
Thesis for The Degree of Licentiate of Engineering

Long-Term Stable Communication in Centrally
Scheduled Low-Power Wireless Networks

Oliver Harms

Division of Computer and Network Systems
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2021



Long-Term Stable Communication in Centrally Scheduled Low-Power
Wireless Networks

Oliver Harms

Copyright ©2021 Oliver Harms
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2021.

ii



Abstract

With the emergence of the Internet of Things (IoT), more devices are connected
than ever before. Most of these communicate wirelessly, forming Wireless Sensor
Networks. In recent years, there has been a shift from personal networks, like
Smart Home, to industrial networks. Industrial networks monitor pipelines or
handle the communication between robots in factories. These new applications
form the Industrial Internet of Things (IIoT). Many industrial applications
have high requirements for communication, higher than the requirements of
common IoT networks. Communications must stick to hard deadlines to avoid
harm, and they must be highly reliable as skipping information is not a viable
option when communicating critical information. Moreover, communication
has to remain reliable over longer periods of time. As many sensor locations
do not offer a power source, the devices have to run on battery and thus
have to be power efficient. Current systems offer solutions for some of these
requirements. However, they especially lack long-term stable communication
that can dynamically adapt to changes in the wireless medium.

In this thesis, we study the problem of stable and reliable communication
in centrally scheduled low-power wireless networks. This communication ought
to be stable when it can dynamically adapt to changes in the wireless medium
while keeping latency at a minimum. We design and investigate approaches to
solve the problem of low to high degrees of interference in the wireless medium.
We propose three solutions to overcome interference: Master with Sliding
Windows brings dynamic numbers of retransmissions to centrally scheduled
low-power wireless networks, Overtake allows to skip nodes affected by
interference along the path, and Autobahn combines opportunistic routing
and synchronous transmissions with the Time-Slotted Channel Hopping (TSCH)
MAC protocol to overcome local wide-band interference with the lowest possible
latency. We evaluate our approaches in detail on testbed deployments and
provide open-source implementations of the protocols to enable others to build
their work upon them.

Keywords

Time-Slotted Channel Hopping (TSCH), Central Scheduling, Routing, Op-
portunistic Routing, Synchronous Transmissions, Wireless Sensor-Actuator
Networks, WSN, (Industrial) Internet of Things, IoT, IEEE 802.15.4





Acknowledgment

A PhD is like a big project. In the beginning, you might have a plan. You
might have every step laid out. However, as often in life, planning is great, but
you can never prepare for all contingencies. In case you hit a low, you can try
to pull yourself back on track, but it helps incredibly to have friends, colleagues,
and a supporting supervisor around you. Thus, I would first of all like to thank
my supervisor, Olaf Landsiedel. I would like to thank him for taking me on
this journey towards a PhD and for all the guidance he has offered me. I want
to thank him especially for believing in me even in times I didn’t see myself
continuing this journey. I hope we will continue having exciting discussions on
the next leg of this journey.

I would also like to thank all the colleagues I met during my time at
Chalmers and at Kiel University. Without you, this journey would have been
much harder. I always enjoyed discussions with you on the hallways or during
fika breaks, and I hope you liked them as well. Thank you (in no particular
order) Valentin, Patrick, Dimitris, Christos, Beshr, Babis, Georgia, Bastian,
Thomas, Karl, Hannah, Carlo, and all the other great people I have met so far
during my PhD. Also, a special thanks to Brigitte, Steffi, Gerd, Rebecca, Eva,
Agneta, and all administrative staff making daily work at the university much
more effortless.

Moreover, I want to thank my best friend Marcel, who was always there
for me and always had an open ear. I also want to thank him for his valuable
outside perspective on my research as someone without knowledge in computer
science.

Finally, I want to thank my parent and my sisters who helped me become
the person I am and always were there for me, even if hundreds of kilometers
apart. Thank you!

Oliver Harms
Kiel, November 2021

v





List of Publications

Appended publications

This thesis is based on the following publications:

[A] O. Harms, O. Landsiedel “Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks”
Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), 2020.

[B] O. Harms, O. Landsiedel “(POSTER) Overtake: Opportunistic Rout-
ing and Concurrent Transmissions for TSCH”
Proceedings of the 16th International Conference on Distributed Comput-
ing in Sensor Systems (DCOSS), 2020.

[C] O. Harms, O. Landsiedel “Opportunistic Routing and Synchronous
Transmissions Meet TSCH”
Proceedings of the 46th IEEE Conference on Local Computer Networks
(LCN), 2021.

vii



viii

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] A. Varshney, O. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans,
T. Voigt “LoRea: A Backscatter Architecture That Achieves a Long
Communication Range”
Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems (SenSys), 2017.

[b] O. Harms “C-TSCH: A Centralized Scheduler for TSCH”
Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), 2019.
Poster Abstract

[c] O. Harms, O. Landsiedel “Competition: Centrally Scheduled Low-
Power Wireless Networking for Dependable Data Collection”
Proceedings of the International Conference on Embedded Wireless Sys-
tems and Networks (EWSN), 2019.
Poster Abstract



Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Low-Power Wireless Networks . . . . . . . . . . . . . . . . . . . 3

1.2.1 Communication in Low-Power Wireless Networks . . . . 4

1.2.2 Broadcast by nature . . . . . . . . . . . . . . . . . . . . 5

1.3 Communication in IEEE 802.15.4 . . . . . . . . . . . . . . . . . 5

1.3.1 Time-Slotted Channel Hopping (TSCH) . . . . . . . . . 5

1.3.2 TSCH Scheduling . . . . . . . . . . . . . . . . . . . . . 7

1.3.2.1 Centralized Scheduling . . . . . . . . . . . . . 7

1.3.2.2 Distributed Scheduling . . . . . . . . . . . . . 8

1.3.2.3 Autonomous Scheduling . . . . . . . . . . . . . 9

1.3.3 Routing in low-power wireless mesh networks . . . . . . 10

1.3.3.1 Tree-based routing: RPL . . . . . . . . . . . . 10

1.3.3.2 Routing in TSCH . . . . . . . . . . . . . . . . 10

1.3.3.3 Opportunistic Routing . . . . . . . . . . . . . 11

1.3.3.4 Lack of Routing – or – Flooding . . . . . . . . 11

1.3.4 Synchronous Transmissions . . . . . . . . . . . . . . . . 11

1.4 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Paper A – Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks . . . . . . . 13

1.5.2 Paper B – (POSTER) Overtake: Opportunistic
Routing and Concurrent Transmissions for TSCH . . . . 14

1.5.3 Paper C - Opportunistic Routing and Synchronous Trans-
missions Meet TSCH . . . . . . . . . . . . . . . . . . . . 15

1.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 15

ix



x CONTENTS

2 Paper A - Master: Long-Term Stable Routing and Scheduling
in Low-Power Wireless Networks 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Time-Slotted Channel Hopping . . . . . . . . . . . . . . 19
2.2.2 Link quality metric . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Retransmissions . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Centralized Routing and Scheduling with Master . . . 21

2.3.1.1 Centralized Routing . . . . . . . . . . . . . . . 22
2.3.1.2 Transmission Strategies . . . . . . . . . . . . . 22
2.3.1.3 Scheduling . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Master’s Flow-based transmission strategy . . . . . . . 23
2.3.2.1 Window Size . . . . . . . . . . . . . . . . . . . 23
2.3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . 24
2.3.2.3 Flow-based transmissions vs. Flow Centric Pol-

icy (FCP) . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Time Synchronization . . . . . . . . . . . . . . . . . . . 25
2.3.4 System Design . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4.1 Central Logic of Master . . . . . . . . . . . . 26
2.3.4.2 Schedule Distribution . . . . . . . . . . . . . . 26
2.3.4.3 Per node routing layer . . . . . . . . . . . . . . 26
2.3.4.4 Contiki-NG/TSCH Extensions . . . . . . . . . 26
2.3.4.5 Neighbor Discovery and Bootstrapping . . . . 27
2.3.4.6 Header format . . . . . . . . . . . . . . . . . . 27

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1.1 Testbed . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1.2 Metrics, Comparison, and Duration . . . . . . 29
2.4.1.3 Implementation . . . . . . . . . . . . . . . . . 29
2.4.1.4 Channels . . . . . . . . . . . . . . . . . . . . . 29
2.4.1.5 Application Payload and Overhead . . . . . . 29
2.4.1.6 Notations . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Performance of Master’s transmission strategies . . . . 30
2.4.4 Master vs. Orchestra . . . . . . . . . . . . . . . . . . . 31
2.4.5 Long-term stability of Master . . . . . . . . . . . . . . 32

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Paper B - (POSTER) Overtake: Opportunistic Routing and
Concurrent Transmissions for TSCH 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Overtake . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 System Design . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2.1 Master extensions . . . . . . . . . . . . . . . 38
3.2.2.2 TSCH extensions . . . . . . . . . . . . . . . . 38



CONTENTS xi

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1.1 Metrics and Comparison . . . . . . . . . . . . 39
3.3.1.2 Implementation . . . . . . . . . . . . . . . . . 39
3.3.1.3 Testbed . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1.4 Channels and Application Payload . . . . . . . 40

3.3.2 Overtake vs. Sliding Windows . . . . . . . . . . . . . 40
3.3.3 Overtake under node failures . . . . . . . . . . . . . . . 40

3.4 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . 41

4 Paper C - Opportunistic Routing and Synchronous Transmis-
sions Meet TSCH 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Background & Related Work . . . . . . . . . . . . . . . . . . . 45

4.2.1 Time-Slotted Channel Hopping (TSCH) . . . . . . . . . 45
4.2.2 Opportunistic Routing . . . . . . . . . . . . . . . . . . . 46
4.2.3 Synchronous Transmissions . . . . . . . . . . . . . . . . 46

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Autobahn: General Idea . . . . . . . . . . . . . . . . . 48
4.3.2 Routing Set . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Anycast forwarding in Autobahn . . . . . . . . . . . . 49
4.3.4 Active slots in Autobahn . . . . . . . . . . . . . . . . . 50
4.3.5 System Integration . . . . . . . . . . . . . . . . . . . . . 50
4.3.6 Integration in Master’s routing layer . . . . . . . . . . 50

4.3.6.1 Contiki-NG/TSCH extensions . . . . . . . . . 51
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1.1 Testbed and Platform . . . . . . . . . . . . . . 51
4.4.1.2 Metrics, Comparison, and Duration . . . . . . 51
4.4.1.3 Implementation . . . . . . . . . . . . . . . . . 52
4.4.1.4 Channels and Interference . . . . . . . . . . . . 52
4.4.1.5 Application Payload and Overhead . . . . . . 52
4.4.1.6 Routing Sets . . . . . . . . . . . . . . . . . . . 52

4.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Possibility of Synchronous Transmissions in TSCH . . . 53
4.4.4 Performance without Interference . . . . . . . . . . . . . 54
4.4.5 Performance under Interference . . . . . . . . . . . . . . 55
4.4.6 Autobahn vs. Orchestra . . . . . . . . . . . . . . . . . 56
4.4.7 Recovery from interference . . . . . . . . . . . . . . . . 57
4.4.8 Long-term stability of Autobahn . . . . . . . . . . . . 57

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59



xii CONTENTS



List of Figures

1.1 2.4 GHz channel mapping . . . . . . . . . . . . . . . . . . . . . 4
1.2 Example of a TSCH schedule . . . . . . . . . . . . . . . . . . . 6

2.1 Overview of Master . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Sample TSCH schedule . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Sample schedules for different retransmission strategies . . . . . 21
2.4 Example of 2 flows sharing a common link . . . . . . . . . . . . 26
2.5 Evaluation of Master . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Long-term evaluation of Sliding Windows . . . . . . . . . . . . 32

3.1 Overview of Overtake . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Sample schedule for Overtake . . . . . . . . . . . . . . . . . . 38
3.3 Evaluation of Overtake . . . . . . . . . . . . . . . . . . . . . 39

4.1 Comparison of Autobahn and established centralized TSCH
scheduling approaches . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Local testbed of 500m2 . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Autobahn and Master without interference . . . . . . . . . . 54
4.4 Autobahn and Master under interference . . . . . . . . . . . 55
4.5 Comparison of Autobahn and Orchestra . . . . . . . . . . . . 56
4.6 Long-term stability evaluation of Autobahn . . . . . . . . . . 58

xiii



xiv LIST OF FIGURES



List of Tables

2.1 Maximum latency for each flow in Figure 2.5c . . . . . . . . . . 31

xv



xvi LIST OF TABLES



1

Introduction

Communication is an essential part of humanity. Without communication,
modern civilizations are not imaginable. Through communication, we share
information with each other. We use this information to generate meaningful
conclusions influencing our further actions. While the information we share can
be anything, humans are particularly interested in data. Data are observable
units of information like, i.e., temperature, humidity, light (day or night), or
answers to potentially existential questions or threats, like whether somewhere
is a fire or not. Quantifying this data to be able to share it either needs a
human observer with or without tools like a thermometer. While this method
of quantifying data and communicating it to other humans is possible, it is
somewhat limited in the amount of collectible data.

To overcome limitations, humans build tools helping them to fulfill their
tasks. One of these tools is sensors. Sensors are electronic devices that do
not need a human to read a value. Instead, a computer can collect the
relevant data often with even higher precision and higher reliability. To
communicate these sensor data, we can rely on human-to-human communication.
However, with the growing amount of data and automation, computers should
be able to communicate these data to other computers independent of humans.
Fortunately, we have a globally connected network of computers at our hands –
the Internet. The Internet allows all connected devices to communicate with
each other. However, many sensors are connected to low-power devices (e.g.,
microcontrollers) not even capable of directly communicating over the Internet.

To nonetheless communicate the data, low-power devices often contain a
low-power radio. This radio enables the devices to send the data either to a
more powerful device connected to the Internet or another device connected to,
e.g., an actuator. Actuator devices control processes, e.g., opening a valve or
turning down the heater. Certain sensor data might only be relevant to these
devices and thus does not need to be collected. These sensor and actuator
devices are often personal devices, like smart light bulbs or thermostats found
in the context of Smart Home or devices like smartwatches that communicate
with a phone.

All these kinds of communicating low-power devices form networks, the
so-called Internet of Things (IoT). IoT devices often operate on batteries.

1



2 CHAPTER 1. INTRODUCTION

Therefore, they must not waste energy. The biggest consumer of these devices
is commonly neither the microcontroller nor the sensor, but the radio. A radio
has a current of several milliamperes (e.g., 6.4 mA [1, p. 58], or 24 mA [2, p. 10]),
emptying a coin cell battery (200 mA) in under 32 hours. Therefore, a long
lifetime of IoT devices is strongly related to the device’s communication, and
thus, to the used communication protocols.

Industrial Internet of Things (IIoT)

In recent years, the Internet of Things has gained more and more traction
outside of the private context, in industrial settings, or as a part of public
infrastructure. There are smart meters that measure the electricity consumption
of customers of an electricity provider and communicate this data back to
the provider. Intelligent parking sensors notify the owner of the parking if
a car has exceeded the maximum parking duration. Manufacturing facilities
have humans and machines working next to each other. In such a setting, a
robot might have to stop if a human enters a specific area. There, a sensor
has to communicate this presence to the robot. Alternatively, in a fully
automated factory, a machine has to notify another one that it can take over,
or a machine should be able to report problems to an observer. Furthermore,
sensors monitoring infrastructure like pipelines need to order maintenance if
something unexpected, like a leakage, happens. All of these IoT scenarios have
much higher requirements than personal devices, and we commonly refer to
them as the Industrial Internet of Things (IIoT).

While in the context of Smart Homes, in the worst case, a sensor reading is
not communicated, or turning on the light takes a bit longer than anticipated,
this behavior is unacceptable in most industrial contexts. There, systems are
often critical, and failed or delayed communication can lead to a robot harming
a human or a pipeline’s leakage, damaging the environment. Therefore the
Industrial Internet of Things has specific requirements regarding reliability
and latency towards communication systems. In addition to high reliability
and low latency requirements, communication systems for the IIoT should
offer long-term stability. If communication is not stable throughout time and
requires frequent updates, it again negatively impacts the communication’s
overall reliability. Meeting these requirements is not a trivial task, especially
for a wireless network. Such a network shares the available spectrum with
other communication and thus has to handle all kinds of interference.

Building upon these communication requirements for industrial applications,
we envision smart, connected industrial systems. These systems shall be
software-based and thus flexible in making intelligent decisions to communicate
data from sensors to actuators successfully.

In this thesis, we design, implement and evaluate protocols for the Industrial
Internet of Things achieving long-term stable, reliable communication with low
latency and overcoming interference. We build these protocols for low-power
wireless networks with limited energy budgets.



1.1. CHALLENGES 3

1.1 Challenges

Many IIoT applications have strict latency and reliability requirements for
data communication. Moreover, several concurrent communications need
to reach their destinations at similar points in time. Unreliable or delayed
communication could delay processes or could hinder the detection of faults,
leading to devastating results in the worst case. Moreover, communication
between these devices has to coexist with other wireless communication, like
WiFi or Bluetooth, and withstand unavoidable wireless interference.

To meet the strict requirements of industrial applications, efficient scheduling
algorithms are necessary. Current systems and algorithms address some of these
requirements but solve the challenges only in part. For example, Orchestra [3]
offers highly reliable communication while sacrificing latency. Palattella et
al. [4], Saifullah et al. [5], and Ferrari et al. [6] achieve acceptable reliability
and low latency. However, they either require a wireless spectrum (almost) free
of interference [4, 5], or allow only a single communication at a time [6].

In addition to the challenges above, energy efficiency is another crucial
component for efficient wireless protocols. While communication devices at-
tached to robots can share a robot’s energy source, other sensors will be
battery-powered. For example, sensors monitoring a pipeline, detecting fires,
or operating in remote locations have to be powered by batteries or harvest
their energy through, e.g., solar. As many devices will be powered this way, a
protocol has to by design ensure power efficiency. Moreover, communication
in these systems should be stable over long periods to minimize the amount
of maintenance, like installing a new schedule and keep highly reliable at all
times.

While there has been much work on low-power wireless networks in the
past, existing protocols that allow concurrent communications, achieve high
reliability, and low latency, lack the flexibility to act upon local changes of the
wireless medium during communication or between individual transmissions.
Most current systems cannot immediately adapt to changes in interference.
However, as one can never plan the exact amount of interference or its pattern,
a stable solution should offer flexibility to adapt to it.

We derive the following goals from these challenges and observations: We
want to provide a scheduling system and algorithms that ensure long-term
stable, reliable communication in industrial wireless sensor networks while
keeping latency as low as possible. We will design, implement and evaluate
algorithms and set these into perspective to state-of-the-art solutions.

1.2 Low-Power Wireless Networks

Low-power wireless networks are networks that usually allow the communication
of low amounts of data over various distances. There are, on the one hand,
wireless personal area networks (WPAN) building upon the physical layers of,
e.g., Bluetooth Low Energy (BLE), IEEE 802.15.4, or Ultra-Wideband (UWB).
These networks cover short distances of a couple of meters with data rates of
hundreds of kbit/s up to several Mbit/s. On the other hand, low-power wide-
area networks (LPWAN) build on physical layers like LoRa or Sigfox. These



4 CHAPTER 1. INTRODUCTION

37 0 10 1138 3936

1 6 11

11 15 20 25 26

24
02

24
00

BL
E

80
2.
15

.4

Frequency [MHz]

24
05

24
12

24
25

24
37

24
62

24
50

24
75

24
80

24
83

80
2.
11

Figure 1.1: Channel mapping of BLE, IEEE 802.15.4, and IEEE 802.11 (WiFi)
sharing the 2.4 GHz frequency band. BLE and IEEE 802.15.4 channels are 2
MHz wide with 2 MHz and 5 MHz spacing between center frequencies of adjacent
channels, respectively. WiFi channels are 22 MHz wide. Blue: primary BLE
advertising channels. Red: common, non-overlapping WiFi channels. Orange:
commonly used 4-channel hopping sequence in IEEE 802.15.4 TSCH.

networks allow city-wide networks with transmission distances of kilometers
with data rates of a few kbit/s.

