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Abstract—Intermediate-quality links often cause vulnerable
connectivity in wireless sensor networks, but packet losses caused
by such volatile links are not easy to trace. In order to equip
link layer protocol designers with a reliable test and debugging
tool, we develop a reactive interferer to generate packet loss
patterns precisely. By using intentional interference to emulate
parameterized lossy links with very low intrusiveness, ourtool
facilitates both robustness evaluation of protocols and flaw
detection in protocol implementation.

I. I NTRODUCTION

Robustness of a low-power wireless sensor network can be
undermined by poor channel conditions, plagued by unpre-
dictable noise and interference. Empirical studies investigating
the relation between packet losses and channel parameters
have revealed volatile behaviors of intermediate quality links
in realistic channel conditions [1], [2], [3]. The impact of
volatile links to network connectivity can be evaluated in
a network simulator augmented by analytical or statistical
packet loss models, as shown by Lee et al. [4]. A more recent
empirical research by Srinivasan et al. focuses on measuring
individual links’ burstiness in a testbed [5]. They demonstrate
that relaxing link-layer retransmission time-outs can mitigate
bursty link failures, which in turn improves end-to-end packet
delivery rates over a multi-hop network. Link failures can be
created with intentional radio interference, which allowsthe
user to study network operations under certain controlled con-
ditions. Boano et al. [6] has developed an interferer based on
an IEEE 802.15.4 radio transmitter, which can reliably block
a channel for arbitrary time intervals by injecting a strong
jamming signal. They show that duty-cycling the interferer
can yield precise packet loss rate (PLR), when the interferer
is configured with large blocking time intervals that essentially
slices the channel into on-off time slots. This would however
result in unrealistically high link burstiness, causing severe
fluctuations in network performance, thus limiting the user’s
ability to investigate many intricacies caused by intermediate-
quality links. Furthermore, because most mechanisms for
recovering packet losses are implemented by the link layer or
the network layer, the ability to construct different sequences
of packet losses is often more useful than the ability to control
variations on the physical channel.

We have conceived and developed a reactive interferer
that enables arbitrary packet loss pattern generation based

on packet detection. Leveraging the half-duplex property of
common sensor radios, our reactive interferer follows a listen-
before-send principle, locking to a packet flying over the air
and then destroying it before it reaches its intended destination.
Given a sufficient link margin, near-perfect detection and
destruction rates can be attained, guaranteed by reliable header
detection by modern digital transceivers such as CC2420.
This leaves the control of packet loss rate and burstiness
lengths completely at the mercy of a jamming decision func-
tion defined by the user, a flexibility usually only available
with software-based simulators. An additional merit of our
interferer is its low intrusiveness to the rest of the network, as
it only transmits for a short interval when a packet is detected.

We demonstrate how the interferer can be used to generate
different loss patterns. The high precision and programmability
of our tool enable a protocol designer to evaluate protocol
robustness against various interference sources. Particularly,
header decoding makes selective blocking possible, allowing
the user to emulate rare link statuses such as asymmetric
bidirectional links. Furthermore, we show how protocol design
flaws can be uncovered by using the interferer to explore
protocol states.

The rest of the paper is organized as follows. Section II
discusses related work; Section III and IV show our design
and implementation of the interferer; We show the use of our
tool in Section V. We discuss the limitation of the tool in
Section VI and draw our conclusions in Section VII.

II. RELATED WORK

A number of previous work studied jamming attacks
launched by normal sensor radios, a malicious form of in-
tentional interference, from a defender’s perspective. Law
et al.’s link layer jamming analysis showed that collection
of packet timing statistics allowed an intelligent jammer to
infer the timing specification of a MAC protocol to carry
out energy-efficient attacks [7], [8]. Xu et al. compared four
MICA2-based jammers, including a reactive one based-on
signal strength sensing, and showed that the reactive jammer
posed a particularly high threat for its high blocking rate and
small energy footprint [9]. Wood et al. studied the threats
by a number of IEEE 802.15.4 PHY layer jamming attacks,
including our SFD detection-based mechanism, and developed
respective defense measures [10].
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Boano et al. invented a convenient interference generator
based on the CC2420 radio’s continuous transmission mode,
shedding light on link behaviors at the presence of a strong,
local interference [6]. Exploiting the same hardware technique,
JamLab [11] further enables the user to approximately repro-
duce the power trace recorded from real interference sources,
which facilitates repeatable testbed experiments. Reconstruc-
tion of the “crime scenario” requires fast, high-resolution spec-
trum scanning and precise transmission power control, which
JamLab achieves by utilizing the CC2420 radio transceiver’s
maximum raw capacity and applying data compression to
power samples. Our reactive interferer enables the user to
manipulate individual packet receptions to control a specific
link’s loss pattern, which can be used to answer hypothetical
questions related to robustness design of protocols. Operating
on an abstraction level above JamLab, our interferer does not
require intensive signal processing, and it is less intrusive to
the rest of the network than an active interferer.

