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1

CHAPTER 1

INTRODUCTION

Besides deployments for open-loop sensing such as environmental monitoring, embedded wireless

networks are increasingly being explored for real-time, closed-loop sensing and control. For in-

stance, the wireless networking standard IEEE 802.15.4g has been defined for large scale process

control applications such as smart grid sensing and control [5], and wireless networks are expected

to serve as major communication infrastructures in neighborhood area networks and home area net-

works of the smart grid [48, 40, 130, 120]. In addition, wireless networking standards such as the

IEEE 802.15.4e, WirelessHART, and ISA SP100.11a have been defined for industrial monitoring

and control [6, 122, 112], wireless sensor networks have been deployed for industrial automation

[70, 121], and the automotive industry has also been exploring the application of wireless networks

to vehicle sensing and control [41, 114]. In wireless networked sensing and control, message pass-

ing (or messaging for short) across wireless networks is a basic enabler for coordination among

distributed sensors, controllers, and actuators. In supporting mission-critical tasks such as smart

grid control and industrial process control, wireless messaging is required to be reliable (i.e., hav-

ing high delivery ratio) and in real-time [89]. This is because packet loss and large delay usually

reduce the system stability (e.g., in proportional-integral control), lengthen the settling time, and

increase the maximum overshoot in control [55].

Organization of this paper. Chapter 2 introduces a real-time routing protocol that predictably

delivers data by their deadlines. Chapter 3 presents a scheduling protocol to ensure a certain link

reliability based on the Physical-ratio-K (PRK) model, which is both realistic and amenable for



distributed implementation. Chapter 4 presents an efficient greedy scheduling algorithm Best Link

First Scheduling to maximize the expected number of packets delivered to the collection tree root

by a deadline in lossy multi-hop wireless sensor networks. Chapter 5 concludes the dissertation.
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CHAPTER 2

TAMING UNCERTAINTIES IN REAL-TIME ROUTING FOR WIRELESS

NETWORKED SENSING AND CONTROL

1 Introduction

In multi-hop wireless networks, a basis for reliable, real-time messaging is real-time routing which

routes data packets from their sources to destinations within specified deadlines. Nonetheless,

link/path delays (i.e., the time taken to successfully deliver a packet across a link or a path) are

dynamic, uncertain in wireless sensing and control (WSC) networks due to factors such as the spa-

tiotemporal wireless link dynamics and the queueing dynamics along links/paths. The dynamics

and uncertainties in link/path delays introduce fundamental challenges to real-time routing:

• Firstly, the dynamics and uncertainties make link/path delays probabilistic in nature. Given

the delay distributions of individual links along a path, the basic problem of computing the

probabilistically guaranteed path delays is NP-hard [51]; in real-time routing where nodes

need to identify paths that ensure certain delay bounds, however, quantifying probabilistic

path delays is a basic task, and it may well have to be executed by resource-constrained

nodes in a distributed manner.

• Secondly, given that link/path delay is a highly varying metric and that it can change at a short

timescale of each packet transmission, it is important to adapt to in-situ delay conditions in

routing. Yet the highly-varying nature of link/path delays makes it difficult to accurately

estimate path delays in a distributed and agile manner, and it has been observed that delay-



adaptive routing can lead to routing instability and low data delivery performance in general

[37, 137].

Despite much work in throughput- or energy-efficiency-oriented wireless routing [16, 34, 49,

132], real-time routing is much less studied. Moreover, the existing work that do consider data

delivery delay in wireless routing either only try to minimize average path delay without ensuring

probabilistic delay bounds [126, 43, 54, 74, 129], or they do not address the challenges that delay

uncertainties pose to the task of quantifying probabilistic path delays and the task of addressing

instability of delay-adaptive routing [60, 91]. Therefore, how to enable real-time routing in the

presence of dynamic, uncertain link/path delays remains an important open problem for real-time

wireless networked sensing and control.

Towards enabling routing with probabilistic delay bounds in WSC networks, we propose the

Multi-Timescale Adaptation (MTA) routing protocol that addresses the aforementioned challenges

of dynamic, uncertain link/path delays in real-time routing. In MTA, nodes leverage the different

timescales of dynamics to accurately estimate probabilistic path delay bounds in an agile manner

and to adapt spatiotemporal data flow control at the same timescales of the dynamics themselves.

More specifically, we make the following contributions:

• For accurate, agile estimation of probabilistic path delay bounds, we decompose contributors

to path delay uncertainties into two factors: dynamic per-packet transmission time (which

we refer to as packet-time hereafter) and dynamic queueing along paths. Through detailed

experimental analysis, we find that, given a network condition, the distribution of packet-

time is quite stable despite the quick variation of instantaneous packet-time. This enables

each node to accurately estimate the mean and variance of packet-time from itself to the next-

hop along a path. We also observe that the packet-time for different packet transmissions,

whether from the same node or from different nodes, are uncorrelated; this enables each

node to compute, for a given time instant, the variance of the path delay from itself to the

destination node as the sum of the variances of the packet-times for all the packets queued

along the path at that instant. Based on these observations, we develop a multi-timescale

4



approach, denoted by multi-timescale estimation (MTE), to accurately estimate the highly-

varying mean and variance of path delay by accurately estimating the mean and variance of

packet-time and by adapting to fast-varying queueing in an accurate, agile manner. Using the

mean and variance of path delay, we evaluate different methods of upper-bounding quantiles,

and we identify Chebyshev Inequality as an effective basis for computing probabilistic delay

bounds in constant time.

• For enabling adaptivity while addressing instability and low-performance in real-time rout-

ing, we propose the Multi-Timescale Adaptation (MTA) routing protocol: to facilitate the

aforementioned multi-timescale estimation (MTE) and to avoid detrimental instability while

ensuring data delivery performance during adaptation, a directed-acyclic-graph (DAG) is

maintained at lower frequencies based on the relatively slow-varying link property ETX

(i.e., expected number of transmissions taken to successfully deliver a packet), which re-

flects network throughput, data delivery reliability, and the overall trend of data delivery

delay [34, 38]; at higher frequencies and based on the MTE method, the data flow within

the DAG is controlled on a per-packet basis to minimize ETX and to ensure packet delivery

within the required probabilistic delay bound. By ensuring overall stability and performance

while addressing short-term dynamics at the same time, MTA enables efficient, real-time

routing in the presence of complex dynamics and uncertainties.

• We implement MTE and MTA in TinyOS, and we address the challenges of limited memory,

limited CPU capability, and the lack of real-time operation support in TinyOS. Besides the

running MTA protocol, these implementation strategies may well be of interest to real-time

routing in general.

• We evaluate the performance of MTA and and other related work in the high-fidelity sensor

network testbeds NetEye [11] and Indriya [2]. We find that MTA significantly outperforms

existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission

cost by a factor of 9.7.
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The rest of the chapter is organized as follows. We briefly introduce some preliminaries in

Section 2. We present the MTE method and the MTA protocol in Sections 3 and 4 respectively,

and then we present the measurement study in Section 5. Then we evaluate our design with sparse

networks in Section 4. We discuss related work in Section 5, and we make concluding remarks in

Section 6.

2 Preliminaries

Our study leverages two publicly available wireless sensor network testbeds NetEye [11] and In-

driya [2]. In what follows, we briefly introduce the two testbeds and the traffic patterns we study.

NetEye testbed. NetEye [11] is deployed in a large lab space at Wayne State University as

shown in Figure 1. We use a subset of a 15× 7 grid of TelosB motes in NetEye, where every two

Figure 1: NetEye wireless sensor network testbed

closest neighboring motes are separated by 2 feet. The subset of the grid forms a random network,

and it is generated by removing each mote of the 15× 7 grid with probability 0.2.

Each of these TelosB motes is equipped with a 3dB signal attenuator and a 2.45GHz monopole

antenna. In our measurement study, we set the radio transmission power to be -25dBm (i.e., power

level 3 in TinyOS) such that multihop networks can be created and the link reliability is over 90%

for links up to 6 feet long. For the transmission power of -25dBm, Figure 2 shows the boxplot

of packet delivery ratio (PDR) for links of different length, and Figure 3 shows the histogram
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Figure 2: PDR vs. link length in NetEye when transmission power is -25dBm
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of background noise power in NetEye. We see that there is a high degree of variability in PDR

for links of equal length and in background noise power. Thus the testbed reflects non-uniform

network settings as seen in practice. Given the high availability and high fidelity of NetEye, we

mainly use NetEye in our measurement study, but we verify key observations using the Indriya

testbed too.

Indriya testbed. Indriya [2] is deployed at three floors of the School of Computing at the National

University of Singapore as shown in Figure 4. The Testbed consists of 127 TelosB sensor motes,

Figure 4: Indriya wireless sensor network testbed

and Figure 5 shows a typical three-dimensional connectivity graph between the motes.

Figure 5: A typical connectivity graph for Indriya

Our measurement study uses all of its 127 TelosB motes, and we use a transmission power of

9



-10dBm (i.e., power level 11 in TinyOS) to generate a well-connected multi-hop network where

the link reliability is over 90% for links up to 20 feet long. For the transmission power of -10dBm,

Figure 6 shows the boxplot of PDR for links of different length, and Figure 7 shows the histogram

of background noise power in Indriya. We see that there is a high degree of variability in link
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Figure 6: PDR vs. link length in Indriya when transmission power is -10 dBm

PDRs and background noise power too, which reflects real-world, non-uniform settings.

Traffic pattern. Using the two testbeds, we study both periodic and event traffic patterns.

For periodic traffic, we study three types of them based on the amount of queueing they in-

troduce when the default TinyOS routing protocol CTP [49] is used: 1) light traffic: no queueing

in network; 2) medium traffic: moderate queueing in network but with very rare queue overflow;
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3) heavy traffic: severe queueing in network and with frequent queue overflow. To this end, we

select one node as the sink and another 10 nodes as traffic sources; the sink and the sources are

nearly at opposite positions in both testbeds to create as many routing hops as possible. In NetEye,

more specifically, mote 15 is the sink, and motes 61, 62, 63, 64, 76, 77, 79, 91, 92, and 93 are the

sources, with each source generating a packet every 1,000ms, 400ms, and 75ms for light, medium,

and heavy traffic respectively. To verify observations from NetEye and given that the medium

traffic is the common case in WSC networks, we also study medium traffic scenario in Indriya as

follows: mote 105 at the third floor is the sink, and motes 1 . . . 10 at the first floor are the sources,

with each source generating a packet every 600ms.

For event traffic, we use a publicly available event traffic trace for a field sensor network de-

ployment [131, 1] to evaluate the performance of different protocols. The traffic trace corresponds

to the packets generated in the 7×7 grid of a field mote network when a vehicle passes across the

middle of the network. When the vehicle passes by, each mote except for the base station detects

the vehicle and generates two packets, which correspond to the start and the end of the event detec-

tion respectively and are separated by 5-6 seconds on average. Overall, 96 packets are generated

each time the vehicle passes by. The cumulative distribution of the number of packets generated

during the event is shown in Figure 8. (Interested readers can find the detailed description of the

traffic trace in [1].) In NetEye, the 7× 7 subgrid in the trace data corresponds to the 49 motes that

are the farthest from the sink mote 15. In Indriya, the 7× 7 subgrid is mapped to motes 1 . . . 49.

3 Multi-timescale estimation of path delays

In what follows, we first discuss the need for considering probabilistic path delays in real-time

routing, then we present our approach to accurate, agile estimation of probabilistic path delay

bounds.

12



0 5 10 15
0

20

40

60

80

100

Time (seconds)

N
u
m

b
e
r 

o
f 
p
a
c
k
e
ts

 g
e
n
e
ra

te
d

Figure 8: The distribution of packets generated in the event traffic trace
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3.1 Why probabilistic path delay?

Due to inherent spatiotemporal dynamics and uncertainties in wireless communication [138, 132],

the success of a packet transmission is probabilistic instead of deterministic. Thus, data deliv-

ery delays across links/paths are probabilistic in nature in wireless sensing and control (WSC)

networks, and this is the case even if TDMA- instead of CSMA-based scheduling is used. Ac-

cordingly, application requirements on data delivery timeliness tend to be probabilistic in WSC

networks. Based on its requirements on stability region and settling time, for instance, a con-

trol application can specify a maximum tolerable delay; by treating a deadline miss as the loss of

the corresponding signal sample and by analyzing the corresponding impact on system estimation

and control, the application can also specify a maximum tolerable probability of deadline miss

[117, 55]. Therefore, we consider application requirements on the maximum tolerable delay and

the least probability of deadline success in this study.

Most existing delay-aware wireless routing protocols [126, 43, 54, 74, 129] consider mean

delay instead of delay quantiles. Yet smaller mean delay does not ensure smaller delay quantiles.

For the medium traffic setting in NetEye as discussed in Section 2, for instance, Figure 9 shows

the non-negligible probability that, when the mean delay across a link `0 is less than that of another

link `1, the q-quantile of `0’s delay is greater than that of `1. Therefore, routing based on mean

delay does not ensure the use of paths with small probabilistic delays, thus leading to deadline miss

and the reduction of network real-time capacity (i.e., amount of data that can be delivered within a

certain deadline).

Traditional real-time system design usually considers worst cases, and, in real-time wire-

less networking, worst-case path delay has also been considered [91]. Yet the distribution of

link/path delays tend to be heavy-tailed such that the maximum delay is significantly larger than

the common-case delays. For the medium traffic setting in NetEye, for instance, Figure 10 shows

the empirical cumulative distribution function (CDF) of the per-packet transmission time (which

we refer to as packet-time) for successfully delivering a packet across a typical link in NetEye.1

1The packet-time includes time spent for channel access contention and possibly packet retransmission.
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Figure 9: Goodness inversion probability and its 99% confidence interval
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The median, 90-percentile, and maximum of the packet-time are 23, 86, and 728 milliseconds
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Figure 10: CDF of the packet-time across a typical link

respectively. Therefore, focusing on maximum link/path delays will not be able to utilize many

paths that could have been used to support WSC applications where probabilistic delay guarantees

suffice, thus reducing the application-usable real-time capacity of the network.

Therefore, considering probabilistic path delays instead of mean or maximum delays reduces

deadline misses and enables effective utilization of application-usable real-time capacity of WSC

networks.
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3.2 Agile, accurate estimation of probabilistic path delay bound

To enable routing with probabilistic delay guarantees, a basic task is to quantify probabilistic delays

along paths. Given a path P = v0, v1, . . . , vn, vn+1 from v0 to vn+1 as shown in Figure 11 and

Figure 11: An example path P

assuming that the number of packets queued at node vi(i = 0 . . . n) is mi(t) at time t and that

the packet transmission scheduling algorithm at each node is first-come-first-serve (FCFS), the

instantaneous delay along path P at time t, denoted by dP (t), is the delay that a packet arriving at

v0 at time t experiences in reaching the destination node vn+1 assuming that the number of queued

packets at each node does not change while the packet is being delivered to vn+1. Therefore,

dP (t) =
n∑
i=0

mi(t)+1∑
j=1

dji (t), (2.1)

where dji (t) is the time taken for vi to deliver its j-th queued packet to vi+1 at time t.

Challenges of highly-varying delay distribution. Given the distributions of dji (t)(i =

0 . . . n, j = 1 . . .mi(t) + 1), it is NP-hard to compute the distribution of dP (t) [51]. Since nodes

of WSC networks tend to be resource-constrained (e.g., in CPU and memory), it is infeasible to

directly compute the distribution of dP (t) in general. One alternative is to first sample dP (t) and

then use non-parametric approaches (e.g., the P 2 algorithm) to estimate delay quantiles based on

these delay samples [62, 82]. Nonetheless, non-parametric quantile estimation usually converges
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slowly. For instance, Figure 12 shows, as path delay samples are collected for a typical five-hop
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Figure 12: Actual CDF value of the estimated 90 percentile via the P 2 algorithm

path in the NetEye medium traffic scenario, the time series of the actual cumulative distribution

function (CDF) values of the estimated 90 percentiles using the P 2 algorithm. We see that it takes

more than 200 samples for the estimation to converge, and this observation holds in general [82].

Yet the distribution of path delays varies at a much shorter timescale than the sample size required

for non-parametric quantile estimation to converge. As can be seen from (2.1), in particular, the

distribution of path delays vary with the queueing levels (i.e., mi(t)) along paths, and network

queueing can vary quickly over time.2 For the NetEye medium traffic scenario, for instance, Fig-

ures 13 and 14 show the histogram of the coherence window size for node and path queueing

2As we will discuss shortly, the distribution of packet-time (i.e., dji (t)) is quite stable over time, and we leverage
the stability of packet-time distribution in designing our multi-timescale estimation (MTE) method.
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Figure 13: Histogram of the coherence window size for node queueing level
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Figure 14: Histogram of coherence window size for path queueing level
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respectively, where each coherence window of a time series is a maximal consecutive segment of

the time series where all the sample values are the same. We see that the coherence window size is

two orders of magnitude less than the sample size required for non-parametric quantile estimation

to converge. Therefore, the highly-varying nature of path delay distribution makes non-parametric

quantile estimation unable to accurately estimate instantaneous path delay quantiles in an agile

manner; that is, the distribution of the path delay changes before the estimation converges to an

accurate value.

To circumvent the computational complexity and the inability of accurate, agile estimation of

exact path delay quantiles, we propose to identify upper bounds on probabilistic path delays and

to use the delay bounds in identifying paths for real-time data delivery. As we will discuss later

in this section , upper bounds on path delays can be derived using probability inequalities such as

Chebyshev Inequality [101], and the properly identified delay bounds are still orders of magnitude

less than the maximum delays, thus enabling effective utilization of network real-time capacity.

Most probability inequalities use the mean and/or the standard deviation of the corresponding

random variable, thus we need an accurate, agile mechanism of estimating the mean and standard

deviation of path delays. Nonetheless, the sample size required for accurate estimation of path

delay statistics tend to be quite large. For instance, Figure 15 shows the empirical CDF of the

sample size required for estimating mean path delay at 90% accuracy and 90% confidence level.

We see that the required sample size is greater than 100 in most cases and can be up to 594, which

are significantly greater than the coherence window size of node/path queueing levels. In addition,

node and path queueing levels tend to have low autocorrelation, not to mention staying unchanged,

for time lags greater than 100 and 40 samples respectively, as shown in Figures 16 and 17. Thus,

the large sample size requirement and the highly-varying nature of path delay distribution makes

it impossible to accurately estimate instantaneous mean path delay in an agile manner; that is, the

mean path delay changes before the estimation converges to an accurate value.

Multi-Timescale Estimation (MTE). Towards addressing the challenges of highly-varying dis-

tribution and statistics of path delay, we decompose contributors to path delay variations into two
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Figure 15: Empirical CDF of the sample size required to estimate mean path delay at 90% accuracy
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Figure 16: Autocorrelation of node queueing levels
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Figure 17: Autocorrelation of path queueing levels

factors: dynamic packet-time and dynamic queueing. By leveraging the different timescales at

which packet-time and queueing vary, we propose the multi-timescale-estimation (MTE) method

that accurately estimates the highly-varying mean and variance of path delay by 1) accurately

estimating the mean and variance of packet-time at a longer timescale and 2) by adapting to fast-

varying queueing at a shorter timescale. In what follows, we elaborate on the design of the MTE

method.

