× 1 0
Convolutional 1 64× 64× 64 640
Convolutional 2 32× 32× 32 18464
Flatten 32768 0
Dense 32 1048608

D
ec
od

er

Input 32 0
Dense 32768 1081344
Reshape 32× 32× 32 0
Convolutional 1T 64× 64× 32 9248
Convolutional 2T 128× 128× 64 18496
Convolutional 128× 128× 1 577

• Then data is flattened in order to be connected to a fully connected layer composed by
32 neurons.
Here the encoder ends.

• The decoder adds then a fully connected layer with the same number of neurons of the
encoder; the data is then reshaped to a 32× 32× 32 structure in order to be processed
with convolutional layers.

• The next two convolutional layers have the same size of the previous one but with the
addition of upsampling operations in order to get back to the original input dimension-
ality.

• At the end, it is applied a classical convolutional layer to have as output dimensionality
128× 128× 1.

• The chosen loss for the training of the model was the MSE between the input data and
the output data.

• To build the model it was used Keras API.[18]

• The model, built as described, weights approximately 6 MB.

• The number of trainable parameters of the model is 2177377.

• The model was tuned for the n=1024 case, then tests were performed for other time
resolutions.
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1 ## define our neural network
2 class AutoEncoder(Model):
3 def __init__(self):
4 super(AutoEncoder, self).__init__()
5 self.encoder = Sequential([
6 Conv2D(64, 3, strides=2, padding="same", activation="sigmoid",

input_shape=(128,128,1)),
7 Conv2D(32, 3, strides=2, padding="same", activation="sigmoid"),
8 Flatten(),
9 Dense(32, activation = "sigmoid")
10 ])
11 self.decoder = Sequential([
12 Dense(32*32*32, activation="sigmoid",input_shape=self.encoder.output.

shape[1:]),
13 Reshape((32,32,32)),
14 Conv2DTranspose(32, 3, strides=2, padding="same", activation="sigmoid"),
15 Conv2DTranspose(64, 3, strides=2, padding="same", activation="sigmoid"),
16 Conv2D(1, 3, strides=1, padding="same", activation="sigmoid")
17 ])
18 def call(self, x):
19 encoded = self.encoder(x)
20 decoded = self.decoder(encoded)
21 return decoded

Before being processed into the model, data and its labels were loaded directly into the mem-
ory of the machine, downsampled to the correct scalespace and then converted into grayscale
colorspace using OpenCV library implemented in Python.[19]
Also, the intensities of the pixels were normalized before the data was processed into themodel.
This kind of data processing allows the model to not distort the structure of the data while
shrinking the value range of the data, in order to give less importance to any outliers.
Because the range of the values of data was shrinked to [0; 1], the sigmoid activation function
was used in all the layers of the model (recall that the output of sigmoid is in the range [0; 1]).

f(x) =
1

1+ e−x

Figure 5.7: Sigmoid activation function

1 clean = []
2 labels_clean =[]
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3 val = []
4 labels_val =[]
5 anomalies = []
6 labels_anomalies =[]
7 test=[]
8 labels_test=[]
9 ## empty arrays that will contain the images of the four datasets and the labels of

the corresponding images; in this case 0 is a clean channel and 1 is a jammed
channel

10 for folder in tqdm(os.listdir("data_Gaussian_1024")):
11 print(folder)
12 for im in tqdm(os.listdir("data_Gaussian_1024/"+folder+"/images/")):
13 if folder == "clean":
14 clean.append(cv.cvtColor(cv.resize(cv.imread("data_Gaussian_1024/"+folder+