The work we present in this thesis builds upon the IEEE 802.15.4 standard
for low-power wireless networks. Therefore, we focus on the first category of
physical layers, operating in the license-free 2.4 GHz frequency range.

1.2.1 Communication in Low-Power Wireless Networks

In low-power wireless networks, devices often operate on battery. Therefore,
communication has to be energy efficient. A common measure for achieving
this is a device’s maximum transmit power, which is also regulated by laws.
However, the standard transmit power usually stays well below the legal limit.
With a standard value of 0 dBm (equaling 1 mW), communication in the
license-free 2.4 GHz band can only cover short distances. Therefore, a sensor
cannot necessarily communicate directly with an actuator or with a data sink.
This limited communication range is solvable by base stations, like in cellular
networks (e.g., mobile phones) or Smart Home networks. These base stations
relay data from one device to another or send the data over the internet to
another base station to deliver the data. One downside of a system using base
stations is the additional infrastructure necessary in addition to sensor and
actuator nodes. Another approach for solving the limited communication range
is mesh networks. In these networks, nodes between the data source and the
destination act as a relay and receive and forward the data. Networks using this
approach do not need additional infrastructure. They only require a sufficient
amount of sensor or actuator nodes between potential senders and receivers.



1.3. COMMUNICATION IN IEEE 802.15.4 5

1.2.2 Broadcast by nature

Mesh networking is specific to wireless networks, as these networks are broadcast
by nature. Like with human speech, any wireless device in the sender’s
vicinity tuned to the correct frequency can at least sense the presence of
communication. Using the correct wireless technology (or a software-defined
radio (SDR)), it can even receive the sent data. Therefore, relaying this data
to extend the communication range is possible. However, this also means
that no communication is independent of other signals sent over the frequency
portion of the medium. All signals will interfere with signals of other devices.
Therefore, it is essential to schedule communication to avoid interference or
find measures to successfully communicate even in the presence of unavoidable
interference or interference outside of an application’s control. Figure 1.1
shows the communication channels for three wireless technologies (BLE, IEEE
802.15.4, and WiFi) sharing the 2.4 GHz frequency band. While we can tackle
interference within a network, we have no control over the communication of
other applications.

1.3 Communication in IEEE 802.15.4

After introducing the general area of low-power wireless networks and their
communication, we continue with a closer look at communication in IEEE
802.15.4. IEEE 802.15.4 is a standard for low-rate wireless networks introduced
in 2003 [7]. It defines different frequency ranges and modulation schemes.
However, its 2.4 GHz physical layer with direct-sequence spread spectrum
(DSSS) as modulation scheme is the most prominent one and the one we
use. This layer defines 16 communication channels (11-26) between 2400 and
2483.5 MHz (see Figure 1.1) with a communication bitrate of 250 kbit/s. The
direct-sequence spread spectrum modulation scheme uses a wider spectrum
than necessary for the data rate and thus is less affected by interference than
other modulation schemes.

Next to the definition of the physical layer, the IEEE 802.15.4 standard
also defines the medium access control (MAC) layer. While the initial MAC
layer was Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA),
the 2012 IEEE 802.15.4 amendment proposed Time-Slotted Channel Hopping
(TSCH) [8] as a new MAC layer. Since 2015 TSCH has been the standard
MAC layer protocol for IEEE 802.15.4.

1.3.1 Time-Slotted Channel Hopping (TSCH)

Time-Slotted Channel Hopping (TSCH) is a MAC layer protocol for IEEE
802.15.4. Its design builds on the Time-Synchronized Mesh Protocol (TSMP),
which is part of the previous industry standards ISA100.11a [9] and Wire-
lessHART [10]. TSCH builds time-synchronized mesh networks. It combines
the medium access methods of Time-division multiple access (TDMA) and
Frequency-division multiple access (FDMA) and adds a pseudo-random channel
hopping mechanism. Communication in TSCH happens in distinct time slots
in one of the up to 16 frequency channels (see Figure 1.1), allowing up to 16
parallel communications in close vicinity to each other.



6 CHAPTER 1. INTRODUCTION

D

C

E

B

A

(a) Sample network.

E → D A→ B
EB C→ B D→ C B→ D D→ E EBch

an
ne
lo
ffs
et

timeslot

0
1

0 2 3 41 5

2

15

(b) Sample TSCH schedule.

Figure 1.2: Example of a TSCH schedule. The schedule contains three flows
(A→E, E→C, and C→B) that use dedicated slots for communication and one
shared beacon slot. The schedule has a slotframe length of 5 slots, therefore,
slot 5 is a repetition of slot 0.

TSCH slots

TSCH time slots have a standard length of 10 ms. Each time slot has a specific
role. It is either dedicated, shared, or empty. In certain implementations, like in
the one of the Contiki-NG [11] operating system, a fourth role, beaconing (only),
is available. In the case of a beaconing slot, nodes can send Enhanced Beacons
(EB) containing control information for the network- and time-synchronization.
These beacons are essential for maintaining the network’s connections and time
synchronization. In a dedicated slot, a node either receives or transmits data.
The transmitting node can either communicate with a specific node (unicast)
or with all nodes in range (broadcast). In the case of unicast transmissions, the
receiver acknowledges the reception within the same slot. A shared slot allows
any communication of the above, beaconing, unicast, and broadcast messages.
As all possible senders share the same slot, these slots use the CSMA/CA
back-off algorithm to limit collisions. Nodes that do not have anything to
transmit in this shared slot listen for incoming packets. If a slot has none of
the above roles, it is empty. In empty slots, the node’s radio remains off to
save energy.

TSCH groups slots in slotframes. Each of these slotframes has a priority.
When two or more slotframes have an active slot simultaneously, TSCH chooses
the one with the highest priority. For example, slotframes with beaconing
slots often have the highest priority as they are necessary for maintaining the
network. All other communication is distributed over the other slotframes. All
slotframes are continuously repeated. As slotframes can have different sizes, not
always the same slots of different slotframes overlap. All slotframes together
form a TSCH schedule. Figure 1.2 shows an example of such a TSCH schedule.

Channel Hopping

Next to the availability of up to 16 frequency slots (FDMA) that allow the
execution of up to 16 TSCH slots in parallel, TSCH uses the concept of
channel hopping to withstand narrow-band interference. In channel hopping,
all active channels cycle through a pseudo-random hopping sequence. Through
this hopping sequence, every channel uses a different physical frequency at
subsequent time slots. The hopping sequence has to include at least as many
frequencies as parallelly active channels, with a maximum of 16 frequencies.



1.3. COMMUNICATION IN IEEE 802.15.4 7

Thus, for every nth slot (n = number of frequencies), a channel uses the
same physical frequency for transmission. For example, in a common hopping
sequence of four channels, TSCH cycles through the channels 15, 25, 26, and 20.
These channels belong to frequencies that do not overlap with frequencies of the
three common non-overlapping WiFi channels (1, 6, and 11) (see Figure 1.1).

1.3.2 TSCH Scheduling

Scheduling in the context of TSCH is the allocation of active slots in a network.
A schedule has to include slots for beaconing and one-to-one communication.
The communication slots can be shared or dedicated. In the case of dedicated
slots, a schedule has to ensure that relevant neighboring nodes can communicate
to propagate data.

There are three classes of schedulers to create a TSCH schedule. These are
centralized, autonomous, and distributed schedulers. Centralized schedulers use
global knowledge to plan communications slots at the edge or cloud, separated
from the actual network. Distributed schedulers, on the other hand, use
local knowledge between neighboring nodes to negotiate communication slots.
In contrast to both of these, autonomous schedulers operate without prior
knowledge of the network topology and allocate slots for each node independent
of its neighbors.

1.3.2.1 Centralized Scheduling

The oldest class of TSCH schedulers are centralized ones. Centralized schedulers
combine the routing of traffic in a mesh network with the actual scheduling of
communication slots. While we discuss routing in mesh networks in more detail
in Chapter 1.3.3, we can define a route as the order of transmissions (hops) that
are necessary for end-to-end communication between a specific sensor-actuator
pair. This scheduling problem of allocating communication resources (i.e.,
sending and receiving slots) to meet an application’s requirements is NP-hard
(cf. [5]).

Centralized schedulers operate on global knowledge. Therefore, they collect
information about the network, especially about the quality of the wireless
links. We commonly measure the quality of a link using the link’s packet
reception rate, or its inverse, the expected transmission count (ETX) [12]. The
latter is the expected number of transmissions necessary to transmit a packet
over the specific link successfully. With this global knowledge of the network
topology, the centralized scheduler can combine routing and scheduling to
form a schedule accommodating the communication requirements of each node.
Modern centralized schedulers commonly add retransmission slots for lossy links
with an expected number of transmissions larger than one (ETX > 1). After
computing the schedule, a central node disseminates it through the network to
all nodes.

There are many different bodies of work proposing centralized scheduling
algorithms for data collection and end-to-end communication. Many of these
algorithms target different aspects like energy efficiency [13], or throughput
maximization [14] but only provide simulation results. As our work focuses on
scheduling systems with end-to-end communication on actual deployments, we
limit ourselves to mostly discussing these. One of the first schedulers for TSCH



8 CHAPTER 1. INTRODUCTION

is TASA [4]. It is a traffic-aware protocol, but it assumes interference-free
channels and does not include retransmissions in its schedule. In a second
work, Palattella et al. [15] propose a mathematical analysis and method of
computing the minimum number of active slots within a network. Other early
works, building especially on WirelessHART [10], make the same assumptions.
A noteworthy one is a paper introducing the C-LLF [5] scheduling algorithm.
In this paper, Saifullah et al. [5] present a scheduling algorithm focusing
on as high as possible schedulability for large amounts of deadline-aware
communications. Moreover, they discuss and prove the scheduling problem to
be NP-hard. Gunatilaka et al. [16] also focus on achieving more communications
in a network by using the same channel for multiple communications in the
same time slot if these communications happen physically far enough apart.

While the above protocols achieve high amounts of communications in a net-
work, they rely on interference-free channels and thus do not use retransmissions.
AMUS [17] is a protocol adding backup retransmission slots for vulnerable links
in otherwise empty slots of the schedule. Gaillard et al. [18] propose another
method of retransmissions as an extension to TASA. They create schedules
with hop-based retransmissions, shifting the focus from schedulability towards
reliability.

Darbandi et al. [19] propose the path collision-aware least-laxity first (PC-
LLF) scheduling algorithm, another scheduling algorithm designed explicitly
for TSCH networks which Rugamba et al. [20] implement as part of a central
scheduler. Moreover, they describe a method of distributing such a schedule to
nodes in a centrally scheduled network.

All the work above uses no retransmissions or slot-based retransmissions
and designated pairs of nodes communicating with each other. The first one
deviating from slot-based retransmissions is the flow-centric policy (FCP) [21].
That approach interprets end-to-end communications as a single entity (a flow),
adding retransmissions wherever needed along the path. This approach has a
certain design overlap with our first paper.

1.3.2.2 Distributed Scheduling

Instead of centralized schedulers operating on global knowledge, there are
distributed ones operating on local knowledge. These schedulers negotiate
communication cells between neighboring nodes during runtime. Moreover,
they perform only the scheduling between neighbors and are independent of
the routing of traffic.

Tinka et al. [22] present two distributed scheduling algorithms for networks
constantly changing due to mobility. They present an algorithm for continu-
ously announcing a node’s presence and another one distributing scheduling
information for quickly forming a network-wide schedule. Another early dis-
tributed scheduler is DeTAS [23], a traffic-aware distributed scheduler building
collision-free schedules along a routing tree. Newer distributed TSCH scheduler
built upon 6TiSCH, an IPv6 stack extension for IEEE 802.15.4 TSCH. The
6TiSCH minimal scheduling algorithm [24] uses a single cell in a schedule shared
over all nodes. The Minimum Scheduling Function (MSF) [25] uses a minimal,
shared cell for beaconing, autonomous cells for unicast communications to a
specific cell when no other cell is available, and negotiated cells for the main



1.3. COMMUNICATION IN IEEE 802.15.4 9

communication. The autonomous cells follow an approach of the autonomous
scheduler Orchestra [3]. The Low-Latency Scheduling Function (LLSF) [26]
schedules cells for multi-hop communication closer together to allow forwarding
traffic immediately after reception. Domingo-Prieto et al. propose a PID-based
scheduling solution that adds or removes cells from a schedule dependent on
traffic demand and network state to counteract network changes and allow
non-periodic and bursty [27] traffic. Low-latency Distributed Scheduling Func-
tion (LDSF) [28] achieve lower latency by splitting slotframes into shorter
blocks and introducing retransmission options in consecutive blocks., focusing
on improving latency in distributed TSCH. Palattella et al. [29] propose an
algorithm matching the number of cells between nodes to the actual demand.
Similarly, OST [30], another distributed scheduler with traffic awareness, al-
locates slots for each directional link and adapts its period according to the
amount of traffic. While the previous works focus on low-latency and reliable
communication, Jung et al. [31] propose a solution balancing latency, degree of
activity of each node and without collisions to achieve a long network lifetime
and high quality of service.

1.3.2.3 Autonomous Scheduling

The last class of TSCH scheduling algorithms is autonomous schedulers. While
the other two scheduler classes either use global knowledge or local knowledge to
make a scheduling decision, autonomous scheduling algorithms operate without
knowing the network topology at all. Autonomous schedulers neither centrally
plan communications and allocate resources nor negotiate resources between
neighbors in a distributed fashion. Instead, they provide specific slots for each
possible sender, receiver, or link in a network. By the availability of distinct
slots for each node, autonomous schedulers can achieve high reliability of over
99.99%.

A prominent example of an autonomous scheduler is Orchestra [3]. Orchestra
is a best-effort autonomous scheduler that uses sender-based or receiver-based
communication within time slots reserved for certain groups of nodes. Orchestra
requires a hash function to determine which nodes can send in which slot.
DiGS [32,33] adds autonomous scheduling to otherwise central WirelessHART
networks adding robustness through path diversity introduced by devices
selecting their own routing path. Oh et al. [34] propose Escalator, focusing
on minimizing transmission delays in convergecast scenarios by allocating
consecutive time slots along a packet’s path. Moreover, contrary to Orchestra,
Escalator uses multiple channels. Alice [35] deviates from the node-based slot
allocation of Orchestra and uses link-based slots instead. Moreover, Alice uses
multiple channels with link-based channel offsets instead of a single channel,
and it reallocates all unicast slots after some time. The initial autonomous
schedulers can achieve high reliability but are unaware of traffic flows and do not
achieve the low latency of other scheduling approaches. However, TESLA [36]
proposes a traffic-aware cell scheduling method to add adaptability to different
traffic loads. TESLA adds and removes slots dependent on the traffic load
of neighboring nodes. Jung et al. [37] propose a parameterized slot scheduler
that adapts to the traffic load of nodes. The scheduler tries to find a trade-off
between energy efficiency and reliability or latency by using shared slots for



10 CHAPTER 1. INTRODUCTION

nodes transmitting to a joint receiver if collisions are unlikely. Rekik et al. [38]
present e-TSCH-Orch, an enhancement to Orchestra avoiding congestion by
adaptively adding transmission slots for a node depending on the number of
packets in the node’s queue. ATRIA [39], another traffic-aware scheduling
method allocates slots according to the traffic demand of each link. To improve
network performance, ATRIA includes a method for selecting the optimal
slotframe length and uses subslotframes to avoid slot conflicts.

1.3.3 Routing in low-power wireless mesh networks

Routing is the selection of a path data takes from a sender to a receiver.
Routing determines the order of links over which data travels through the
network, whereas scheduling concerns the allocation of the individual links that
are available for routing. The two major routing approaches are tree-based
routing or shortest-path routing. In tree-based routing, packets travel a tree
upwards till a common ancestor of sender and receiver and then downwards the
tree to the receiver. Distributed and autonomous TSCH schedulers commonly
use this routing approach. The other approach is shortest-path routing which
requires global knowledge of the network topology and uses algorithms like
Dijkstra’s shortest path algorithm [40] or the A∗ algorithm [41]. Shortest-path
algorithms are a good choice for centralized routing and thus a good fit for a
combination with centralized schedulers.

1.3.3.1 Tree-based routing: RPL

In most cases, routing and scheduling are separated into different layers. While
several different routing protocols exist, the Routing Protocol for Low-Power
and Lossy Networks (RPL) [42] tree routing protocol is generally accepted and
widely used.

RPL is a best-effort routing protocol for low-power wireless networks sus-
ceptible to packet loss. For routing a path for a packet that needs to be
transmitted, RPL uses a directed acyclic graph (DAG). Packets are forwarded
(upwards routed) hop-by-hop from parent to parent until reaching the source
of the graph. From there, the packets are routed downwards hop-wise until
they reach their destination. That means all routing in RPL is a combination
of upwards-routing to the tree’s source and downwards routing to the packet’s
destination. A variation to this approach is a RPL mode storing information
about a node’s children. This variation routes traffic only upwards until meeting
a common ancestor of the packet’s source and destination. The path RPL uses
for routing is based on the transmission-based shortest distance to the root
using a metric like ETX.

1.3.3.2 Routing in TSCH

While TSCH is a MAC layer protocol and thus not responsible for routing,
some work, especially those of centralized schedulers, usually merges scheduling
and routing into one. A straightforward approach in the context of TSCH is
computing the shortest path, the path with the fewest transmissions, using a
shortest-path algorithm, like Dijkstra’s algorithm [40]. Li et al. [43] deviate
from this and instead perform an asymmetric routing approach. They apply



1.3. COMMUNICATION IN IEEE 802.15.4 11

specific routing strategies for different communications in a network. Wu et
al. [44] deviate from the standard shortest-path routing approach. Instead,
they present a conflict-aware real-time routing approach. This approach takes
path conflicts originating from scheduling decisions into account when making
routing decisions.

Next to the integration of routing in centralized TSCH scheduling, there is
the field of multi-path TSCH schedules. These are mainly distributed schedulers
using the RPL routing protocol. However, instead of sticking to the single
routing path, they route the traffic along multiple paths. They use triangular-
based redundancy patterns [45], overhearing in RPL networks [46], and packet
replication algorithms [47].

Most distributed and autonomous schedulers use RPL for routing.

1.3.3.3 Opportunistic Routing

Opportunistic routing is an approach to improve the throughput and reliability
of multi-hop wireless networks. Instead of routing traffic through one specific
intermediate node, opportunistic routing addresses more than one potential
receiver/forwarder [48–50]. For example, in ExOR [48] each packet is addressed
to a set of potential forwarding nodes, prioritized by routing progress. Based
on their priority, each node in the forwarder set is assigned a time slot for
forwarding. It only utilizes this time slot if it did not overhear the forwarding
of the packet in a previous time slot.