Observation 1. Packet-time distribution is stable.

Through detailed experimental analysis, we find that, given a network condition, the distribu-

tion of packet-time is quite stable despite the quick variation of instantaneous packet-time. For

instance, Figure 18 shows the time series of the packet-time along a typical link in the NetEye

medium traffic scenario. Using the Generalized KPSS test [56], we analyze the stationarity win-

dow size of packet-time, where each stationary window of a time series is a maximal consecutive

segment of the time series that is weak-sense stationary (i.e., with a constant mean and variance
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Figure 18: Time series of packet-time along a typical link

over time). Figure 19 shows the histogram of the stationarity window size for packet-time in

the NetEye medium traffic scenario. The minimum and the maximum window size are 1,901 and

21,937 respectively, both of which are significantly greater than the sample size required to pre-

cisely estimate the mean and variance of packet-time. For instance, Figure 20 shows the empirical

CDF of the sample size required for estimating the mean packet-time at 90% accuracy and 90%

confidence level. The sample size requirement is less than 360 with over 99% probability, and the

maximum sample size requirement is 600.

The stability of the packet-time distribution has two important implications:

• Given the real-time requirement on data delivery and the constrained memory size in em-

bedded WSC networks, the stationarity window size tends to be greater than the maximum

node queue size in general. This implies that, in Formula (2.1), the mean and variance for

dji (t)’s (j = 1 . . .mi(t) + 1) are the same for a given i(i = 0 . . . n), and we denote them as
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Figure 19: Histogram of stationarity window size for packet-time
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Figure 20: Empirical CDF of the sample size required for estimating the mean packet-time at 90%
accuracy and 90% confidence level
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µ(di(t)) and σ2(di(t)). Therefore, the mean path delay can be computed as follows:

µ(dP (t)) =
n∑
i=0

(mi(t) + 1)µ(di(t)). (2.2)

• The stability of packet-time distribution enables each node to accurately estimate the mean

and variance of packet-time from itself to the next-hop along a path, and, with Formula (2.2),

the mean path delay can be accurately estimated.

Observation 2. Packet-time is uncorrelated.

We also observe that the packet-time for different transmissions, whether from the same node

or from different nodes, tend to be uncorrelated. For instance, Figure 21 shows the small auto-
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Figure 21: Autocorrelation coefficient of packet-time along the same link
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correlation coefficient of packet-time along the same link, with the boxplot showing, for each lag,

the distribution of autocorrelation coefficients across different links; Figure 22 shows the small
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Figure 22: Correlation coefficient between the packet-time across different links along a path

correlation coefficient of packet-time along different links, where the lag is defined as the number

of packets queued between two packets at different node queues as shown in Figure 11, assuming

that the packets queued at time t flow through the nodes queues in a FIFO manner. We also ob-

serve that the median autocorrelation coefficient and the median cross-link correlation coefficient

of packet-time is zero at 99% confidence level. An intuition for the uncorrelatedness between

packet-time is that, given a network condition, the behavior of one packet transmission does not

have much impact on the behavior of another packet transmission as far as the MAC protocol is

concerned.
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The Bienaymé Formula [84] shows that the variance of the sum of pair-wise uncorrelated ran-

dom variables is the sum of the variances of the individual random variables. Thus our observations

on the uncorrelatedness of packet-time along a path enables each node to compute, for a given time

instant, the standard deviation of the path delay from itself to the destination node as the square

root of the sum of the variances of the packet-times for all the packets queued along the path at that

instant. For path P of Figure 11, for instance, the standard deviation of dP (t) can be computed as

follows:

σ(dP (t)) =

√√√√ n∑
i=0

(mi(t) + 1)σ2(di(t)). (2.3)

For a typical 5-hop path in NetEye, Figure 23 shows the histogram of the relative errors in estimat-
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Figure 23: Histogram of relative errors in estimating the standard deviation of path delay

ing the standard deviation of path delay in the presence of different queueing levels along the path.
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We see that the estimation is quite accurate, with most relative errors within the range of (-0.075,

0.075). Note that, if we directly estimate the variance of the sojourn time dsoi (t) =
∑mi(t)+1

j=1 dji (t)

at node vi without decomposing dsoi (t) into its individual components dji (t)’s (j = 1 . . .mi(t)+1),

we cannot compute σ(dP (t)) as
√∑n

i=0 σ
2(dsoi (t)). This is because, for i1 6= i2, dsoi1 (t) and dsoi2 (t)

are correlated due to the correlation between queueing levels at different nodes of a path.

In the simplified scenario of Figure 11, the next-hops of all the packets in a node queue are

the same. In reality, a node may well use different next-hops for different packets, for instance,

depending on packet deadlines as we will discuss in Section 4. Assume that, at time t, each node

vi(i = 0 . . . n) has Ni(t) number of next-hops, the number of packets (including the one arriving

at v0 at time t) to be forwarded to its k-th next hop is mk
i (t), and the packet-time from vi to its k-th

next-hop is di,k(t). We observe that, given vi and t, di,k(t)’s tend to be uncorrelated for different ks.

For instance, Figure 24 shows the histogram of the correlation coefficient between the packet-time

across different outgoing links from the same node. The correlation coefficient is very small and

is less than 3% most of the time. We also observe that the median correlation coefficient is zero at

99% confidence level. Then, based on Formulae (2.2) and (2.3), the mean and standard deviation

of the delay along a path P can be computed as follows:

µ(dP (t)) =
∑n

i=0

∑Ni(t)
k=1 mk

i (t)µ(di,k(t))

σ(dP (t)) =

√∑n
i=0

∑Ni(t)
k=1 mk

i (t)σ
2(di,k(t))

(2.4)

Observation 3. Network queueing is relatively stable at short timescales.

To leverage Formula (2.4) in estimating the mean and variance of the delay along path P in a

distributed manner, each node vi can compute the mean and variance of the delay from itself to

the destination node vn+1 based on those of its next-hop along P . Denoting the mean and standard

deviation of the delay from vi to vn+1 by µ(diP (t)) and σ(diP (t)) respectively (i = 0 . . . n), then we

have
µ(diP (t)) = µ(di+1

P (t)) +
∑Ni(t)

k=1 mk
i (t)µ(di,k(t))

µ(dn+1
P (t)) = 0

(2.5)
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Figure 24: Histogram of the correlation coefficient between the packet-time across different out-
going links from the same node
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σ(diP (t)) =

√
σ2(di+1

P (t)) +
∑Ni(t)

k=1 mk
i (t)σ

2(di,k(t))

σ(dn+1
P (t)) = 0

(2.6)

Formulae (2.7) and (2.8) can be implemented using a distance-vector-type routing algorithm. Due

to information diffusion delay τi from vi+1 to vi in routing, the implemented version of Formu-

lae (2.7) and (2.8) are

µ(diP (t)) = µ(di+1
P (t− τi)) +

∑Ni(t)
k=1 mk

i (t)µ(di,k(t))

µ(dn+1
P (t)) = 0

(2.7)

σ(diP (t)) =

√
σ2(di+1

P (t− τi)) +
∑Ni(t)

k=1 mk
i (t)σ

2(di,k(t))

σ(dn+1
P (t)) = 0

(2.8)

For accurate estimation of µ(diP (t)) and σ2(diP (t)), we need to make τi as small as possible. This

can be achieved by having vi+1 piggyback µ(di+1
P (t)) and σ2(di+1

P (t)) onto its data transmissions

as well as control signaling (e.g., broadcast of routing beacons) so that vi can overhear the values

quickly. In WSC networks, sample data about physical behavior are usually generated periodically

in a continuous manner, thus τi is at the same timescale of inter-packet arrival interval, which

enables quick diffusion of path delay statistics.

We also observe that, even though network queueing varies significantly at a long timescale of

hundreds of inter-packet intervals, it is much more stable at a short timescale of a few inter-packet

intervals. In the NetEye medium traffic scenario and for the time lags of 1, 5, and 10 packet trans-

missions, for instance, Figures 25, 26, and 27 show the empirical cumulative distribution function

(CDF) of link queueing level changes (i.e., changes in mk
i (.)), node queueing level changes (i.e.,

changes inmi(.)), and path queueing level changes (i.e., changes in
∑

imi(.)) respectively. We see

that, at the timescale of a few inter-packet intervals, network queueing remains relatively stable,

and, with more than 90% probability, the absolute changes in link, node, and path queueing levels

are no more than 1, 1, and 3 respectively.3 To ensure enough real-time capacity for each source

3The routing hop count in the NetEye medium traffic scenario with MTA is around 6 hops in general.
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Figure 25: CDF of link queueing level changes
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Figure 26: CDF of node queueing level changes
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Figure 27: CDF of path queueing level changes
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node, routing hops tend to be limited (e.g., less than 10) in WSC networks [15]. This fact, together

with the quick information diffusion and the relative stable network queueing at short timescales,

enables the MTE method to accurately estimate the mean and variance of path delays in an agile

manner.

Probabilistic path delay bound. With the mean and variance of path delay estimated via the

MTE method, a node can derive the probabilistic path delay bounds using probability inequalities.

To this end, we have

Proposition 1. For a random variable X , if

Pr{X ≥ f(x)} ≤ g(x), (2.9)

then Qq
X = f(g−1(1 − q)) is an upper bound on the q-quantile of X , where g−1 is the inverse

function of g.

Proof. Let g(x) = 1− q, then

Pr{X ≥ f(x)} ≤ 1− q.

Thus,

Pr{X ≤ f(x)} ≥ q

Since x = g−1(1− q), we have

Pr{X ≤ f(g−1(1− q))} ≥ q

Thus, f(g−1(1− q)) is an upper bound on the q-quantile of X .

For λ > 0 and a non-negative random variable X with mean µ and variance σ2, two widely-

applicable probability inequalities [115] are the Markov Inequality

Pr{X ≥ λ} ≤ µ(X)

λ
, (2.10)
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and the one-tailed Chebyshev Inequality

Pr{X − µ ≥ λσ} ≤ 1

1 + λ2
. (2.11)

Thus, we have

Corollary 1. Using Markov Inequality, Qq
X = µ

1−q .

Corollary 2. Using one-tailed Chebyshev Inequality, Qq
X = µ+ σ

√
q

1−q .

For a typical five-hop path in NetEye, Figure 28 shows the ground truth and the estimated

Figure 28: Bounds on 90-percentile of path delay

90-percentile of the path delay when it is the sum of 5 and 40 packet-time random variables re-
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spectively. For comparison purpose, we present the probabilistic delay bounds estimated via the

optimal-partition-minimum-delay (OPMD) method [82] or by assuming path delay is normally dis-

tributed [69]; we also present the maximum path delay. Given that Markov Inequality usually gives

a looser bound than one-tailed Chebyshev Inequality, the probabilistic delay bound by Markov In-

equality is greater than that by Chebyshev Inequality. Compared with the method of assuming path

delay is normally distributed, the bound by Chebyshev Inequality is always greater than the actual

90-percentile path delay, whereas the former method underestimates the 90-percentile for the case

of 40 packet-time random variables. Given that the OPMD method is rather conservative in esti-

mating path delay bound, the bound by Chebyshev Inequality is also much less than the bound by

the OPMD method, especially when path queueing increases. We also see that the maximum path

delay is orders of magnitude greater than the bound by Chebyshev Inequality, thus using proba-

bilistic delay bound instead of maximum path delay helps improve application-usable real-time

capacity. Since the bound by Chebyshev Inequality upper-bounds and is close to the probabilistic

path delay, we use the probabilistic delay bound by Chebyshev Inequality in our protocol design.

From FCFS to EDF. In real-time scheduling, the earliest-deadline-first (EDF) algorithm is a

commonly used algorithm, and it can ensure a smaller deadline than what is feasible with the

first-come-first-serve (FCFS) algorithm. Our MTE method of computing probabilistic path delay

bounds is derived by assuming that nodes use FCFS algorithm in intra-node transmission schedul-

ing, but we observe that the delay bounds derived via our FCFS-based MTE method can also

serve as the basis of selecting real-time packet forwarding paths even if the EDF algorithm is used.

Formally,

Proposition 2. If routed along a path whose probabilistic delay bound computed via the FCFS-

based MTE method is less than the relative deadline of a packet, the packet will reach its destina-

tion before its deadline even if the EDF algorithm is used for intra-node transmission scheduling.

Proof. We prove the proposition by contradiction. When a packet pkt0 is forwarded where, each

time a next-hop has to be chosen, the next-hop is chosen such that pkt0’s relative deadline is no less

than the probabilistic path delay bound computed via the FCFS-based MTE method, the only way
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in which pkt0 can miss its deadline is as follows: when pkt0 is queued at some node vi, another

packet pkt1 arrives at vi at time t and is transmitted to a next-hop earlier than pkt0 is transmitted.

In this case, since pkt1 arrives at vi later than pkt0, the relative deadline of pkt1 at time t is no

less than the probabilistic path delay bound Qi(t) from vi to the destination assuming pkt1 is

transmitted after pkt0. If the EDF algorithm schedules pkt1 to be transmitted earlier than pkt0, this

implies that the relative deadline of pkt0 at time t is greater than that of pkt1 at t, thus being greater

than the delay bound Qi(t). Note also that Qi(t) has included the time taken to transmit pkt1 and

pkt0. Therefore, even if pkt1 is transmitted earlier than pkt0 (which is similar to switching their

queue positions in a FIFO queue), pkt0 can still be delivered to the destination before its deadline.

Q.E.D.

4 Multi-timescale adaptation for real-time routing

In what follows, we first present the multi-timescale adaptation (MTA) framework for real-time

routing, then we address the challenges of implementing MTA in resource-constrained platforms.

4.1 MTA routing design

Overview. Real-time routing is subject to dynamics and uncertainties at multiple timescales. At a

longer timescale, link properties such as ETX (i.e., expected-number-transmissions to successfully

deliver a packet) vary as a result of changing environmental conditions (e.g., temperature); at a

shorter timescale, data transmission delay varies on a per-packet basis, and bursty traffic may

introduce sudden changes to network conditions. Robust system design usually requires adaptation

to dynamics at the same or shorter timescales of the dynamics themselves. Yet we have found that,

due to the highly-varying nature of path delays, routing using delay-based metrics can introduce

large estimation errors and lead to routing instability as well as low performance [137]. To ensure

long-term stability and optimality while addressing short-term dynamics at the same time, we

propose a multi-timescale adaptation (MTA) framework for real-time routing as follows.
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At lower frequencies, a directed-acyclic-graph (DAG) is maintained for data forwarding, and

any path within the DAG is a candidate path for packet delivery. Given that link/path ETX reflects

network throughput, data delivery reliability, and the overall trend of data delivery delay [34, 38],

and that ETX-based routing structures tend to be stable even if ETX is dynamic [136], we propose

to maintain the data forwarding DAG based on link and path ETX such that the DAG reflects

long-term system optimality and changes relatively slowly compared with delay variation. More

specifically, there is a directed edge from node vi to v′i in the DAG if and only if the minimum path

ETX from v′i to the destination v′0 is less than that from vi to v′0. The DAG defines, for each node

vi, a set of forwarder candidates R(vi) where v′i ∈ R(vi) if and only if link 〈vi, v′i〉 belongs to the

DAG.

At higher frequencies, the spatiotemporal flow of packets within the data forwarding DAG is

adaptively controlled to ensure reliable, real-time data delivery in the presence of short-timescale

dynamics such as transient packet losses and per-packet variations of link delay. More specifically,

each packet contains information about the remaining time to deadline, denoted by L, and the

required real-time guarantee probability q. When the packet reaches a node vi, vi first finds the

set of forwarder candidates within the DAG, denoted by R′(vi, L, q), that can ensure the real-time

requirements L and q; then vi sets the next-hop node of the packet as the node of the smallest

path ETX to v′0 among all the nodes in R′(vi, L, q), and vi puts the packet in the transmission

queue. Queued packets are then scheduled for transmission using the earliest-deadline-first (EDF)

algorithm.

Using the above approach, packets are always routed along the minimum-ETX path that sat-

isfies the real-time data delivery requirement. In the presence of heavy traffic load that induces

queueing, this real-time forwarding mechanism creates the water-filling effect as follows: packets

are delivered to the minimum-ETX path until the path cannot ensure the required timeliness of data

delivery (e.g., due to queueing), at which point the forthcoming packets are delivered to the path

with the second-minimum-ETX, and so on; once the delay along paths of less ETX decreases (e.g.,

due to reduced queueing), more packets will be delivered to those paths to fill them up. This pro-
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cess repeats at the same timescale of packet arrival process, and it enables real-time data delivery

while ensuring as small ETX in data delivery as possible. Unlike traditional delay-based routing

that may lead to instability and low performance, this quick adaptation of spatial packet flow is

enabled by 1) the MTE method of accurate, agile estimation of probabilistic path delay bound at

the same timescale of the changes in path delay distribution and by 2) the overall stability of spatial

packet flow along the data forwarding DAG.

System architecture. To implement the above MTA framework, we adopt a system architecture

as shown in Figure 29.

Using MAC feedback for the status (e.g., number of retries and time duration) of transmitting

data packets, each node uses data-driven approaches [49, 132] to estimate the ETX as well as the

mean and variance of packet-time for its local links. Based on nodes’ local link ETX, the data-

forwarding DAG can be established and maintained using distance-vector-routing-type diffusion

computation.

Each node also maintains a neighbor table that stores information about its neighbors. In the

case of limited memory, a node may only maintain information about a selected set of neighbors,

e.g., those of small path ETX to the destination. For each neighbor in the neighbor table, the

ETX as well as the mean and variance of the delay along different paths from the neighbor to the

destination is maintained. Ideally, each node shall share information about all the paths from itself

to the destination, but this is infeasible in practice due to limited memory size at nodes, overhead

of exchanging path information with neighbors, and the exponentially increasing number of paths

from a node to the destination as the hop distance to the destination increases. Therefore, each

node vi only shares with its neighbors a summary of its knowledge about the paths from itself to

the destination, using the following path aggregation method:

1. For each path P from a neighbor to the destination v′0, as implicitly identified by an entry in

the neighbor table, vi computes the mean and variance of the delay from itself to v′0 through

P using Formulae (2.7) and (2.8), and, based on Corollary 2 and application-required real-

time guarantee probability q, compute the probabilistic delay bound for the path {vi, P}
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Figure 29: Architecture of MTA-based real-time routing
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from vi to v′0 through P ;

2. Compute the set P of all valid paths from vi to v′0, where a path {vi, P} is valid if there is no

other path {vi, P ′} that has both smaller ETX and smaller path delay bound (as computed

above);

3. Order the paths in P in a non-decreasing order of the delay bounds they ensure, and select a

subset of them as the path summary to share with neighbors; in our implementation, a node

selects the path summary such that the delay bounds ensured by the selected paths cover the

complete range of delay bounds ensured by the original set P .

The computed path summary is piggybacked onto data packet transmissions by vi, where each

entry of the summary records the ETX as well as the mean and variance of the delay along the

corresponding path.