"/images/"+im),(128,128)),cv.COLOR_BGR2GRAY).reshape(128,128,1))
15 labels_clean.append(0)
16 elif folder == "clean_validation":
17 val.append(cv.cvtColor(cv.resize(cv.imread("data_Gaussian_1024/"+folder+"/

images/"+im),(128,128)),cv.COLOR_BGR2GRAY).reshape(128,128,1))
18 labels_val.append(0)
19 elif folder== "jammed_channel":
20 anomalies.append(cv.cvtColor(cv.resize(cv.imread("data_Gaussian_1024/"+

folder+"/images/"+im),(128,128)),cv.COLOR_BGR2GRAY).reshape(128,128,1))
21 labels_anomalies.append(1)
22 else:
23 test.append(cv.cvtColor(cv.resize(cv.imread("data_Gaussian_1024/"+folder+"/

images/"+im),(128,128)),cv.COLOR_BGR2GRAY).reshape(128,128,1))
24 labels_test.append(mapping[int(im[0])])
25 ## the images were loaded and put in the lists, but was performed also the resize

of the image to 128x128 and conversion of the colorspace from RGB to grayscale.

For each case, the loss of the model saturated at 20 epochs.
Due to the fact that each i-q plot contains a different number of samples, it is expected that the
value of the loss of the model trained with different datasets will be different.
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Figure 5.8: Training and validation loss for the case: Gaussian 1024.
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Figure 5.9: Training and validation loss for the case: Uniform 1024.

From these two figures we can see that even if the training set is the same (n=1024 in both
cases), the loss is different: this was given by the fact that without taking into the account the
amplitude of the i-q samples (and so not fixing the axis sizes) was producing poor results in the
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test set when dealing with Gaussian noise.
The problem was then solved by fixing the axis range of the plots to a range that allowed to
view all the constellation(determined using a small i-q file descriptor), instead of making the
matplotlib library take this decision. More details will be given in the result section.
After the training of the model, it was useful to plot also the reconstructed image of the model,
in order to see what the model understood from the training set.
Even if it was done to research purposes, it has to be clear that the goal of this model is not to
be a good image reconstructor, but a good discriminator between trusted and jammed case. So,
even if the reconstruction is not graphically good for a human, it could lead to awatchdogwith
good performances.
For sure a model with more weights would lead to a better reconstruction, but here it is impor-
tant also to take into account that the model is also studied to be implemented in a future as
an online watchdog, so making it lighter can lead to faster responses to the channel.
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Figure 5.10: Example of 1024 unequalized 4‐QAM constellations and their reconstruction by the CAE. The axes labels
index the data points inC.

From the image shown above, it is clear that the model has learnt well that the channel can
be either in the no transmission case (a lot of samples nearby the origin of the axis), either in
the transmission case (4-QAM scheme).

5.4.2 Waterfall Plots

As it was said before, waterfall plots were computed as 50× 1024matrices, and themodel used
to process data have a similar structure to the one used for the i-q plots processing. Here below
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a table of the layers used to build the model:

Table 5.2: Structure of the employed CAE

Layer Output size No. of parameters
En

co
de
r

Input 50× 10241 0
Convolutional 1 24× 511× 16 160
Convolutional 2 11× 255× 32 4640
Convolutional 3 5× 127× 64 18496
Convolutional 4 2× 63× 128 73856
Flatten 16128 0
Dense 32 516128

D
ec
od

er

Input 32 0
Dense 532224 1081344
Reshape 2× 63× 128 0
Convolutional 1T 5× 127× 64 73792
Convolutional 2T 11× 255× 32 18464
Convolutional 3T 23× 511× 16 4264
Zero padding 25× 512× 16 0
Convolutional 4T 50× 1024× 1 145

The total number of trainable parameters of the model is then 1242529.
The only new element with respect to the previous model is the zero padding layer: this lay-
ers allows to add some rows or columns in a matrix (filled with zeros) in order to modify the
dimensionality of a data structure.
During the training of the model, two main problems arose:

• The model needed too many epochs to reach the optimal training. Then, it was placed
a monitor on the validation loss with a patience of 7.

• The matrices, as they were created, were not reaching the optimal training even after
more than 2000 epochs.
This problem was solved by applying a monotonic function on the values of the matri-
ces in order to have no more values in the order of 10−14, which create issues with the
gradient descent optimization method. The monotonic function was: f(x) = −log(x).
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Figure 5.11: Training and validation loss for the waterfall plots.