Later work such as ORW [51] and ORPL [52] introduce opportunistic
routing to duty-cycled, low-power wireless networking. In ORW, the first
receiver that successfully receives the packet and provides routing progress
acknowledges and forwards the packet. ORPL combines the ideas of ORW and
ExOR.

None of the protocols presented so far uses opportunistic routing in combi-
nation with TSCH. However, in recent years several works have addressed this.
Huynh et al. [53], Hermeto et al. [54], and Hosni et al. [55] study the use of op-
portunistic routing or anycasts in TSCH and propose changes to TSCH to allow
non-colliding acknowledgments from multiple receivers. BOOST [56] assigns
different sending delays to the potential forwarders and lets the forwarders use
carrier sense to ensure a single forwarder.

1.3.3.4 Lack of Routing – or – Flooding

The last category of routing protocols is the absence of an actual routing
protocol. In network-wide flooding, the whole network takes part to propagate
the information from sender to receiver. However, some flooding protocols limit
the number of involved nodes and use only subsets of a network for directed
floods which essentially are a kind of routing. We discuss these protocols
further in Section 1.3.4 on synchronous transmissions.

1.3.4 Synchronous Transmissions

Signals in wireless networks are always broadcasts. When two closely located
devices transmit simultaneously, their signals overlap and thus interfere with
each other. This interference forms a combined, added physical wave. This



12 CHAPTER 1. INTRODUCTION

resulting wave is usually unintelligible for a receiver. However, there are
circumstances under which a receiver can receive and decode just one of the
transmitted signals. The field of low-power wireless networks knows two
methods of concurrent or synchronous transmissions.

On the one hand, there is the capture effect which was initially observed for
FM receivers [57]. If one signal is significantly stronger than the combination
of all others, this can be successfully received and decoded nonetheless. For
utilizing the capture effect in IEEE 802.15.4, the stronger signal has to have
at least twice the power (+3 decibel (dB)) as the combined other signals [58].
Moreover, the stronger signal must not arrive later than 160µs after the first
signal [59].

On the other hand, there is non-destructively interfering communication.
This communication requires a much higher degree of time synchronization
(< 0.5µs [60]) and the transmission of the same data by all transmitters.
Initially, it was believed to be constructive interference. However, a recent work
by Liao et al. [61] shows that it is mere non-destructive with DSSS helping to
receive a packet successfully.

Synchronous transmission protocols

In 2011, Glossy [60] created the foundation for synchronous transmissions in
low-power wireless IEEE 802.15.4 networks. Glossy uses synchronized flooding
to disseminate data from one node to all others in a network. LWB [6]
builds on Glossy floods by adding the capability of scheduling individual
network floods for data collection. While LWB is not a real-time protocol,
Blink [62] performs deadline-based real-time communication achieving high
reliability on top of it. While the flooding protocols above perform network-wide
flooding and thus involve the whole network for communicating data, works
like WSNShape/Sparkle [63] and CXFS [64] limit the number of forwarders
and perform directional flooding or essentially routing. CXFS, for example,
is a method for concurrent transmission forwarder selection. LaneFlood [65]
builds upon this forwarder selection to even allow the flooding of IPv6 traffic
along a routed lane.

In contrast to all algorithms above, Chaos [59] builds upon the capture
effect. It extends the design of Glossy to allow the concurrent transmission of
different data for network-wide data aggregation.

1.4 Research Problem

The Industrial Internet of Things is gaining more and more traction in con-
necting devices in industrial settings to communicate sensor data and derive
immediate action from this data. As these actions are often critical, the data
communication must simultaneously be highly reliable and have low latency.
However, the underlying low-power wireless communication is unreliable and
covers only short ranges. Moreover, this communication should also be stable
over longer periods without the need for in-network or external interceptions
to rebuild the network’s communication schedule.

Current solutions for the Internet of Things are not capable of fulfilling
all of these requirements. Most offer high reliability or low latency, generally



1.5. CONTRIBUTIONS 13

without long-term stability in environments susceptible to dynamic interference
levels. Some solutions offer both high reliability and low latency. However,
they build upon network-wide flooding and thus involve the whole network or
significant parts of a network to communicate data from one device to another.
Flooding does not offer the flexibility of parallel communications and routed
communications through smaller parts of the network. Consequently, this thesis
focuses on answering the following questions:

RQ1: How can we dynamically adapt communication to ensure low-latency
and high stability in centrally scheduled low-power wireless networks
susceptible to changes in the wireless medium?

We answer this question mainly in our first paper (Paper A). In Paper A,
we introduce a novel retransmission policy for centrally-scheduled low-power
wireless networks. This policy allows the use of retransmissions wherever they
are needed along a path. It ensures stable communication, even if certain links
are more affected by changes in the wireless medium than anticipated, without
introducing unnecessary delays.

RQ2: How can we ensure stable communication in networks susceptible to
local wide-band interference without impacting latency?

Papers B and C answer this question. Paper B is an intermediate step
relaxing the requirement for nodes to have a specific communication partner.
Therefore, communication can skip nodes affected by interference. Paper C
adds redundant communication paths, routing traffic around local interference
sources. To achieve this, we combine opportunistic routing and synchronous
transmissions with TSCH.

1.5 Contributions

In this section, we summarize the papers that build the second part of this
thesis.

1.5.1 Paper A – Master: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks

In this paper, we address the problem of the stability of centrally scheduled
low-power wireless networks susceptible to dynamic changes in the wireless
medium. While existing retransmission algorithms tackle link changes in cen-
trally scheduled networks, they are inflexible at handling unexpected amounts
of interference at a link and introduce unnecessary delays where they are
essentially not needed.

We introduce Master, an open-source central scheduler for TSCH. More-
over, we introduce a novel retransmission scheme, we name Sliding Windows,
allowing more robust schedules while keeping low latency. Master consists of
two parts: a central server component and a networking component. Its central
server component runs on the edge of a sensor network or even in the cloud.
Its networking component performs routing and schedule installation on the de-
vices forming the sensor network. This twofold design splits the compute-heavy



14 CHAPTER 1. INTRODUCTION

scheduling task from the network operation of the usually resource-constraint
devices in an IoT or sensor network.

While the scheduler Master lays the foundation for centrally scheduled
communication, this paper also introduces the Sliding Windows retransmission
scheme, which adds flexibility towards fluctuating levels of interference. In
previous TSCH scheduling systems, retransmissions are strictly allocated for a
single hop, thus, for communication between a specific sender and receiver. In
these systems, each node has at each timeslot a specific role of either sender or
receiver. Sliding Windows changes this by allowing a device to either receive
or send in a particular slot, based on previously successful reception of a
packet. With Sliding Windows, nodes actively listen for packets from the
earliest possible time they can receive a packet and keep active for maximally
the number of slots the retransmission budget allows. Thus, each hop can use
between no and all of the shared retransmissions depending on its need.

We evaluate Master and Sliding Windows in testbed evaluations and show
reliability of Sliding Windows of above 99% and long-term schedule stability
over 24 hours.

Personal Contribution. I am the lead designer and implementer of Mas-
ter and Sliding Windows. Additionally, I am the main designer of the eval-
uation and the main author of the paper. The chapter was published as a
paper in the Proceedings of the 16th International Conference on Distributed
Computing in Sensor Systems (DCOSS), 2020 [66], and its source code is
available on GitHub1.

1.5.2 Paper B – (POSTER) Overtake: Opportunistic
Routing and Concurrent Transmissions for TSCH

In Chapter 3, we have an initial look at strategies for overcoming local wide-
band interference in centrally scheduled low-power wireless networks. While
Master with Sliding Windows shows good performance in networks with
varying interference levels on single channels, it is not capable of withstanding
wide-band interference. In Paper B, we start from the assumption that especially
in dense networks, not only the next scheduled node is in communication range,
but potentially even the one after. To be able to skip nodes and thus overcome
link failures, we introduce Overtake. Overtake allows a node to directly
communicate with any other node of the respective communication flow. In
Overtake, we do not send packets to a specific node but a flow instead. When
we do not send packets to a specific node, we have to solve the challenge of
loops or packets traveling back to nodes we previously skipped. We solve this
by introducing node ranks to ensure monotonic packet propagation. While
this paper adds more flexibility to TSCH schedules than Sliding Windows
and potentially even reduces latency further, it also proves another point:
Concurrent transmissions of two neighboring nodes that both received the
packet are feasible in TSCH.

1https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler


1.6. CONCLUSION AND FUTURE WORK 15

Personal Contribution. I am the lead designer and implementer of Over-
take. Additionally, I am the main designer of the evaluation and the main
author of the paper. The chapter was published as a poster paper in the
Proceedings of the 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020 [67].

1.5.3 Paper C - Opportunistic Routing and Synchronous
Transmissions Meet TSCH

Chapter 4 more thoroughly discusses the question of stable communication in
the presence of local wide-band interference. This paper shows that TSCH has
sufficient time synchronization for synchronous transmissions using the capture
effect. Moreover, we investigate the possibility of combining opportunistic rout-
ing and synchronous in TSCH networks and propose Autobahn, a protocol
achieving long-term stable schedules in the presence of local wide-band interfer-
ence. Autobahn starts like other TSCH schedulers with a single shortest path.
Starting from this shortest path, Autobahn includes neighboring nodes in the
end-to-end communication to add redundancy for the case of local interference
along the shortest path. With these additional nodes, we have more than one
path along which the communication can flow from sender to receiver. By
using the concept of opportunistic routing, it is sufficient that a packet reaches
its destination regardless of the actual path. That means that not each node
has to take part in the communication to propagate a packet. As we might
have multiple forwarders if multiple nodes receive a packet, we need to solve
the challenge of selecting the best of them. We overcome this challenge using
synchronous transmissions and therefore not choosing a single forwarder but
synchronously forwarding the packet instead. Thus, we keep complexity low
and do not increase the minimum latency compared to a single path schedule.
Moreover, combining the three concepts of opportunistic routing, synchronous
transmissions, and TSCH even allows a lower average latency in the case of local
narrow-band interference. Our evaluation shows that Autobahn is capable of
outperforming Sliding Windows and other single-path retransmission strategies
both in the presence of and without interference. Moreover, Autobahn offers
long-term stability with over 95% reliability over several days without the need
for rescheduling.

Personal Contribution. I am the lead designer and implementer of Auto-
bahn. Additionally, I am the main designer of the evaluation and the main
author of the paper. The chapter was published as a paper in the Proceedings
of the 46th IEEE Conference on Local Computer Networks (LCN), 2021 [68],
and its source code is available on GitHub2.

1.6 Conclusion and Future Work

In this thesis, we study different aspects increasing the robustness of centrally
scheduled low-power wireless networks. With the growing amount of intercon-
nected devices in industrial applications, the so-called Industrial Internet of

2https://github.com/ds-kiel/autobahn

https://github.com/ds-kiel/autobahn


16 CHAPTER 1. INTRODUCTION

Things, robust, reliable communication with low latency is required. While
existing protocols achieve different aspects of these sufficient for the Internet of
Things, there is thus far a lack of centrally scheduled and routed low-power wire-
less communication for industrial applications stable under dynamic amounts
of interference. We propose three protocols achieving different levels of robust-
ness depending on a network’s need: Master, Overtake, and Autobahn.
Master offers a centralized scheduler with retransmission flexibility along an
end-to-end path. Overtake addresses packets to a flow instead of a link to skip
nodes if possible or necessary. Finally, Autobahn widens the communication
path, including neighboring nodes, to opportunistically and synchronously
route traffic overcoming wide-band interference.

Future Work For the future, we see different trajectories continuing our
work. For once, the scheduler we use still lacks a system for in-network
neighbor data collection and schedule distribution. Thus, it is of interest to us
to find effective ways to perform these tasks without (majorly) impacting the
performance of the scheduled communication. Moreover, we see open research
questions in the domain of other promising wireless technologies like BLE and
LoRa. Especially, LoRa in the 2.4 GHz band as the basis for IoT applications
is still underexplored. Next to using LoRa for communication, its ranging
capabilities open a promising direction towards new means of localization.



2

Master: Long-Term Stable Routing and Scheduling in
Low-Power Wireless Networks

Oliver Harms, Olaf Landsiedel

Proceedings of the 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020, pp. 86–94.

PAPER A





17

Abstract

Wireless Sensor-Actuator Networks (WSANs) are an important driver for the
Industrial Internet of Things (IIoT) as they easily retrofit existing industrial
infrastructure. Industrial applications require these networks to provide stable
communication with high reliability and guaranteed low latency. A common
way is using a central scheduler to plan transmissions and routes so that
all packets are delivered before a deadline. However, existing centralized
schedulers are only able to achieve high reliability in the absence of interference.
This limitation lowers the feasibility of using centralized schedulers in most
environments susceptible to interference.

This paper addresses the challenge of stable, centrally scheduled communi-
cation in low-power wireless networks susceptible to interference. We introduce
Master, a centralized scheduler and router, for IEEE 802.15.4 TSCH (Time-
Slotted Channel Hopping). Master uses Sliding Windows, a novel transmission
strategy, which builds on flow-based retransmissions instead of link-based ones.
We show in our experimental evaluation that Master with Sliding Windows
achieves routing and scheduling stability for over 24 hours with end-to-end reli-
ability of over 99.6%. Moreover, we show that Master outperforms Orchestra,
a state-of-the-art autonomous scheduler, in terms of latency by a factor of 8
while achieving similar reliability under a slight duty-cycle increase.



18 CHAPTER 2. MASTER

M

Radio

TSCH

MASTER

Application

Ro
ut
in
g

M
A
C

PH
Y

Figure 2.1: Master consists of an external centralized scheduler (M) and a
routing layer. The external scheduler performs the global routing and scheduling
and pushes the computed schedule onto the network. In each node, Master’s
routing layer implements the schedule in TSCH and performs the routing
during runtime.

2.1 Introduction

For many applications in the Industrial Internet of Things (IIoT), it is essential
that network traffic meets deadlines. To achieve this goal, commonly, a
centralized scheduler collects information about the network topology and
the wireless links. With this global knowledge, representing a major advantage
over distributed solutions, the scheduler is able to compute optimal routes
and transmission schedules of end-to-end communication (traffic flows). In
IEEE 802.15.4, the scheduler assigns communication slots in the time and
frequency domain to nodes, i.e., it employs Time-Slotted Channel Hopping
(TSCH) [8]. However, due to wireless link dynamics, centralized schedulers
have to account for the risk of packet losses and, therefore, usually include
multiple retransmission slots for each link. These retransmission slots increase
latency and reduce the available bandwidth, thus, causing an increased radio
on-time.

Many recent centralized scheduling algorithms assume the availability of
interference-free channels or at least a static amount of interference [5,16]. These
assumptions do not hold in many of today’s environments where IEEE 802.15.4
IIoT networks co-exist with an increasingly large number of WiFi and Bluetooth
networks. This coexistence results in large amounts of interference and thereby
limits the stability and reliability of those centralized solutions.

In this paper, we introduce Master, a centralized scheduler designed for
TSCH. It combines the traditional steps of central scheduling and routing with
a novel transmission strategy which we call Sliding Windows. Our Sliding
Windows algorithm introduces the flexibility needed to accomplish long-term
schedule stability and communication reliability while meeting the latency
requirements of industrial applications. As a result, Master enables long-term
stable schedules and thereby eliminates the need for frequent rescheduling, a
key drawback of today’s central schedulers. Furthermore, we design Master



2.2. BACKGROUND 19

as an open1 and easily extendable platform to foster rapid experimentation
with central scheduling policies.

Our evaluation shows that Master with Sliding Windows outperforms
slot-based retransmission strategies of centralized schedulers. Moreover, it
outperforms the low-power autonomous scheduler Orchestra [3] in terms of
latency while achieving similar reliability and consuming not significantly more
energy, making it particularly suitable for low-power systems. Overall, this
paper makes the following contributions:

• We present Master, an open-source, centralized router and scheduler
for TSCH-based networks designed with easy extendability in mind.

• We design Sliding Windows, a transmission strategy for Master to
increase the flexibility, stability, and reliability of centrally scheduled
communications.

• We propose flow-based queues as an extension to TSCH to enable the
use of central scheduling algorithms.

• We implement Master as part of Contiki-NG and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules computed by Master in experiments of 24 hours. These
experiments result in highly reliable (>99.6%), low-latency (<4.5 slots)
communications.

The remainder of this paper is organized as follows. Section 2.2 gives
the necessary background information on TSCH as well as TSCH schedulers.
Section 2.3 introduces the design of Master, and Section 2.4 presents our
testbed evaluation. Section 2.5 reviews related work, followed by the conclusion
in Section 2.6.

2.2 Background

This section gives an overview of relevant concepts on (A) Time-Slotted Channel
Hopping (TSCH), (B) the ETX metric, (C) scheduling, and (D) retransmis-
sions.

2.2.1 Time-Slotted Channel Hopping

Time-Slotted Channel Hopping (TSCH) is one of the MAC-layer protocols
defined in the IEEE 802.15.4e standard [8]. TSCH uses dedicated time- and
frequency-slots (TDMA and FDMA) for accessing the wireless medium. These
slots are standardized to a length of 10 ms, and each slot uses one out of
maximally 16 channels. TSCH continuously cycles through a hopping sequence
of all active channels. Thus, it is changing the channel every slot. Assigning
different frequencies to slots allows TSCH to increase the network’s resilience to
interference. Slots dedicated to control-information, so-called Enhanced Beacon
(EB) slots, provide broadcasts which support both network formation and time

1Available as open-source at: https://github.com/ds-kiel/master-scheduler

https://github.com/ds-kiel/master-scheduler


20 CHAPTER 2. MASTER

A→ B
EB E → C C→ F B→ C C→ Dch

an
ne
lo
ffs
et

timeslot

0
1

0 2 3 41 5

2

15

Figure 2.2: Sample TSCH schedule. Slot 0 is a shared slot for sending and
receiving Enhanced Beacons (EB) while slots 1-4 are unicast slots with one
transmission per channel at a time. This simple schedule contains two multi-
hop communication flows, highlighted in green and orange. The channel offset
is added on top of the usual hopping sequence.

synchronization, both essential for maintaining a schedule of synchronized
transmissions as in TSCH.

Multiple TSCH slots are grouped into slotframes, and multiple slotframes
form a TSCH schedule, see Figure 2.2. Each node has a custom TSCH schedule
determining its behavior in each slot. Slots are either dedicated, shared, or
empty: In a dedicated slot, a node either transmits or receives. In shared
slots, nodes may broadcast or receive control information, such as Enhanced
Beacons. Such slots are not assigned to individual nodes and have multiple
nodes contending for transmissions. To limit collisions, these slots employ the
CSMA-CA back-off algorithm. If a slot is neither dedicated nor shared, it is
empty, and the radio remains off to save energy.

2.2.2 Link quality metric

Link quality metrics, such as the expected transmission count, ETX [12], repre-
sent the quality of a wireless link. ETX specifies the number of transmissions
expected to transmit a packet successfully over a wireless link. The ETX value
is the inverse of the packet reception rate (PRR) of a link (ETX = 1/PRR).

2.2.3 Scheduling

In the context of wireless communications, scheduling is the process of allocat-
ing resources for communications to meet all requirements such as release-time
and deadline. Scheduling is an NP-hard problem, meaning, it is not optimally
solvable in polynomial time (cf. [5]). Therefore, different heuristics and algo-
rithms were developed to solve scheduling problems sufficiently well for specific
scenarios.