When a node receives a packet from a local application or a child, the packet dispatcher first

uses a local time synchronization service [10] to compute the time elapsed since the packet was

transmitted by its sender, which enables the dispatcher to derive the remaining time to deadline

(a.k.a. relative deadline) for the packet. Based on the packet’s relative deadline, the dispatcher

puts the packet in a corresponding position in the local queue. Whenever the queue is not empty

and the wireless channel becomes available, the dispatcher selects a packet to transmit using the

EDF algorithm (a.k.a. least laxity first algorithm).

4.2 Implementation

In this subsection , we discuss challenges and our solutions in implementing MTA architecture (as

shown in Figure 29) in TinyOS.

Computation overhead & task management. Unlike wired Internet routers, embedded WSC

network nodes tend to be resource-constrained, yet the many control plane and data plane functions

(e.g., link estimation, next-hop selection) need to be computed in real-time and on a per-packet

basis to ensure accuracy and agility in estimation and routing. Therefore, the different computation
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tasks inside each node need to be managed well to ensure correct operation of the protocol. In fact,

the computation tasks can consume so much CPU time that the entire protocol collapses in TelosB

due to its failure of executing critical tasks. For instance, timers may fail to fire at specified time

instants, and packet receptions may not be signaled to upper layers and thus lost. To address

these issues, we split heavy-weight computations (e.g., computing the next-hop for a packet) into

multiple subtasks such that each computation can be interrupted between its subtasks to ensure

responsiveness of the system to events such as timer firing and packet reception. Our experience

suggests that it suffices to have each subtask take no more than a few milliseconds of time to

complete.

Be default, TinyOS employs a FIFO queue to store all pending tasks. It does not differentiate

urgent tasks (i.e., data packet transmission) from normal tasks (i.e., beacon transmission) in terms

of real-time communication. To address this issue, we have implemented priority schemes for

managing the tasks of the control and data planes to ensure real-time packet forwarding and control

adaptation.

Global vs. local time synchronization. Global time synchronization is sufficient to provide

a time reference across the entire network. Nonetheless, it comes at substantial cost of memory,

computation, and bandwidth overhead, leaving even less resource for MTA in already resource-

constrained devices. Even worse, it can take a long time for a global time synchronization protocol

such as FTSP [87] to converge, during which the network cannot be used to deliver any real-time

traffic.

Upon closer scrutiny, we discover that only neighboring nodes, not all nodes, have to agree on a

common time as far as MTA/MTE is concerned, which enables estimating packet-time and tracking

absolute/relative deadline when a packet is delivered from one node to another. Thus, we employ

the packet-level time synchronization mechanism in TinyOS, which automatically converts a time

value from the sender’s local time to the receiver’s local time. Only a few bytes are added into the

header a data packet, and no additional control packets have to be sent, significantly reducing the

overhead compared with global time synchronization.
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Packet-level time synchronization requires timestamping packet reception. But the default

radio stack for TelosB stores the incoming packet and its reception timestamp in two separate FIFO

queues and then match them by taking head-of-queue elements from both queues. Occasional

mismatches of a packet and its timestamp are observed due to disparate operations on the two

queues. To address this issue, we store the reception timestamp of a received packet directly in its

metadata instead of using separate FIFO queues.

5 Measurement evaluation

We evaluate the behavior of MTA through measurement study in the NetEye and Indriya testbeds.

In what follows, we first present the methodology, then we study the design decisions of MTA and

compare MTA with existing routing protocols.

5.1 Methodology

Protocols. We have implemented the MTA framework (including the MTE method) in TinyOS.

To understand the design decisions of MTA, we comparatively study MTA with its following vari-

ants:

• M-DS: same as MTA but directly estimate path delay quantiles using non-parametric method

P 2 [62] and path delay samples that are collected in a distributed manner;

• M-DB: same as MTA but estimates the mean and variance of path delay directly through

path delay samples;

• M-ST: same as MTA but estimates the mean and variance of path delay as the sum of the

mean and variance of the sojourn time at each node of the path, without decomposing the

sojourn time into the individual packet-times;

• M-MD: Same as MTA but maintains the data forwarding DAG based on mean link/path delay

instead of link/path ETX;
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• M-mDQ: same as MTA but forwards packets to the next-hop candidate with the minimum

path delay quantile instead of the one with minimum path ETX;

• mDQ: same as M-mDQ but does not use the data forwarding DAG of MTA for stability

control;

• M-FCFS: same as MTA but uses FCFS instead of EDF for intra-node transmission schedul-

ing.

Towards understanding the benefits of MTA, we also comparatively study MTA with the following

existing protocols:

• MCMP: a multi-path QoS routing protocol where end-to-end QoS requirements on reliabil-

ity and timeliness are uniformly divided into per-hop reliability and timeliness requirements,

upon which a node chooses the minimum number of next-hops to satisfy the per-hop re-

quirements in data delivery [60];

• MM: the geographic routing protocol MMSPEED [43] that routes and schedules packet

transmissions based on nodes’ distances to destinations, packet delivery deadlines, and mean

link delays; MMSPEED also tries to improve packet delivery reliability by transmitting

packets along multiple paths; (Note: we denote MMSPEED as MM for the readability of

figures to be presented in the next subsection .)

• MM-CD: same as MMSPEED but, instead of using the mean link delay, uses a conservative

estimate of link delay that equals the sum of the mean delay and three times the standard

deviation of the delay;

• SDRCS: similar to MMSPEED but, instead of using geographic distance, uses data-

forwarding hop-count as the measure of distance, where the hop-count is computed based

on received-signal-strength (RSS) between nodes [126]; data forwarding is through receiver

contention similar to that in opportunistic routing;
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• CTP : an ETX-based non-real-time routing protocol in TinyOS [49].

(Note: for MM and MM-CD which use node locations, we configured each node with its correct

location in our TinyOS programs.)

Traffic & real-time requirements. For studying the design decisions of MTA, we use the

common case of the medium traffic scenario in NetEye; for comparing MTA with existing real-

time routing protocols, we use all the periodic and event traffic scenarios discussed in Section 2.

In our experiments, we use 90% as the required real-time guarantee probability by default, but

we have also experimented with the real-time guarantee probability of 99% and observed similar

phenomena [83]. For differentiating the performance of different protocols, the deadline for each

traffic scenario is chosen so that it is neither too stringent (that no protocol can support) nor too

loose (that all protocols can support). In NetEye, the deadlines for light, medium, and heavy traffic

are 250ms, 2 seconds, and 7.5 seconds respectively, and the deadline for event traffic is 10 seconds.

In Indriya, the deadlines for periodic and event traffic are 2 seconds and 2.5 seconds respectively.

Metrics. For each combination of protocol, testbed, and traffic scenario, we run it for 10 times

and evaluate protocol performance in terms of the following metrics:

• Deadline success ratio (DSR): ratio of packets delivered to the sink before their deadlines;

• Packet delivery ratio (PDR): ratio of packets delivered to the sink;

• Number of transmissions per packet delivered (NTX): total number of transmissions, includ-

ing retransmissions, divided by the number of unique packets delivered to the sink.

To understand protocol behavior in more detail, we also analyze the different causes for a packet

to miss its deadline:

• Overflow: packet discarded due to node queue overflow;

• Transmission failure: a packet not delivered to the next hop even after the maximum number

of retransmissions at a node;

47



• Rejection: no candidate path can ensure the required real-time delivery guarantee (i.e., dead-

line and probability) of a packet;

• Expiration: deadline expired before the packet reaches the sink, whether or not the packet is

delivered to the sink.

5.2 Design decisions of MTA

For periodic medium traffic in NetEye and for protocol MTA and its variants, Figures 30, 31, 32,

and 33 show the deadline success ratio, packet delivery ratio, number of transmissions per packet

delivered, and packet delivery status respectively. We see that MTA consistently enables the
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Figure 30: Deadline success ratio: MTA and variants

highest deadline success ratio and packet delivery ratio as well as the lowest transmission cost.
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Figure 31: Packet delivery ratio: MTA and variants
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Figure 32: Number of transmissions per packet delivered: MTA and variants
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Figure 33: Packet delivery status: MTA and variants
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Compared with MTE as used in MTA, M-DS, M-DB, and M-ST all underestimate path delay

quantiles such that packets are routed along paths that cannot ensure the required data delivery

deadline, which makes packets rejected in the network or their deadlines expire before reaching the

sink node (as shown in Figure 33). For a typical four-hop path in NetEye, for instance, Figure 34

shows the empirical cumulative distribution function (CDF) of the relative error in estimating the
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Figure 34: CDF of the relative error in estimating the 90 percentile of path delay

90 percentile of path delay using MTA, M-DS, M-DB, and M-ST respectively, where the relative

error is defined as the estimated percentile minus the actual percentile and then divided by the

actual percentile. We see that M-DS, M-DB, and M-ST underestimate the 90 percentile for 100%,

60%, and 20% of the time respectively. M-DS and M-DB tend to underestimate because, when

sampling path delay in a distributed manner, a sample of the delay along a link can be used multiple
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times due to diffusion delay; this tends to reduce the variability of the collected path delay samples,

thus causing the underestimation of path delay variance which in turn leads to the underestimation

of delay quantiles. M-ST tends to underestimate because the sojourn time at different nodes are

positively correlated due to positive correlation in packet queueing at nodes; since the variance of

the sum of the sojourn time at different nodes of a path equals to the sum of their individual variance

plus their pair-wise covariance, path delay variance tends to be underestimated in M-ST, which in

turn leads to the underestimation of path delay quantiles. In contrast, MTA only underestimates

for 2% of time thanks to the MTE method. The reason why MTA does not completely avoid

underestimation is because, just as in any possible estimation method, there are inherent errors

(e.g., due to the EWMA estimator) in the MTE method that leads to small errors in estimating

the mean and standard deviation of path delay which in turn can offset the conservativeness of

Chebyshev inequality.

It is known that ETX-based routing enables higher delivery ratio and lower transmission cost

than delay-based routing [137], thus MTA enables higher delivery ratio and lower transmission

cost than M-MD, M-mDQ and mDQ. M-mDQ and mDQ use paths with minimum path delay

quantiles; this introduces more route changes than in MTA, leading to larger errors in estimating

path delay quantiles and thus reduces deadline success ratio. Even though M-MD, M-mDQ, and

mDQ do not try to minimize path ETX as M-DS, M-DB, and M-ST do, they outperform M-DS,

M-DB, and M-ST which do not use MTE as the path delay estimation method; this shows the

importance of accurate, agile estimation of path delay quantiles via MTE.

The median deadline success ratio in M-FCFS is higher than the required real-time guarantee

probability of 90%, but there are a few cases when the deadline success ratio is slightly below

90%. This is because, just as any estimation method, the MTE method is not perfect; it has to use

estimators such as exponentially-weighted-moving-average which has inherent estimation errors,

and the delay in diffusing network state (e.g., mean and variance of path delay from a node to the

sink) introduces slight estimation errors in MTE. The fact that MTA always ensures a deadline

success ratio of at least 90% shows that the temporal packet flow control enabled by EDF helps
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ameliorate the impact of the minor imperfections in MTE. Thus an interesting direction to explore

is the joint optimization of spatial and temporal packet flow in real-time networking, and we will

study this in more detail in our future work.

5.3 Different routing protocols

NetEye. For periodic medium traffic in NetEye, Figures 35, 36, 37, and 38 show the deadline

success ratio, packet delivery ratio, transmission cost, and packet delivery status respectively.
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Figure 35: Deadline success ratio: MTA and existing protocols in the NetEye medium traffic
scenario

We see that MTA always ensures the required real-time delivery performance, and the median

deadline success ratio in MTA is 76%, 89%, 86%, 11%, and 38% higher than that in MCMP, MM,

MM-CD, SDRCS, CTP respectively. The median number of transmissions per packet delivered in
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Figure 36: Packet delivery ratio: MTA and existing protocols in the NetEye medium traffic scenario
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Figure 37: Number of transmissions per packet delivered: MTA and existing protocols in the
NetEye medium traffic scenario
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Figure 38: Packet delivery status: MTA and existing protocols in the NetEye medium traffic sce-
nario
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MTA is less than that in MCMP, MM, MM-CD, SDRCS, CTP by a factor of 3.7, 9.7, 6.5, 1.2, and

1.2 respectively.

One reason why the deadline success ratio in MCMP, MM, and MM-CD is very low is because

a large fraction of packets are lost due to queue overflow as can be seen in Figure 38. They all

try to use multiple paths to ensure data delivery reliability: at the sources, multiple copies of a

packet can be sent; at the next hop, each of these copies can be multiplied again, and so on. This

multipath routing mechanism can lead to exponentially increasing number of copies of a packet,

thus causing severe queue overflow and large transmission cost as shown in Figures 38 and 37

respectively. SDRCS does not have this problem because it does not use multipath routing, instead

it uses a data forwarding mechanism similar to opportunistic routing.

Another reason why MCMP, MM, MM-CD, and SDRCS do not perform well is because, by

evenly dividing end-to-end QoS requirements into per-hop requirements, they implicitly assume

that network conditions are uniform across the network which is usually not the case. Among these

protocols, the negative impact of this assumption is relatively less severe in SDRCS because it uses

signal strength as the basis of measuring forwarding distances and signal strength is a better metric

for measuring wireless link quality than geographic distance. MTA does not have this problem

because MTE enables accurate, agile estimation of end-to-end delay quantiles without assuming

uniform network conditions. A third reason for the low performance of MM, MM-CD, and SDRCS

is because they only consider mean delays instead of the probabilistic distributions of delays.

Compared with MTA, CTP has higher packet delivery ratio, but CTP only enables a median

deadline success ratio of 56% which is lower than the real-time guarantee probability of 90% and

much lower than the 93% probability guarantee by MTA. This is because CTP only considers path

ETX in routing, and it is delay-unaware. Even if a low-ETX path is experiencing large delay due

to queueing, CTP still uses the path, thus leading to large data delivery delay and deadline miss.

Through accurate, agile estimation of path delay via MTE, in contrast, MTA can switch to a less

congested path whenever it detects the inability of the current low-ETX path to deliver packets

before their deadlines, creating the water-filling effect as we have discussed in Section 4. For
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instance, Figure 39 shows the histogram of the ETX of the paths taken by all the packets. We see
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Figure 39: Histogram of the ETX of the paths taken by all the packets

that MTA tends to use paths of lower-ETX with higher probability, even though the minimum-

ETX path will not always be used with the highest probability (e.g., when the capacity of the

minimum-ETX path is reduced due to the shared path segments with other paths).

For periodic light traffic in NetEye, Figures 40, 41, 42, and 43 show the deadline success ratio,

packet delivery ratio, transmission cost, and packet delivery status respectively. The results are

similar to those of periodic medium traffic except that CTP’s performance is now indistinguishable

from MTA’s while it is worse than MTA’s in medium traffic. Both protocols yield close to 100%

packet delivery and deadline success and similar transmission costs. This is because, in light traffic,

there is almost no queueing. Hence, a path’s ETX is a good indicator of its delay, and MTA tends
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to choose minimal ETX path as CTP does, resulting in similar performance.
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Figure 40: Deadline success ratio: MTA and existing protocols in the NetEye light traffic scenario

For periodic heavy traffic in NetEye, Figures 44, 45, 46, and 47 show the deadline success

ratio, packet delivery ratio, transmission cost, and packet delivery status respectively. Again, the

results are similar to those in medium traffic, and MTA consistently guarantees deadline success

ratio over the required 90%. In CTP, however, more packets are lost due to queue overflow in the

presence of heavy traffic, thus leading to a median packet delivery ratio of around 80% (compared

with its packet delivery ratio of around 100% in medium traffic).

For event traffic in NetEye, Figures 48, 49, 50, and 51 show the deadline success ratio, packet

delivery ratio, transmission cost, and packet delivery status respectively. The comparative results

closely resembles those in medium traffic, and MTA ensures a deadline success ratio greater than

the required 90%.
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Figure 41: Packet delivery ratio: MTA and existing protocols in the NetEye light traffic scenario
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Figure 42: Number of transmissions per packet delivered: MTA and existing protocols in the
NetEye light traffic scenario

62



Figure 43: Packet delivery status: MTA and existing protocols in the NetEye light traffic scenario
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Figure 44: Deadline success ratio: MTA and existing protocols in the NetEye heavy traffic scenario
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Figure 45: Packet delivery ratio: MTA and existing protocols in the NetEye heavy traffic scenario
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Figure 46: Number of transmissions per packet delivered: MTA and existing protocols in the
NetEye heavy traffic scenario
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Figure 47: Packet delivery status: MTA and existing protocols in the NetEye heavy traffic scenario
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Figure 48: Deadline success ratio: MTA and existing protocols in the NetEye event traffic scenario
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Figure 49: Packet delivery ratio: MTA and existing protocols in the NetEye event traffic scenario
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Figure 50: Number of transmissions per packet delivered: MTA and existing protocols in the
NetEye event traffic scenario
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Figure 51: Packet delivery status: MTA and existing protocols in the NetEye event traffic scenario
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All the previous traffic set the required real-time probability as 90%. To demonstrate that

MTA works for arbitrarily required probability guarantee, we raise the probability to 99% and

set the corresponding deadline as 7.5 seconds. For the same periodic medium traffic in NetEye,

Figures 52, 53, 54, and 55 show the deadline success ratio, packet delivery ratio, transmission cost,

and packet delivery status respectively. Even the required probability guarantee of 99% is more

stringent than 90%, Figure 52 shows that MTA still consistently meets the deadline. All the relative

performance comparisons are similar to those of periodic medium traffic with required probability

90%.

MTA MCMP MM MM−CD SDRCS CTP

9

19

29

39

49

59

69

79

89

99

D
e

a
d

lin
e

 s
u

c
c
e

s
s
 r

a
ti
o

 (
%

)

Figure 52: Deadline success ratio: MTA and existing protocols of under medium traffic (real-time
probability 99%) in NetEye

Indriya. Figures 56, 57, 58, and 59 show the deadline success ratio, packet delivery ratio,

transmission cost, and packet delivery status for periodic traffic in Indriya respectively. The
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Figure 53: Packet delivery ratio: MTA and existing protocols under medium traffic (real-time
probability 99%) in NetEye
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Figure 54: Number of transmissions per packet delivered: MTA and existing protocols under
medium traffic (real-time probability 99%) in NetEye
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Figure 55: Packet delivery status: MTA and existing protocols under medium traffic (real-time
probability 99%) in NetEye
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Figure 56: Deadline success ratio: MTA and existing protocols in Indriya
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Figure 57: Packet delivery ratio: MTA and existing protocols in Indriya
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Figure 58: Number of transmissions per packet delivered: MTA and existing protocols in Indriya
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Figure 59: Packet delivery status: MTA and existing protocols in Indriya
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overall relative behavior between protocols is similar to that in NetEye, but the performance of

MM, MM-CD, and SDRCS become much worse compared with MTA. MTA still ensures real-time

data delivery, but MM and MM-CD can hardly deliver any packet to the sink, let alone delivering

packets in time; the deadline success ratio in SDRCS is also more than 72% less than that in MTA.

One major cause for this is that MM, MM-CD, and SDRCS implicitly assume uniform network

conditions while the degree of heterogeneity in Indriya is significant and higher than that in NetEye.