5.5 Results

5.5.1 I-Q Plots

After the training phase described as above, the model was tested on 6 different test sets:

• n=256, noise=Uniform

• n=1024, noise=Uniform

• n=2048, noise=Uniform

• n=256, noise=Gaussian

• n=1024, noise=Gaussian

• n=2048, noise=Gaussian

While the distribution of the test set is described in the previous section, it is important to
underline that for each test set it was created a plot which shows the probability of false alarm
(false positive) andmissdetection (false negative) for a varying threshold of the reconstruction
error.
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The range of the threshold was computed by taking the clean validation set and the jammed
dataset and selecting the minimum and maximum reconstruction error computed on both of
them.

1 ## functions that computes the mean, stdv, min and max of the reconstruction error
2 def calc_recon_error(batch_images):
3

4 recon_error_list=[]
5 for im in trange(0, batch_images.shape[0]):
6

7 img = batch_images[im]
8 img= img.reshape(1,128,128,1)
9 recon_error_list.append(model.evaluate(img,img))
10

11

12 average_recon_error = np.mean(np.array(recon_error_list))
13 stdev_recon_error = np.std(np.array(recon_error_list))
14 maximum= max(recon_error_list)
15 minimum= min(recon_error_list)
16

17 return average_recon_error, stdev_recon_error, maximum, minimum

LettingH0 be the hypothesis of no jamming andH1 the hypothesis of jamming, the detection
of jamming is performed by the following test function on the input imageX to obtain decision
Ĥ:

Ĥ =

H0; Γ < τ,

H1; Γ ≥ τ,
(5.1)

where τ is a suitable threshold. The two performancemet- rics are thenmathematically defined
as follows:

PFA,C = P[Ĥ = H1|H = H0] (5.2)

PMD,C = P[Ĥ = H0|H = H1], (5.3)

whereH is the true condition (jamming or no jamming) when observing X. In general, reduc-
ing one probability increases the other.
Because of the distribution of the dataset (50% non jammed and 50% jammed) and how the
prediction is performed, it is clear then that in theworst case themetrics can reach atmaximum
the value of 0.5. Here below there will be shown the performances for each test set:
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Figure 5.12: Plotted performances for the case: uniform 256.
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Figure 5.13: Plotted performances for the case: uniform 1024.
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Figure 5.14: Plotted performances for the case: uniform 2048.

Managing Gaussian noise required more attention: in fact, without fixing the axis sizes, the
Gaussian jammed channel looks similar to a empty channel (see figures above). After fixing the
axis sizes, the performances were significantly better.
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Figure 5.15: Plotted performances for the case: Gaussian 256 (fixed axis sizes).
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Figure 5.16: Plotted performances for the case: Gaussian 1024 (fixed axis sizes).
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Figure 5.17: Plotted performances for the case: Gaussian 2048 (fixed axis sizes).

After having computed the plots for the false alarm and missdetection rates, it was chosen
also to simulate the behaviour of the watchdog: on the watchdog it was set a threshold for
performing anomaly detection ( μ+ σ of the reconstruction errors computed in the validation
set) and plotted confusion matrices for each case.
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Table 5.3: Confusion Matrix for the case (Gaussian, 1024), Overall accuracy=91% with τ = 0.0179.

Predicted
Clean Jammed

True
Clean 334 66
Jammed 0 400

Table 5.4: Confusion Matrix for the case (Uniform, 1024), Overall accuracy=96% with τ = 0.0304.

Predicted
Clean Jammed

True
Clean 372 28
Jammed 0 400

Table 5.5: Confusion Matrix for the case (Gaussian, 256), Overall accuracy=88% with τ = 0.0081.

Predicted
Clean Jammed

True
Clean 309 91
Jammed 0 400

Table 5.6: Confusion Matrix for the case (Uniform, 256), Overall accuracy=90% with τ = 0.0157.

Predicted
Clean Jammed

True
Clean 322 78
Jammed 0 400
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Table 5.7: Confusion Matrix for the case (Gaussian, 2048), Overall accuracy=90% with τ = 0.0184.