TSCH scheduling: TSCH does not specify how communications are sched-
uled. Therefore, scheduling TSCH communications can be performed in a
centralized, distributed, or autonomous manner. In the distributed case, sub-
sets of the network perform cooperative scheduling (cf. 6TiSCH MSF [69]).
The autonomous case, used by the well-known TSCH scheduler Orchestra [3],
performs an autonomous mapping of links to resources. The centralized schedul-
ing approach provides us with global topology knowledge, and we can allocate



2.3. DESIGN 21

D

C

FB

E

A

(a) Sample Topology with
two intersecting flows.

1 2 3 4

A TX

B RX TX

C TX

D RX TX RX TX

E RX

F RX

(b) Baseline sched-
ule without retrans-
missions.

1 2 3 4 5 6 7 8

A TX TX

B RX RX TX TX

C TX TX

D RX RX TX TX RX RX TX TX

E RX RX

F RX RX

(c) A slot-based schedule with one
transmission and one retransmis-
sion slot per hop.

1 2 3 4 5 6 7 8 9

A TX TX TX TX

B RX RXTX RXTX RXTX TX

C TX TX TX

D RX RXTX RXTX TX RX RXTX RXTX RXTX TX

E RX RX RX

F RX RX RX RX

(d) Sliding Windows schedule with one transmission slot per hop and two (orange
flow) or three (green flow) retransmission slots to be shared among the nodes of a
flow.

Figure 2.3: Example: One flow originates at node A to end at node F while
the second one originates at node C and ends at node E.

resources using established algorithms such as Dijkstra’s Shortest Path First
algorithm [40].

2.2.4 Retransmissions

As wireless communication links are unreliable, transmissions are never guar-
anteed to be received. To increase the reliability, schedulers commonly include
retransmission slots to retry a failed transmission. A common way of adding
retransmissions is the duplication of single slots. This slot-based approach
increases the reliability, by including multiple tries per hop. In this paper, we
introduce a new, flow-based transmission strategy to increase both performance
and flexibility, see Section 2.3.2.

2.3 Design

In this section, we present the design of Master, our transmission strategy
Sliding Windows, and the system architecture of Master.

2.3.1 Centralized Routing and Scheduling with Master

A fundamental building block of Master is its centralized scheduler. Its
design is a three-step process to build a long-term stable, low-latency, reliable
communication schedule. This process is a sequential top-down approach of (1)



22 CHAPTER 2. MASTER

centralized routing, (2) applying a transmission strategy, and (3) scheduling.
The input to the process is (a) a set of traffic flows specified by source, des-
tination, periodicity, and deadline, as well as (b) the network topology with
long-term link reliability statistics. The application commonly provides the set
of flows, and we derive the network topology from long-term link measurements,
see Section 2.3.4.5.

2.3.1.1 Centralized Routing

Routing is the first step in Master and uses the previously specified flows and
network link-reliability as input. To perform the routing, Master constructs
a directed weighted graph using an ETX-based metric (ETXn, n ∈ N, usually
n = 2), corresponding to the link reliability statistics. A higher ETX-power
favors a higher number of highly reliable links over a lower number of links
with lower reliability. Using this graph, we compute the shortest end-to-end
routes. As shortest path routing finds the optimal path for each flow, the flow
latency selected by the routing process stays minimal. The result of our routing
is an extended set of flows that consists of a source, a destination, and the
intermediate hops. In Master, we use Dijkstra’s algorithm for shortest-path
routing, but our modular design allows us to plug-in any routing algorithm
and metric.

2.3.1.2 Transmission Strategies

After computing the route for each flow, we employ a transmission strategy
to ensure reliable communication over unreliable wireless links. Thus, the
transmission strategy adds retransmission slots to each flow to handle failed
transmissions due to link dynamics and interference. The transmission strategy
extends each flow by a specific number of slots. In the case of highly reliable
links in an interference-free environment, we can employ a simple transmission
strategy of assigning only one slot per hop. In practice, however, we add
retransmission slots according to the expected link reliability of each hop. We
employ either a slot-based transmission strategy (see Section 2.2.4) or our new
approach of a flow-based transmission strategy (see Section 2.3.2 below).

2.3.1.3 Scheduling

After applying one of the transmission strategies, we pass the modified flows
to the scheduler. The scheduler builds a communication schedule for all flows
considering their periodicity.

For our application scenarios and to be comparable to Orchestra, we employ
a non-deadline-based scheduling algorithm. It is especially suitable for best-
effort, periodic, deadline-free systems. The algorithm is Reverse Longest Path
First (R-LPF), our own flavor of the Shortest Path First (SPF) scheduling
algorithm. SPF is based on the process scheduling algorithm Shortest Job First
(SJF) [70]. Contrary to starting with the shortest flow, our scheduler performs
backward scheduling, starting with the end of the longest flow. This modifica-
tion of the scheduling algorithm results, in our experience, in a lower number
of unused slots within a flow. A lower number of unused slots corresponds with
lower latency.



2.3. DESIGN 23

Figure 2.3 shows a schedule for two flows generated using no retransmissions,
a slot-based retransmission strategy, as well as the transmission strategy of
Sliding Windows with a transmission number based on Equation (2.3) and a
scaling factor of 1. To generate the schedule of Figure 2.3d, we assume the
ETX-value of each link to be between 1 and 2 (ETXlink ∈ ]1, 2[).

Any scheduling algorithm, including deadline-based ones, can easily be
implemented in Master. For the remainder of this paper, we use R-LPF.

2.3.2 Master’s Flow-based transmission strategy

Our flow-based transmission strategy assigns a specific number of retransmis-
sions to a flow instead of using a per-hop basis, as done traditionally, see
Section 2.2.4. The flow-based retransmission slots allow the nodes of a flow
to share these slots and use them as needed along the path, see Figure 2.3d.
As a result, we can increase the communication reliability while potentially
using minimally more slots in the final schedule (see Node D in Figure 2.3c
and Figure 2.3d).

With this, we divert from the traditional scheme of two active nodes to
one with multiple active nodes: Traditionally, at a single time-slot, frequency,
and within a localized area, only one node transmits and another one receives.
Instead, we now have more than two nodes awake that either transmit or
receive. Our transmission strategy has the advantage of being adaptable to
network changes, e.g., due to interference. Thus, during the journey of a
packet, we can use the shared transmission slots in whichever part of the flow
interference impacts communication. This adaptability is traditionally possible
within distributed schedulers that can locally adapt to link changes. With
Sliding Windows, we now enable such flexibility in centralized ones.

2.3.2.1 Window Size

The maximal number of transmission slots (TXmax, later denoted as
#transmissions) in a flow and the hop-count of the flow determine the window
size which is calculated by

window size = 2 + TXmax − hops (2.1)

This window size is the number of nodes maximally active in a slot of a
flow. Moreover, it matches the maximum number of active slots of a node for
a given flow. According to this relation, the window size is equal to the shared
number of slots of a node for transmission or reception (TXmax − hops) plus
its first and last slot allocated for reception and transmission, respectively.

In Master, we have two flow-based transmission policies: (1) fixed window
size and (2) metric-based window size. For the first policy, we use the same
window size for all flows independent of their length or link quality. For
the second one, our scheduler determines the window size and number of
transmissions depending on the flow’s or link’s ETX-values. The metric-based
window size allows us to account for both the number of hops and the reliability
of the individual links.



24 CHAPTER 2. MASTER

Using the link’s ETX values, we can calculate the total number of trans-
missions of the flow with either

#transmissions = n ∗ d
∑

ETXlinke, n ∈ N (2.2)

or
#transmissions = n ∗

∑
dETXlinke, n ∈ N, (2.3)

including a scaling factor n. This scaling factor regulates the conservativeness
of the scheduler. If we choose a scaling factor of 1 for Equation (2.3), the
number of transmissions is equal to the one using an ETX-based, slot-based
retransmission strategy (cf. Section 2.2.4). Equation (2.2) uses the end-to-
end ETX-value of the flow, while Equation (2.3) uses the ETX-values of the
individual links.

Throughout the remainder of this paper, we use the following naming
scheme to refer back to these equations:

SW− < Equation number > [− < scaling factor n >]

SW denotes it as a Sliding Windows transmission strategy. The naming scheme
includes the scaling factor only if referring to a specific representation of the
strategy. When referring to the general strategy, it is not included.

Please note that for long flows, i.e., with many hops such a strategy could
lead to a large window, and thereby too many nodes being awake at the
same point in time. Too many active nodes lead to inefficiencies, and we
counterbalance it by splitting a flow into sub-flows once it exceeds a limit
N . The flow-based strategy is then applied to each sub-flow individually. In
Master, we use a threshold of N = 10. Thus, for example, a flow of length 11
is split into two overlapping sub-flows of length 6.

2.3.2.2 Algorithm

In Algorithm 1, we present the algorithm for applying a flow-based trans-
mission strategy. The algorithm takes as input a flow consisting of multiple
nodes, the network’s ETX graph, the strategy (SW-2 or SW-3), and the scaling
factor. The algorithm starts calculating the flow’s total ETX cost, as well
as the flow’s number of transmissions according to the given strategy (SW-2
or SW-3) and the window size according to Equation (2.1). From line 17
onward, the algorithm computes the active slots for each node of the flow and
inserts the nodes into the respective slots of the new flow. For example, slot 6
of Figure 2.3d would be represented in the new flow as a list containing the
elements A, B, D, F in this order.

2.3.2.3 Flow-based transmissions vs. Flow Centric Policy (FCP)

Recently, a paper by Brummet et al. [21] introduced a similar idea of moving
from link-based to flow-based transmissions.

The main difference between Brummet’s proposed Flow Centric Policy
(FCP) and our Sliding Windows strategy are the rules for determining the
optimal number of flow transmissions. FCP only defines fixed numbers of
retransmissions with a maximum of up to 4 retransmissions for a flow. Sliding



2.3. DESIGN 25

Algorithm 1 Sliding Windows transmission strategy

Input: flow, graphETX , strategy, scaling factor n
Output: flownew (modified version of flow)
1: costtotal = 0
2: for i = 0 to lengthflow − 1 do
3: senderhop ← flow[i]
4: receiverhop ← flow[i + 1]
5: if strategy = ”SW − 2” then
6: costtotal = costtotal + graphETX [senderhop][receiverhop]
7: else if strategy = ”SW − 3” then
8: costtotal = costtotal + dgraphETX [senderhop][receiverhop]e
9: end if
10: end for
11: if strategy = ”SW − 2” then
12: costtotal = dcosttotale
13: end if
14: #transmissions← n ∗ costtotal

15: window size← 2 + #transmissions− lengthflow

16: flownew ← list of #transmissions lists
17: for i = 0 to lengthflow − 1 do
18: if i = 0 then
19: slots← list [0 .. window size− 1]
20: else if i = (lengthflow − 1) then
21: slots← list [i− 1 .. i + window size− 2]
22: else
23: slots← list [i− 1 .. window size− 1]
24: end if
25: for slot in slots do
26: extend flownew[slot] by flow[i]
27: end for
28: end for
29: return flownew

Windows, on the other hand, allows choosing the number of transmissions based
on a metric, in our case, the ETX metric. Moreover, Sliding Windows allows
a different number of transmissions for each flow in the same network due to
its use of the ETX metric. Because Sliding Windows is based on link qualities,
we argue that it offers better adaptability to a network’s link characteristics
during the scheduling process.

2.3.3 Time Synchronization

Stable time synchronization is essential for TSCH networks. It ensures that
clocks do not drift apart, and nodes wake-up for transmissions and reception
within the guard times specified by TSCH. Master achieves this by building
a clock synchronization tree from the root as part of the scheduling process.
Similar to the routing of the flows, a minimal spanning tree with ETX as
metric and with the coordinator of the TSCH network as root is computed
using Dijkstra’s algorithm. This tree assigns each node a parent node for clock
synchronization.

2.3.4 System Design

Next, we detail on the system architecture of Master. It consists of both the
external scheduler and the routing layer on each node (see Figure 2.1). Here
we put a particular focus on the integration with TSCH and Contiki-NG [11].



26 CHAPTER 2. MASTER

A

B

C D
E

F1

2 2
2

1
1

Figure 2.4: Example of 2 flows sharing a common link between nodes C and D.

2.3.4.1 Central Logic of Master

The central logic of Master consists of a centralized router and scheduler with
all the functionality described above. We implement Master in Python to en-
able easy extendability and rapid experimentation of new routing, transmission,
and scheduling strategies.

2.3.4.2 Schedule Distribution

For schedule distribution, Master can work together with most schedule
distributors (e.g., plexi [71]), as scheduling and distributing the schedule are
orthogonal. Moreover, it can also directly upload schedules via the serial port
for rapid experimentation.

2.3.4.3 Per node routing layer

The routing layer of Master has multiple functions: it performs neighbor
discovery (Section 2.3.4.5), implements the schedule, and adds a routing header
to the communication payload to be compliant with the lower layers as well
as relaying the packet to the next hop (Section 2.3.4.6). We place it in the
Contiki-NG network stack above TSCH, see Figure 2.1, and implement it in C.

2.3.4.4 Contiki-NG/TSCH Extensions

To match the requirements of Master and its scheduling algorithm, we extend
the elements of TSCH and its implementation in Contiki-NG: (1) the packet
buffer implementation and (2) the TSCH queues.

In the packet buffer, we add fields to store the flow identifier and the time
to live of a transmission. With these two fields, the TSCH stack and Master
can map incoming packets to flows and thereby follow the global schedule
on each node. We extend the TSCH queue to enable a transmission order
differing from the reception order at a node, e.g., the forwarding of a packet to
a specific neighbor before forwarding an earlier received packet to the same
neighbor. To allow this behavior, we add flow-based queues, in addition to the
neighbor-based queues of TSCH. We realize the flow-based queues through the
use of virtual neighbors.

Figure 2.4 illustrates why neighbor-based queues as used by Contiki-NG
cannot be practicably used by Master. If packet 2 is received by node C first,
but packet 1 has an earlier deadline, packet 1 will be stuck behind packet 2
until the first is transmitted to node D. With flow-based queues, packets 1 and
2 will be added to different queues at C. Therefore, they are independent of
each other and packet 1 can be forwarded first.



2.4. EVALUATION 27

This new queue design increases the schedulability of the presented scheduler,
which is crucial for deadline-dependent systems. It also decreases the latency
in networks that are not deadline-critical by reducing congestion at bottlenecks
of the network. Moreover, it allows us to use scheduling algorithms initially
developed for process scheduling, a domain without these congestion problems.

2.3.4.5 Neighbor Discovery and Bootstrapping

Before Master can build any schedule, it requires information about all links
between the nodes in the network. Thus, to bootstrap and collect topology
information with Master, we deploy a custom, topology agnostic schedule
only designed for neighbor discovery. In this schedule, we use one independent
transmission slot per node present in the network. This neighbor discovery
schedule is similar to the sender-based operation mode of the autonomous
scheduler Orchestra [3]. Each node sends a numbered broadcast in its active
slot and listens in all other slots for broadcasts of other nodes in its surroundings.

Please note that this schedule only serves for bootstrapping. After deploy-
ment of the actual transmission schedule, the task of probing neighbors becomes
part of the normal TSCH beaconing process. Nodes collect this information
for any potential later update of the schedule.

2.3.4.6 Header format

Master routes packets based on flows, and as a result, we add a custom
routing header. The routing layer of Master adds a 7-byte routing header to
each packet. This header contains a flow identifier (1 byte), a sequence number
(2 bytes), the time-to-live (TTL) (2 bytes), and the earliest TSCH transmission
slot (2 bytes). The header is necessary for nodes to know whether they are the
receiver of the packet or a forwarder. Moreover, the header specifies, where to
forward the packet to, and whether there is still time left for forwarding. In
practice, our header replaces the IPv6 header which we could use instead in a
system using the full IPv6 stack.

2.4 Evaluation

In this section, we evaluate the performance of Master and compare it
to the state-of-the-art. We begin by evaluating our newly proposed flow-
based scheduling policy and compare it to state-of-the-art scheduling policies,
including a baseline strategy without retransmissions (cf. TASA [4]) and a
slot-based transmission strategy (cf. AMUS [17]). Next, we compare Master
to Orchestra, the default autonomous scheduler in Contiki-NG, which also
builds on TSCH. Finally, we evaluate Master’s ability to compose long-term
stable schedules.

2.4.1 Evaluation Setup

2.4.1.1 Testbed

We run on a 20 node testbed deployed in offices and student lab rooms, see
Figure 2.5a. It is located on the top most floor of a university building with



28 CHAPTER 2. MASTER

(a) 500 m2 testbed of 20 nodes at Kiel Uni-
versity. Source nodes: orange hexagons;
Sink nodes: green squares; Relay-only
nodes: blue circles; Numbers: corre-
sponding flow

1 2 3 4 5 6 avg
Flow

0

20

40

60

80

100

PD
R 

[%
]

(b) Reliability of Master’s transmission
strategies: baseline, slot-based, SW-2-1
and SW-3-1.

1 2 3 4 5 6 avg
Flow

0

2

4

6

8

10

La
te

nc
y 

[s
lo

ts
]

(c) Latency of Master’s transmission
strategies: baseline, slot-based, SW-2-1
and SW-3-1.

0 2 4 6 8 10 12 14
Latency [slots]

0

20

40

60

80

100
PD

R 
[%

]

(d) Combined latency and reliability CDF
of Master’s transmission strategies.

0 25 50 75 100 125 150
Latency [slots]

0

20

40

60

80

100

PD
R 

[%
]

(e) Combined latency and reliability CDF
of Master’s transmission strategy SW-
3-3 and Orchestra at nighttime and day-
time.

0

2

4

6

8

10

Du
ty

 C
yc

le
 [%

]

baseline
slot-based
SW-2-1
SW-2-2
SW-3-1
SW-3-2
SW-3-3
SW-3-3-D
Orchestra
Orchestra-D

(f) Duty cycle of Master and Orchestra.

Figure 2.5: Evaluation of Master’s transmission strategies and comparison to
Orchestra. SW-3 outperforms all other strategies reliability-wise and outper-
forms Orchestra latency-wise. We display the legend of figures 2.5b - 2.5f in
Figure 2.5f.



2.4. EVALUATION 29

spanning an area of 500 m2. The testbed shares the wireless spectrum with
WiFi and Bluetooth communications outside of our control. Due to this, the
testbed is exposed to high levels of interference, especially during work hours.

2.4.1.2 Metrics, Comparison, and Duration

We evaluate our scheduler in terms of end-to-end reliability, end-to-end latency,
as well as network energy consumption. We measure these metrics for different
centralized scheduling approaches with and without retransmissions. Moreover,
we compare our scheduler with the autonomous scheduler Orchestra [3]. These
comparisons are based on 2-hour experiments for each strategy, except for the
long-term stability evaluation in Section 2.4.5, which has a duration of 24-hours
per experiment.

2.4.1.3 Implementation

We implement Master for Contiki-NG [11]. We target the Zoul Firefly
platform, featuring a 32 MHz 32-bit CC2538 Cortex-M3 CPU, 32 KB of RAM,
512 KB of flash, with an IEEE 802.15.4 compatible radio.

2.4.1.4 Channels

Due to the high levels of interference, we use only the four channels (15, 20,
25, and 26), defined in the standard four-channel TSCH hopping sequence.
Furthermore, Orchestra uses by default only these four channels as well.

2.4.1.5 Application Payload and Overhead

For all experiments, we include a 64-byte randomly generated data payload,
a medium packet size supported by TSCH. In addition to this data payload,
Master adds its 7-byte routing header independent of the specific scheduling
policy. Orchestra, on the other hand, uses the IPv6 headers and requires
additional network layer control traffic.