As a result of the uniformity assumption, for instance, about 60% and 50% of packets are rejected

in MM and MM-CD respectively as shown in Figure 59. Given a packet, more specifically, its

deadline and the distance from its source to the sink determines the required forwarding speed

for this packet. For the packet to reach the sink, every single hop it traverses has to provide a

speed no less than the required speed. That is, if any intermediate hop cannot meet the required

speed, a packet is rejected. For MM and MM-CD, it only takes about 3 or 4 hops to reach the

sink from the sources in NetEye, while it takes about 7 or 8 hops in Indriya, making packets in

Indriya more likely to be rejected. Note that there is significant queue overflow in SDRCS because

SDRCS happen to use low reliability links in Indriya which reduce the network throughput and

thus increase the queueing and queue overflow.

Figures 60, 61, 62, and 63 show the deadline success ratio, packet delivery ratio, transmission

cost, and packet delivery status for event traffic in Indriya respectively. The results are similar to

those of periodic traffic with some minor differences. Firstly, MM and MM-CD can deliver some

packets in time instead of almost none as in periodic traffic, though their deadline catch ratio is

less than 10%. Secondly, the ratio of overflows tend to decrease significantly compared to periodic

traffic except for MTA and CTP. Both can be primarily attributed to the reduction of traffic load.

6 Discussion: sparse networks

To evaluate the effect of network connectivity on the performance of MTA, we also run it and other

routing protocols in sparse networks in NetEye and Indriya.
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Figure 60: Deadline success ratio: MTA and existing protocols under event traffic in Indriya
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Figure 61: Packet delivery ratio: MTA and existing protocols under event traffic in Indriya
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Figure 62: Number of transmissions per packet delivered: MTA and existing protocols under event
traffic in Indriya
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Figure 63: Packet delivery status: MTA and existing protocols under event traffic in Indriya)
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• NetEye: In the 15 by 7 grid, we randomly select 50% of the nodes. Figure 65 shows the

number of neighbors each node has in the resulting topology, contrasting Figure 64 for

randomly selecting 80% of the grid. Obviously, the former with median of 9 has a lower

density than the latter with median of 12. We choose the farthest four nodes, namely node

61, 62, 79, and 80 as sources, and still choose node 15 as the sink. Every source generates a

packet every 100 ms with deadline 4 seconds and required probability 90%.

Figures 68 shows the deadline success ratio in the sparse network. Again, MTA significantly

outperforms other protocols by constantly meeting deadline catch ratio requirement. It also

maintains better packet delivery ratio and transmission cost than other protocols except CTP,

whose performance is comparable to MTA’s as shown in Figure 69 and 70. Figure 71 shows

the packet delivery status. MCMP, MMSPEED, MMSPEED and SDRCS experience more

queueing overflows because the network’s capacity is reduced when the node density de-

creases. The fact that MTA and CTP do not suffer from queueing overflow can be attributed

to their ability to identify good paths to compensate for reduced capacity.

• Indriya: We reduce the transmission power level from 11 to 6. Figure 66 and 67 show

the number of neighbors each node has in the resulting topology for power level 11 and 6,

respectively. The latter with median of 5 is clearly sparser than the former with median of

8.5. We choose node 1, 2, 3, and 4 as sources and still node 100 as the sink. Every source

generates a packet every 500 ms with deadline 5 seconds and required probability 90%.

Figures 72, 73, 74, and 75 show the deadline success ratio, packet delivery ratio, transmission

cost, and packet delivery status respectively. All the relative performance comparisons are

similar to those of power level 11.

7 Related work

QoS routing has been well studied for the Internet [24, 28] and wireless networks [42, 25, 27]. But

most did not consider uncertainties in link/path properties (e.g., delay). Link property uncertainties

85



0 10 20 30
0

5

10

15

20

25

30

F
re

q
u

e
n

c
y
 (

%
)

# of neighbors

Figure 64: Histogram of the number of neighbors for each node in random 80% NetEye
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Figure 65: Histogram of the number of neighbors for each node in random 50% NetEye
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Figure 66: Histogram of the number of neighbors for each node in Indriya using power level 11
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Figure 67: Histogram of the number of neighbors for each node in Indriya using power level 6

were considered in [51] and [69], and it was shown that the problem of checking probabilistically

guaranteed path delays is NP-hard [51]. Focusing on Internet QoS routing, these work assumed

link-state routing, and their solutions were not amenable to light-weight, distance-vector-type im-

plementation. Since link-state routing is usually not suitable for dynamic, resource constrained

WSC networks where reliable network-wide link-state update itself is a challenging issue and

where nodes may only have very limited memory space (e.g., up to 4KB of RAM), the approaches

of [51] and [69] are not applicable to WSC networks.

Data delivery delay was also considered in wireless and sensor network routing [43, 54, 60,

74, 129]; but they only tried to minimize average path delay without ensuring probabilistic delay

bounds [126, 43, 54, 74, 129], they did not consider the probabilistic nature of link/path delays

[91], they were based on geographic forwarding without addressing network non-uniformity and

wireless communication irregularity [54, 43], or they uniformly partitioned multi-hop QoS re-

quirements (e.g., reliability and timeliness) along the links of a path without considering network
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Figure 68: Deadline success ratio of different protocols in sparse NetEye
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Figure 69: Packet delivery ratio of different protocols in sparse NetEye

90



MTA MCMP MM MM−CD SDRCS CTP

0

100

200

300

400

500

600

N
u
m

b
e
r 

o
f 
tr

a
n
s
m

is
s
io

n
s
 p

e
r 

p
a
c
k
e
t 
d
e
liv

e
re

d

Figure 70: NTX of different protocols in sparse NetEye
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Figure 71: Packet outcomes of different protocols in sparse NetEye
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Figure 72: Deadline success ratio of different protocols in sparse Indriya
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Figure 73: Packet delivery ratio of different protocols in sparse Indriya
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Figure 74: NTX of different protocols under periodic traffic in sparse Indriya
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Figure 75: Packet outcomes of different protocols in sparse Indriya
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non-uniformity [126, 60]. Huang et al. [60] used Chebyshev Inequality in single-hop real-time

satisfiability testing, but they did not address the challenges of accurate, agile estimation of multi-

hop probabilistic delay bounds, and they did not comparatively study Chebyshev Inequality with

other well-known probability inequalities. Liu et al. [82] proposed the pseudo-polynomial time al-

gorithm optimal-partition-minimum-delay (OPMD) for upper-bounding probabilistic path delays,

but, as we have shown in Section 3, the bound of the OPMD algorithm is quite loose for multi-hop

paths.

Multi-timescale adaptation has been considered in Internet traffic engineering [21, 66]. Focus-

ing on load balancing, these work did not consider QoS assurance. Liu et al. [82] also studied

multi-timescale adaptation in routing, but they used the OPMD method to estimate probabilistic

delay bounds which are significantly looser than the bound identified through our MTE method,

thus leading to real-time capacity loss. The IETF ROLL working group [61] considered building

routing trees based on directed-acyclic-graphs (DAG) for low-power wireless networks. Serving as

a general reference framework, the ROLL routing proposal did not consider specific optimization

methods (e.g., for real-time guarantees). For stable data delivery reliability, Lin et al. [80] proposed

to route data based on long-term link properties and to address transient perturbations using power

and retransmission control; they focused on data delivery reliability instead of real-time, thus they

did not consider the challenges of dynamic, uncertain link/path delays in real-time routing.

The WirelessHART [122] and the ISA SP100.11a [112] standards have been recently proposed

for wireless networking in industrial process measurement and control. They mostly focus on

high-level system frameworks instead of specific algorithms in real-time routing. In the literature

of real-time wireless networking, techniques such as power control [29] as well as joint routing

and scheduling [91] have been studied; energy-efficiency [39] has also been considered too. Or-

thogonal to these studies, our study here has focused on addressing the challenges that dynamic,

uncertain link/path delays pose to two basic elements of real-time routing, i.e., determining prob-

abilistic path delays and addressing instability in delay-adaptive routing. Integrating our results

with those work will be an interesting research avenue to pursue, but detailed study of it is beyond
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the scope of this paper.

8 Concluding remarks

For addressing the challenges of highly-varying path delays to distributed estimation of path delay

quantiles, we have proposed the MTE method that leverages the stability of packet-time distribu-

tion and the quick diffusion of path delay statistics (i.e., mean and variance) to accurately estimate

probabilistic path delay bounds in an agile manner. Based on accurate, agile characterization of

path delays using MTE, our MTA routing framework enables the stability and optimality of data

forwarding while adapting to fast-changing network queueing and delay. Through extensive mea-

surement study in both the NetEye and the Indriya wireless sensor network testbeds, we have

shown that MTE/MTA-based routing ensures efficient, real-time data delivery, and it significantly

outperforms existing real-time routing protocols. We have mainly focused on real-time spatial

flow control in this study, even though we have experimentally analyzed the benefits of using EDF

instead of FCFS in intra-node scheduling; how to control temporal packet flow between neighbors

and across the network and how to jointly optimize the spatial and temporal packet flow will be an

important area to explore, where the MTE method and the MTA framework are expected to serve

as basic systems building-blocks. The technique of leveraging different timescales of dynamics

in protocol design may well be of generic interest to wireless networking in dynamic, uncertain

environments too.
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CHAPTER 3

PRK-BASED SCHEDULING FOR PREDICTABLE LINK RELIABILITY

IN WIRELESS NETWORKED SENSING AND CONTROL

1 Introduction

Given the varying impact that the reliability, delay, and throughput of wireless messaging have on

networked control and the inherent tradeoff between messaging reliability, delay, and throughput,

the optimal operation of WSC systems also requires controlling the tradeoff between reliability,

delay, and throughput in messaging, and controlling link reliability in a predictable manner is

a basis for such system-level optimization [89, 90, 110, 133]. Causing collisions of concurrent

transmissions, co-channel interference is a major source of unpredictability in link reliability [133,

131, 132]. Thus scheduling transmissions for co-channel interference control is a basic element

of wireless messaging in WSC systems.

Distributed scheduling & interference models. In WSC systems, not only does wireless link

dynamics introduce uncertainty as in traditional wireless sensor networks, dynamic control strate-

gies also introduce dynamic network traffic patterns and pose different requirements on messaging

reliability [90]. For agile adaptation to uncertainties and for avoiding information inconsistency in

centralized scheduling, distributed scheduling becomes desirable for interference control in WSC

networks. Despite decades of research on interference-oriented channel access control, most ex-

isting literature are either based on the physical interference model or the protocol interference

model, neither of which is a good foundation for distributed interference control in the presence of



uncertainties [133]. In the physical model, a set of concurrent transmissions (Si, Ri), i = 1 . . . N,

are regarded as not interfering with one another if the following conditions hold:

P (Si, Ri)

Ni +
∑

j=1...N,j 6=i P (Sj, Ri)
≥ γ, i = 1 . . . N (3.1)

where P (Si, Ri) and P (Sj, Ri) is the strength of signals reaching the receiver Ri from the trans-

mitter Si and Sj respectively, Ni is the background noise power at receiver Ri, and γ is the signal-

to-interference-plus-noise-ratio (SINR) threshold required to ensure a certain link reliability. In the

protocol model, a transmission from a node S to its receiver R is regarded as not being interfered

by a concurrent transmitter C if

D(C,R) ≥ K ×D(S,R) (3.2)

where D(C,R) is the geographic distance between C and R, D(S,R) is the geographic distance

between S and R, and K is a constant number.

The physical model is a high-fidelity interference model in general, but interference relations

defined by the physical model are non-local and combinatorial; this is because, as can be seen from

(3.1), whether one transmission interferes with another explicitly depends on all the other trans-

missions in the network. Even though many centralized TDMA scheduling algorithms have been

proposed based on the physical model [17, 50], distributed physical-model-based scheduling still

has various drawbacks: it converges slowly due to explicit network-wide coordination [19, 88], it

has to employ strong assumptions such as the reliable detection of a node’s busy-tone signal by

the whole network [102] or the knowledge of node locations and wireless channel path loss bound

[128], it does not control cumulative interference which introduces uncertainties in communication

[139, 124], it is not suitable for dynamic network settings due to the need for centrally computing

the interference set of each link (i.e., the set of links interfering with the link) [100] or the interfer-

ence neighborhood of each link (i.e., the set of links causing non-negligible interference to the link)

[71], or it does not address the challenge of designing scheduling protocols when interfering links
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are beyond the communication range of one another [71, 102]. Many of the SINR-based MAC

protocols are also throughput-oriented, and they do not control multi-hop interference to ensure

predictable link reliability [105].

Unlike the physical model, the protocol model defines local, pairwise interference relations;

that is, according to (3.2), interference is regarded as existent only between nodes in a local neigh-

borhood, and whether one transmission interferes with another only depends their own spatial dis-

tribution irrespective of other transmissions in the network. The locality of the protocol model can

enable agile protocol adaptation in the presence of uncertainties. However, the protocol model is

usually inaccurate [86], thus scheduling based on the protocol model [65, 106, 119] or its variants

[72, 77, 111] does not ensure link reliability and also tends to reduce network throughput. Choi

et al. [32] recently proposed grant-to-send (GTS) as a new mechanism for collision avoidance.

Only focusing on intra-flow interference, GTS does not address inter-flow interference and cannot

ensure data delivery reliability; for instance, GTS may only enable a data delivery reliability of

47.4% in event-detection sensor networks [32].

Besides scheduling based on the physical and protocol interference models, distributed

scheduling algorithms using general pairwise interference models have also been proposed

[52, 92]. Theoretical in nature, however, these algorithms did not address the important question of

how to identify the interference set of each link, and their implementation usually assumes a model

similar to the protocol model [92]. These algorithms also did not address important systems issues

such as how to design scheduling protocols when interfering links are beyond the communication

range of one another.

Without field-deployable solutions to predictable co-channel interference control, current sys-

tems practice, such as the WirelessHART standard for industrial sensing and control [122], avoids

co-channel interference by allowing only one node in the whole network to transmit in a wireless

channel at any moment in time. Without spatial channel reuse, however, this approach does not

fully utilize wireless network capacity, which is undesirable for high data-rate sensing and control

applications and for new networked control paradigms that involve only communications between
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close-by nodes [95].

Physical-ratio-K (PRK) interference model. The gap between the existing interference models

and the design of distributed, field-deployable scheduling protocols with predictable data delivery

reliability calls for an interference model that is both local and of high-fidelity, which are important

for the agility and predictability of interference control respectively. We have recently identified

the physical-ratio-K (PRK) interference model that integrates the protocol model’s locality with the

physical model’s high-fidelity [133]. In the PRK model, a node C ′ is regarded as not interfering

and thus can transmit concurrently with the transmission from another node S to its receiver R if

and only if the following holds:

P (C ′, R) <
P (S,R)

KS,R,TS,R

(3.3)

where P (C ′, R) and P (S,R) is the average strength of signals reaching R from C ′ and S respec-

tively, and KS,R,TS,R is the minimum real number chosen such that, in the presence of interference

from all concurrent transmitters, the probability for R to successfully receive packets from S is no

less than the minimum link reliability TS,R required by applications (e.g., control algorithms). As

shown in Figure 76, the PRK model defines, for each link (S,R), an exclusion region ES,R,TS,R

Figure 76: The physical-ratio-K (PRK) interference model

around the receiver R such that a node C ∈ ES,R,TS,R if and only if P (C,R) ≥ P (S,R)
KS,R,TS,R

. Ac-

cordingly, every node C ∈ ES,R,TS,R is regarded as interfering with and thus shall not transmit
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concurrently with the transmission from S to R.

Unlike the physical model, the PRK model is local and suitable for distributed protocol de-

sign and implementation: 1) The parameters of the PRK model are either locally measurable (i.e.,

for signal strength and link reliability between close-by nodes) or locally controllable (i.e., for

KS,R,TS,R of each link (S,R)), thus PRK-based scheduling does not need to rely on parameters such

as nodes’ locations or channel path loss between far-away nodes which are often used in physical-

model-based scheduling [128] but are difficult to obtain precisely, especially in a distributed man-

ner; 2) Only pairwise interference relations between close-by nodes need to be defined in the PRK

model, thus PRK-based scheduling does not require explicit global coordination which is often

used in physical-model-based scheduling [19, 88]. Unlike the protocol model, the PRK model is

of high-fidelity because it captures the properties of wireless communication (including cumulative

interference, anisotropy, and asymmetry) by ensuring the required link reliability in scheduling and

by using signal strength instead of geographic distance in model formulation. Through compre-

hensive analysis, simulation, and measurement, we have observed that PRK-based scheduling can

enable a channel spatial reuse very close to (e.g., >95%) what is feasible in physical-model-based

scheduling while ensuring application-required reliability [133].

Focusing on formulating the PRK interference model and understanding the theoretically

achievable performance of PRK-based scheduling, we left the design of distributed protocols for

PRK-based scheduling as an open problem in [133]. Yet realizing distributed PRK-based schedul-

ing in real-world settings poses the following major challenges:

• The parameter KS,R,TS,R of the PRK model (3.3) depends on the specific link (S,R), the

application requirement on the link reliability (i.e., TS,R), as well as the network and en-

vironmental conditions such as traffic pattern and wireless path loss which may well be

dynamic and unpredictable. So the challenge is how to instantiate the PRK model parameter

KS,R,TS,R on the fly depending on in-situ application requirements as well as network and

environmental conditions.

• Given a link (S,R) and a specific instantiation of the PRK model, every node in the exclusion

103



region ES,R,TS,R should be prevented from transmitting concurrently with the transmission

from S to R. As we will discuss in detail in Sections 2.2 and 2.3, however, it is difficult to

ensure this property due to large interference range, anisotropy and asymmetry in wireless

communication, as well as the delay in protocol signaling.

Contributions of this paper. To enable predictable link reliability in distributed scheduling, we

address the aforementioned challenges by designing the PRK-based scheduling protocol PRKS. In

PRKS, we formulate the problem of identifying the PRK model parameterKS,R,TS,R as a minimum-

variance regulation control problem, and we design distributed controllers that allow each link

to adapt its PRK model parameter for ensuring the desired link reliability through purely local

coordination. For ensuring that nodes interfering with one another do not transmit concurrently,

we propose the concept of local signal map that allows nodes close-by to maintain the wireless path

loss among themselves; together with the PRK model and transmission power control in protocol

signaling, local signal maps enable nodes to precisely identify the interference relations among

themselves despite anisotropic, asymmetric wireless communication and large interference range.

To address the inherent delay in protocol signaling and to avoid interference between protocol

signaling and data transmissions, PRKS decouples protocol signaling from data transmissions by

leveraging the different timescales of PRK model adaptation and data transmission. With the

above mechanisms, PRKS precisely identifies and then avoids interfering concurrent transmissions

in scheduling; accordingly, PRKS eliminates the hidden terminal issue which has been a basic

challenge in interference-oriented channel access control since 1975 [113].

