56 research outputs found

    Predictable Real-Time Wireless Networking For Sensing And Control

    Get PDF
    Towards the end goal of providing predictable real-time wireless networking for sensing and control, we have developed a real-time routing protocol MTA that predictably delivers data by their deadlines, and a scheduling protocol PRKS to ensure a certain link reliability based on the Physical-ratio-K (PRK) model, which is both realistic and amenable for distributed implementation, and a greedy scheduling algorithm to deliver as many packets as possible to the sink by a deadline in lossy multi-hop wireless sensor networks. Real-time routing is a basic element of closed-loop, real-time sensing and control, but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature of link/path delays makes the basic problem of computing the probabilistic distribution of path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time routing and may well have to be executed by resource-constrained devices in a distributed manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ delay conditions in real-time routing, but it has been observed that delay-based routing can lead to instability, estimation error, and low data delivery performance in general. To address these challenges, we propose the Multi-Timescale Estimation (MTE) method; by accurately estimating the mean and variance of per-packet transmission time and by adapting to fast-varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we propose the Multi-Timescale Adaptation (MTA) routing protocol; MTA integrates the stability of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data flow control within the DAG to ensure real-time data delivery in the presence of dynamics and uncertainties. We also address the challenges of implementing MTE and MTA in resource-constrained devices such as TelosB motes. We evaluate the performance of MTA using the NetEye and Indriya sensor network testbeds. We find that MTA significantly outperforms existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission cost by a factor of 9.7. Predictable wireless communication is another basic enabler for networked sensing and control in many cyber-physical systems, yet co-channel interference remains a major source of uncertainty in wireless communication. Integrating the protocol model\u27s locality and the physical model\u27s high fidelity, the physical-ratio-K (PRK) interference model bridges the gap between the suitability for distributed implementation and the enabled scheduling performance, and it is expected to serve as a foundation for distributed, predictable interference control. To realize the potential of the PRK model and to address the challenges of distributed PRK-based scheduling, we design protocol PRKS. PRKS uses a control-theoretic approach to instantiating the PRK model according to in-situ network and environmental conditions, and, through purely local coordination, the distributed controllers converge to a state where the desired link reliability is guaranteed. PRKS uses local signal maps to address the challenges of anisotropic, asymmetric wireless communication and large interference range, and PRKS leverages the different timescales of PRK model adaptation and data transmission to decouple protocol signaling from data transmission. Through sensor network testbed-based measurement study, we observe that, unlike existing scheduling protocols where link reliability is unpredictable and the reliability requirement satisfaction ratio can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%) in different network and environmental conditions without a priori knowledge of these conditions, and, through local distributed coordination, PRKS achieves a channel spatial reuse very close to what is enabled by the state-of-the-art centralized scheduler while ensuring the required link reliability. Ensuring the required link reliability in PRKS also reduces communication delay and improves network throughput. We study the problem of scheduling packet transmissions to maximize the expected number of packets collected at the sink by a deadline in a multi-hop wireless sensor network with lossy links. Most existing work assumes error-free transmissions when interference constraints are complied, yet links can be unreliable due to external interference, shadow- ing, and fading in harsh environments in practice. We formulate the problem as a Markov decision process, yielding an optimal solution. However, the problem is computationally in- tractable due to the curse of dimensionality. Thus, we propose the efficient and greedy Best Link First Scheduling (BLF) protocol. We prove it is optimal for the single-hop case and provide an approach for distributed implementation. Extensive simulations show it greatly enhances real-time data delivery performance, increasing deadline catch ratio by up to 50%, compared with existing scheduling protocols in a wide range of network and traffic settings

    High Performance Wireless Sensor-Actuator Networks for Industrial Internet of Things

    Get PDF
    Wireless Sensor-Actuator Networks (WSANs) enable cost-effective communication for Industrial Internet of Things (IIoT). To achieve predictability and reliability demanded by industrial applications, industrial wireless standards (e.g., WirelessHART) incorporate a set of unique features such as a centralized management architecture, Time Slotted Channel Hopping (TSCH), and conservative channel selection. However, those features also incur significant degradation in performance, efficiency, and agility. To overcome these key limitations of existing industrial wireless technologies, this thesis work develops and empirically evaluates a suite of novel network protocols and algorithms. The primary contributions of this thesis are four-fold. (1) We first build an experimental testbed realizing key features of the WirelessHART protocol stack, and perform a series of empirical studies to uncover the limitations and potential improvements of existing network features. (2) We then investigate the impacts of the industrial WSAN protocol’s channel selection mechanism on routing and real-time performance, and present new channel and link selection strategies that improve route diversity and real-time performance. (3) To further enhance performance, we propose and design conservative channel reuse, a novel approach to support concurrent transmissions in a same wireless channel while maintaining a high degree of reliability. (4) Lastly, to address the limitation of the centralized architecture in handling network dynamics, we develop REACT, a Reliable, Efficient, and Adaptive Control Plane for centralized network management. REACT is designed to reduce the latency and energy cost of network reconfiguration by incorporating a reconfiguration planner to reduce a rescheduling cost, and an update engine providing efficient and reliable mechanisms to support schedule reconfiguration. All the network protocols and algorithms developed in this thesis have been empirically evaluated on the wireless testbed. This thesis represents a step toward next-generation IIoT for industrial automation that demands high-performance and agile wireless communication