2.4.1.6 Notations

Throughout the evaluation, we use the following naming scheme: The baseline
strategy without retransmissions we call baseline, and the slot-based retrans-
mission strategy (as used by many state-of-art schedulers) with dETXlinke
transmissions per link we label slot-based. The Sliding Windows strategies
use the naming scheme we present in Section 2.3.2.1. Experiments performed
during daytime are extended by the marker -D.

2.4.2 Baselines

We compare Master’s Sliding Windows policies to three other scheduling poli-
cies. These are Master’s baseline strategy without retransmissions, Master’s
slot-based retransmission strategy, and the autonomous scheduler Orchestra [3].
The design of the baseline strategy is based on the transmission policy used in,
e.g., TASA [4], and uses one distinct slot per hop. The slot-based strategy is in-
spired by policies presented in several recent publications, including AMUS [17].



30 CHAPTER 2. MASTER

Contrary to most of these, our design performs all possible retransmissions
of a hop before proceeding to the next hop, which favors high reliability over
low latency contrary to AMUS’s approach. Moreover, to be in line with our
Sliding Windows strategies, Master’s slot-based strategy uses an ETX-based
number of retransmissions per link (dETXlinke). Lastly, we use Orchestra to
compare our centralized routing and scheduling solution to distributedly routed
and autonomously scheduled solutions to verify the adaptability of Master to
dynamic environments predestined for distributed policies.

2.4.3 Performance of Master’s transmission strategies

We first evaluate the performance of different transmission strategies supported
by our scheduler. We compare the Sliding Windows transmission strategy
with a baseline strategy without retransmissions and with the traditional slot-
based retransmission strategy mentioned above. We run experiments with
six scheduled flows, a number of flows used at a recent EWSN dependability
competition [72]. The flows have a length of 2 to 4 hops each. Each flow has a
sole source and destination node. Each source node generates a packet roughly
every second with a configured time to live of one second. The length of the
communication slotframes of 1 second corresponds roughly with 101 slots.

Figure 2.5b shows the reliability of transmission approaches scheduled with
Master. The transmission approaches include the baseline and slot-based
strategy, as well as Sliding Windows transmission strategies SW-2-1 and SW-
3-1; see Section 2.3.2.1 for notations. The latter of the two Sliding Windows
strategies has the same number of transmissions per flow as the slot-based
strategy.

All strategies with retransmissions clearly outperform the baseline without
retransmissions, which shows the presence of interference in the used channels.
The slot-based strategy reaches an average reliability of 92.7% whereas the
Sliding Windows strategies reach average reliabilities of 89.3% and 98.9%,
respectively. The SW-2-1 strategy has for all flows lower reliability than the
slot-based strategy, but the number of scheduled slots per flow is only by one
larger than the baseline number of slots, see Table 2.1. The SW-3-1 strategy
outperforms all other strategies while using no more slots per flow than the
slot-based strategy. Its least reliable flow achieves a packet delivery rate (PDR)
of 98.1% while the slot-based strategy drops as low as 82.2%.

We can model this superiority of SW-3-1 over SW-2-1 and over the other
strategies mathematically using the probability mass function of the binomial
distribution [73]:

P (X = k) =

(
n

k

)
pk(1− p)n−k (2.4)

This probabilistic model also explains the lower reliability of SW-2-1 compared
to the slot-based strategy.

As an example, we consider a flow of three hops (n = 3), e.g., the green flow
in Figure 2.3a, with the same ETX value for each link of 1.2 (p = 5

6 ). Thus, the
number of transmissions for SW-2-1 and SW-3-1 are 4 and 6 slots, respectively.
The expected PDRs for SW-2-1 and SW-3-1 are P (X = 3) +P (X = 4) ≈ 0.868
and P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6) ≈ 0.991, respectively.
Likewise, the expected PDR for the baseline, is P (X = 3) ≈ 0.579. The



2.4. EVALUATION 31

Table 2.1: Summary of the results plotted in Figure 2.5c: Maximum latency
(slots) for each flow and for flow 4 maximum number slots active in parentheses.

Flow Baseline Slot-Based SW-2-1 SW-3-1
1 2 4 3 4
2 3 6 4 6
3 3 6 4 6
4 5 (3) 10 (6) 7 (4) 12 (6)
5 4 8 5 8
6 4 8 5 8

slot-based strategy can be seen as 3 independent, subsequent chains of two
binomial trials each (n = 2, k ≥ 1). This results in an expected PDR of
(P (X = 1) + P (X = 2))3 = 0.919. These mathematical results confirm the
trend we see in Figure 2.5b.

Latency-wise, both Sliding Windows strategies perform much better than
the slot-based strategy. Moreover, their latency is minimally higher than the
latency of a strategy without retransmissions (see Figure 2.5c), which, in turn,
has a high packet loss rate. It appears that SW-3-1 has a lower latency for
flow 4 than the baseline. Contrary to all other flows, flow 4’s schedule contains
more slots than active slots throughout all strategies. Due to the flow-based
approach of SW-3-1 and a large enough number of continuous active slots at
the beginning of the schedule, most packets were received within a few slots,
leading to a latency lower than the baseline’s one. Table 2.1 shows that the
maximal number of active slots is still smaller for the baseline strategy.

Figure 2.5d visualizes the latency and reliability of a wider range of trans-
mission strategies. Solid lines represent the baseline, the slot-based, the SW-2-2,
and the SW-3-3 strategies. For the Sliding Windows strategies SW-2-1 and
SW-3-1, the figure uses dashed lines, and for the SW-3-2 strategy, it uses
a dotted line. The figure shows that the slot-based strategy is the worst
latency-wise. The SW-3 Sliding Windows strategies are superior to the other
Sliding Windows strategies (SW-2). The superior strategies with a scaling
factor of 2 and 3, both perform well. The strategy with the higher scaling
factor reaches the maximal possible reliability. Therefore, we use the Sliding
Windows strategy SW-3-3 for the following comparison to Orchestra.

The duty-cycle evaluation in Figure 2.5f shows a higher radio on-time for a
higher number of scheduled slots. SW-3-3 has a radio on-time of up to 11.95%
for a node with a lot of traffic.

2.4.4 Master vs. Orchestra

We now evaluate the performance of Master in comparison to Orchestra, the
default, autonomous scheduler of TSCH in Contiki-NG. We use Orchestra as is,
with a receiver-based schedule of length 7 in non-storing mode. We schedule the
same six flows used before. As transmission strategy for Master, we use the
one with the highest reliability of those presented above (SW-3-3). To provide
detailed information on the performance, we present runs of both Master
and Orchestra during nighttime as well as during office hours in the daytime.
Figure 2.5e shows the latency and reliability of the four experiments. Master’s



32 CHAPTER 2. MASTER

70

80

90

100

PD
R 

[%
]

23 2 5 8 11 14 17 20
Time of day [hours]

0

1

2

3

4

5

La
te

nc
y 

[s
lo

ts
]

SW-3-1 SW-3-2 SW-3-3

Figure 2.6: Reliability and latency evaluation of Sliding Windows according to
Equation (2.3) for all 3 scaling factors. Each value corresponds with the hour,
that started at the given time. Note, that the y-axis of the PDR plot does not
begin at zero.

latency is drastically shorter than the latency of Orchestra with a mean latency
of 3.9 and 4.2 slots compared to 25.9 and 40.9 slots during nighttime and
daytime, respectively, while reaching similar reliability. The four rightmost
columns in Figure 2.5f show the duty cycle for the experiments included in this
section of the evaluation. Orchestra has on average a two percentage points
lower duty cycle than Master (3.52% vs. 5.55%) and the maximum duty
cycle of a node of four percentage points lower (7.73% vs 11.95%). As each
node in Orchestra is only able to use every seventh slot, the possible duty cycle
is automatically lower than the one for Master. However, this lower duty
cycle results in much higher latency, as presented above.

2.4.5 Long-term stability of Master

In the last part of our evaluation, we investigate Master’s long-term stability.
In Figure 2.6, we present the reliability and latency of the SW-3 Sliding
Windows strategies for 24 hours (Day 1, 21:00 - Day 2, 21:00) during workdays.
During the night and the early morning, both SW-3-2 and SW-3-3 reach a
PDR of above 99.99% and an average latency of around 3.5 slots. Between
14:00 and 15:00, the reliability drops for all strategies to 95%, 93.2%, and
80.3%, respectively, under a slight latency increase. During this time, a group
of students entered the lab, leading to a drastic increase in WiFi and BLE
traffic and thereby an interference level increase. Another reliability drop,
mainly for SW-3-1, is visible at the end of the working day. Over the whole
period of 24 hours, the average reliability of SW-3-1, SW-3-2, and SW-3-3 is
99.6%, 99.2%, and 92.5%, respectively. The high average reliability, as well
as the reliability recovery after times of high interference, validates Master’s
long-term stability.



2.5. RELATED WORK 33

2.5 Related Work

We first discuss centralized schedulers and algorithms, followed by a discussion
of autonomous scheduling solutions.

After the introduction of TSCH, TASA [4] was one of the first central
scheduling algorithms proposed. It is traffic aware, yet like other papers
focusing on scheduling algorithms like C-LLF [5], it assumes the availability
of interference-free channels and, therefore, does not include retransmissions.
Saifullah et al. [5] and Gunatilaka et al. [16] focus in their work on the highest
possible schedulability for a large amount of communications meeting deadlines
but not much on the network reliability. AMUS [17] is one of the protocols for
TSCH that includes slot-based retransmissions. It schedules additional resources
for vulnerable links and allocates backup slots in empty cells of the scheduler.
Rugamba et al. [20] build another centralized scheduler based on a path collision-
aware least-laxity first scheduling algorithm by Darbandi et al. [19]. Moreover,
Rugamba et al. describe a method of distributing a centrally computed schedule.
The first approach of moving from slot-based retransmissions to flow-based
ones is the flow-centric policy (FCP) [21]. The authors present a dynamic
approach of retransmissions not fixed to specific links. This approach is similar
to the transmission strategy of Sliding Windows presented in this paper. We
discuss the differences between the two in Section 2.3.2.3.

Besides the advances regarding scheduling, Wu et al. [44] present advances
in the field of centralized routing in combination with central scheduling. The
authors present a conflict aware real-time routing approach, that is aware of
scheduling decisions and the possible conflicts of routed paths. Li et al. [43]
take a different, asymmetric approach in routing by applying different routing
strategies for different communications in one network.

Related to these central scheduling and routing approaches, are systems
focusing on network softwarization. plexi [71] is a framework exposing TSCH
network resources through a web interface and allowing the rescheduling of
communications. Similarly, Baddeley et al. [74] and Galluccio et al. [75]
present SDN solutions for Wireless Sensor Networks for network monitoring
and reconfiguration. These SDN solutions are conceptually in line with central
schedulers calculating schedules externally. Moreover, a combination of our
work with SDN solutions is imaginable.

Next to the centralized approaches, a significant focus of recent work is
on autonomous scheduling, a concept introduced by Orchestra [3]. Orchestra,
as well as Alice [35] and DiGS [32] are autonomous solutions for TSCH, as
they do not require neither any central infrastructure nor the exchange of
data to build a schedule and achieve high reliabilities of 99.999%. However,
autonomous schedulers are not able to achieve this reliability with latency
guarantees necessary for many industrial applications as they have no knowledge
on the underlying topology.

2.6 Conclusion

This paper introduces Master, a central scheduling solution for TSCH net-
works. Master introduces a novel Sliding Windows transmission strategy



34 CHAPTER 2. MASTER

and achieves high reliability independent of knowing the optimal amount of
retransmissions per link. Instead, it schedules a number of retransmissions
for a flow that can be used at all links of a flow where necessary. The key
idea is enabling centralized schedulers to adapt to interference changes without
the need for rescheduling while keeping the lowest possible latency. Thus,
eliminating a significant overhead of traditional central schedulers.

We implement Master in Contiki-NG and evaluate it extensively on
a testbed in an environment susceptible to interference. We demonstrate
Master’s practicality and ability to keep stability for over 24 hours and achieve
latencies much smaller than Orchestra while achieving similar reliability.

As part of future work, we plan to investigate the challenges of neighbor
data collection and schedule distribution to provide a comprehensive central
scheduling solution. Moreover, we are planning to evaluate the use of centralized
schedulers in harsh wireless environments, such as the ones used in the EWSN
dependability competitions [72].



3

(POSTER) Overtake: Opportunistic Routing and
Concurrent Transmissions for TSCH

Oliver Harms, Olaf Landsiedel

Proceedings of the 16th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2020, pp. 141–143.

PAPER B





35

Abstract

In this paper, we present Overtake, an opportunistic routing protocol for
Time-Slotted Channel Hopping (TSCH). Overtake combines (1) opportunistic
routing, (2) concurrent transmissions and (3) TSCH. We show that this novel
combination enables low-latency, central scheduling withstanding node failures.
Our initial results show its ability to withstand node failures of up to 40% of
nodes of a flow while keeping minimal latency.



36 CHAPTER 3. OVERTAKE

S R

Figure 3.1: Nodes included in each slot. The dashed lines represent the transmit
ranges of the sender and the second relay node, respectively. If every node can
reach the next two nodes, the minimal number of communication slots is 2
resulting in the first 3 nodes active in the first slot and the remaining nodes
active from the second slot.

3.1 Introduction

Context: Applications in the context of the Industrial Internet of Things
(IIoT) require high communication reliability and low latency. To achieve this
goal, commonly, a central scheduler for TSCH [8] computes optimal routes
(single-path) and schedules end-to-end communication flows incorporating
possible retransmissions.

Challenge: These single-path strategies (e.g. Sliding Windows (Master)
[66]) achieve the required reliability under usual amounts of interference. How-
ever, if a node of a scheduled flow fails, existing protocols fail. Moreover, central
schedules are generally computed for worst-case situations, meeting worst-case
latencies. In many situations, a communication flow could reach its destination
with a fewer number of hops. Using less hops would reduce the average latency
and the consumed energy.

Protocols overcoming the challenge of node failures do not forward a packet
to a single node but apply an anycast approach instead. Known approaches are
opportunistic routing (cf. Landsiedel et al. [51]) as well as flooding-based proto-
cols (e.g., LWB [6]). Opportunistic routing allows flexibility in the forwarding
process, as no fixed link has to communicate. A problem of opportunistic
routing is choosing a node forwarding the packet. Flooding-based protocols,
on the other hand, cover the whole network with a communication. They use
highly time-synchronized concurrent transmissions eliminating the selection of
a forwarder.

Approach: In this paper, we introduce Overtake, an opportunistic
routing strategy for Wireless Sensor-Actuator Networks using concurrent trans-
missions. We specifically target networks utilizing the IEEE 802.15.4 TSCH
(Time-Slotted Channel Hopping) MAC protocol [8]. Overtake combines
the three approaches of opportunistic routing, concurrent transmissions, and
TSCH. Through this combination, we can create single-path-based schedules
withstanding node failures.

We build Overtake on top of the centralized scheduler Master [66] and
its Sliding Windows transmission strategy. The combination of opportunistic



3.2. DESIGN 37

routing mentioned above with flow-based retransmissions allows Overtake not
only to withstand node failures but offers a significant robustness improvement
over Master’s current performance.

Our initial evaluation shows that with Overtake, Master can schedule
communication even more stable than in its default configuration. Moreover,
Overtake reduces the end-to-end latency of communication in environments
susceptible to interference. Overall, we make three contributions:

• We present Overtake, a single-path-based concurrent, opportunistic-
routing strategy, extending Sliding Windows, achieving lower latency and
resilience to node failures.

• We propose acknowledgment supported opportunistic transmissions for
TSCH to enable reliable routing of concurrent communication.

• We implement Overtake as a module of Master. We present initial
results showing Overtake’s latency improvement on Master’s schedules.
Moreover, we show the resilience of Overtake to node failures.

3.2 Design

In this section, we present Overtake’s design. Moreover, we discuss our design
modifications of Master enabling concurrent transmissions, as well as the
TSCH modifications concerning opportunistic routing.

3.2.1 Overtake

Overtake brings concurrent, opportunistic routing to TSCH. Overtake
extends Master’s transmission strategy of Sliding Windows with concurrent
transmissions. We achieve opportunistic routing by sending a packet not to
a single specified neighbor, but to all active participants of a flow instead. A
flow is the set of nodes a packet traverses from its sender to its receiver. All
nodes of a flow that successfully receive a packet, transmit it in the next slot
concurrently.

We introduce our opportunistic routing approach in more detail through
the following example. In Fig. 3.1, we show an example flow of 5 nodes with the
most cost-effective path taking four hops. However, the communication range
of each node covers the next two nodes, as represented by the dashed lines.
With opportunistic routing and a schedule like the one given in Fig. 3.2, a
successful transmission might be possible within two slots. The given schedule
includes three retransmissions. If a packet overtakes a node, so to say, it arrives
at a node earlier than taking each hop of the flow, the remaining section of
the flow dynamically gains a retransmission per overtake. These additional
retransmissions increase the end-to-end reception likelihood and add flexibility.

As we are combing opportunistic routing with concurrent transmissions, we
do not have to select a specific forwarder if several nodes received a packet, nor
do we have to use a collision avoidance mechanism.



38 CHAPTER 3. OVERTAKE

1 2 3 4 5 6 7

S TX TX TX TX

1 RX RXTX RXTX RXTX TX

2 RX RXTX RXTX RXTX RXTX TX

3 RX RXTX RXTX RXTX RXTX TX

R RX RX RX RX RX RX

Figure 3.2: Example Schedule for Overtake with 3 retransmissions according
to the topology presented in Fig. 3.1. A node stays in receive mode (RX) until
it receives a packet and transmits (TX) it starting the next slot.

3.2.2 System Design

We design the Overtake routing strategy for Master and TSCH. As both of
them do not natively support opportunistic routing or concurrent transmissions,
we discuss, in this section, the integration of Overtake into Master and
TSCH:

3.2.2.1 Master extensions

We extend Master’s routing header by a rank uniquely identifying a node’s
position in a flow. This rank allows a receiver to determine whether the received
packet is further down the flow or not. Moreover, Master sends packets using
Overtake directly to a flow address instead of a specific node address. These
extensions enable the TSCH anycast described below.

3.2.2.2 TSCH extensions

TSCH generally supports broadcast as well as unicast communication. However,
to perform opportunistic routing, it is necessary to have support for anycast
followed by acknowledgments.

We realize anycast communication in TSCH by transmitting to a flow
instead of a neighbor. As multiple nodes belong to a flow, each active node of
the flow receiving the packet accepts and potentially acknowledges its reception.
If multiple nodes receive a packet, only nodes that are closer to the flow’s
receiver, then the current sender should acknowledge the reception to ensure a
successful packet forwarding. We base the decision on the node’s unique rank
determined by the central scheduler Master.

The multiple nodes accepting the packet, and the modified acknowledgment
behavior enable successful anycast communication in TSCH.

3.3 Evaluation

In this section, we evaluate the performance of Overtake in comparison with
the Sliding Windows transmission strategy. Moreover, we show Overtake’s
possibility to withstand node failures.



3.3. EVALUATION 39

(a) A testbed of 20 nodes at Kiel University. Source node: orange hexagon; Sink
node: green square; Relay nodes: blue circles; Non participating nodes: grey circles;
Numbers: Position in flow; Lines: connectivity > 70%.