We have implemented PRKS in TinyOS [9]. Through measurement study in the NetEye [11]

and Indriya [2] sensor network testbeds, we observe the following: 1) The distributed controllers

enable network-wide convergence to a state where the desired link reliabilities are ensured; 2)

Unlike existing scheduling protocols where link reliability is unpredictable and the reliability re-

quirement satisfaction ratio can be as low as 0%, PRKS enables predictably high link reliability

(e.g., 95%) in different network and environmental conditions without a priori knowledge of these

conditions; 3) With local, distributed coordination alone, PRKS achieves a channel spatial reuse
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very close to what is enabled by the state-of-the-art centralized physical-model-based scheduler

iOrder [26] while ensuring the required link reliability; 4) By ensuring the required link reliability,

PRKS also reduces communication delay and improves network throughput.

Organization of the chapter. We elaborate on the design of PRKS in Section 2, and we evaluate

the performance of PRKS in Section 3. We discuss node mobility and related work in Sections 4

and 5 respectively. We make concluding remarks in Section 6.

2 PRKS: PRK-based scheduling

In what follows, we first present our control-theoretic approach to instantiating the PRK model,

then we present the local signal maps for protocol signaling and the protocol PRKS for distributed

PRK-based scheduling. For convenience, Table 3.1 summarizes the major notations used in this

section.

2.1 A control-theoretic approach to PRK model instantiation

Minimum-variance regulation control. Given a link (S,R), the task of instantiating the PRK

interference model is to identify the parameter KS,R,TS,R such that the resulting scheduling can

ensure the required minimum link reliability TS,R.1 It is, however, difficult to characterize the re-

lation between KS,R,TS,R and the packet delivery reliability along (S,R) in closed form, and the

relation is complex and dependent on network and environmental conditions which may well be

unpredictable at design time [133]. To address the challenge, we observe that the PRK model

instantiation problem can be formulated as an online regulation control problem [55], where the

“plant” is the link (S,R), the “reference input” is the required link reliability TS,R, the “plant

output” is the actual link reliability YS,R from S to R, and the “control input” is the PRK model

parameter KS,R,TS,R . To address the difficulty in characterizing the “plant model” on the relation

between the control input KS,R,TS,R and the plant output YS,R, we observe that changing the PRK

1Focusing on interference-oriented scheduling, we only consider the links whose packet delivery reliabilities are
above the required ones in the absence of interference.
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YS,R(t) Measured packet delivery rate for link
(S,R) at time t.

P (S,R, t) Expected power, in units of mW, of data
packet signals reaching R from S at
time t; assumed to be mostly static at
short timescales.

PS,R(t) Expected power, in units of dBm, of
data packet signals reaching R from S
at time t;

IR(t) Sum of background noise power and in-
terference power at receiver R at time t,
in units of dBm.

f(.) The function modeling the relation be-
tween packet delivery rate and SINR.

a(t) f ′(PS,R(t)− IR(t)).
b(t) f(PS,R(t) − IR(t)) − (PS,R(t) −

IR(t))f ′(PS,R(t)− IR)(t).
y(t) Smoothed link reliability measurement,

i.e., y(t) = cy(t− 1) + (1− c)YS,R(t).
c Parameter of the EWMA filter in feed-

back loop.
∆IR(t) Computed control input at time instant

t.
∆IU (t) Change of interference from outside the

exclusion region ofR from time t to t+
1.

µU (t) Mean of ∆IU (t).
σ2U (t) Variance of ∆IU (t).

KS,R,TS,R(t) PRK model parameter for link (S,R) at
time t.

ES,R,TS,R(t) Exclusion region around receiver R at
time t; a node C ∈ ES,R,TS,R(t) iff.

PC,R(t) ≥ PS,R(t)
KS,R,TS,R

(t) .

P ′(C,R) Average signal power attenuation from
a nodeC to another nodeR; maintained
in nodes’ local signal maps.

Table 3.1: Major notations used in Section 2

model parameter KS,R,TS,R changes the exclusion region around the receiver R and thus the con-

current transmissions along with the transmission from S to R, which in turn leads to the change

in the interference power at receiver R. Accordingly, we propose to regard this change in interfer-

ence power, denoted by ∆IR, as the actual control input. This way, we can leverage the existing
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communication theory to derive the plant model on the relation between YS,R and ∆IR as follows.

For conciseness, we use IR(t) to denote, in units of dBm, the sum of the average background

noise power and the average power of all interfering signals at the receiver R at time t (t =

1, 2, . . .); we also use PS,R(t) to denote the average received data signal power P (S,R) in units

of dBm at time t. Given a modulation and coding scheme, communication theory gives us the

following [133]:

YS,R(t) = f(PS,R(t)− IR(t)), (3.4)

where f is a non-decreasing function, and PS,R(t) − IR(t) represents the SINR in dB at time t.2

For IEEE 802.15.4-compatible radios such as Chipcon CC2420, for instance,

YS,R(t) = (1− 8

15
× 1

16
×

16∑
k=2

(−1)k
(

16

k

)
e(20×(PS,R(t)−IR(t))×( 1

k
−1)))8`,

where ` is the packet length in units of bytes [133]. Given that the function f is usually non-

linear and to address this challenge of non-linear control, we propose to approximate function f

through linearization and use self-tuning regulators [55] to adapt controller behavior depending on

the current operating point of the system. Given the SINR PS,R(t)− IR(t) at time t (t = 1, 2, . . .),

more specifically, we linearize function f with the following linear function:

YS,R(t) = a(t)(PS,R(t)− IR(t)) + b(t),

where

a(t) = f ′(PS,R(t)− IR(t)),

b(t) = f(PS,R(t)− IR(t))− (PS,R(t)− IR(t))a(t).

(3.5)

As a first-step towards ensuring predictable link reliability in distributed scheduling, we con-

sider in this study mostly-static wireless networks where the average background noise power and

average wireless path loss are mostly static and do not change at very short timescales (e.g., a

few milliseconds for transmitting a few packets) [23]; focusing on predictable co-channel inter-

2Note that feedback control tends to be robust to modeling errors such that it is robust to minor model deviations
from the theoretical model (3.4) in practice [55, 81].
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ference control, we also only consider the cases when the data transmission power along a link

is fixed even though different links may use different transmission powers; mobile networks and

data transmission power control are relegated as future research. Assuming a discrete-time model

where system properties such as the average background noise power and the average wireless path

loss remain constant between time instants t and t + 1,3 IR(t + 1) may differ from IR(t) for two

possible reasons:

• From time t to t+1, the PRK model parameter may change fromKS,R,TS,R(t) toKS,R,TS,R(t+

1). Accordingly, the exclusion region around the receiver R changes from ES,R,TS,R(t) to

ES,R,TS,R(t + 1). If KS,R,TS,R(t + 1) > KS,R,TS,R(t), nodes in ES,R,TS,R(t + 1) \ ES,R,TS,R(t)

may transmit concurrently with the transmission from S toR and thus introduce interference

to R at time t but not at time t + 1; similarly, if KS,R,TS,R(t + 1) < KS,R,TS,R(t), nodes in

ES,R,TS,R(t) \ES,R,TS,R(t+ 1) may introduce interference to R at time t+ 1 but not at time t.

We use ∆IR(t) to denote the average interference change at receiver R due to the change of

the PRK model parameter from t to t+1. Since the receiverR can control the changes of the

PRK model parameter as we will discuss shortly, ∆IR(t) can be controlled by the receiver

R and is thus treated as the “control input”.

• The set of nodes that are not in the exclusion region around the receiver R but transmit

concurrently with the link (S,R) may change from time t to t+ 1. Accordingly, the average

interference introduced by nodes outside the exclusion region around R changes from t to

t+ 1, and we use ∆IU(t) to denote this change. Since ∆IU(t) is beyond the local control of

link (S,R), we treat ∆IU(t) as a “disturbance” to the system and denote the mean of ∆IU(t)

as µU(t).

Therefore,

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU(t),

3In protocol implementation, the actual time interval between t and t + 1 can be chosen to be the small interval
required for computing a sample of link reliability.
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Figure 77: PRK model instantiation: minimum-variance regulation control architecture

where ∆IR(t) and ∆IU(t) are in units of dB. Using the linear approximation of function f as

shown by Equation (3.5) at time t, the predicted link reliability for time t+ 1 calculates as follows:

YS,R(t+ 1) = a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t).

Therefore, the “plant model” for link (S,R) at time t is

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU(t)

PS,R(t+ 1) = PS,R(t)

YS,R(t+ 1) = a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t)

(3.6)

where (IR(.), PS,R(.)) and YS,R(.) are the “state” and the “output” of the plant respectively. To deal

with the noise in measuring YS,R(.), we use an exponentially-weighted-moving-average (EWMA)

filter with a weight factor c (0 ≤ c < 1) in the feedback loop [55].4 Thus, the system model is as

shown in Figure 77, where

y(t) = cy(t− 1) + (1− c)YS,R(t) (3.7)

4c determines the tradeoff between the stability and agility of the EWMA filter. We use a relatively large c (e.g.,
15
16 ) in our implementation so that the filter is relatively stable in the presence of noise.
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Given the probabilistic nature of wireless communication, the measured link reliability y(t) is

expected to be inherently random. Thus the goal is to minimize the variance of y(t) while making

sure that its mean value is the required link reliability. More formally, the objective of the control

design at time t is to choose the control input ∆IR(t) that minimizes the variance of y(t+ 1) while

ensuringE[y(t+1)] = TS,R, where TS,R is the required link reliability.5 For this minimum-variance

regulation control problem, we have

Theorem 1. The control input that minimizes var[y(t+ 1)] while ensuring E[y(t+ 1)] = TS,R is

∆IR(t) =
(1 + c)y(t)− cy(t− 1)− TS,R

(1− c)a(t)
− µU(t). (3.8)

Proof. In what follows, we first derive the minimum-variance control input ∆IR(t) by assuming

E[y(t+ 1)] = TS,R, then we show that E[y(t+ 1)] = TS,R actually holds with the derived ∆IR(t).

If E[y(t+ 1)] = TS,R, then

var[y(t+ 1)] = E[y(t+ 1)− E[y(t+ 1)]]2

= E[y(t+ 1)− E[y(t+ 1)]−

(1− c)a(t)(µU (t)− µU (t))]2

= E[cy(t) + (1− c)[a(t)(PS,R(t+ 1)−

IR(t+ 1)) + b(t)]− TS,R−

(1− c)a(t)(µU (t)− µU (t))]2

= E[X − (1− c)a(t)(∆IU (t)− µU (t))]2

(3.9)

where
X = cy(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)) + b(t)]

−TS,R − (1− c)a(t)µU (t)− (1− c)a(t)∆IR(t).

Since E[(1 − c)a(t)(∆IU(t) − µU(t))] = 0, we need X = 0 to minimize var[y(t + 1)], and the

5Note that E[y(t+ 1)] = E[YS,R(t+ 1)] at steady state.
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corresponding control input is as follows:

∆IR(t) =
cy(t)+(1−c)[a(t)[PS,R(t+1)−IR(t)]+b(t)]−TS,R

(1−c)a(t) − µU (t).

With a constant data transmission power, we have PS,R(t+ 1) = PS,R(t). Thus

∆IR(t) =
cy(t)+(1−c)[a(t)[PS,R(t)−IR(t)]+b(t)]−TS,R

(1−c)a(t) − µU (t)

=
cy(t)+(1−c)YS,R(t)−TS,R

(1−c)a(t) − µU (t)

=
cy(t)+y(t)−cy(t−1)−TS,R

(1−c)a(t) − µU (t)

=
(1+c)y(t)−cy(t−1)−TS,R

(1−c)a(t) − µU (t).

Given the above control input ∆IR(t),

y(t+ 1) = cy(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t)]

= cy(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−∆IR(t)−

∆IU (t)) + b(t)]

= cy(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−
cy(t)+(1−c)YS,R(t)−TS,R

(1−c)a(t) − µU (t)−∆IU (t)) + b(t)]

= cy(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−
cy(t)+(1−c)[a(t)[PS,R(t+1)−IR(t)]+b(t)]−TS,R

(1−c)a(t) −

µU (t)−∆IU (t)) + b(t)]

= TS,R + (1− c)a(t)(∆IU (t)− µU (t))

(3.10)

Since E[(1− c)a(t)(∆IU(t)− µU(t))] = 0, E[y(t+ 1)] = TS,R indeed holds.

As a first milestone towards predictable link reliability in interference-oriented scheduling, here

we focus on ensuring the expected link reliability. Besides being important for mission-critical

sensing and control by itself, ensuring the expected link reliability also reduces communication

delay and improves network throughput as we will show in Section 3, which are all important for

real-time sensing and control. Instantaneous link reliability at a time instant can also be controlled
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by integrating PRK-based scheduling with techniques such as power control [79] and rate control

[12], but detailed study of this is beyond the scope of this paper.

From ∆IR(t) to KS,R,TS,R(t + 1). Given that it is convenient for the receiver R to measure link

reliability y(t) [132], we propose to execute the minimum-variance controller (3.8) at R. Using

similar techniques as what we will discuss in Section 2.2, R can also measure PS,R(t) and IR(t),

thusR can compute a(t) using Equation (3.5). For each time instant t,R can also derive ∆IU(t−1)

based on IR(t), IR(t−1), ∆IR(t−1), and Equation (3.6); using these derived samples of IU(.) and

an EWMA filter, R can then estimate µU(.). Therefore, R can execute the controller (3.8) using

information that is either locally measured (e.g., for y(t) and y(t− 1)) or locally derived (e.g., for

a(t) and µU(t)).

After R computes the control input ∆IR(t) at time t, R needs to compute KS,R,TS,R(t + 1) so

that 
KS,R,TS,R(t+ 1) = KS,R,TS,R(t), if ∆IR(t) = 0

KS,R,TS,R(t+ 1) > KS,R,TS,R(t), if ∆IR(t) < 0

KS,R,TS,R(t+ 1) < KS,R,TS,R(t), if ∆IR(t) > 0

(3.11)

and that, when the PRK model parameter is min{KS,R,TS,R(t), KS,R,TS,R(t + 1)}, the expected

interference introduced to R by the nodes in either ES,R,TS,R(t) or ES,R,TS,R(t + 1) but not in both

is as close to |∆IR(t)| as possible while ensuring that the expected link reliability is no less than

TS,R when the PRK model parameter is KS,R,TS,R(t+ 1).6 To realize this, we define, for each node

C in the local region around R, the expected interference I(C,R, t) that C introduces to R when

C is not in the exclusion region of R. Then I(C,R, t) = βC(t)P (C,R, t), where βC(t) is the

probability for C to transmit data packets at time t and P (C,R, t) is the power strength of the data

signals reaching R from C.7 Considering the discrete nature of node distribution in space and the

requirement on satisfying the minimum link reliability TS,R, we propose the following rules for

6Due to the discrete nature of node distribution, the resulting link reliability may be slightly higher than the required
reliability TS,R instead of being exactly equal to TS,R.

7P (C,R, t) and βC(t) can be estimated through purely local coordination between R and C using the protocol
signaling mechanism of Section 2.2.
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computing KS,R,TS,R(t+ 1):

• When ∆IR(t) = 0, let KS,R,TS,R(t+ 1) = KS,R,TS,R(t).

• When ∆IR(t) < 0 (i.e., need to expand the exclusion region), let ES,R,TS,R(t + 1) =

ES,R,TS,R(t), then keep adding nodes not already in ES,R,TS,R(t + 1), in the non-increasing

order of their data signal power at R, into ES,R,TS,R(t+ 1) until the node B such that adding

B into ES,R,TS,R(t+1) makes
∑

C∈ES,R,TS,R
(t+1)\ES,R,TS,R

(t) I(C,R, t) ≥ |∆IR(t)| for the first

time. Then let KS,R,TS,R(t+ 1) = P (S,R,t)
P (B,R,t)

.

• When ∆IR(t) > 0 (i.e., need to shrink the exclusion region), let ES,R,TS,R(t + 1) =

ES,R,TS,R(t), then keep removing nodes out of ES,R,TS,R(t + 1), in the non-decreasing order

of their data signal power at R, until the node B such that removing any more node after re-

moving B makes
∑

C∈ES,R,TS,R
(t)\ES,R,TS,R

(t+1) I(C,R, t) > |∆IR(t)| for the first time. Then

let KS,R,TS,R(t+ 1) = P (S,R,t)
P (B,R,t)

.

Figure 78 demonstrates the above idea for cases when ∆IR(t) 6= 0. In our study, we set the initial

Figure 78: Computing KS,R,TS,R(t+ 1)

value of the PRK model parameter such that the initial exclusion region around R includes every
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node whose transmission alone, concurrent with the transmission from S to R, can make the link

reliability drop below TS,R.

Stability of self-tuning adaptive control. The controller design and analysis based on the linear

model (3.5) tend to be more accurate when y(t) is closer to TS,R. When y(t) is far away from TS,R,

directly using the linear model (3.5) may lead to significant undershoot or overshoot in feedback

control. Assuming the target operating point is A where the link reliability is TS,R in Figure 79,

for instance, applying the linear model (3.5) and the control input (3.8) when the operating point

Figure 79: Stability of adaptive control (3.8)

is B at time t will lead to E[y(t + 1)] = TB′ , which is significantly lower than TS,R and thus

lead to significant undershoot; similarly, applying the linear model (3.5) and the control input (3.8)

when the operating point is C at time t will lead to E[y(t + 1)] = TC′ , which is significantly

higher than TS,R and thus lead to significant overshoot. Significant undershoot or overshoot is not

only undesirable from a single-link’s point of view, it may also lead to network-wide instability

in feedback control due to the coupling between individual links via ∆IU(t). For stability and

for avoiding significant undershoot and overshoot in control, we propose to replace a(t) with its
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refined version ar(t) in the controller implementation:

ar(t) =


a(t), if |y(t)− TS,R| ≤ e0

a0, if |y(t)− TS,R| > e0

(3.12)

where e0 is a threshold value for the linear model (3.5) to be accurate around the neighborhood

of TS,R, and a0 =
TS,R−y(t)

f−1(TS,R)−f−1(y(t))
is the gradient of the line connecting the current operating

point y(t) and the target point TS,R on function f . Letting a(t) = a0 when |y(t) − TS,R| >

e0 avoids overshoot and undershoot in the feedback control of KS,R,TS,R(.) at link (S,R), thus

preventing YS,R(.) from oscillating around TS,R for a given disturbance ∆IU(.) and helping enable

network-wide convergence in the regulation control. Note that, according to Huang et al. [59], the

functional form of f in Equation (3.4) and thus its gradient are much more stable than the specific

realization of f (e.g., specific mapping between YS,R and PS,R − IR) across different network and

environmental conditions; hence letting ar(t) be a(t) instead of a0 when |y(t) − TS,R| ≤ e0 helps

address the inaccuracy of the theoretical model (3.4) in practice. In our implementation, we use an

e0 of 5%.

2.2 Local signal maps for real-world use of the PRK model

Given a link (S,R) and a specific instantiation of the PRK model, the parameter KS,R,TS,R(t)

defines an exclusion region ES,R,TS,R(t) around the receiver R such that a node C ∈ ES,R,TS,R(t)

if and only if P (C,R, t) ≥ P (S,R,t)
KS,R,TS,R

(t)
. In PRK-based scheduling, every node C ∈ ES,R,TS,R(t)

should be aware of its existence in ES,R,TS,R(t) and should not transmit concurrently with the

reception at R; yet it is difficult to ensure this property for the following real-world complexities

in wireless communication: 1) node C may be located beyond the communication range of R

such that R cannot inform C about its state (e.g., the value of P (S,R,t)
KS,R,TS,R

(t)
) with the regular data

transmission power; 2) wireless communication may be anisotropic such that it is difficult for R

to transmit protocol signaling messages that reaches and only reaches nodes in ES,R,TS,R(t); 3)
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wireless communication may be asymmetric such that nodes interfering with one another may not

know one another’s state (e.g., P (S,R,t)
KS,R,TS,R

(t)
).