Predicted
Clean Jammed

True
Clean 327 73
Jammed 0 400

Table 5.8: Confusion Matrix for the case (Uniform, 2048), Overall accuracy=95% with τ = 0.0366.

Predicted
Clean Jammed

True
Clean 360 40
Jammed 0 400

After having exposed these results, comments on them will be written in the next chapter.

5.5.2 Waterfall Plots

After having trained the model as explained before, some tests were conducted on the pixels of
the arrays with the aim of highlighting the parts of the spectrum with the highest reconstruc-
tion error.
This approach then follows the same assumptions and methodologies used for image segmen-
tation with autoencoders.[20]
In particular, it was assumed that pixels with higher reconstruction error represent parts of the
spectrum subject to the action of the jammer, due to the fact that themodel has learnt to recon-
struct only an empty channel (so with low power values present in every part of the spectrum)
or the channel with a transmission ongoing (so with high power values in the mainband of the
channel).
Due to the reasons explained above, it is expected that in a fully jammed spectrum the parts
with higher reconstruction error will be the sides of the spectrum, in which themodel does not
expect power values in the order of magnitude of the ones used with an ongoing transmission
in the mainband.

53



It was decided so to set a heatmap on the reconstruction error of the cells of the matrices and
with that see if the model shows the expected results. Lower values in the heatmap are repre-
sented with blue, while higher values are represented in red.
The scale of the heatmap was created by setting as minimum 0 and maximum the maximum
reconstruction error of a pixel found in the additional jammed set. Values higher than this
threshold will be clipped to the maximum in the heatmap.

Figure 5.18: Heatmap of the reconstruction error of a waterfall plot in the transmission case.

Figure 5.19: Heatmap of the reconstruction error of an uniform jammed waterfall plot.

Figures 5.17 and 5.18 tell two main things:

• The model has learnt well how to reconstruct a waterfall plot: in fact, in the clean case,
most of the waterfall plot is painted in blue.

• As expected, the parts with higher reconstruction error are located in the sides of the
plots.

All the other heatmaps computed followed the same structure presented earlier.
Themodel, so, has confirmed that the presence of the jammer has to be determined by looking
at the sidebands of the channel.
It was decided then to compute statistics about the energy in the sideband of the channel.

• First of all, the sidebands of the channel have benn set as 1 MHz on the left and on the
right of the mainband, making them almost 10% of the mainband of the channel.[21]

• To compute the statistics, for each case 200 waterfall plots were analyzed.

• Saving computational complexity in this case was not so critical as before, so to collect
more data waterfall plots were composed by 100 stacked PSDs, makin them 100× 1024
matrixes.
The PSDs that compose the waterfall plot are computed in the same way as before.
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• The first quantity that it was decided to plot was the energy (energy) in the sidebands
among a waterfall plot window.

• The secondwas the ratio between the energy in the sidebands and the total energy in the
channel (basically mainband + sidebands).

• For those quantities, it was plotted the CDF in each possible case of the channel.
Actually, itwas also tried toplot thePDFof those valueswithKernelDensityEstimation,
but due to the high variability of data the results were poor.

Here below all the plots computed:
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Figure 5.20: CDF of the energy in the sidebands in the case: empty channel.
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Figure 5.21: CDF of the ratio (in %) in the sidebands in the case: empty channel.
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Figure 5.22: CDF of the energy in the sidebands in the case: transmitting channel.
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Figure 5.23: CDF of the ratio (in %) in the sidebands in the case: transmitting channel.
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Figure 5.24: CDF of the energy in the sidebands in the case: uniform jammed channel.
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Figure 5.25: CDF of the ratio (in %) in the sidebands in the case: uniform jammed channel.
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Figure 5.26: CDF of the energy in the sidebands in the case: Gaussian jammed channel.
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Figure 5.27: CDF of the ratio (in %) in the sidebands in the case: Gaussian jammed channel.