III. D ESIGN

Our interferer is usually placed within the mutual transmis-
sion range of two communicating nodes, to ensure a suffi-
ciently large link budget for reliable detection and destruction
of packets that travel over the link. It operates in sniffer mode
most of the time, listening to the channel; when a packet
is detected, it queries a jamming decision function which
determines whether to intervene the ongoing communication.
Figure 1 illustrates the sniffer and interferer modes.
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Fig. 1. The interferer first sniffs a packet, before intervening its reception
by sending a jamming signal.

A. SFD Sniffer

For incoherent digital receivers, frame synchronization usu-
ally relies on detection of a synchronization header agreedwith
the transmitter before hand. For both IEEE 802.11b and IEEE
802.15.4, the synchronization header consists of a preamble
sequence followed by a fixed start-of-frame delimiter (SFD).
SFD detection is the result of correct symbol demodulation,
thus is more reliable than carrier sensing methods purely
based on received signal strength. For an IEEE 802.15.4-
compliant receiver such as CC2420, automatic detection of

the preamble sequence and the SFD (4 zero bytes followed
by 0x7A) triggers the start of a packet reception procedure
that writes the rest of the decoded data into an RX FIFO.
When two receivers detect the same packet, both start this
process synchronously. The lowest time-line of Figure 2 shows
how a second, unintended receiver, in this case our interferer,
sniffs a incoming packet after successful synchronizationwith
the transmitter’s preambles and SFD. A necessary condition
for successful detection is that the received signal strength is
above the sensitivity of the interferer (-95 dBm for CC2420).
Figure 2 shows the timing of the interference generation.

B. Interference Transmission

Generation of interference from a half-duplex radio requires
the interferer to switch from receiving state into transmission
state. For CC2420, the RX-TX switch time is determined by
the settling time of the frequency synthesizer. The transmission
of the interference signal only needs to overlap a portion of
the packet payload in order to cause a checksum error at the
receiver.

In principle, successful destruction of the target packet
requires a sufficiently strong interference signal to degrade
the receiver’s (SNIR) below its co-channel rejection threshold
(-3 dB for CC2420). In reality, due to a certain degree of
delay capture effect, the interference signal needs a smallextra
power margin, compared with the original transmitter, in order
to destroy the reception reliably.

C. Jamming Decision Function

Our interferer features a user customizable jamming deci-
sion function, which can selectively bypass certain detected
packets. The function can be used to implement an arbitrary
kind of loss model, turning a perfectly connected link into a
partially connected link characterized by certain loss proba-
bility and burstiness. We demonstrate the use of a number of
jamming decision functions in Section V.

D. Optional Header Decoding

In additional to SFD detection, our sniffer can choose to
further decode the following PHY header, which provides
more options for the user to be selective about which packetsto
block. For IEEE 802.15.4, the PHY header consists of an 8-bit
packet length field. The interferer may even be used to decode
the following MAC header to intercept address information,
which enable more complex manipulation.

IV. I MPLEMENTATION

The sniffing and interference generation functions of our
reactive interferer can be directly implemented as an interrupt
service routine (ISR) inside the radio driver. We have chosen
to add these additional functions to the Contiki operating
system’s CC2420 radio driver. To enable fast packet detection,
we set CC2420s clear channel assessment (CCA) to the
SFD mode, by configuring CC2420sMDMCTRL0register to
CCA MODE 2. Meanwhile, we enable the MCUs interrupt
vector for the CCA pin, so that a distinct hardware interrupt
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Fig. 2. Interferer sniffs the channel to synchronize with any packet using SFD detection, and then switches into transmission mode to send a short blocking
signal to corrupt the payload, which forces the intended packet receiver(s) to drop the packet.