    Long-Term Stable Communication in Centrally Scheduled Low-Power Wireless Networks

    Get PDF
    With the emergence of the Internet of Things (IoT), more devices are connected than ever before. Most of these communicate wirelessly, forming Wireless Sensor Networks. In recent years, there has been a shift from personal networks, like Smart Home, to industrial networks. Industrial networks monitor pipelines or handle the communication between robots in factories. These new applications form the Industrial Internet of Things (IIoT). Many industrial applications have high requirements for communication, higher than the requirements of common IoT networks. Communications must stick to hard deadlines to avoid harm, and they must be highly reliable as skipping information is not a viable option when communicating critical information. Moreover, communication has to remain reliable over longer periods of time. As many sensor locations do not offer a power source, the devices have to run on battery and thus have to be power efficient. Current systems offer solutions for some of these requirements. However, they especially lack long-term stable communication that can dynamically adapt to changes in the wireless medium.In this thesis, we study the problem of stable and reliable communication in centrally scheduled low-power wireless networks. This communication ought to be stable when it can dynamically adapt to changes in the wireless medium while keeping latency at a minimum. We design and investigate approaches to solve the problem of low to high degrees of interference in the wireless medium. We propose three solutions to overcome interference: MASTER with Sliding Windows brings dynamic numbers of retransmissions to centrally scheduled low-power wireless networks, OVERTAKE allows to skip nodes affected by interference along the path, and AUTOBAHN combines opportunistic routing and synchronous transmissions with the Time-Slotted Channel Hopping (TSCH) MAC protocol to overcome local wide-band interference with the lowest possible latency. We evaluate our approaches in detail on testbed deployments and provide open-source implementations of the protocols to enable others to build their work upon them

    Taming Uncertainties In Real-Time Routing For Wireless Networked Sensing And Control

    Get PDF
    Real-time routing is a basic element of closed-loop, real-time sensing and control, but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature of link/path delays makes the basic problem of computing the probabilistic distribution of path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time routing and may well have to be executed by resource-constrained devices in a distributed manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ delay conditions in real-time routing, but it has been observed that delay-based routing can lead to instability, estimation error, and low data delivery performance in general. To address these challenges, we propose the emph{Multi-Timescale Estimation (MTE)} method; by accurately estimating the mean and variance of per-packet transmission time and by adapting to fast-varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we propose the emph{Multi-Timescale Adaptation (MTA)} routing protocol; MTA integrates the stability of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data flow control within the DAG to ensure real-time data delivery in the presence of dynamics and uncertainties. We also address the challenges of implementing MTE and MTA in resource-constrained devices such as TelosB motes. We evaluate the performance of MTA using the NetEye and Indriya sensor network testbeds. We find that MTA significantly outperforms existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission cost by a factor of 9.7

    Task scheduling mechanisms for fog computing: A systematic survey

    Get PDF
    In the Internet of Things (IoT) ecosystem, some processing is done near data production sites at higher speeds without the need for high bandwidth by combining Fog Computing (FC) and cloud computing. Fog computing offers advantages for real-time systems that require high speed internet connectivity. Due to the limited resources of fog nodes, one of the most important challenges of FC is to meet dynamic needs in real-time. Therefore, one of the issues in the fog environment is the optimal assignment of tasks to fog nodes. An efficient scheduling algorithm should reduce various qualitative parameters such as cost and energy consumption, taking into account the heterogeneity of fog nodes and the commitment to perform tasks within their deadlines. This study provides a detailed taxonomy to gain a better understanding of the research issues and distinguishes important challenges in existing work. Therefore, a systematic overview of existing task scheduling techniques for cloud-fog environment, as well as their benefits and drawbacks, is presented in this article. Four main categories are introduced to study these techniques, including machine learning-based, heuristic-based, metaheuristic-based, and deterministic mechanisms. A number of papers are studied in each category. This survey also compares different task scheduling techniques in terms of execution time, resource utilization, delay, network bandwidth, energy consumption, execution deadline, response time, cost, uncertainty, and complexity. The outcomes revealed that 38% of the scheduling algorithms use metaheuristic-based mechanisms, 30% use heuristic-based, 23% use machine learning algorithms, and the other 9% use deterministic methods. The energy consumption is the most significant parameter addressed in most articles with a share of 19%. Finally, a number of important areas for improving the task scheduling methods in the FC in the future are presented