10 12 14 16
Latency [slots]

0.0

0.2

0.4

0.6

0.8

1.0

PD
R 

[%
]

Sliding Windows
Overtake

(b) Combined latency-reliability CDF
of Sliding Windows and Overtake.
Overtake outperforms Sliding Win-
dows latency-wise and achieves a 0.25
percentage points higher reliability of
99.80%.

0

25

50

75

100
PD

R 
[%

]

0 10 20 30 40 50 60
Time [minutes]

3
6
8

10
11

No
de

Sliding Windows
Overtake
failure time

(c) Reliability over time of Sliding Win-
dows and Overtake under node failures.
Overtake is capable of withstanding all
node failures while Sliding Windows is
not able to withstand any node failure.

Figure 3.3: Evaluation showing Overtake’s superiority over the Sliding
Windows transmission strategy.

3.3.1 Evaluation Setup

3.3.1.1 Metrics and Comparison

We evaluate the two transmission approaches, Overtake and Sliding Windows,
concerning end-to-end latency and end-to-end reliability. For the proof of
concept of withstanding node failures, we present the end-to-end reliability for
various numbers of node failures.

3.3.1.2 Implementation

We implement Overtake for Contiki-NG [11]. We target the Zolertia Zoul
Firefly platform featuring a 32 MHz 32-bit CC2538 Cortex-M3 CPU, 32 KB of



40 CHAPTER 3. OVERTAKE

RAM, 512 KB of flash, including an IEEE 802.15.4 compatible radio.

3.3.1.3 Testbed

We evaluate on a 20 node, 500 m2 testbed deployed in student lab rooms and
offices, see Fig. 3.3a. The testbed is exposed to interference, as it shares the
wireless spectrum with Bluetooth and WiFi communication outside of our
control.

3.3.1.4 Channels and Application Payload

Due to the significant amount of interference in the testbed’s environment, we
use the default four channel hopping sequence of TSCH (channels 15, 20, 25,
and 26). As we use only one flow, the channel offset for all communication is
the same. In addition to the frame headers, and an 8-byte routing header, we
include a 64 byte randomly generated application payload, a medium packet
size supported by TSCH.

3.3.2 Overtake vs. Sliding Windows

We begin our evaluation by comparing the performance of Overtake with
the performance of Master’s default transmission strategy Sliding Windows.
Throughout this evaluation, we use the following scenario. We run experiments
with a single flow covering the entire floor in a counterclockwise circle. The flow
consists of 11 hops from node 1 to 12 (see Fig. 3.3a), using a transmit power of
-7 dBm. To allow easy comparison between Overtake and Sliding Windows,
we use the same schedule for both strategies, created and optimized for Sliding
Windows with six possible retransmissions. Contrary to the schedule presented
in Fig. 3.2, the schedule used here, starts with two active nodes and increases
the number of active nodes from hop to hop, until it reaches up to 7 active
nodes in slot 7. It allows up to 7 simultaneously active nodes and a minimum
latency of 11 slots. With this schedule, only a small latency improvement is
possible. However, allowing more than 7 active nodes at a time would lead to
unrealistic latencies and hop counts due to the circular shape of the scheduled
flow. All experiments have a run-time of 1 hour and send a new packet every
250 ms.

Fig. 3.3b shows the performance of Sliding Windows and Overtake for the
presented scenario. While Overtake offers only a small reliability improve-
ment over Sliding Windows of 0.25 percentage points (99.80% vs. 99.55%),
Overtake’s average latency of 11.1 slots is almost one slot smaller than the
average latency of Sliding Windows. Moreover, a significant number of packets
were received after the minimal possible latency of 11 slots. As the schedule
was not optimized for Overtake, an optimal schedule should result in even
lower latency.

3.3.3 Overtake under node failures

After comparing the general performance of Overtake and Sliding Windows,
we evaluate their respective performance in case of node failures. The general
scenario is the same as described above. However, up to 5 nodes cease operation



3.4. CONCLUSION & FUTURE WORK 41

at different times, leading to up to 5 non-responding nodes at a given time.
Fig. 3.3c shows the results of this experiment. While Sliding Windows is
highly affected by any node failure, Overtake is, in the given scenario, not
at all influenced by the occurring node failures. It shows that there are at
all times enough longer communication distances available, overtaking one
or two nodes, which can be used by Overtake while Sliding Windows has
to stick to its single-path schedule. If no or not enough node overtakes were
possible, Overtake would be affected by node failures as well. Nevertheless,
it is clearly visible that Overtake offers much higher stability compared to
Sliding Windows, as long as each node can reach more nodes than its immediate
neighbors.

3.4 Conclusion & Future Work

This paper introduces Overtake an opportunistic routing and concurrent
communication strategy for (centrally scheduled) TSCH networks. Instead
of relying on traditional unicast or broadcast communication, Overtake
introduces concurrent opportunistic communication in TSCH. Overtake is
capable of reaching high reliability and low latency with early results showing
a significant latency decrease compared with Sliding Windows. Moreover, we
show Overtake’s feasibility of withstanding node failures.

We implement Overtake for Master, a centralized scheduler for TSCH
based on Contiki-NG. We demonstrate the practicality of concurrent transmis-
sions in the context of TSCH networks and its ability to increase the stability
of schedules created by Master.

As future work, we intend to extend Master by a multi-path communi-
cation strategy building upon Overtake called Autobahn. This strategy
should not only be able to withstand node failures but even withstand higher
levels of interference present in harsh wireless environments.



42 CHAPTER 3. OVERTAKE



4

Opportunistic Routing and Synchronous Transmissions
Meet TSCH

Oliver Harms, Olaf Landsiedel

Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN),
2021, pp. 107–114.

PAPER C





43

Abstract

Low-power wireless networking commonly uses either Time-Slotted Channel
Hopping (TSCH), synchronous transmissions, or opportunistic routing. All
three of these different, orthogonal approaches strive for efficient and reliable
communication but follow different trajectories. With this paper, we combine
these concepts into one protocol: Autobahn.

Autobahn merges TSCH scheduling with opportunistically routed, syn-
chronous transmissions. This opens the possibility to create long-term stable
schedules overcoming local interference. We prove the stability of schedules over
several days in our experimental evaluation. Moreover, Autobahn outperforms
the autonomous scheduler Orchestra under interference in terms of reliability
by 13.9 percentage points and in terms of latency by a factor of 9 under a
minor duty cycle increase of 2.1 percentage points.



44 CHAPTER 4. AUTOBAHN

4.1 Introduction

Within the past 20 years, research on low-power wireless networking resulted in
a multitude of different protocols. They fall into three prominent fields: Time-
Slotted Channel Hopping (TSCH), opportunistic routing, and synchronous
transmissions. So far, all three of these fields have little to no overlap, while
all strive for a common goal of stable, reliable communication in low-power
wireless networks.

In the first field of protocols, the IEEE 802.15.4 Time-Slotted Channel
Hopping (TSCH) [8] MAC layer protocol forms the basis for many routed
communication protocols. This protocol is standardized and dominates the
industry. One category of TSCH protocols uses centralized schedulers, sepa-
rating the network communication from the routing and scheduling. In recent
works [21,66], centralized schedulers show high reliability and stability. Another
category are autonomous schedulers with Orchestra [3] as a prominent example.

TSCH protocols offer stability regarding narrow-band interference. However,
long-term stable schedules that are prone to wide-band interference are an
open challenge. Wide-band interference likely leads to link failures or even
node failures heavily affecting routed communication.

The other two fields can overcome these challenges. Opportunistic routing
[48, 51, 52] utilizes anycasts instead of unicasts to add forwarding flexibility by
addressing a packet to multiple potential forwarders. It increases the possibility
of successful reception in the presence of wireless link dynamics. Protocols
building upon synchronous transmissions [6, 59, 60] allow multiple nodes to
transmit packets concurrently, commonly by network-wide flooding.

Synchronous transmissions achieve high reliability even in the presence
of wide-band interference. However, they have an impact on all nodes in a
network. If, for example, in a 1000 node network, two nodes two-hops apart
want to communicate, the whole network is involved. In a routed network, only
a fraction of these nodes needs to communicate.

In this paper, we ask the following question: Can we combine the benefits
of opportunistic routing, synchronous transmissions and centralized TSCH
scheduling? For this, we introduce Autobahn: a hybrid routing scheme that
combines the best of these worlds: centrally scheduled flows and one-to-one
routing of packets as in traditional networking combined with the reliability
and robustness of opportunistic routing and synchronous transmissions.

The basic concept of Autobahn is as follows: Its central scheduler schedules
a flow along a wider path and allows neighboring nodes to transmit concurrently
the same data at the same timeslot and frequency. Thus, a node forwards a
packet opportunistically to multiple neighboring nodes, which in turn, in the
next slot, concurrently forward opportunistically to their neighbors. In our
evaluation, we show that by combining these three approaches, Autobahn
efficiently provides reliable, low-latency packet delivery even when links fail, and
its schedules are stable for days even in the presence of dynamic interference.

Overall, this paper makes the following contributions:

• We are the first to combine the concepts of opportunistic routing, syn-
chronous transmissions, Time-Slotted Channel Hopping (TSCH) into a
single protocol to achieve long-term stable routed communication.



4.2. BACKGROUND & RELATED WORK 45

• We design Autobahn, a robust scheduling and routing policy that
withstands link and node failures in the presence of interference.

• We implement Autobahn for Contiki-NG [11] and evaluate it in envi-
ronments susceptible to interference. We show the long-term stability
of schedules using Autobahn over 12 days and under various interfer-
ence levels for 25 hours. These experiments achieve reliability under
interference of 96.8% and latency of 4.2 slots outperforming both the
central scheduler Master [66] and the autonomous TSCH scheduler
Orchestra [3].

The remainder of this paper is organized as follows. Section 4.2 gives the
necessary background information and reviews related work on TSCH as well
as the concepts combined in Autobahn. In Section 4.3, we introduce the
design of Autobahn. In Section 4.4 we evaluate Autobahn’s performance
experimentally, followed by the conclusion in Section 4.5.

4.2 Background & Related Work

In this section, we introduce the necessary background on TSCH, opportunistic
routing, and concurrent transmissions and discuss the relevant related work.

4.2.1 Time-Slotted Channel Hopping (TSCH)

The MAC protocol Time-Slotted Channel Hopping (TSCH) [8] is a combined
TDMA and FDMA MAC protocol. It uses 10 ms long time slots with up to
16 frequency channels at each time slot. All active channels follow a pseudo-
random hopping sequence that is cycled through, using a different channel at
each timeslot to counteract narrow-band interference.

TSCH groups communication slots in continuously repeated slot-frames. All
slot-frames together form the TSCH schedule. A TSCH schedule is generated
by a centralized, autonomous, or distributed scheduler.

Centralized Scheduling: Central schedulers use global knowledge about
the network topology (esp. wireless link quality) to build a schedule and
disseminate the schedule into the network. Many early ones, such as TASA [4]
and others [5,16], assume interference-free wireless channels without lossy links
and, therefore, do not include retransmissions in their schedules. Later work
focuses on increasing reliability in the presence of fading channels while ensuring
end-to-end latency requirements of each flow. They achieve this by adding
retransmissions, i.e., slot-based retransmissions, as used by AMUS [17], to the
schedule. As interference can rarely be linked to a specific location beforehand,
some recent works by Brummet et al. [21], and Master [66] introduce a new
approach to retransmissions in TSCH scheduling: they introduce flow-based
retransmissions achieving lower latency and a higher degree of adaptability to
local interference level.

Autonomous/Distributed Scheduling: Next to these centralized TSCH
protocols, a significant amount of work concentrates on autonomous schedul-
ing, a concept introduced by Orchestra [3] and extended by others [32, 35].
Distributed scheduling on the other hand builds on 6TiSCH with its default



46 CHAPTER 4. AUTOBAHN

scheduling function MSF [76], as well as, LLSF [26] and LDSF [28], focusing
on improving latency in distributed TSCH.

Multipath TSCH: For multi-path communication in TSCH, several algo-
rithms [45,77] were studied for distributed and centralized scheduling scenarios.
To some extent, these works propose similar ideas as Autobahn, yet they
clearly stay within the specifications of TSCH and do not apply opportunistic
routing or synchronous transmissions. Moreover, their evaluation results are
solely based on simulation.

4.2.2 Opportunistic Routing

Opportunistic routing is a routing approach to improve network throughput,
communication reliability and efficiency in wireless multi-hop mesh networks.
Instead of performing unicast communication as established TSCH schedulers
do, opportunistic routing builds upon anycasts. By this, opportunistic routing
sends each packet to a set of receivers. If any of them receives the packet,
the transmission is successful. As multiple receivers might receive the packet,
opportunistic routing has to overcome the challenge of selecting a unique
forwarder. This forwarder selection has to wait until after the transmission
[48–50].

While initial works do not use duty-cycled, low-power wireless networking,
later works such as as ORW [51] and ORPL [52] bring opportunistic routing to
these. Nonetheless, these protocols are not built for TSCH. Huynh et al. [53],
Hermeto et al. [54], and Hosni et al. [55] study the use of opportunistic routing
or anycasts in TSCH and propose changes to TSCH to allow non-colliding
acknowledgments from multiple receivers. BOOST [56] introduces forwarder
selection through sending delays with carrier sense in TSCH. In contrast to these
approaches, Autobahn does not use any preferred forwarder selection method.
Instead, we overcome this challenge by using synchronous transmissions.

4.2.3 Synchronous Transmissions

Synchronous transmission protocols allow multiple nodes to transmit packets
simultaneously. With precise timing, these packets do not collide destructively,
allowing protocols to achieve high communication reliability [6,60]. As a result,
protocols employing synchronous transmissions do not maintain routes by
selecting parent nodes, announcing routing metrics, discovering neighbors, and
maintaining routing tables as traditional routing protocols.

For receiving such a packet, the senders must not significantly differ in
timing. One common option of receiving synchronous transmissions is the
so-called Capture Effect [57]. According to the capture effect in IEEE 802.15.4,
a stronger signal must not arrive later than 160µs after the first signal [59].
When sending the same data, non-destructive interference is achievable if the
time offset between multiple senders is within a bound of 0.5µs [60].

Synchronous transmissions are well studied. Glossy [60] laid the foundation
for synchronous transmissions in wireless sensor networks. Since Glossy’s
introduction, many protocols including Chaos [59] and LWB [6] followed. They
all are protocols that use network-wide flooding without a concept of routing.
Protocols like WSNShape/Sparkle [63], CXFS [64] and LaneFlood [65] divert



4.3. DESIGN 47

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C
D
E RX RX

(a) Established central scheduling approaches employ a single routing path. Their
schedule will fail if one of the links fails, such as the link between nodes A and B in
this example.

A B D

C E

1 2 3 4
A TX TX
B RX TXRX TX
C RX TXRX TX
D RX RXTX TX
E RX RX RX

(b) Autobahn utilizes multi-path routing and thereby provides redundant options in
case routes fail. In this example, packets can travel via node C to destination E.

Figure 4.1: Autobahn compared to established centralized TSCH scheduling
approaches. In this example, we assume a topology of five nodes, with node A
as source and node E as destination. We show both the scheduled paths and
the TSCH schedule, using RX, RXTX, and TX slots as typical for flow-based
retransmission schemes (with a retransmission window of two). Grayed-out
slots present slots where reception and transmission are not possible due to
previously failed interfered receptions.

from network-wide flooding and use flooding with some notion of routing along
a path of forwarders.

All of these protocols operate without a routing layer, whereas Autobahn
follows the principle of combining synchronous transmissions and TSCH as
envisioned by Chang et al. [78]. Gomes et al. [79] study an initial approach
of flooding-based routing in TSCH. This approach relies fully on broadcasts
(no acknowledgements) and uses shorter TSCH slots. Baddeley et al. [80]
present a hybrid between TSCH and synchronous transmissions by replacing
some TSCH slots with synchronously transmitted BLE packets for exchanging
control information.

While some protocols explore the field of combining TSCH and synchronous
transmissions, Autobahn explores it further by combining synchronous trans-
missions with TSCH, including both synchronous transmissions as well as
synchronous acknowledgments in combination with opportunistic routing.

4.3 Design

We continue with the design of Autobahn. We begin with a simple example
to present the basic idea of Autobahn. Then, we introduce (1) general node



48 CHAPTER 4. AUTOBAHN

selection requirements, (2) the forwarder selection through node ranks, and (3)
the active nodes in each slot. After discussing these main points of the design,
we present the system design, including the Contiki/TSCH extensions to allow
anycast communication, and Autobahn’s routing layer adaptations.

4.3.1 Autobahn: General Idea

As an example, we assume the network of five nodes in Figure 4.1 where Node
A communicates with node E. Further, let us assume that the link between
nodes A and B fails due to interference.

To illustrate the benefits of Autobahn, we first discuss how established
centralized scheduling approaches suffer from link failures. Established ap-
proaches commonly employ a single routing path. Their schedule will fail if
one of the links fails, such as the link between nodes A and B in this example,
see Figure 4.1a. Retransmissions, as scheduled in the example, usually happen
on a different channel and thereby protect the protocol against narrow-band
interference. Wide-band interference, however, can break links and result in
packet loss. Eventually, the scheduler has to deploy an updated schedule. If
this is done frequently, this adds significant overhead to the communication
scheme.

The general idea behind Autobahn is to add redundancy to the routing
path, see Figure 4.1b. In the example of Autobahn, node A sends a packet that
will be received by nodes B and C. These two forward the packet synchronously
to nodes D and E, which receive one of the two transmissions due to the capture
effect. Lastly, node D sends the packet to node E as well. In case of interference,
node B is not reachable. That means that only node C receives the packet
from node A. Node C then forwards the message to node E. Redundant routing
paths in Autobahn add non-neglectable overhead to the duty cycle of the
network. In our evaluation, we, however, show that this overhead is justifiable
in the interference-free case, and in the case of interference, it is essential for
reliable communication.

4.3.2 Routing Set

Centralized schedulers have global knowledge over the network topology through
long-term link quality metrics. They commonly route traffic along a single path,
using single forwarders. In contrast to that, Autobahn addresses packets to
multiple forwarders (anycast). To achieve this, we employ a routing set with
redundancy instead of a single path.

We define a routing set to consist of all nodes we use for end-to-end
communication. A routing set {rs} is a set of nodes n1, ..., nk ∈ {rs} responsible
for routing a data packet from the source node n1 to the sink node nk. This
routing set contains the nodes forming the shortest path from source to sink as
well as additional nodes used for opportunistic, anycast routing in Autobahn,
which adds path redundancy.

To build a routing set, we start with the shortest path from source to
destination employing the ETX-metric [12] and Dijkstra’s shortest-path algo-
rithm [40]. Next, we add routing redundancies by including neighboring nodes
along the path. For this, we introduce three schemes: (i) neighbor-based, (ii)



4.3. DESIGN 49

hop-based, and (iii) cost-based selection of routing sets. Especially in dense
networks, the number of these neighboring nodes for each of the three schemes
is likely to be high and leads to the inclusion of massive parts of the network.
Therefore, we specify a node overhead factor (scaling the number of additional
nodes) and a cost overhead factor (scaling the max. allowed ETX cost of nodes
of an end-to-end path).

Neighbor-based participant selection starts with determining all nodes
neighboring at least one node of the shortest path. From these nodes, we
continue with three different subsets: (a) all selected nodes that do not exceed
the cost overhead, (b) a subset of (a) forming a second shortest path, and (c)
a subset of (a) forming a shortest path from each node of the original path to
the destination node.