Also for this case, the comments on these results will be done in the next chapter.
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6
Conclusion and future works

In this thesis a preliminary study has been proposed on how to detect jamming attacks against
cellular systems, with a focus on 5G networks. This technique only exploits the structure of
physical-layer signals with a loose attachment to the network.
While our watch- dog still has to synchronize with the RAN at the OFDM- symbol level, it
requires no estimation, no equalization, and no decoding. This loose design is agnostic to
higher-layer structures, such as headers and frames, and can be implemented separately from
the operator network and the user device. This is a substantial simplification and generaliza-
tion, compared to conventional intrusion detection systems.
In essence, the work previously described takes two approaches to detect or not detect the pres-
ence of a jammer:

• The first approach consists on applying a CAE on the i-q plots of a 5G testbed, with
provided first experimental results in the high-SNR regime. These preliminary results
show that the proposed detector is able to perfectly distinguish between the attack and
no attack conditions, thus, demonstrating to be a promising security mechanism.

• The second approach is to consider the frequency response of the channel, and in par-
ticular to study how the spectral power of the channel varies with respect to the channel
states studied. For reasons previously described, the investigation was carried out on the
sidebands of the channel, assuming for true the fact that, each filter being non perfect,
the presence of a jammer would in any case lead to a leak in the sidebands considered,
no matter howmuch it attempts to inject power into the spectrum in which the system
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operates. At the end, this approach showed that the channel in the various analyzed
states exhibits distinguishable variations in the previously calculated metrics, thus offer-
ing the possibility of detecting the presence of a jammer by investigating the PSD of the
collected signal without resorting to complex models.
This approach, however, shows its limitations as a jammer becomes increasingly accurate
and begins to leak little power into the channel sidebands, making itself very much like
a trusted state. For this reason, any future research is likely to focus on the first method
presented, which uses more sophisticated solutions and can identify jammers regardless
of the amount of power they leak into the channel sidebands.

Having done this preliminary study, it is therefore appropriate tomake some considerations
about the possible directions this research might take: the most likely direction to be taken in
the future will be to move from the preliminary study to a practical approach, as all studies on
the performance of the adopted models have been carried out offline.
A similar pattern will then be adopted:

• The CAE adopted for jammer detection will actually be run on a machine, which will
take care of providing it with all the necessary computing power.

• The scenario in which the watchdog will operate will be characterized: on this, constel-
lation measurements will be taken concerning all channel states deemed trusted. Once
the data useful for training is collected, the model will be trained on it as shown above.
Finally, a threshold deemed optimal for the approached problem will be established;
the criteria for establishing it are exactly those used previously: based on a validation
set, the statistics of it regarding the loss function will be extracted and on these calcu-
lated the threshold analytically. It is therefore implied that since the training is jammer-
independent, even the threshold calculationwill onlyhave to take into account the trusted
states of the channel with which the model was trained.
Previously, the threshold had been set as: μ + σ of the reconstruction errors computed
in the validation set leading to good results, but also μ+2σ could be an optimal solution
depending on the problem it is willing to be approached. In general, a lower threshold
leads to a pessimistic watchdog (with higher FA rates), while an higher one leads to an
optimistic threshold (with higher MD rates).

• A time window (fft size) will then be established with which the watchdog will collect
information from the channel to create the i-q diagram. To save computational capacity,
it is possible that the watchdog will not constantly monitor the channel, but will do so
at set intervals (e.g.: 5 seconds). Once the jammer is found, it could scroll back through
thememory of the descriptor file containing the i-q coordinates to figure out the precise
moment when the channel started to be in a corrupted state.
Using the latter information and multiple watchdogs (three or more), it is possible to
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combine the information regarding the instantwhen each individualwatchdog launches
an alarm to locate the jammer in a 3D space.

After these remarks, it is worth mentioning (before ending this thesis) that on this work it
has been written a scientific paper titledDetecting 5G Signal Jammers with Autoencoders Based
on Loose Observations, written byMatteoVarotto, StefanoTomasin and StefanValentin, which
is going to be presented at the IEEE GLOBECOM conference in December 2023.
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