Local signal maps. To address these challenges, we propose that every node R maintains a

local signal map that contains the average signal power attenuation between R and every node

C close-by. To measure the signal power attenuation P ′(C,R) from a node C to another node

R, we let C inform R of its transmission power PC by piggybacking the information onto its

packets to R, and then R can derive the power attenuation as long as R can estimate the power of

the received signals from C, denoted by P (C,R).8 To this end, R samples the RSSI value Ptotal

at an instant right before finishing receiving a packet from C, and, immediately after receiving

the packet, R samples the RSSI value PI again. As shown in Figure 80, PI is the sum of the

Figure 80: Estimation of signal power attenuation

background noise power and the interference power at R right after the packet reception, and

Ptotal = P (C,R) + P ′I where P ′I is the sum of the background noise power and the interference

power at R right before the packet reception. As we will discuss in Section 2.3, signal maps are

maintained in the control plane of the protocol PRKS where wireless channel access is based on

the traditional random access method CSMA/CA as used in IEEE 802.15.4 and 802.11. Given that

Ptotal and PI can be sampled at very short interval (e.g., less than 0.01 milliseconds for TelosB

motes [8]) and that the background noise power as well as the interference power do not change

much in such short intervals in CSMA/CA-based wireless networks, the sum of the background

noise power and the interference power do not change much immediately before and immediately

8To address the challenge of large interference range, PC may potentially be higher than the regular data transmis-
sion power as we discuss later in this section.
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after a packet reception, i.e., P ′I ≈ PI . Thus,

P (C,R) = Ptotal − P ′I ≈ Ptotal − PI . (3.13)

Once R gets a sample of P (C,R), it can compute a sample of P ′(C,R) as

P ′(C,R) = PC − P (C,R). (3.14)

This way, R can get a series of samples of P ′(C,R) and then use these samples to derive the

average signal power loss from C to itself.

Using the above method of sampling signal power attenuation, nodes close-by can establish

their local signal maps through purely local sampling of their packet receptions without any global

coordination in the network, and the local signal maps generated in this manner tend to be very

accurate as we show next. For mostly-static WSC networks which we consider in this study,

the local signal maps can be maintained in a passive manner after their initial establishment. That

is, signal map maintenance does not introduce extra communication overhead other than having

nodes piggyback their transmission powers onto the packets they transmit anyway. Note that the

local signal map maintains power attenuation from a node C to R instead of simply the reception

power of signals from C to R so that the signal map can be used to estimate the reception power of

signals that are transmitted at different powers (e.g., for the control signals of protocol PRKS to be

discussed in Section 2.3). For protocol signaling in PRK-based scheduling, the local signal maps

also maintain bi-directional power attenuation between a pair of close-by nodes. After estimating

P ′(C,R), for instance, R informs C of P ′(C,R) so that C is aware of the power attenuation from

itself to R.

To corroborate the effectiveness of the aforementioned method of estimating wireless signal

power attenuation, we apply it to estimate power attenuation across links in both the NetEye [11]

and the Indriya [2] sensor network testbeds where nodes transmit at a power of -25dBm and -

10dBm respectively. We first collect ground-truth data about power attenuation across links when
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there is only one transmitter at a time and no concurrent transmissions in the network; then we

use the aforementioned method and Equations (3.13) and (3.14) to estimate power attenuation

across links when all the nodes transmit packets using the CSMA/CA-based B-MAC [99] and at

an average inter-packet interval of 25 seconds, 2.5 seconds, and 0.1 seconds respectively, which

we denote as light traffic, medium traffic, and heavy traffic respectively.

For the NetEye testbed, Figures 81 and 82 show the CDFs of the absolute and relative errors
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Figure 81: Absolute errors in estimating link signal power attenuation in NetEye

in estimating power attenuation across links in different traffic conditions, where the absolute error

for a link is defined as the estimated attenuation minus the ground-truth attenuation for the link

and the relative error is defined as the absolute error divided by the ground-truth attenuation. We

see that the estimation is quite accurate. For instance, the relative estimation errors are all very

close to 0 and almost always within [−2%, 2%]; in addition, the 95% confidence interval for the

median relative error is [−0.0508%, 0.0535%], [−0.0152%, 0.0280%], and [−0.0087%, 0.0245%]

for the light, medium, and heavy traffic condition respectively, thus the median estimation error is

0 at the 95% confidence level for all traffic conditions.

For details of the estimation behavior, Figures 83 and 84 show the time series of signal power
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Figure 82: Relative errors in estimating link signal power attenuation in NetEye

attenuation for a typical link in NetEye where the power attenuation is estimated in heavy traffic

condition and without concurrent transmission (i.e., ground-truth) respectively. We see that the

power attenuation has small variation (e.g., mostly less than 1dB); in addition, even though the

estimated power attenuation in heavy traffic seems to exhibit greater fluctuation, its mean value is

nearly identical to that of the ground-truth data, thus further verifying the validity of the aforemen-

tioned method for estimating average signal power attenuation.

For the Indriya testbed, Figures 85 and 86 show the CDFs of the absolute and relative er-

rors in estimating power attenuation across links in different traffic conditions, and Figures 87 and

88 show the time series of the estimated and ground-truth signal power attenuation for a typical

link respectively. The observations are similar to those for the NetEye testbed, showing the ef-

fectiveness of our method of signal power attenuation estimation in different network and traffic

conditions.

Protocol signaling based on signal maps. The local signal map at R records signal power at-

tenuation between R and the nodes close-by. Using these information and the transmission power

control algorithms proposed by Leung et al. [73], node R can broadcast signaling packets at an
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Figure 83: Time series for a link’s signal power attenuation in NetEye: heavy traffic
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Figure 84: Time series for a link’s signal power attenuation in NetEye: ground-truth
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Figure 85: Absolute errors in estimating link signal power attenuation in Indriya
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Figure 86: Relative errors in estimating link signal power attenuation in Indriya
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Figure 87: Time series for a link’s signal power attenuation in Indriya: heavy traffic
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Figure 88: Time series for a link’s signal power attenuation in Indriya: ground-truth
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appropriate power level such that these packets with the value of P (S,R,t)
KS,R,TS,R

(t)
can be received with

high probability by all the nodes in the exclusion region ES,R,TS,R(t) around R; this can be accom-

plished even if a node C ∈ ES,R,TS,R(t) is beyond the regular data communication range of R, in

which case the broadcast packets are transmitted at a power higher than the regular data transmis-

sion power. Therefore, the local signal map enables addressing the challenge of large interference

range through transmission power control; as we will show in Section 3, the required control sig-

naling power is usually no more than 22dB over the data transmission power, and the power control

scheme can be implemented using today’s commodity radios such as Chipcon CC2420. To further

increase the reliability of protocol signaling, node R can broadcast each signaling packet multiple

times, and nodes in the exclusion region of R can re-broadcast the signaling packet they hear from

R. To reduce the delay in information sharing, signaling packets with fresher information (i.e.,

information that has been transmitted for fewer number of times) also have higher priorities in

channel access by using smaller contention windows in CSMA/CA.

When a node C receives the signaling packet from R, C can use its local signal map to de-

cide whether his transmission may interfere with the transmission from S to R (i.e., whether

C ∈ ES,R,TS,R(t)) by checking whether P (C,R, t) ≥ P (S,R,t)
KS,R,TS,R

(t)
. Therefore, the signaling packets

can reach nodes not in ES,R,TS,R(t) without falsely including those nodes into ES,R,TS,R(t), thus

addressing the challenge of anisotropic wireless communication. Similarly, using power control

algorithms and local signal maps, a pair of nodes C and R can inform each other of their respec-

tive states (e.g., the PRK model parameter and the data transmission probability) using different

transmission powers for signaling packets, thus addressing the challenge of asymmetric wireless

communication in protocol signaling.

For the correctness of the above protocol signaling method, the signal map of a node R should

include the set E′ of nodes whose transmission may interfere with the reception at R or whose

reception may be interfered by the transmission by R (e.g., the transmission of ACK packets by

R). Since the set E′ may well be dynamic and uncertain depending network and environmental

conditions, a node R dynamically adjusts the set of nodes in its local signal map through local
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coordination with nodes close-by, and R may also maintain a relative large signal map to include

the nodes that may be in E′ over time. Together with the PRK model instantiation method dis-

cussed in Section 2.1, the above field-deployable signaling mechanisms enable agile, high-fidelity

identification of interference relations among nodes, thus serving as a foundation for predictable

interference control.

2.3 Protocol PRKS: putting things together

Decoupling of protocol signaling & data transmissions. Based on the methods of PRK model

instantiation and protocol signaling presented in Sections 2.1 and 2.2 respectively, two basic tasks

of interference control are 1) enabling nodes to be accurately aware of the mutual interference

relations among themselves and 2) controlling channel access so that no two interfering links use

the same wireless channel at the same time. These tasks make the commonly-used single-channel

contention-based approach unsuitable for the following reasons:

• In contention-based channel access control, each data transmission is usually preceded by

a protocol signaling phase either implicitly through carrier sensing or explicitly through

RTS-CTS handshake such as in IEEE 802.11. Due to the probabilistic nature of wireless

communication and the potentially large interference range, it is difficult to make such per-

transmission protocol signaling perfectly reliable even with the mechanisms discussed in

Section 2.2. Accordingly, it is difficult for nodes to be accurately aware of their mutual

interference relations, thus it is difficult to control interference in a predictable manner.

• Even if we can make the per-transmission protocol signaling more reliable through mecha-

nisms such as retransmission of signaling packets, this introduces significant delay and over-

head for each data transmission. Even worse, the signaling packets may well be transmitted

at relatively higher power to ensure coverage of the potentially large exclusion regions, and

the high-power transmissions of signaling packets introduce significant interference to the

data transmissions themselves; in trying to ensure the required data delivery reliability in the
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presence of strong interference from protocol signaling, nodes will adapt their PRK model

parameters to expand their individual exclusion regions, which in turn requires the signaling

packets to be transmitted at even higher power and thus leads to system instability (as we

have seen in our earlier trials of contention-based approaches).

To address the aforementioned challenges, we propose to decouple protocol signaling from

data transmission by leveraging the different timescales of PRK model adaptation and data trans-

mission. Given a link (S,R), highly accurate estimation of its reliability usually requires the

knowledge of the transmission status of several (e.g., 20) data transmissions along (S,R) [132].

Accordingly, it takes time to get a new link reliability feedback, and the timescale of PRK model

adaptation as well as the resulting change in interference relations between (S,R) and close-by

nodes/links is longer than the timescale of individual data transmissions along (S,R). Using the

protocol signaling mechanisms discussed in Section 2.2, the receiver R can inform, after each

PRK model adaptation, the relevant nodes of the new value of parameter KS,R,TS,R and thus the

corresponding change in interference relations; we have observed, in our experimental analysis

in Section 3, that each new value of KS,R,TS,R can be reliably and quickly signaled within 1.4

transmissions of the signaling packet on average. Therefore, instead of requiring perfectly reliable

signaling for each data transmission as in contention-based channel access control, we propose to

treat protocol signaling as an independent process which ensures timely awareness of the mutual

interference between nodes/links. Based on the latest information on mutual interference relations,

data transmissions can be scheduled in a TDMA fashion without being coupled with protocol sig-

naling.9

Besides enabling precise awareness of mutual interference relations, the decoupling of protocol

signaling and data transmission also enables the transmission of signaling packets and data packets

in different wireless channels, thus avoiding the interference between protocol signaling and data

transmission as well as the corresponding system instability. For convenience, we regard the wire-

less channels used for protocol signaling and data transmission as the control channel and the data
9Note that the periodic sampling of physical processes in WSC networks also makes TDMA an efficient scheduling

mechanism as compared with contention-based approaches.
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channel respectively. Using a control channel is necessary for avoiding system instability while

addressing the challenges of protocol signaling at the same time; since protocol signaling does not

introduce high traffic load, it may well be able to reuse the control channel that has been set aside

in industry standards such as IEEE 1609.4 [7] as well as in research proposals [108, 123, 97].

Protocol PRKS. Based on the above design principles, we propose the PRK-based scheduling

protocol PRKS that separates the functionalities of PRK-based channel access control into control

plane functions and data plane functions as shown in Figure 89. In the control plane, the sender

Figure 89: Architecture of PRKS

S and the receiver R of a given link (S,R) get to know the set of links whose transmissions

cannot take place concurrently with the transmission from S to R through the protocol signaling

mechanisms presented in Section 2.2, and we define this set of links as the conflict set of link

(S,R). More specifically, a link (C,D) is in the conflict set of (S,R) and thus conflicting with

(S,R) at a time instant t if links (C,D) and (S,R) share a common end-node, C ∈ ES,R,TS,R(t),

or S ∈ EC,D,TC,D
(t), where TS,R and TC,D are the required packet delivery reliability across (S,R)

and (C,D) respectively. Based on the conflict sets of links, data transmissions along individual
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links can be scheduled in a distributed, TDMA manner according to the methodology of the Link-

Activation-Multiple-Access (LAMA) algorithm [14]. With the LAMA algorithm, a link (S,R)

is regarded as active in a time slot if S transmits to R in the slot. Given a time slot, the sender

S and the receiver R of link (S,R) first compute the priorities for the link (S,R) and the links

in the conflict set of (S,R) to be active in the time slot, then S decides to transmit to R and R

decides to receive data from S if and only if, for this time slot, (S,R) has higher priority to be

active than every conflicting link. Every node in the network computes link activation priorities

in the same manner such that no two conflicting links will be active in the same time slot as long

as links are accurately aware of their mutual interference relations. If a link (S,R) is active in

a time slot, S will transmit data packet(s) to R in this time slot. The status (i.e., successes or

failures) of data transmissions in the data plane are fed back into the control plane for estimating

the in-situ link reliabilities, which in turn triggers PRK model adaptation and then the adaptation

of the TDMA transmission scheduling accordingly. In the control plane, nodes also leverage the

transmissions and receptions of protocol signaling packets to maintain their local signal maps as

we have presented in Section 2.2.10 Given that the instantiated PRK models precisely identify the

conflict sets of individual links, the TDMA scheduling in PRKS also eliminates the hidden terminal

issue which has been a basic challenge in interference-oriented channel access control since 1975

[113].

To avoid interference between protocol signaling transmissions and data transmissions, proto-

col signaling packets and data packets are transmitted in the control channel and the data channel

respectively. By default, a node stays in the control channel. At the beginning of a time slot, ev-

ery node executes the LAMA scheduling algorithm to decide whether any of its associated links

will be active in this time slot. If one of its associated links is active in this time slot, the node

switches to the data channel for data transmission or reception depending on whether the node is

the transmitter or receiver of the associated active link; after the data transmission/reception, the

node switches back to the control channel, and, if the node is a receiver of a link in this time slot,

10For a given link, the path losses in the control channel and the data channel are approximately the same given the
close proximity of the two channels in spectrum [125].
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it feeds back the status (i.e., success or failure) of this transmission to the control plane for link

reliability estimation and the corresponding PRK model adaptation. On the other hand, if the node

is not involved in any data transmission/reception in the time slot, it stays in the control channel,

and it tries to access the control channel via CSMA/CA: if it wins channel access (e.g., sensing the

channel as idle), it transmits a signaling packet including information on the PRK model param-

eters for all of its associated links and their conflicting links; if it does not win channel access, it

stays in the control channel receiving signaling packets from other nodes and perform functions

related to signal map maintenance and protocol signaling as discussed in Section 2.2. The length

of a time slot is chosen such that the aforementioned actions can be completed in a single time

slot whether the node is involved in control plane functions alone or it is also involved in a data

transmission/reception.

With the above approach to PRK-based scheduling, the TDMA scheduling of data transmis-

sions happens at the beginning of each time slot based on the PRK model information that is readily

available in the control plane, hence there is no need for ensuring perfectly reliable protocol sig-

naling on a per-transmission basis and thus no delay introduced on a per-transmission basis just

for protocol signaling either. Given that the timescales of PRKS model adaptation at a link (S,R)

is longer than the timescales of individual data transmissions along (S,R), in particular, the time

instants ta and tb for two consecutive PRK model adaptations at (S,R) tend to be well separated

such that, within the early part of the time window [ta, tb], the PRK model parameter of link (S,R)

generated at time ta can be reliably delivered to the relevant nodes and then be used for the TDMA

scheduling of data transmissions.

One premise for the correct operation of PRKS is that, for every link (S,R), the sender S and

the receiver R always use the same PRK model parameters of the relevant links when deciding

whether (S,R) should be active in a time slot; otherwise, S and R may well derive different

conflicting relations between links, and S may think (S,R) shall be active for this time slot and

switch to the data channel to transmit, but R thinks (S,R) shall be inactive and stays in the control

channel, which makes R unable to receive the transmitted data from S and leads to data packet
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loss. Since protocol signaling takes time, however, there are transient periods when S and R

may have inconsistent information about the PRK model parameters in the network. To avoid

the receiver R being in the control channel when the sender S transmits in the data channel, one

approach is to have S andR only use the same information about PRK model parameters and delay

the use of newly updated PRK model parameters that are not known to both S and R, as in our

preliminary study [135]. This approach relies on perfect consistency between S andR in the use of

PRK model parameters; due to the probabilistic nature of wireless communication, however, the

requirement on perfect consistency introduces non-negligible delay in the use of the latest PRK

model parameters, which is undesirable as we will discuss shortly. To allow for the immediate use

of the latest PRK model parameters as they become available while ensuring that the receiver R

is in the data channel whenever the sender S transmits data packets, we introduce the following

sender-receiver coordination mechanism:

• If the link (S,R) shall be active in a time slot t0, the sender S computes the time slot t1 when

the link (S,R) will be active again the next time; then S piggybacks the value of t1 onto the

data packet, if any, to be transmitted toR at t0 as well as onto every protocol signaling packet

that S may transmit during t0 and t1. If the receiver R receives a data or a protocol signaling

packet from S showing that S will transmit in a future time slot t1, R will stay in the data

channel at t1 even if the local execution of the LAMA algorithm at R may show link (S,R)

as inactive at t1.

• After computing at time t0 the next time slot t1 to transmit to R, S will not transmit to R at

any time slot t′1 ∈ (t0, t1) unless the receiver R tells S to transmit at t′1 as we discuss next.