After selecting the respective nodes, we check whether the node overhead is
too large. If so, we refine our selection only to include the allowed number of
nodes with the lowest cost.

The hop-based selection possibility includes additional nodes with a similar
combined distance to the shortest path’s source and destination while not
exceeding the cost overhead. Equation 4.1 shows the general idea of this
selection strategy, that the combined hop distances from source to forwarder
(dsf ) and forwarder to destination (ddf ) must not exceed the direct distance
dsd plus a slack value s. The slack value has to be a natural number. If the
node overhead is too large, nodes with the lowest hop count are preferred.

dsf + ddf ≤ dsd + s (4.1)

The cost-based selection possibility follows the same equation. However,
instead of hop-based distances, we use ETX-based distances and an ETX-based
slack (s), which can be a positive real number. However, the maximum slack
value for this strategy equals the maximum cost overhead allowed according
to the cost overhead factor. If, after node selection, the node overhead is too
large, we rank the nodes regarding their cost and take those with the lowest
cost. In addition, we exclude all other nodes that have the same cost as one of
the already excluded nodes.

4.3.3 Anycast forwarding in Autobahn

In anycast routing, we address a packet to a set of neighboring nodes, i.e.,
the ones making sufficient progress towards the destination. Thus, for each
transmission in Autobahn, this set of possible recipients listens for the packet.
Practically, we introduce node ranks: Each node has a rank according to its
distance to the destination of a flow from source to destination. The sender
of a packet has rank 0, and the rank increases towards the receiver, with the
receiver having the highest rank.

If a node receives a packet, it compares its rank to the sender’s rank, which
we include in the packet header. If the own rank is higher, it acknowledges
the packet and forwards it. Otherwise, it stays silent and acknowledges for
itself that the packet has passed. The sender of a packet performs a similar
action. If it receives an acknowledgment from a node with a higher rank, it
concludes that the opportunistic anycast succeeded and stops forwarding this
packet. This way, we ensure that only nodes closer to the packet’s destination



50 CHAPTER 4. AUTOBAHN

acknowledge the reception of the packet and forward the packet; thus, we avoid
loops and packets stuck mid-flow.

In traditional opportunistic routing, packet duplicates are often a challenge
[48,51,52]: There is always a risk that multiple forwarders receive a packet, and
each individually forwards the packet, adding additional load on the network.
In Autobahn, all packets – including duplicates – are forwarded synchronously,
and their spatial diversity is the basis for the reliability of our design in the
presence of interference. Thus, duplicates are (i) inherently part of the design
and (ii) do not add the overhead as in traditional designs.

4.3.4 Active slots in Autobahn

Autobahn uses flow-based retransmission schemes such as Sliding Windows
introduced by Master [66], with multiple nodes possibly active in one slot.
Autobahn extends this by activating all nodes in a slot that are reachable by
any previously active node.

In the first slot of a flow, the sender of a packet and all receivers in range
are active. For each of the following slots, we include all additional nodes
reachable by any previously active node. From this, we derive the first active
slot of a node, i.e., the first point in time a packet in a flow can reach a node
along one of the different paths employed by Autobahn. We determine a
node’s last active slot based on the node’s hop distance to the flow’s receiver
and the flow’s number of total transmissions.

Due to the opportunistic nature of Autobahn, a high network duty-cycle
is expectable. Nevertheless, to still keep the energy consumption as low as
possible, each node stays only active until we no longer need it for forwarding
the packet. As we explain above, a node determines whether it is still needed
through the received rank of other participants.

The schedules in Figure 4.1 illustrate the difference between the active slots
of a flow-based central scheduler (Figure 4.1a) without opportunistic routing
and Autobahn (Figure 4.1b).

4.3.5 System Integration

For the design of Autobahn, we devise a TSCH implementation with sup-
port for opportunistic anycasts and a good enough time synchronization for
synchronous transmissions. In our evaluation, we show that the TSCH imple-
mentation of Contiki-NG is sufficient for synchronous transmissions. However,
as it does not support anycasts, we have to realize these ourselves. Autobahn
itself can be implemented on top of any centralized scheduler. We choose
Master, a centralized scheduler implemented for Contiki-NG as our basis. We
implement Autobahn to replace Master’s central routing and retransmission
logic while keeping its scheduling module. Below, we discuss the integration
into Master’s Contiki routing layer and the extension of Contiki-NG/TSCH
to allow opportunistic anycasts.

4.3.6 Integration in Master’s routing layer

We extend Master’s routing layer to have access to a node’s rank and relay a
packet back to the correct flow address instead of a neighbor address.



4.4. EVALUATION 51

The routing layer is also responsible for the routing-specific header. In addi-
tion to the existing 7-byte routing header, Autobahn requires one additional
byte. The existing 7 bytes are a flow identifier (1 byte), a sequence number (2
bytes), the time-to-live (TTL) (2 bytes), and the earliest transmission slot (2
bytes) of a packet. Autobahn adds the node’s rank to the packet to allow the
receiver to make its forwarding decision according to our description above.

4.3.6.1 Contiki-NG/TSCH extensions

The TSCH implementation of Contiki-NG does not support anycast communi-
cation. To add support for anycasts, we extend it with (1) the capability of
accepting packets from any neighbor of a flow, as well as (2) using this flow as
a sender and receiver simultaneously. Moreover, we (3) define a flow-specific
sequence number to accept acknowledgments successfully.

With our modification, TSCH accepts packets from a flow address if the
receiving node is a member of the respective flow. As we no longer need the
sender’s and receiver’s addresses, we replace them with the flow address.

Besides accepting packets from any flow participant, TSCH needs the
capability to accept acknowledgments from any possible forwarder of the flow.
Therefore, we include the receiver’s rank in the acknowledgment. If a node
receives an acknowledgment acknowledging a different synchronous sender, it
still needs to be accepted. Therefore, our routing layer replaces the TSCH
sequence number with a flow and packet-specific end-to-end sequence number.

4.4 Evaluation

In this section, we evaluate Autobahn’s performance and compare it to the
state-of-the-art. We start by showing the feasibility of synchronous transmis-
sions in the context of TSCH. After that, we evaluate Autobahn’s different
routing set selection choices and compare those to Master in scenarios with
and without interference. Afterward, we compare Autobahn’s best routing
selection algorithm against Orchestra, the default autonomous scheduler in
Contiki-NG. We conclude our evaluation with long-term stability analysis of
schedules in Autobahn.

4.4.1 Evaluation Setup

4.4.1.1 Testbed and Platform

We run our experiments on a 20-node testbed at our local university. This
testbed (Figure 4.2) covers the top floor of a university building with offices
and student lab rooms and thus shares the wireless spectrum with WiFi and
Bluetooth communication outside of our control.

4.4.1.2 Metrics, Comparison, and Duration

We evaluate Autobahn in terms of end-to-end reliability, end-to-end latency,
and network energy consumption (network duty cycle). We measure these
metrics for different routing and retransmission approaches for Master and



52 CHAPTER 4. AUTOBAHN

Autobahn under different interference levels. Moreover, we compare Auto-
bahn with Orchestra according to these metrics. We include six flows we give
in Figure 4.2. The duration of each experiment in sections 4.4.5, and 4.4.4 is
75 minutes, with each flow sending 100 packets per minute. In section 4.4.6
we run 75-minute experiments with 60 packets per minute and flow. For the
long-term evaluations from Section 4.4.8 onward, we specify the duration as
part of the specific experiment.

4.4.1.3 Implementation

We implement Autobahn for Contiki-NG [11] and target the Zolertia Firefly
Platform. This platform features a CC2538 Cortex-M3 CPU (32-bit, 32 MHz)
with 32 KB of RAM, 512 KB flash storage, and an IEEE 802.15.4 compatible
radio.

4.4.1.4 Channels and Interference

We perform most of our experiments under interference. To ensure comparable
levels of interference for all tested protocols, we generate these ourselves in
a repeatable manner using JamLab [81]. If not stated otherwise, we use an
interference level of 10% channel occupancy. We use five interference sources
depicted in Figure 4.2. Two of the interference sources are in a central position
surrounded by several nodes, while the other three are each in close vicinity to
a forwarding node in the network. As our testbed only provides the capability
of generating interference on one channel at a time, we use only a single
channel (channel 26) for all experiments. As we target networks susceptible to
wide-band interference, evaluating on only one channel is not a problem. Wide-
band interference, such as WiFi, would cover multiple IEEE 802.15.4 channels,
eliminating channel hopping advantages. Therefore, it is more realistic to use
one channel with interference than multiple channels with interference on only
one of them. Moreover, using only one channel lets us compare the worst-case
performance of the discussed protocols.

4.4.1.5 Application Payload and Overhead

We send packets with a 64-byte randomly generated payload for all experiments,
a medium packet size for TSCH. Additionally to this data payload, we include
7-byte and 8-byte routing headers for Master and Autobahn, respectively.
Orchestra uses IPv6 headers instead and requires additional network layer
control traffic.

4.4.1.6 Routing Sets

We include three Autobahn routing sets marked as neighbor-based, hop-based,
and cost-based. The neighbor-based one is option (c) of the neighbor-based
routing sets in Section 4.3.2, the one with an alternative path from each node
through all neighbors. For the hop-based routing set, we use a slack value of
2. For the cost-based routing set, we use the maximum possible slack value,
equaling the maximum cost overhead. This slack value is potentially different
for each flow. This value ensures that we include all nodes, with an end-to-end



4.4. EVALUATION 53

4 2

5

6

1

34

2

5

6

1

3

Figure 4.2: Local testbed of 500m2. Source nodes: orange hexagons; Sink
nodes: green squares; Relay-only nodes: blue circles; Red octagons: interferer;
Numbers: corresponding flow

ETX value not exceeding the cost overhead factor. We use overhead factors of
2 and 2.5 as node-overhead factor and cost overhead factor, respectively.

4.4.2 Baselines

We compare Autobahn’s routing-set algorithms to three other TSCH schedul-
ing policies. Two of these are Master’s slot-based retransmission strategy and
Master’s flow-based transmission strategy called Sliding Windows. Master’s
slot-based retransmission strategy follows the traditional concept of replicating
slots of single hops, done in several recent publications, including AMUS [17].
We use Master, as it provides us an implementation for Contiki-NG. As the
last baseline we use Orchestra, to set Autobahn into relation to a well-known
protocol. Orchestra [3] is an autonomous scheduler for TSCH included in
Contiki-NG [11]. It autonomously maps links to resources, e.g., determines a
node’s send or receive slot based on a hash function.

4.4.3 Possibility of Synchronous Transmissions in TSCH

Before starting our main evaluation, we investigate the quality of synchroniza-
tion in TSCH for synchronous transmissions. With a desk setup of 4 nodes,
we can identify the feasibility of synchronous transmissions. Our data shows
an average offset between two synchronously transmitting nodes of 16.4µs
with a standard deviation of 16.8µs and a maximum offset of 65.7µs. This
offset clearly shows that the degree of synchronization in Contiki’s TSCH
implementation is by far not good enough for constructive interference (offset
bound of 0.5µs [60]). However, the offset stays below the maximum offset for
capture effect of 160µs [59]. TSCH generally does not require synchronization



54 CHAPTER 4. AUTOBAHN

Master (slot-based) Master (Sliding Windows) Autobahn (neighbor-based) Autobahn (hop-based) Autobahn (cost-based)

1 2 3 4 5 6 avg
Flow

0

25

50

75

100
PD

R 
[%

]

(a) Reliability comparison.

1 2 3 4 5 6 avg
Flow

0.0

2.5

5.0

7.5

10.0

La
te

nc
y 

[s
lo

ts
]

(b) Latency comparison.

0 2 4 6 8 10 12
Latency [slots]

0

25

50

75

100

PD
R 

[%
]

(c) CDF: latency and reliability.

0
5

10
15
20
25

Du
ty

 C
yc

le
 [%

]

(d) Duty cycle comparison.

Figure 4.3: Autobahn and Master without interference. Autobahn’s
neighbor-based strategy outperforms Master while increasing the duty cycle
by 4.3 percentage points.

as strict as Glossy and therefore does not include additional physical layer time
synchronization measures. Nonetheless, our results show that synchronous
transmissions are possible due to the capture effect.

4.4.4 Performance without Interference

We begin our evaluation by comparing the performance of Autobahn’s different
routing sets with the performance of Master’s retransmission strategies. For
this evaluation, we do not generate any interference. When comparing the
reliability of the different routing sets (see Figure 4.3a), we see a generally
better performance of the neighbor-based routing set in comparison with the
hop-based or cost-based ones. Especially the difference between the neighbor-
based and hop-based routing sets is visible for flows 1 and 6. The hop-based
routing set has too many simultaneously active nodes at similar distances to a
forwarder or receiver. With this number of active nodes, no signal is strong
enough for reception through the capture effect. For flow 1, we even see a
destruction of the signal. The cost-based strategy has better reliability but
generally does not achieve the high reliability of the neighbor-based routing
set. The baseline strategies are not exposed to in-flow interference and achieve
almost the reliability of neighbor-based Autobahn, with a slight advantage for
Sliding Windows over the slot-based retransmission strategy. However, if the
network’s link qualities are not perfect for a flow (flows 2 and 5), Master is



4.4. EVALUATION 55

Master (slot-based) Master (Sliding Windows) Autobahn (neighbor-based) Autobahn (hop-based) Autobahn (cost-based)

1 2 3 4 5 6 avg
Flow

0

25

50

75

100
PD

R 
[%

]

(a) Reliability comparison.

1 2 3 4 5 6 avg
Flow

0.0

2.5

5.0

7.5

10.0

La
te

nc
y 

[s
lo

ts
]

(b) Latency comparison.

0 2 4 6 8 10 12
Latency [slots]

0

25

50

75

100

PD
R 

[%
]

(c) CDF: latency and reliability.

0
5

10
15
20
25

Du
ty

 C
yc

le
 [%

]

(d) Duty cycle comparison.

Figure 4.4: Autobahn and Master under interference. Autobahn has a
much better performance than Master with the best performance using the
neighbor-based routing set.

more strongly affected. Latency-wise (see Figure 4.3b, 4.3c), Autobahn has a
small advantage over Master, while both Autobahn and Sliding Windows are
better than the slot-based retransmission strategy. The reliability improvement
comes at a cost of a higher network duty cycle (see Figure 4.3d). With more
active nodes, the duty cycle increases significantly. Nevertheless, the best
performing routing set of Autobahn leads to the least increase in duty cycle
by, on average 4.3 percentage points.

4.4.5 Performance under Interference

Next, we compare the same strategies as before under induced interference.
From Figure 4.4a it is visible that the neighbor-based routing set once again
performs best. The other routing sets still offer average reliability of around
80%. However, for some flows, these routing sets achieve very low reliability
(e.g., flow 1). This low reliability indicates that too many nodes are active
simultaneously plus the additional interference heavily impacting a successful
capture effect. Comparing Autobahn to Master shows that all routing sets
of Autobahn have higher average reliability than Master’s strategies. This
is due to Master being heavily impacted by interference in certain flows (flows
3, 5, and 6). In these flows, the shortest path passes closely to an interference
source. Thus, we see that additional nodes offered by Autobahn are necessary
to route traffic around interference sources opportunistically. The latency



56 CHAPTER 4. AUTOBAHN

0 50 100 150 200
Latency [slots]

0

20

40

60

80

100

PD
R 

[%
]

Autobahn 0%
Autobahn 10%
Orchestra 0%
Orchestra 10%

(a) Latency and reliability comparison
between Orchestra and Autobahn with
and without interference.

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

Autobahn 0%
Autobahn 10%
Orchestra 0%
Orchestra 10%

(b) Network duty cycle of Orchestra and
Autobahn with and without interfer-
ence.

25

50

75

100

PD
R 

[%
]

40 80 120 160 200 240
Time [minutes]

0
25
50
75

100

La
te

nc
y 

[s
lo

ts
] Master

Orchestra
Autobahn

(c) Performance under and recovery from interference over time. (Interference levels
from left to right: 5%, 10%, 15%, and 25%)

Figure 4.5: Comparison of Autobahn and Orchestra with and without inter-
ference. Figure 4.5c includes the recovery performance of Master’s Sliding
Windows strategy as an additional baseline.

differences (see Figure 4.4b) follow the same trend as without interference, just
slightly higher. As the latency comparison only includes received packets, we
also show the combination of latency and reliability in Figure 4.4c. Autobahn
requires a latency of 4 slots to reach a 50% reliability, while Master cannot
reach this network-wide reliability at all. The higher overall reliability comes at
the cost of a higher network duty cycle (see Figure 4.4d). The cost is similarly
high as for the interference-free case. However, especially in the presence of
interference, an increase of network duty cycle of 2.89 percentage points for
the best routing set should be acceptable if reliability has high priority.

4.4.6 Autobahn vs. Orchestra

Next, we compare Autobahn’s best-performing routing set (neighbor-based)
with another baseline, the autonomous scheduler Orchestra. As Orchestra
is a best-effort protocol and is therefore not limited to a deadline, i.e., a
certain number of slots to successfully transmit a packet, we, therefore, relax
these limitations for Autobahn as well. However, as we send a new packet



4.5. CONCLUSION 57

every second, Autobahn’s schedule should not exceed this value. We achieve
this by using a higher scaling factor of three instead of two to determine
the number of transmission slots. That means that we use for each flow
50% more transmissions than in the previous experiments. The results of
this comparison (see Figure 4.5a-4.5b) show that Orchestra achieves slightly
higher reliability than Autobahn without the presence of interference (99.96%
vs. 99.51%). However, in the presence of interference, Autobahn clearly
outperforms Orchestra with a 13.89 percentage points higher packet delivery
rate (PDR). Latency-wise, Autobahn clearly outperforms Orchestra. In case
of interference, by a factor 9. However, we need to attribute some of that to the
fact that all flows communicate actively simultaneously in Orchestra, while in
Autobahn’s schedule, the flows communicate one after another. Energy-wise,
we can see a similar trend as with the comparison of Autobahn and Master
(Figure 4.3d and Figure 4.4d). Autobahn uses more active nodes and therefore
has a higher duty cycle. In contrast both Master and Orchestra follow a single
path, with Master’s duty cycle being the lowest, while Orchestra occupies
the middle ground.

4.4.7 Recovery from interference

Next, we compare how well Master, Autobahn, and Orchestra perform under
interference over time and how good they are at recovering from interference.
Figure 4.5c shows that all three algorithms are influenced by interference but are
successful at recovering independently of the interference level. Master and
Autobahn have similar latency responses, while Orchestra has a less uniform
curve as the rerouting in case of interference takes some time. Reliability-wise,
Orchestra keeps high reliability for quite a long time but has to drop packets
towards the end of an interference block. Master is generally hit the hardest
by interference, while Autobahn clearly performs best under interference.

4.4.8 Long-term stability of Autobahn

After comparing Autobahn to various baselines under different interference
levels, we evaluate Autobahn’s long-term stability. As before, we use Au-
tobahn’s neighbor-based routing set. For this section, we use a schedule
generated with a neighbor discovery on day one and run this schedule almost
daily over 12 days. Moreover, after 12 days, we run a final 25 hour experiment
with three-hour blocks of 5%, 10%, 15%, and 25% interference, respectively.
While the performance varies within the days, reliability always stays above
96% (see Figure 4.6a). Latency fluctuates slightly, yet it remains around the
level of the first days, whereas the duty cycle shows an upwards trend in the
beginning (see Figure 4.6b-4.6c). The performance analysis over 25 hours (see
Figure 4.6d) shows that even an almost two-week-old Autobahn schedule is
still able to perform under interference and quickly recover from it.