    Decision-centric resource-efficient semantic information management

    Get PDF
    For the past few decades, we have put significant efforts in building tools that extend our senses and enhance our perceptions, be it the traditional sensor networks, or the more recent Internet-of-Things. With such systems, the lasting strives for efficiency and effectiveness have driven research forces in the community to keep seeking smarter ways to manage bigger data with lower resource consumptions, especially resource-poor environments such as post-disaster response and recovery scenarios. In this dissertation, we base ourselves on the state-of-the-arts studies, and build a set of techniques as well as a holistic information management system that not only account for data level characteristics, but, more importantly, take advantage of the higher information semantic level features as well as the even higher level decision logic structures in achieving effective and efficient data acquisition and dissemination. We first introduce a data prioritization algorithm that accounts for overlaps among data sources to maximize information delivery. We then build a set of techniques that directly optimize the efficiency of decision making, as opposed to only focusing on traditional, lower-level communication optimizations, such as total network throughput or average latency. In developing these algorithms, we view decisions as choices of a course of action, based on several logical predicates. Making a decision is thus reduced to evaluating a Boolean expression on these predicates; for example, "if it is raining, I will carry an umbrella." To evaluate a predicate, evidence is needed (e.g., a picture of the weather). Data objects, retrieved from sensors, supply the needed evidence for predicate evaluation. By using a decision-making model, our retrieval algorithms are able to take into consideration historical/domain knowledge, logical dependencies among data items, as well as information freshness decays, in order to prioritize data transmission to minimize overhead of transferring information needed by a variety of decision makers, while at the same time coping with query level timeliness requirements, environment dynamics, and system resource limitations. Finally we present the architecture for a distributed semantic-aware information management system, which we call Athena. We discuss its key design choices, and how we incorporate various techniques, such as interest book-keeping and label sharing, to improve information dissemination efficiency in realistic scenarios. For all the components as well as the whole Athena system, we will discuss our implementations and evaluations under realistic settings. Results show that our techniques improve the efficiency of information gathering and delivery in support of post-disaster situation assessment and decision making in the face of various environmental and systems constraints

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Studies on efficient spectrum sharing in coexisting wireless networks.

    Get PDF
    Wireless communication is facing serious challenges worldwide: the severe spectrum shortage along with the explosive increase of the wireless communication demands. Moreover, different communication networks may coexist in the same geographical area. By allowing multiple communication networks cooperatively or opportunistically sharing the same frequency will potentially enhance the spectrum efficiency. This dissertation aims to investigate important spectrum sharing schemes for coexisting networks. For coexisting networks operating in interweave cognitive radio mode, most existing works focus on the secondary network’s spectrum sensing and accessing schemes. However, the primary network can be selfish and tends to use up all the frequency resource. In this dissertation, a novel optimization scheme is proposed to let primary network maximally release unnecessary frequency resource for secondary networks. The optimization problems are formulated for both uplink and downlink orthogonal frequency-division multiple access (OFDMA)-based primary networks, and near optimal algorithms are proposed as well. For coexisting networks in the underlay cognitive radio mode, this work focuses on the resource allocation in distributed secondary networks as long as the primary network’s rate constraint can be met. Global optimal multicarrier discrete distributed (MCDD) algorithm and suboptimal Gibbs sampler based Lagrangian algorithm (GSLA) are proposed to solve the problem distributively. Regarding to the dirty paper coding (DPC)-based system where multiple networks share the common transmitter, this dissertation focuses on its fundamental performance analysis from information theoretic point of view. Time division multiple access (TDMA) as an orthogonal frequency sharing scheme is also investigated for comparison purpose. Specifically, the delay sensitive quality of service (QoS) requirements are incorporated by considering effective capacity in fast fading and outage capacity in slow fading. The performance metrics in low signal to noise ratio (SNR) regime and high SNR regime are obtained in closed forms followed by the detailed performance analysis
    • …
    corecore