This rule applies even if the local PRK model parameters at S shows at slot t′1 that the link

(S,R) shall be active at this time slot; this rule implicitly introduces delay in using the latest

information on PRK model parameters, but we have observed that this delay is significantly

less than that in the approach based on perfect consistency between S and R as we have

discussed.
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• After R learns that S will transmit in a future time slot t1, if the execution of the LAMA

algorithm at R at a time slot t′0 shows that the link (S,R) shall be active at a time slot t′1 < t1

and if the time window of [t′0, t
′
1] is long enough for R to successfully inform S of the value

of t′1 with high probability, R changes its local value of t1 to t′1 and piggybacks the value

of t′1 onto packets (e.g., protocol signaling packets) that R may transmit during [t′0, t
′
1). If S

receives a packet fromR showing that link (S,R) shall be active at a future time slot t′1 < t1,

S changes the value of t1 to t′1. This rule is to ameliorate the implicit delay in using the latest

PRK parameter values that the previous rule may introduce.

• If the receiver R does not receive any data packet from S at the time slot t1 (e.g., due

to data packet loss), R enters and stays in a “conservative” state until it receives a packet

from S again showing that (S,R) shall be active at another future time slot. While in the

“conservative” state, the receiver R stays in the data channel for a time slot t2 as long as,

at t2, the link (S,R) has higher priority to be active than other links associated with R; the

conservative state ensures that R is in the data channel whenever S transmits a data packet

to R, and it enables R to be synchronized with S on the data-transmission schedule again.

• In the system boot-up phase, the sender S executes the basic LAMA algorithm and the

receiver R remains in the conservative state when deciding whether to stay in the data or

control channel for a time slot, until S transmits for the first time and R receives a first

packet from S respectively.

With the above coordination mechanism, the receiver R is guaranteed to be in the data channel

whenever the sender S transmits data packets; in the mean time, R stays in the control channel

often enough to be updated with the latest PRK model parameters of close-by links.

The aforementioned coordination between a sender and its receiver is the only inter-node co-

ordination needed to address the potential inconsistency on the PRK model parameters during

transient periods. In particular, we do not need perfect information consistency that requires the

same PRK model parameter of a link (S,R) to be used by link (S,R) and all the links whose trans-
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mitters are in the exclusion region around receiver R. That is, as long as a receiver is in the data

channel when its sender transmits data packets, a node can use the new PRK model parameter of

a link the moment the node learns of the parameter. The intuition of this design is that the earliest

use of new PRK model parameters helps improve data delivery reliability when the corresponding

exclusion regions expand, or it helps improve the channel spatial reuse and the concurrency of

data transmissions when the corresponding exclusion regions shrink. As shown in Figure 90, for

Figure 90: Coordination-free use of the latest PRK model parameters

instance, assuming that node A learns the latest PRK model parameter KS,R,TS,R(.) of link (S,R)

earlier than node C does when the exclusion region around R expands or shrinks, then it is desir-

able for A to use the latest value of KS,R,TS,R(.) without waiting for C to learn it: this prevents

A from transmitting concurrently with the transmission along (S,R) when the exclusion region

expands, and this allows A to transmit concurrently with the transmission along (S,R) when the

exclusion region shrinks.

Our discussions in this paper focus on ensuring data delivery reliability across links, thus we

have focused on the exclusion regions around receivers alone. If it is important to ensure ACK

reliability at the link layer (e.g., for avoiding unnecessary retransmissions), similar approaches to

protecting data receptions can be applied to protect ACK receptions by maintaining an exclusion
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region around the transmitter of each link. For conciseness of presentation, however, we only focus

on ensuring data delivery reliability in this paper.

3 Experimental evaluation

We have implemented PRKS in TinyOS [9]. In what follows, we experimentally evaluate PRKS

through measurement in the NetEye [11] and Indriya [2] sensor network testbeds as we do in

Chapter 2 .

3.1 Methodology

Protocols. To understand the design decisions of PRKS, we comparatively study PRKS with its

following variants:

• PRKS-R: same as PRKS but formulates the PRK model instantiation problem as a dead-

beat PID regulation control problem instead of as a minimum-variance regulation control

problem.

• PRKS-L: same as PRKS but directly use the linear model (3.5) instead of its refined model

(3.12).

Towards understanding the benefits of PRKS, we also comparatively study PRKS with the

following distributed scheduling protocols:

• CSMA: a contention-based MAC protocol that uses the basic CSMA/CA mechanism to ame-

liorate the impact of co-channel interference; this represents the interference control mecha-

nism used by protocols such as B-MAC [99];

• RTS-CTS: a contention-based MAC protocol that uses CSMA/CA and RTS-CTS to amelio-

rate the impact of co-channel interference and hidden terminals; this represents the interfer-

ence control mechanism used by protocols such as S-MAC [127];
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• RIDB: a TDMA scheduling protocol that uses a TDMA protocol similar to the one used in

PRKS and that uses the physical interference model to derive interference relations between

nodes but ignores cumulative interference in networks [139].

• CMAC: a contention-based MAC protocol where a node transmits at a time instant only if

the SINR of this transmission and the SINRs of other concurrent transmissions overheard

by the node are above a certain threshold (e.g., for ensuring a certain link reliability); this

represents the interference control mechanism used by protocols such as C-MAC [105];

• SCREAM: a TDMA scheduling protocol using the SCREAM primitive [19] to schedule con-

current transmissions according to the physical interference model; this represents the inter-

ference control mechanism used by protocols such as FDD [19] and DSS [102];

Among these protocols, CSMA and RTS-CTS represent the protocol-model-based techniques in

existing industry standards such as IEEE 802.15.4 and 802.11p; RIDB, CMAC, and SCREAM rep-

resent the techniques used in existing physical-model-based scheduling. Focusing on predictable

co-channel interference control, we do not compare PRKS with protocols such as WirelessHART

[122] that do not consider channel spatial reuse.

Network and environmental settings. We use a subset of the 130 TelosB motes in NetEye.

The subset of motes forms a random network, and it is generated by using each mote of NetEye

with probability 0.8; each mote uses a data transmission power of -25dBm (i.e., power level 3 in

TinyOS). On average, a node can reach 10 nodes with a data delivery reliability of at least 95% in

the absence of interference.

Focusing on interference-oriented scheduling of single-hop transmissions at the link layer, we

consider single-hop data transmissions in this study.11 We choose data transmission links such that

each mote transmits data packets to a receiver to whom the average SNR is the closest to 15dB

in the absence of interference. Unless mentioned otherwise, every node transmits a data packet to

11Predictable reliability in single-hop transmissions is important by itself for new networked control paradigms that
involve only communications between close-by nodes [95], while predictably reliable single-hop transmission is also
a basis for reliable multi-hop transmission in general.
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its receiver every 20ms. For reflecting different application scenarios, we consider the cases when

the required mean data delivery reliability (PDR) is 70%, 80%, 90%, or 95% for all the links and

the “mixed PDR requirement” case when the required mean reliability for each link is randomly

chosen as 70%, 80%, 90%, or 95% with equal probability.
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Figure 91: Packet delivery reliability (PDR) in PRKS

3.2 Measurement results

Behavior of PRKS. For different PDR requirements, Figures 91 and 92 show the boxplots of

link packet delivery reliability (PDR) and PRK model parameter in PRKS respectively. We see

that PRKS adapts the PRK model parameter according to different PDR requirements, and that

the required minimum mean PDR is always guaranteed in PRKS through predictable interference

control.12 In particular, the PRK model parameter increases with the PDR requirement so that more

close-by nodes are prevented from transmitting concurrently with a link’s transmission. Given that

12Due to the discrete nature of the spatial distribution of concurrent transmitters, the actual PDR tends to be slightly
higher than (instead of being strictly equal to) the required mean PDR.
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Figure 92: PRK model parameter in PRKS
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Figure 93: Mean concurrency in PRKS and iOrder
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Figure 94: Temporal link PDR: PDR req. = 90%
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Figure 95: Network-wide convergence in PRKS
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Figure 96: CDF for the settling time of link PDR
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Figure 97: PDR in PRKS: temporally varying PDR requirements
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Figure 98: Settling time: temporally varying PDR requirements
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Figure 99: Packet delivery reliability in PRKS: mixed PDR requirement
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Figure 100: PRK model parameter in PRKS: mixed PDR requirement
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Figure 101: Packet delivery reliability in PRKS: different transmission powers

the PRK model parameterK reflects the ratio of data signal power to the interference power from a

weakest interferer (see Inequality (3.3)), Figure 92 shows that the required control signaling power

is usually no more than 22dB over the data transmission power, thus the power control scheme

of control signaling can be implemented even with today’s commodity radios such as Chipcon

CC2420.

To understand the spatial reuse in PRKS, Figure 93 shows the mean concurrency (i.e., number

of concurrent transmissions at a time instant) and its 95% confidence interval13 in PRKS as well as

in a state-of-the-art, centralized scheduling protocol iOrder [26] which maximizes channel spatial

reuse in interference-oriented scheduling.14 We see that, despite its nature of local and distributed

control, PRKS enables a concurrency and spatial reuse statistically equal or close to what is enabled

by the centralized algorithm iOrder while ensuring the required PDR at the same time.

13For the figures of this section that present performance statistics (e.g., mean concurrency or PDR), we also show
the 95% confidence intervals of the statistics, but some of the confidence intervals may be too narrow to be noticeable
in the figures.

14In terms of maximizing spatial reuse, iOrder has been shown to outperform well-known existing scheduling
protocols such as Longest-Queue-First [71], GreedyPhysical [18], and LengthDiversity [50].
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Despite the distributed nature of the minimum-variance regulation controller in PRKS, the

individual controllers converge to a state where the required PDR is satisfied. For a typical link in

the network, for instance, Figure 94 shows the temporal behavior of link PDR when the minimum

application PDR requirement is 90%. We see that the link PDR converges to its steady state after

around 25 control steps. As a way of reflecting the network-wide convergence, Figure 95 shows

the temporal, convergence behavior of the network-wide average deviation of link reliability from

the required mean PDR (i.e.,
∑

Every link (S,R) |YS,R(t)−TS,R|
Total number of links ). In general, link PDRs converge quickly, as

shown by Figure 96 where the settling time is defined as the number of control steps taken for a link

to reach its steady state PDR distribution. In addition to convergence to a state where the required

PDRs are satisfied, the collective behavior of the distributed controllers in PRKS also enables a

spatial reuse close to what is feasible with the state-of-the-art, centralized scheduler iOrder as we

have shown in Figure 93.

To understand the adaption of PRKS to online dynamics, we also run experiments where the

mean PDR requirements change over time. Figure 98 shows, for a typical link in the network, the

time series of link PDR when the application PDR requirements are set to 70%, 80%, 90%, 95%,

90%, 80%, and 70% over time. We see that PRKS adapts to application-specific PDR requirements

in a predictable manner.

For the “mixed PDR requirement” scenario where different links of the same network have

different PDR requirements, Figures 99 and 100 show the boxplots of link PDR and PRK model

parameter for the links grouped by their PDR requirements. We see that PRKS adaptively ensures

the required PDR in a predictable manner even when different links of the same network have

different PDR requirements. We have also studied the scenario where different links use different

data transmission powers to ensure a desired SNR of 6dB at receivers in the absence of interference,

and have observed similar behavior. For instance, Figure 101 shows that the desired PDRs are

ensured when different links use different transmission powers.

Variants of PRKS. To corroborate the design decisions of PRKS, Figures 102, 103,

and 104 show the mean PDR, mean concurrency, and mean standard deviation of PDR as well as
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Figure 102: Mean PDR in variants of PRKS
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Figure 103: Mean concurrency in variants of PRKS
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Figure 104: Standard deviation of PDR in variants of PRKS
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Figure 105: Settling time of link PDR in variants of PRKS
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their 95% confidence intervals in different variants of PRKS respectively. We see that, by using

minimum-variance regulation control instead of the traditional PID regulation control, PRKS and

PRKS-L outperform PRKS-R by enabling higher concurrency and reducing PDR variation while

satisfying the PDR requirement. Without using minimum-variance control, there also exist signifi-

cant undershoot and overshoot during convergence in PRKS-R, thus the settling time in PRKS-R is

also significantly longer than that in PRKS and PRKS-L as can be seen from Figure 105. Compared

with PRKS, PRKS-L uses the minimum-variance control but does not use the refined linear plant

model (3.12), thus there exist more undershoot and overshoot during convergence. Accordingly,

the settling time in PRKS-L is slightly longer than that in PRKS as shown in Figure 105.

Figure 106: PDR requirement satisfaction ratios in different protocols

Comparison with existing protocols. Figure 106 shows the ratio of links whose PDRs
are no less than the application required PDRs in PRKS and other existing protocols. We see

that, unlike PRKS that always ensures application required PDRs in a predictable manner, ex-

isting protocols do not ensure the required PDRs due to co-channel interference that is not well
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Figure 107: CDF of link PDRs in different protocols: PDR req. = 90%

Figure 108: Median delay: reliability via packet retransmission
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Figure 109: Mean network spatial throughput
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Figure 110: Median delay: PRKS with SCREAM’s link PDRs
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Figure 111: Mean network throughput: PRKS with SCREAM’s link PDRs

Figure 112: Mean network throughput: reliability via traffic load reduction
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controlled. We also see that the PDR satisfaction ratios in the existing protocols tend to decrease

with increased PDR requirements, thus the existing protocols cannot control link reliability in a

predictable manner.

Among the existing protocols, RIDB enables higher PDR satisfaction ratios than RTS-CTS

and CSMA do because RIDB considers the physical interference model and application PDR re-

quirements in defining pairwise interference relations between nodes; nonetheless, due to its lack

of consideration of cumulative interference from multiple concurrent interferers, RIDB does not

ensure predictable interference control and thus does not ensure predictable link reliability. When

the application PDR requirement is 95%, for instance, RIDB can only enable a PDR satisfaction

ratio 50.72%. RTS-CTS ensures higher PDR satisfaction ratio than CSMA does due to its use

of RTS-CTS handshake, but the PDR satisfaction ratios are quite low in both protocols (e.g., as

low as 8.5% and 0% in RTS-CTS and CSMA respectively) since neither protocols are based on

high-fidelity interference models.

Among the existing protocols that explicitly use the physical interference model, CMAC and

SCREAM consider cumulative interference. Nonetheless, the PDR satisfaction ratio is quite low in

CMAC, and the PDR satisfaction ratio in SCREAM can also be lower than that in RIDB which does

not even consider cumulative interference. CMAC cannot ensure the required PDRs since CMAC

cannot ensure predictable interference control when the interference range is greater than the com-

munication range, which is usually the case in practice (especially when the required PDR is high).

Since CMAC does not decouple control signaling from data transmissions as in PRKS, interfer-

ence control in CMAC is also negatively affected by any unreliability in the per-transmission-based

control signaling (e.g., observing neighboring nodes’ SINRs). In SCREAM, the collision among

a set of concurrent transmitters is detected through network-wide coordination. The detection is

based on a sample of the status (i.e., success or failure) of concurrent data transmissions and cannot

ensure accurate collision detection, thus SCREAM cannot accurately control interference to ensure

predictable PDR. Additionally, it takes Θ(nk) time slots for the network to find the schedule of a

single time slot in SCREAM, where n is the number of links in a network and k is the interference
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diameter of the network (which is approximately the ratio of the geometric diameter of a network

to the carrier sensing range) [19]. Thus SCREAM is not suitable for dynamic, large-scale networks

where schedules need to adapt to changing network and environmental conditions frequently.

Incapable of ensuring predictable link reliability in scheduling, existing protocols can try to

improve link reliability by packet retransmission. Nonetheless, packet retransmission increases

data delivery delay; this can be seen from Figure 108 which shows the median packet delivery delay

when packets are retransmitted to ensure a certain required PDR. The network capacity analysis by

Zhang et al. [133] has shown that the inherent tradeoff between PDR, delay, and throughput is such

that higher PDR and lower delay usually comes at the cost of reduced network spatial throughput

(i.e., number of packets successfully delivered to its one-hop receivers per second). The higher

PDR and high spatial reuse in PRKS, however, makes PRKS still achieve higher throughput than

existing protocols except for SCREAM, as shown by Figure 109. The inherent PDR-throughput

tradeoff and the higher PDR in PRKS make the throughput in PRKS lower than that in SCREAM;

if we set the PDR requirements in PRKS according to the actual link PDRs in SCREAM, however,

PRKS enables lower delay and higher throughput, as shown by Figures 110 and 111 respectively.

This shows that PRKS enables controlling a network’s operating point and thus the optimization

of the PDR-delay-throughput tradeoff, which is important for the joint-design of networking and

control systems in real-time wireless networked sensing and control [89].

Existing protocols can also try to improve link reliability by reducing the application traffic load

such that interference becomes negligible. Nonetheless, reducing traffic load decreases network

throughput; this can be seen from Figure 112 which shows the mean network spatial throughput

when packet arrival rates are limited from above to ensure a certain required PDR.

Indriya testbed.

We have observed similar behavior in the Indriya testbed as those in NetEye. For the Indriya

testbed, Figures 113 and 114 show the packet delivery reliability (PDR) and PRK model param-

eter in PRKS respectively. We see that PRKS ensures required PDRs in an adaptive manner by

adjusting the PRK model parameter according to application requirements on PDRs. Figure 115
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Figure 113: Packet delivery reliability in PRKS: in Indriya
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Figure 114: PRK model parameter in PRKS: in Indriya
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Figure 115: PDR requirement satisfaction ratios in different protocols: in Indriya

shows the PDR requirement satisfaction ratios in different protocols. We see that, unlike PRKS,

other protocols cannot ensure application required PDR in a predictable manner.

4 Discussion

Mobility. As a first step in developing field-deployable solutions to distributed, predictable in-

terference control, we have focused on mostly-static WSC networks such as those in smart power

grid and industrial automation. In vehicular WSC networks such as those for inter-vehicle active

safety control, however, nodes are mostly-mobile as vehicles move. Vehicle mobility introduces

dynamics in vehicle spatial distribution and thus dynamics in wireless communication. In partic-

ular, dynamics in vehicle spatial distribution increases the dynamics in signal power attenuation

between nodes, which challenges the maintenance of local signal maps and the adaptation of the

PRK model. While detailed study of PRK-based scheduling in vehicular WSC networks is our

future work, we observe that the following facts may well help address the challenges of vehicle
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mobility: 1) The timescale of non-negligible vehicle movement is in seconds, while the timescale

of wireless communication is in milliseconds or microseconds; the significantly longer timescale

of the physical movement of vehicles enables vehicles to exchange control signals for PRK-based

scheduling adaptation on the fly; 2) There are well-established, microscopic mobility models for

vehicle movement [33]; these models can help estimate dynamics in vehicle spatial distribution

and thus dynamics in signal power attenuation between vehicles; therefore, these models can help

enable predictive adaptation of the signal map and the PRK model. We will explore the above

opportunities in our future work.

5 Related work

Similar to PRKS, existing physical-model-based scheduling algorithms also try to control concur-

rent transmissions so that link reliabilities or receiver-side SINRs are above a certain threshold. As

we have discussed in Sections 1 and 3, however, due to the non-local, combinatorial nature of the

physical interference model, distributed physical-model-based scheduling algorithms have various

drawbacks such as requiring network-wide coordination and employing strong systems assump-

tions which make it difficult to deploy these algorithms in real-world settings. In addition, many of

these algorithms do not address the challenge of designing scheduling protocols when interfering

links are beyond the communication range of one another [71, 102].