4.5 Conclusion

Centrally scheduled networks are sensitive to wireless link dynamics, esp. wide-
band interference. Autobahn addresses this by adding spatial redundancies



58 CHAPTER 4. AUTOBAHN

1 2 3 4 5 8 9 11 12
Day

80

85

90

95

100

PD
R 

[%
]

(a) Reliability over the
course of 12 days.

1 2 3 4 5 8 9 11 12
Day

0

1

2

3

4

5

6

La
te

nc
y 

[s
lo

ts
]

(b) Latency over the course
of 12 days.

1 2 3 4 5 8 9 11 12
Day

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

(c) Energy consumption
(duty cycle) over the
course of 12 days.

50

100

PD
R 

[%
]

0
4
8

La
te

nc
y

[s
lo

ts
]

300 600 900 1200 1500
Time [minutes]

5

10

DC
 [%

]

(d) Performance over 25 hours with 3 hour long interference blocks (interference
levels from left to right: 5%, 10%, 15%, 25%).

Figure 4.6: Long-term stability evaluation of Autobahn. Figures 4.6a - 4.6c
present (almost) daily runs of Autobahn with the same schedule over the
course of 12 days. Figure 4.6d shows the performance of the same 12-day old
schedule under different interference levels and its recovery from interference.

via combining TSCH with synchronous transmissions and opportunistic routing.
We show that Autobahn offers reliability of 95% and more under interfer-

ence while mildly increasing the duty cycle by 4.3 percentage points. Moreover,
experiments over 12 days show the long-term stability of Autobahn’s schedules
with 98.6% reliability.



Bibliography

[1] nRF52840 Product Specification, Nordic Semiconductor, 2019, 4413 417
v1.1. [Online]. Available: https://infocenter.nordicsemi.com/pdf/
nRF52840 PS v1.1.pdf

[2] CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz
IEEE 802.15.4, 6LoWPAN, and ZigBee® Applications.

[3] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
ACM SenSys, 2015.

[4] M. Palattella, N. Accettura, M. Dohler, L. Grieco, and G. Boggia, “Traffic-
Aware Time-Critical Scheduling in Heavily Duty-Cycled IEEE 802.15.4e
for an Industrial IoT,” in IEEE PIMRC, 2012.

[5] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-Time Scheduling for
WirelessHART Networks,” in IEEE RTSS, 2010.

[6] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power wireless
bus,” in ACM SenSys, 2012.

[7] “IEEE Standard for Telecommunications and Information Exchange Be-
tween Systems - LAN/MAN Specific Requirements - Part 15: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low Rate Wireless Personal Area Networks (WPAN),” IEEE Std
802.15.4-2003, 2003.

[8] R. F. Heile, R. Alfvin, P. W. Kinney, J. P. K. Gilb, and C. Chaplin, “IEEE
Standard for Local and metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC
sublayer,” IEEE, Tech. Rep., 2012.

[9] ISA, ISA-100.11a-2011 - Wireless Systems for Industrial Automation:
Process Control and Related Applications. ISA, 2011.

[10] HART Communication Foundation, WirelessHART Specification 75:
TDMA Data-Link Layer. HCF SPEC-75. HART Communication Foun-
dation, 2008.

[11] “Contiki-NG: The OS for Next Generation IoT Devices,” 2020. [Online].
Available: http://www.contiki-ng.org/

59

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
http://www.contiki-ng.org/


60 BIBLIOGRAPHY

[12] D. S. J. De Couto, “High-Throughput Routing for Multi-Hop Wireless
Networks,” PhD thesis, Massachusetts Institute of Technology, 2004, https:
//pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf.

[13] M. Ojo, S. Giordano, G. Portaluri, D. Adami, and M. Pagano, “An energy
efficient centralized scheduling scheme in TSCH networks,” in IEEE ICC
Workshops), 2017.

[14] M. Ojo and S. Giordano, “An efficient centralized scheduling algorithm in
ieee 802.15.4e TSCH networks,” in IEEE CSCN, 2016.

[15] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On Optimal Scheduling in Duty-Cycled Industrial IoT
Applications Using IEEE802.15.4e TSCH,” IEEE Sensors Journal, vol. 13,
no. 10, 2013.

[16] D. Gunatilaka and C. Lu, “Conservative Channel Reuse in Real-Time
Industrial Wireless Sensor-Actuator Networks,” in IEEE ICDCS, 2018.

[17] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized
scheduling algorithm for IEEE 802.15.4e TSCH based industrial low power
wireless networks,” in IEEE WCNC, 2016.

[18] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “High-reliability
scheduling in deterministic wireless multi-hop networks,” in IEEE PIMRC,
2016.

[19] A. Darbandi and M. K. Kim, “Path Collision-aware Real-time Link Schedul-
ing for TSCH Wireless Networks,” KSII Transactions on Internet & In-
formation Systems, vol. 13, no. 9, 2019.

[20] J. P. G. Rugamba, D. L. Mai, and M. K. Kim, “Implementation of a
Centralized Scheduling Algorithm for IEEE 802.15.4e TSCH,” in Intelligent
Computing Methodologies, D.-S. Huang, Z.-K. Huang, and A. Hussain, Eds.
Springer Int. Pub., 2019, vol. 11645.

[21] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A Flexible
Retransmission Policy for Industrial Wireless Sensor Actuator Networks,”
in IEEE ICII, 2018.

[22] A. Tinka, T. Watteyne, and K. Pister, “A Decentralized Scheduling
Algorithm for Time Synchronized Channel Hopping,” in Ad Hoc Networks,
J. Zheng, D. Simplot-Ryl, and V. C. M. Leung, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010.

[23] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy net-
works in the internet of things,” in IEEE WoWMoM, 2013.

[24] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the
TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,” RFC 8180,
May 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8180.txt

https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf
https://rfc-editor.org/rfc/rfc8180.txt


BIBLIOGRAPHY 61

[25] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. R. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” RFC 9033, May 2021.
[Online]. Available: https://rfc-editor.org/rfc/rfc9033.txt

[26] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low Latency
Scheduling Function for 6TiSCH Networks,” in IEEE DCOSS, 2016.

[27] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne, “Dis-
tributed PID-Based Scheduling for 6TiSCH Networks,” IEEE Communi-
cations Letters, 2016.

[28] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre, “LDSF:
Low-Latency Distributed Scheduling Function for Industrial Internet of
Things,” IEEE Internet of Things Journal, vol. 7, 2020.

[29] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura,
D. Dujovne, L. A. Grieco, and T. Engel, “On-the-Fly Bandwidth Reserva-
tion for 6TiSCH Wireless Industrial Networks,” IEEE Sensors Journal,
vol. 16, no. 2, 2016.

[30] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-Demand TSCH
Scheduling with Traffic-Awareness,” in IEEE INFOCOM, 2020.

[31] J. Jung, D. Kim, T. Lee, J. Kang, N. Ahn, and Y. Yi, “Distributed slot
scheduling for qos guarantee over tsch-based iot networks via adaptive
parameterization,” in ACM/IEEE IPSN, 2020.

[32] J. Shi, M. Sha, and Z. Yang, “DiGS: Distributed Graph Routing and
Scheduling for Industrial Wireless Sensor-Actuator Networks,” in IEEE
ICDCS, 2018.

[33] ——, “Distributed Graph Routing and Scheduling for Industrial Wireless
Sensor-Actuator Networks,” IEEE/ACM Transactions on Networking,
vol. 27, no. 4, 2019.

[34] S. Oh, D. Hwang, K.-H. Kim, and K. Kim, “Escalator: An Autonomous
Scheduling Scheme for Convergecast in TSCH,” Sensors, vol. 18, no. 4,
2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/4/1209

[35] S. Kim, H.-S. Kim, and C. Kim, “ALICE: autonomous link-based cell
scheduling for TSCH,” in IEEE/ACM IPSN, 2019.

[36] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-Aware Elastic
Slotframe Adjustment in TSCH Networks,” IEEE Access, vol. 7, 2019.

[37] J. Jung, D. Kim, J. Hong, J. Kang, and Y. Yi, “Parameterized slot schedul-
ing for adaptive and autonomous TSCH networks,” in IEEE INFOCOM
WKSHPS, 2018.

[38] S. Rekik, N. Baccour, M. Jmaiel, K. Drira, and L. A. Grieco, “Autonomous
and Traffic-aware Scheduling for TSCH Networks,” Computer Networks,
vol. 135, Apr. 2018.

[39] X. Cheng and M. Sha, “ATRIA: Autonomous Traffic-Aware Scheduling
for Industrial Wireless Sensor-Actuator Networks,” in IEEE ICNP), 2021.

https://rfc-editor.org/rfc/rfc9033.txt
https://www.mdpi.com/1424-8220/18/4/1209


62 BIBLIOGRAPHY

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Section 24.3:
Dijkstra’s algorithm,” in Introduction to Algorithms, 2nd ed. MIT Press
and McGraw-Hill, 2001.

[41] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, 1968.

[42] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert,
P. Levis, R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012.
[Online]. Available: https://rfc-editor.org/rfc/rfc6550.txt

[43] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless
Routing and Control: A Cyber-Physical Case Study,” in ACM/IEEE
ICCPS, 2016.

[44] C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Real-Time Wireless Routing
for Industrial Internet of Things,” in IEEE/ACM IoTDI, 2018.

[45] P. Minet, I. Khoufi, and A. Laouiti, “Increasing reliability of a TSCH
network for the industry 4.0,” in IEEE NCA, 2017.

[46] T. Lagos Jenschke, R.-A. Koutsiamanis, G. Z. Papadopoulos, and N. Mon-
tavont, “Multi-path Selection in RPL Based on Replication and Elimina-
tion,” in Ad-hoc, Mobile, and Wireless Networks, 2018, vol. 11104.

[47] A. C. Estrin, T. Lagos Jenschke, G. Z. Papadopoulos, J. Ignacio Alvarez-
Hamelin, and N. Montavont, “Thorough Investigation of multipath Tech-
niques in RPL based Wireless Networks,” in IEEE ISCC, 2020.

[48] S. Biswas and R. Morris, “ExOR: opportunistic multi-hop routing for
wireless networks,” in ACM SIGCOMM, 2005.

[49] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for
randomness in wireless opportunistic routing,” ACM SIGCOMM Computer
Communication Review, vol. 37, 2007.

[50] R. R. Choudhury and N. H. Vaidya, “MAC-layer anycasting in ad hoc
networks,” ACM SIGCOMM Computer Communication Review, vol. 34,
2004.

[51] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low Power,
Low Delay: Opportunistic Routing meets Duty Cycling,” in ACM/IEEE
IPSN, 2012.

[52] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree Bloom: scalable
opportunistic routing with ORPL,” in ACM SenSys, 2013.

[53] T. Huynh, F. Theoleyre, and W. Hwang, “On the interest of opportunis-
tic anycast scheduling for wireless low power lossy networks,” Comput.
Commun., vol. 104, 2017.

https://rfc-editor.org/rfc/rfc6550.txt


BIBLIOGRAPHY 63

[54] R. T. Hermeto, A. Gallais, and F. Theoleyre, “Is Link-Layer Anycast
Scheduling Relevant for IEEE 802.15.4-TSCH Networks?” in IEEE LCN,
2019.

[55] I. Hosni and F. Théoleyre, “Adaptive k-cast Scheduling for High-Reliability
and Low-Latency in IEEE802.15.4-TSCH,” in Ad-hoc, Mobile, and Wireless
Networks, 2018, vol. 11104.

[56] Y. Jin, U. Raza, and M. Sooriyabandara, “BOOST: Bringing Opportunistic
ROuting and Effortless-Scheduling to TSCH MAC,” in IEEE GLOBECOM,
2018.

[57] K. Leentvaar and J. Flint, “The Capture Effect in FM Receivers,” IEEE
Transactions on Communications, vol. 24, 1976.

[58] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis,
“Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link
Layer for Low-Power Wireless,” in ACM SenSys. New York, NY, USA:
Association for Computing Machinery, 2010.

[59] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
ACM SenSys, 2013.

[60] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in ACM/IEEE IPSN,
2011.

[61] C.-H. Liao, Y. Katsumata, M. Suzuki, and H. Morikawa, “Revisiting the
So-Called Constructive Interference in Concurrent Transmission,” in IEEE
LCN, 2016.

[62] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adaptive
Real-Time Communication for Wireless Cyber-Physical Systems,” ACM
Trans. Cyber-Phys. Syst., vol. 1, no. 2, Feb. 2017.

[63] D. Yuan, M. Riecker, and M. Hollick, “Making ‘Glossy’ Networks Sparkle:
Exploiting Concurrent Transmissions for Energy Efficient, Reliable, Ultra-
Low Latency Communication in Wireless Control Networks,” in Wireless
Sensor Networks, 2014, vol. 8354.

[64] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali, “Forwarder
Selection in Multi-transmitter Networks,” in IEEE ICDCS, 2013.

[65] M. Brachmann, O. Landsiedel, and S. Santini, “Concurrent Transmissions
for Communication Protocols in the Internet of Things,” in IEEE LCN,
2016.

[66] O. Harms and O. Landsiedel, “MASTER: Long-Term Stable Routing and
Scheduling in Low-Power Wireless Networks,” in IEEE DCOSS, 2020.

[67] ——, “(POSTER) Overtake: Opportunistic Routing and Concurrent
Transmissions for TSCH,” in IEEE DCOSS, 2020.



64 BIBLIOGRAPHY

[68] ——, “Opportunistic Routing and Synchronous Transmissions Meet
TSCH,” in IEEE LCN, 2021.

[69] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and D. R.
Dujovne, “6TiSCH Minimal Scheduling Function (MSF),” Internet
Engineering Task Force, Internet-Draft draft-ietf-6tisch-msf-14, 2014,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-6tisch-msf-14

[70] A. S. Tanenbaum and H. Bos, “Section 2.4.2: Scheduling in Batch Systems
- Shortest Job First,” in Modern Operating Systems, 4th ed. Pearson
Education, Inc., 2015, pp. 157–158.

[71] G. Exarchakos, I. Oztelcan, D. Sarakiotis, and A. Liotta, “plexi : Adap-
tive re-scheduling web-service of time synchronized low-power wireless
networks,” Journal of Network and Computer Applications, 2017.

[72] C. A. Boano and M. Schuß, “EWSN 2019 Dependability Competition Logis-
tics Information, rev. 1,” Jan. 2018. [Online]. Available: https://iti-testbed.
tugraz.at/fileupload/static/fileupload/EWSN2019 DC Logistics 1.pdf

[73] L. R̊ade and B. Westergren, Mathematics Handbook for Science and
Engineering. Lund: Studentlitteratur AB, 2004.

[74] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and D. Sime-
onidou, “Evolving SDN for Low-Power IoT Networks,” in IEEE NetSoft,
2018.

[75] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in IEEE INFOCOM, 2015.

[76] T. Chang, M. Vučinić, X. V. Guillén, D. Dujovne, and T. Watteyne,
“6TiSCH minimal scheduling function: Performance evaluation,” Internet
Technology Letters, vol. 3, 2020.

[77] E. Mozaffari Ahrar, M. Nassiri, and F. Theoleyre, “Multipath aware
scheduling for high reliability and fault tolerance in low power industrial
networks,” Journal of Network and Computer Applications, vol. 142, 2019.

[78] T. Chang, T. Watteyne, X. Vilajosana, and P. H. Gomes, “Constructive
Interference in 802.15.4: A Tutorial,” IEEE Communications Surveys
Tutorials, vol. 21, 2019.

[79] P. H. Gomes, T. Watteyne, P. Gosh, and B. Krishnamachari, “Competition:
Reliability through Timeslotted Channel Hopping and Flooding-Based
Routing,” in EWSN, 2016.

[80] M. Baddeley, A. Aijaz, U. Raza, A. Stanoev, Y. Jin, M. Schuß, C. A.
Boano, and G. Oikonomou, “6tisch++ with Bluetooth 5 and Concurrent
Transmissions,” in EWSN, 2021.

[81] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. A. Zúñiga, “JamLab:
Augmenting Sensornet Testbeds with Realistic and Controlled Interference
Generation,” in IEEE IPSN, 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-14
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-14
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf
https://iti-testbed.tugraz.at/fileupload/static/fileupload/EWSN2019_DC_Logistics_1.pdf

	Abstract
	Acknowledgement
	List of Publications
	Introduction
	Challenges
	Low-Power Wireless Networks
	Communication in Low-Power Wireless Networks
	Broadcast by nature

	Communication in IEEE 802.15.4
	Time-Slotted Channel Hopping (TSCH)
	TSCH Scheduling
	Centralized Scheduling
	Distributed Scheduling
	Autonomous Scheduling

	Routing in low-power wireless mesh networks
	Tree-based routing: RPL
	Routing in TSCH
	Opportunistic Routing
	Lack of Routing – or – Flooding

	Synchronous Transmissions

	Research Problem
	Contributions
	Paper A – Master: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks
	Paper B – (POSTER) Overtake: OpportunisticRouting and Concurrent Transmissions for TSCH
	Paper C - Opportunistic Routing and Synchronous Transmissions Meet TSCH

	Conclusion and Future Work

	Paper A - Master: Long-Term Stable Routing and Scheduling in Low-Power Wireless Networks
	Introduction
	Background
	Time-Slotted Channel Hopping
	Link quality metric
	Scheduling
	Retransmissions

	Design
	Centralized Routing and Scheduling with Master
	Centralized Routing
	Transmission Strategies
	Scheduling

	Master's Flow-based transmission strategy
	Window Size
	Algorithm
	Flow-based transmissions vs. Flow Centric Policy (FCP)

	Time Synchronization
	System Design
	Central Logic of Master
	Schedule Distribution
	Per node routing layer
	Contiki-NG/TSCH Extensions
	Neighbor Discovery and Bootstrapping
	Header format


	Evaluation
	Evaluation Setup
	Testbed
	Metrics, Comparison, and Duration
	Implementation
	Channels
	Application Payload and Overhead
	Notations

	Baselines
	Performance of Master's transmission strategies
	Master vs. Orchestra
	Long-term stability of Master

	Related Work
	Conclusion

	Paper B - (POSTER) Overtake: Opportunistic Routing and Concurrent Transmissions for TSCH
	Introduction
	Design
	Overtake
	System Design
	Master extensions
	TSCH extensions


	Evaluation
	Evaluation Setup
	Metrics and Comparison
	Implementation
	Testbed
	Channels and Application Payload

	Overtake vs. Sliding Windows
	Overtake under node failures

	Conclusion & Future Work

	Paper C - Opportunistic Routing and Synchronous Transmissions Meet TSCH
	Introduction
	Background & Related Work
	Time-Slotted Channel Hopping (TSCH)
	Opportunistic Routing
	Synchronous Transmissions

	Design
	Autobahn: General Idea
	Routing Set
	Anycast forwarding in Autobahn
	Active slots in Autobahn
	System Integration
	Integration in Master's routing layer
	Contiki-NG/TSCH extensions


	Evaluation
	Evaluation Setup
	Testbed and Platform
	Metrics, Comparison, and Duration
	Implementation
	Channels and Interference
	Application Payload and Overhead
	Routing Sets

	Baselines
	Possibility of Synchronous Transmissions in TSCH
	Performance without Interference
	Performance under Interference
	Autobahn vs. Orchestra
	Recovery from interference
	Long-term stability of Autobahn

	Conclusion

	Bibliography