TABLE I
KEY PARAMETERS OF THE REACTIVE INTERFERER

Minimum PHY payload length of target packet 3 bytes
Sender-interferer delay 352 µs
Minimum effective jam burst length 312 µs
Interferer TX power margin over sender 5 dB

is raised as soon as an SFD is detected. The interferer can be
reversed to a normal receiver by disabling this special CCA
interrupt.

Within the CCA ISR, the user can optionally wait to
retrieve extra data from the RX FIFO, before passing them
to the jamming decision function. If the function returns
true, the radio switches to TX state to transmit a continuous
jamming signal generated using CC2420’s modulated carrier
transmission mode. We essentially reuse the power-adjustable
jammer by Boano et al. [6], but only enable the transmission
for a burst period of about312µs, so as to minimize both
channel occupation and processing delay. The waveform of the
jam signal is modulated carrier. To prepare for the next sniff,
we flush the RX FIFO before re-enabling the CCA interrupt.

Because of its simplicity, the overhead in terms of code
and memory space of the interferer is negligible, and the
processing delay in largely determined by the complexity
jamming decision function.

We summarize the key parameters of the reactive interferer
in Table I.

V. EVALUATION

Our evaluation experiments consist of a set-up of 3 Tmote
Sky nodes: a sender, a receiver and an interferer, all placed
within mutual transmission ranges. When the interferer is
in sniffer mode, the sender-receiver pair sees a perfectly
connected link; when the interferer is in transmission mode,
the link is blocked completely, due to the interferer’s high
power margin over the transmitter. We first showcase how a set
of basic jamming decision functions can yield partial unidirec-
tional links with precisely-controlled packet loss rates (PLR).
We then further show how to manipulate partial failures on a
bidirectional link that runs a reliable link layer retransmission
protocol, which enables us to explore all protocol states and
evaluate the protocol’s robustness.

A. Unidirectional Link

In this experiment we show that it is possible construct a
lossy link between a transmitter-receiver pair, and that its loss
pattern can be precisely controlled by applying different jam-
ming decision functions to block portions of the transmissions.
The transmitter sends a sequence of packets to the receiver,
each embedding a unique sequence number; the receiver prints
out the seqno. of received packets, whereby a missing seqno.
identifies a unreceived packet.

For convenience, we use theidentified broadcastprimitive
provided by Contiki’s Rime stack to implement a unidirec-
tional link [12]. The packet sequence consists of frames of
50-byte sizes, sent at 128 Hz rate. The interferer is con-
figured to react on SFD detection without additional header
decoding. Arbitrary PLR can be realized by insertion of a
jamming decision function between the detection and interfer-
ence transmission function to “filter out” specific packets.To
demonstrate the potential diversity in achievable loss patterns,
we implement 3 different jamming decision functions, all
emulating a link with a 25% PLR but suffering different
degrees of bursty losses. The first function emulates a strong
interference source emitting short, periodic power spikes, such
as a WiFi access point, which causes a one loss in every four
packets. The second function emulates a similar interference
source, which emits at double intensity but at half frequency,
resulting bursty losses of two packets in a row. The third
function uses a pseudo random number generator to model a
link as a Bernoulli process with a 0.25 loss probability for each
individual packet. Figure 3 shows the receiver’s observed link
connectivity status over a period of 160 packets, when exposed
to the three emulated interference sources. Even under a high
packet rate of 128 pks/s, our interferer only requires an average
channel duty cycle of 1% to incur 25% losses. An active
interferer would need to transmit on 25% duty-cycle in order
to achieve the same PLR, regardless of the actual packet rate.
But a high duty-cycle transmitter potentially violates regional
ISM band regulations.

B. Bidirectional Link

Data delivery over a multihop sensor network usually re-
quires a link layer unicast component to relay data packets
through each hop on the path. To enhance robustness against
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Fig. 3. Three lossy unidirectional links between by the sametransmitter-
receiver pair, whose loss patterns are emulated by different jamming decision
functions.

occasional link failures due to local channel fluctuations,
a packet is usually buffered by an intermediate node and
retransmitted to its next-hop destination when an expectedac-
knowledgment packet from the latter does not arrive. Exchange
of pairs of data and acknowledgment packets forms a traffic
pattern, where a communication failure in either packet results
in a further retransmission. Retransmissions of a data packet
usually repeat a number of times up to a maximum count, then
the packet is dropped. Depending on when a failure occurs on
the bidirectional link, this recovery mechanism can traverse
along different paths of an internal protocol state machine.
We want to demonstrate how a protocol designer can use
the interferer to explore such state traversals for debugging
purposes.

Contiki Rime’s reliable unicast (runicast)module provides
a standard link layer retransmission scheme, with configurable
retransmission intervals and maximum retransmission count. A
runicast acknowledgment packet consists of 18 bytes, includ-
ing packet type, sequence number and address information.
We run a runicast application between a transmitter-receiver
pair, where the transmitter sends data packets at 10 second
intervals, and up to two retransmissions are scheduled, one
second apart. Figure 4a and Figure 4b show the transmitter
and the receiver’s state diagrams respectively. Note that the
receiver distinguishes a duplicate data packet by comparing
its sequence number with the previous packet. We configure
our interferer to decode the IEEE 802.15.4 PHY header, to
reveal the length of the packet being intervened.

1) Symmetric link:We emulate a symmetric bidirectional
link, where both forward and reverse links are lossy. The
interferer uses a Bernoulli jamming decision function to block
20% of all detected packets. We show in Figure 5 a trace
that indicate the packets sniffed by the interfere as well as
the retransmission count observed from the transmitter over
a period of 300 seconds. Data packets and their respective

Send Resend #1 Resend #2

Success

Timeout Timeout

Timeout
Ack

Ack
Ack

Failure

(a) Transmitter

Received

Packet

New packet: send ACK

Duplicate packet: send ACK

(b) Receiver

Fig. 4. State transition diagrams for Rime runicast

acknowledgments are separated by 10-s intervals. In additional
to this pattern, some data packets are clustered with one-
second intervals, indicating repeated transmissions of the same
data. Because loss can occur on both directions, retransmission
can be caused by a lost data packet or a lost acknowledgment.
Throughout the period, all packets make to the receiver after
at most two retransmission attempts.
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Fig. 5. An emulated symmetric link with loss rate of 20% on both directions

2) Asymmetric Link With Forward Loss:We emulate an
asymmetric bidirectional link, where the forward link is lossy
but the reverse link is perfect. The interferer identifies the data
packets sent via the forward link by PHY header decoding,
and then uses a Bernoulli jamming decision function to block
25% of those packets; the acknowledgment packets sent via
the reverse link are left intact. We show in Figure 6 a trace
that show the packets sniffed and retransmission count over
a period of 300 seconds. At the time 260 s, all the three
transmission attempts fail to reach the receiver, thus resulting
in no acknowledgment packet sent.

3) Asymmetric Link With Reverse Loss:We emulate an-
other asymmetric bidirectional link, where the forward link is
perfect but the reverse link is lossy. We configure the interferer
to cause 40% of acknowledgment packets to get lost. In the
trace shown in Figure 7, lost ACK packets cause additional
retransmissions of the buffered data packet.
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Fig. 6. An emulated asymmetric link with 25% forward loss
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4) Debugging Protocol Flaws:The runicast module con-
tains a relatively simple state machine, which we are able to
traverse fully in short time. To our surprise, despite the sim-
plicity of the protocol logic, we discovered two programming
errors in the implementation. When we experimented with
a fully blocked reverse link, the sniffer observed excessive
transmissions of packets after the maximum retransmission
count was reached. After investigating the code, we found the
problem was caused by redundant triggering of the retransmis-
sion timer, one from the runicast module and the other from
the underlying stubborn unicast module. This “harmless” bug
did not affect the overall function, and had escaped the nightly
automatic tests in the Contiki simulator, because the simulator
only verified positive messages from the top application layer.

After fixing the excessive retransmissions, we discovered
that while only the reverse link was blocked, the receiver could
receive all new data packets from the forward link, but mistook
them as old redundant packets and discarding them. It turned

out that the problem had arisen from the transmitter’s state
machine. Under normal conditions, the transmitter maintains a
packet sequence number and increments it upon every received
acknowledgment. This is done in a callback function triggered
by the received ACK packet. When a packet fails all retrans-
missions because no ACKs are detected, the incrementation
should instead occur in the ”time out” callback. In our case this
other increment statement was neglected by the programmer,
probably because that code branch had been visited rather
infrequently. The result was that while the ACKs were blocked
the transmitter kept transmitting the same sequence numberfor
new data packets. Only until an ACK was received then the
transmitter’s state machine would switch out of the faulty code
branch. Since such a persistent disconnection of the reverse
link is rare in a dense testbed, this bug appears to have a “self-
healing” property: when link layer retransmissions of a data
packet occasionally fails, it incurs discarding of the nextdata
packet as well, resulting in a bursty loss of two packets at the
network layer, but no worse consequences. Under regression
tests that only measure average end-to-end data delivery rates,
occasional bursty disconnections due to such a flaw at the
link layer is very unlikely to be detected. Our tool has shown
its capability to assist state machine debugging at the lower
protocol layers.

VI. L IMITATIONS

An important limitation of the interferer is its minimum RX-
TX switching time requirement of 192 us, which correponds
to 6 data bytes. A radio transceiver with faster switching
time would allow us to block short packets such as the
IEEE 802.15.4 ACK packets and MAC layer strobes used by
protocols such as X-MAC [13]. Moreover, concurrent packet
transmissions would be missed by the interferer. Another
limiting factor is the effective detection range and effective
inteference range of the transceiver, a compliant radio front-
end module would improve the sensitivity and boost the
transmission power, thus increasing both ranges.

VII. C ONCLUSION

We have developed a reactive interferer to assist WSN
protocol testing and debugging, by emulating different packet
loss patterns with high precision. We show that not only
robustness can be evaluated by applying fine-controlled, in-
tentional interference, tricky implementation flaws in a link
protocols can be more easily uncovered using the tool.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n◦ 224282.
This work has been partially supported by CONET, the Co-
operating Objects Network of Excellence.



REFERENCES

[1] J. Zhao and R. Govindan, “Understanding packet deliveryperformance
in dense wireless sensor networks,” inProceedings of the International
Conference on Embedded Networked Sensor Systems (ACM SenSys),
(Los Angeles, California, USA), pp. 1–13, ACM, 2003.

[2] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region
in low power wireless links,” inSensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE
Communications Society Conference on, pp. 517–526, 2004.

[3] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of
radio irregularity on wireless sensor networks,” inProceedings of The
International Conference on Mobile Systems, Applications, and Services
(MobiSys), (Boston, MA, USA), pp. 125–138, ACM, 2004.

[4] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” inProceedings of the 6th international conference on
Information processing in sensor networks, pp. 21–30, ACM, 2007.

[5] K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis,“The β-factor:
measuring wireless link burstiness,” inProceedings of the International
Conference on Embedded Networked Sensor Systems (ACM SenSys),
(Raleigh, NC, USA), 2008.

[6] C. A. Boano, Z. He, Y. Li, T. Voigt, M. Zuniga, and A. Willig,
“Controllable Radio Interference for Experimental and Testing Purposes
in Wireless Sensor Networks,” inProceedings of the 4th International
Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp), (Zurich, Switzerland), Oct. 2009.

[7] Y. Law, P. Hartel, J. den Hartog, and P. Havinga, “Link-layer jamming
attacks on S-MAC,” inProceeedings of the Second European Workshop
on Wireless Sensor Networks, pp. 217–225, 2005.

[8] Y. W. Law, M. Palaniswami, L. V. Hoesel, J. Doumen, P. Hartel, and
P. Havinga, “Energy-efficient link-layer jamming attacks against wireless
sensor network mac protocols,”ACM Trans. Sen. Netw., vol. 5, no. 1,
pp. 1–38, 2009.

[9] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” inProceedings
of the 6th ACM international symposium on Mobile ad hoc networking
and computing, MobiHoc ’05, (New York, NY, USA), pp. 46–57, ACM,
2005.

[10] A. Wood, J. Stankovic, and G. Zhou, “DEEJAM: Defeating Energy
Efficient Jamming in IEEE 802.15.4-based Wireless Networks,” in The
IEEE Communications Society Conference on Sensor, Mesh andAd Hoc
Communications and Networks (IEEE SECON), June 2007.

[11] C. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, “JamLab:
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