The concepts of guard-zone or exclusion-region around receivers have also been exercised

in distributed scheduling algorithms [22, 53], but these algorithms assumed uniform traffic load

or uniform wireless signal power attenuation across the whole network, which are unrealistic in

general. They did not address the challenge of designing scheduling protocols when interfering

links are beyond the communication range of one another either.

Adaptive physical carrier sensing has been proposed to enhance network throughput [64, 85],

but cumulative interference is not considered. We have also observed in [133] that throughput-

optimal scheduling usually leads to low link reliability, which is not desirable in wireless sensing
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and control (WSC) networks. Park et al. [96] considered link reliability when adapting carrier

sensing range, but their solution did not guarantee link reliability due to the price function involved.

Fu et al. [47] proposed to control carrier sensing range to ensure a certain SINR at receivers, but the

derivation of safe-carrier-sensing-range was based on the unrealistic assumption of homogeneous

signal power attenuation across the whole network.

Given that mission-critical WSC applications (e.g., those in transportation [3] and medicine

[4]) may well use licensed spectrum, we expect co-channel interference to be a major source of

interference in those settings and thus PRKS to be a basic element of those systems. For applica-

tion domains without licensed spectrum, channel hopping has been leveraged to address external

interference [98]; in these setting, PRKS can be integrated with channel hopping to address exter-

nal interference, for instance, by dynamically changing the wireless channels used for transmitting

the signaling packets and data packets in PRKS, but detailed study of this is beyond the scope of

this paper. Glossy [45] leverages non-destructive interference between synchronized concurrent

transmissions of the same packet to enable efficient flooding of packets across a network, upon

which LWB [44] develops algorithms for scheduling many-to-one, one-to-many, and many-to-

many communications. Glossy and LWB does not allow for spatial reuse of wireless channels to

transmit different packets at the same, thus they can lead to capacity loss in large scale networks.

The network-wide flooding of the same packet in Glossy and LWB also leads to waste of channel

resources in emerging networked control paradigms that involve only communications between

close-by nodes [95].

Focusing on addressing the decades old open problem of predictable co-channel interference

control, our study in this paper does not consider duty-cycling nodes for energy efficiency. In

WSC networks where energy efficiency may be an important issue, the basic design of PRKS can

be integrated with duty-cycling mechanisms in ways similar to those in Glossy [45] and LWB [44];

for instance, the communication of data packets and signaling packets in PRKS can be done in the

active periods of a network, allowing the network to sleep in its inactive periods. Detailed study of

this is, however, beyond the scope of this paper.
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Focusing on distributed control of co-channel interference based on the PRK interference

model, our study in this paper does not consider other interference management techniques such

as interference cancellation and multi-channel scheduling, and we do not consider other link-

reliability control techniques such as rate adaptation and power control. Nonetheless, we expect

this work to be relevant in the context of these techniques too, since co-channel interference still

needs to be managed even with interference cancellation [76], multi-channel scheduling [108],

rate control [12], and power control [79]. We will explore this synergy in our future work. Having

nodes transmit busy tones in control channels to share their transmission or reception status has

also been explored for channel access control [113], but these work did not study the fundamental

problem of identifying interference relations between links, thus they could not ensure predictable

interference control.

Real-time channel access scheduling algorithms [13, 35, 78, 107] have been proposed

for wireless networks, but most were based on the inaccurate protocol interference model

[133].Venkataramanan et al. [116] and Jaramillo et al. [63] also considered delay in distributed

scheduling, but they did not address the question of how to identify the interference set of each

link. Wang et al. [118] studied delay-constrained link scheduling using the SINR model, but the

distributed implementation of their scheduling algorithms requires multiple rounds of network-

wide coordination and thus not suitable for dynamic traffic patterns and network conditions. Mu-

nir et al. [91] considered using link burst length as the basis of routing and real-time scheduling.

But they did not consider cumulative interference in scheduling, and the scheduling algorithm was

centralized and not suitable for dynamic, large scale networks either; the algorithm also assumed

prior knowledge of traffic patterns and was based on long-term (e.g., 21 days), offline measure-

ment data, thus not suitable for dynamic traffic patterns and network conditions. Saifullah et al.

[104] considered real-time scheduling for WirelessHART networks; the work assumed applica-

tion scenarios where the scheduling is centralized and no channel spatial reuse is allowed, thus

the scheduling algorithm is not suitable for dynamic, large-scale networks with limited number of

channels available. Even though we do not focus on real-time scheduling in this paper, we expect
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the predictable link reliability enabled by PRKS to serve as a foundation for developing real-time

scheduling protocols in the presence of co-channel interference.

6 Concluding remarks

To enable predictable reliability in data delivery for wireless networked sensing and control, we

have proposed the wireless transmission scheduling protocol PRKS that ensures predictable in-

terference control in the presence of non-local interference as well as network and environmental

uncertainties. Extensive experimental analysis of PRKS show that it enables predictable link re-

liability while achieving a high degree of channel spatial reuse in data transmissions. Besides

being important by itself, the predictable link reliability enabled by PRKS also serves as a basis

for predictable real-time data delivery and for predictable tradeoff between reliability, delay, and

throughput in wireless sensing and control networks; we will explore this direction of research in

our future work. Building upon the insight from PRKS for mostly-static networks, we will also

explore mechanisms of extending PRKS to enable predictable link reliability in mobile networks

such as vehicular sensing and control networks.
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CHAPTER 4

REAL-TIME CONVERGECAST SCHEDULING IN LOSSY MULTI-

HOP WIRELESS SENSOR NETWORKS

1 Introduction

As wireless sensor networks (WSNs) mature, more and more of them are being deployed for real-

time applications such as intruder detection, structure monitoring, and patient monitoring. In many

such applications, it is imperative that sensed data distributed across a large region is reported to

a common sink (a traffic pattern called convergecast) by a deadline, so some actions can be taken

promptly, for example, sounding an alarm when an intruder is detected. Even if data reaches the

sink after the deadline, it is useless and discarded. In the previous example, the intruder may be

beyond range of pursuit.

Existing work in real-time WSNs usually assumes that interference-free transmissions are

error-free based on some interference models. Nevertheless, WSNs are often deployed in harsh,

even hazardous and hostile, environments such as forests, volcanoes, and battlefields. Besides,

low-power wireless communication of sensors is susceptible to external interference, shadowing,

and fading. It is thus extremely difficult, if possible at all, to ensure every transmission is success-

ful. Despite much work in real-time WSNs, the effects of unreliable wireless links on real-time

data delivery are not well studied, especially in multi-hop scenarios.

In this paper, we aim to fill the gap of delivering real-time data in lossy multi-hop WSNs.

More specifically, given a collection tree rooted at the sink and the number of packets queued

at each node, we study the problem of finding an optimal scheduling algorithm that maximizes



the expected total number of packets delivered to the sink by a deadline, subject to interference

constraints. Given the packets queued in the network initially, this is equivalent to maximizing the

overall deadline catch ratio (DCR).

Recently, there is some work studying real-time scheduling over unreliable links in multi-hop

WSNs [58]. However, it focuses on meeting real-time performance requirement for each individual

flow/node. By contrast, we are concerned with the aggregate data gathered at the sink by a deadline.

This is motivated by the observation that nodes in a WSN are usually designed to collectively

accomplish a common task, e.g., detecting and tracking an intruder. The end results depend on the

aggregate data gathered, not necessarily the specific amount of data from each individual node.

Our problem definition and solutions encompass two major types of real-time data collection

applications: event detection and periodic sampling. In the former, an event of interest occurs.

Some nodes in the vicinity detect it and generate data to notify the sink quickly to respond to

the event. In the latter, nodes sense the environment in each period and generate several packets

to be delivered to the sink, which processes it immediately to take certain actions depending on

application requirements. In periodic sampling applications, we assume the relative deadline is

no larger than the period. Thus, it suffices to run our scheduling in every period to maximize the

long-term deadline catch ratio.

Contributions of this paper. Towards the objective, we make the following contributions.

1. We formulate the problem into a finite horizon Markov decision process in Section 3, which

enables us to compute an optimal scheduling policy based on value iteration. However,

plagued by the curse of dimensionality, solving the Markov decision problem becomes com-

putationally prohibitive when the network grows large.

2. We propose an efficient greedy scheduling algorithm called Best Link First Scheduling

(BLF) to circumvent the intractability of the Markov decision process formulation in Sec-

tion 4. After proving a simple greedy scheduling policy is optimal for single-hop WSNs, we

extend it to multi-hop settings. The basic idea of BLF is simple: always pick the best quality
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links first in a top-down manner. It has the salient feature of directly taking link unreliability

into consideration. We also propose one approach for distributed implementation.

3. We carry out extensive simulations to demonstrate BLF’s considerable performance im-

provements over existing solutions, in a wide range of network and traffic settings in Sec-

tion 5. BLF is consistently better and its advantage is more obvious when real-time require-

ments are stringent.

2 Preliminaries

2.1 Network and Traffic Models

We consider a multi-hop wireless network of n nodes, where node 0 is the sink. Each node is

equipped with a half-duplex radio, which can either transmit or receive a packet at a time. A tree

rooted at the sink is constructed by some routing protocols. When node i transmits a packet to

its parent, denoted by h(i), h(i) receives it with probability p(i), which we refer to as the quality

of the link from i to h(i) hereafter. Figure 116 illustrates an example. The number on each link

from node i to h(i) represents its quality p(i). We assume that transmissions along each link and

across different links are independent. We also assume transmissions along links that do not share

nodes do not interfere with each other as in [58], i.e., we use the primary interference model. This

can be achieved by, for instance, separating them in different channels. The absence of secondary

interference enables us to isolate the effects of link unreliability on real-time packet delivery.

Time is slotted and a node can transmit one packet within a slot. At time 0, node i has vi

(vi ≥ 0) packets to be delivered to the sink by deadline D. Note a node can generate multiple

packets because it is equipped with multiple sensors for different parameters, each generating one

packet. Or its sampling frequency is different from others’. Also, node i can act as pure relay and

does not generate any packet itself, i.e., vi = 0.
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Figure 116: An example of collection tree consisting of 12 nodes with node 0 as the root
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2.2 Problem Definition

Given h = (h1, h2, ..., hn−1), p = (p1, p2, ..., pn−1), and v = (v1, v2, ..., vn−1), our objective is to

design a scheduling algorithm that maximizes the expected total number of packets reaching the

root by deadline D, respecting the primary interference model. Note this optimality is different

from the feasibility optimality in [58]. The feasibility optimality means fulfilling the DCR require-

ment of each individual flow if there exists a scheduling policy that can do so, while our optimality

is concerned with maximizing the aggregate DCR of all flows. We do not consider in-network

aggregation of packets in this paper.

3 A Mathematical Framework for Optimal Scheduling

Finding an optimal schedule involves sequential decision making in every slot, whose outcomes

are stochastic in nature due to link losses. This naturally leads to formulating the aforementioned

problem as a Markov decision process (MDP). The MDP’s 4-tuple (S,A, P,R) are instantiated as

follows.

1. State space S: a state s ∈ S is the number of packets queued at each node.

2. Action space A: an action a ∈ A is to schedule a set of nodes to transmit.

3. Transition probability P : P a
ij is the probability state i changes to j when action a is taken.

When node m is scheduled to transmit, a packet goes from m to its parent hm with prob-

ability pm; it stays with probability 1 − pm. Since transmissions across different links are

independent, we can calculate P a
ij as the product of the probability of each individual trans-

mission success/failure, given the set of transmissions in action a.

4. Reward R: R(i, a) is the expected reward obtained in state i when action a is taken. In each

slot, a reward of 1 is gained if a packet reaches root; 0 otherwise.
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A policy π is a sequence of decisions that determine which action to take at a given state. Based on

this formulation, our objective translates into finding an optimal scheduling policy maximizing the

expected total rewards over finite horizonD. An optimal policy can be found by the value iteration

algorithm as follows:

Vk(i) = max
a
{R(i, a) +

∑
j

P a
ijV(k−1)(j)} (4.1)

V0(i) = 0 (4.2)

Vk(i) is the k-step-to-go value of state i, i.e., the maximal reward one expects to get if one starts

in state i and proceeds for k steps. The optimal policy π∗ is {a∗1, a∗2, ..., a∗D} with initial state v, in

which a∗k is the a maximizing the right hand side of Equation 4.1. The MDP formulation enables

us to solve the original problem optimally. Unfortunately, it suffers from the curse of dimension-

ality, where solving for the MDP becomes computationally prohibitive when the network grows

large. To see why, consider a simple case of line topology where each node has one packet, the

computational complexity is O((n!)22nD).

4 Best Link First Scheduling

To overcome the shortcoming of MDP, we propose an efficient greedy scheduling algorithm, Best

Link First Scheduling. We demonstrate its underlying intuition in a simplified single-hop setting.

After detailing the centralized BLF, we discuss one approach for distributed implementation.

4.1 Single-hop Scenario

Consider a one-hop network in Figure 117. Without loss of generality, let us assume that p1 ≥ p2.

Suppose that nodes 1 and 2 each has one packet and it takes them X1 and X2 transmissions to

successfully deliver their packet to root 0, respectively. X1 and X2 are geometric random variables

with parameters p1 and p2, respectively. Nodes 1 and 2 cannot be active in the same slot. It
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Figure 117: A single-hop tree with 3 nodes

is obvious that an optimal scheduling policy must be work-conserving, i.e., always transmitting

whenever there are packets left. Thus, we restrict our discussion on work-conserving policies. Let

us consider the following two policies.

• π1: node 1 transmits first. After node 1’s packet is delivered, node 2 transmits.

• π2: node 2 transmits first. After node 2’s packet is delivered, node 1 transmits.

Under π1, root 0 receives the first packet at slot X1, the second X1 +X2. Under π2, root 0 receives

the first packet at slot X2, the second X2 + X1. The second packet arrives at the same time

in two policies. We focus on the first packet. Given the same deadline D, let Pr{X1 ≤ D} and

Pr{X2 ≤ D} denote the probability that the first packet arrives byD under π1 and π2, respectively.

Since p1 ≥ p2, Pr{X1 ≤ D} = 1−Pr{X1 > D} = 1−(1−p1)D ≥ 1−(1−p2)D = 1−Pr{X2 >

D} = Pr{X2 ≤ D}. The expected number of packets collected by D under π1 is no less than that

under π2.

Similarly, it can be shown that other policies where the transmissions of node 1 and node

2 interleave are no better than π1. This is because any transmission of node 2 before node 1’s

successful packet delivery delays it. Thus, π1 is optimal. In fact, this argument holds even when

there are more than two children and some of them have multiple packets as Lemma 1 shows.

Lemma 1. If hi = 0 for every i > 0, the policy π′ that always schedules the non-empty node with

the best quality link to the root is optimal.
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Proof. This result follows from Theorem 1 in [68]. It is also based on translating the problem

into an MDP as in Section 3. The difference is that packets are weighted and a reward of αi is

obtained when a packet from flow i is delivered. We let root collect data from its children, instead

of transmitting data to them. After this reversal of traffic, our problem in single-hop settings turns

out to be a special case of the general real-time multicast problem studied in [68], where each

multicast flow degenerates into a unicast flow and is assigned the same weight (i.e., αi = 1 for

all i). The optimal GreedyU policy that serves the user with the maximum expected weighted

throughput αipi among all unsatisfied users becomes π′ above.

4.2 Multi-hop Scenario

Inspired by the above result in single-hop networks, we propose Best Link First Scheduling for

multi-hop networks. The core idea is to still schedule the best link first, as we do in single-hop

networks, and then add more links as long as interference constraints are not violated, taking

advantage of spatial reuse in a multi-hop network. When multiple links can be added, we add links

closer to the root first since their packets are closer and are more likely to arrive before deadline

expires. Algorithm 1 details BLF. Ties are broken arbitrarily.

Algorithm 1 Best Link First Scheduling
Input: a collection tree h, its link qualities p, and node queue levels v
Output: a slot schedule S

1: S = ∅
2: k = height of h
3: for i = 0 to k − 1 do
4: A = {a | a is at level i and ha /∈ S}
5: for every node a ∈ A do
6: B = {b | hb = a and vb > 0}
7: b∗ = argmax

b∈B
pb

8: S = S ∪ {b∗}
9: end for

10: end for
11: return S

Another perspective to look at BLF is through recursion. Starting from the root, we include
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the non-empty child with the best quality link to it. For all other children, we repeat the same

process on the subtree rooted at them recursively, using them as the new roots. For the chosen one,

since its children cannot be scheduled, we instead repeat the above process on subtrees rooted at its

children. BLF is greedy in the sense that in every slot, it schedules a set of nodes that maximizes

the expected number of packets deliverable in that slot. BLF runs in O(nD) since in every slot,

each link is visited once to identify the best one among those sharing a common receiver in the

worst case.

As an example, let us consider the tree in Figure 116. Assume that every node has at least one

packet. At level 1, nodes 1, 2, and 3 share common parent node 0. Node 1 is scheduled since

it has the best quality link to node 0, i.e., p1 > p2 > p3. At level 2, nodes 4 and 5 cannot be

scheduled since their parent, node 1, has been scheduled. Out of the two children of node 2, which

is not scheduled, node 6 is selected since p6 > p7. Similarly, nodes 8 and 10 are chosen at level 3.

Together, nodes 1, 6, 8, and 10 are scheduled to transmit as Figure 118 shows.

4.3 Distributed Implementation

Algorithm 1 is a centralized algorithm. It is amenable for distributed implementation. One straight-

forward way to implement the distributed algorithm is as follows: precede from top to bottom in

rounds to determine the set of nodes to transmit in a slot. In the first round, each child of the root

tells the root whether it has any packet. This can be attained by, for example, letting each child

transmit in round-robin. The root, upon receiving information from all its children, decides the

non-empty child with the best link to it. It announces the decision to all its children. In the second

round, nodes at level 1 and not chosen become roots and repeat the same process. This goes on

till the last level but one. In the end, all chosen nodes transmit in that slot. We assume that in

the bootstrap phase, each node obtains the qualities of the links to its parent and from its children

through certain link estimation process. Measures can be taken to ensure reliable control signaling

between a parent and a child, such as retransmissions based on known link quality. We delegate

more efficient implementations to future work.
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Figure 118: Highlighted nodes are scheduled
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5 Evaluation

5.1 Experimental Settings

Protocols. We compare BLF with state of the art through MATLAB simulations in a wide range

of network and traffic settings. The performance metric is deadline catch ratio, defined as the

percentage of packets reaching the root by deadline out of all the packets in the network initially.

• LDF: we use the Closest Sensor First scheduling in [58] to represent Largest Debt First

(LDF) scheduling. LDF schedules the largest debt flow first. The debt of a flow is defined

as the number of timely deliveries the flow is lagging behind to satisfy its DCR requirement.

For fair comparison, we set the DCR requirement of each flow as the aggregate DCR in BLF.

• CR-SLF: the Channel Reuse-based Smallest latest-start-time (LST) First (CR-SLF) protocol

[75] applies techniques from traditional real-time systems theory to real-time scheduling in

multi-hop wireless networks. The LSF of a flow can be regarded as its laxity, and CR-SLF

is essentially least laxity first scheduling. We set a link’s delay as its expected transmission

count (ETX) [36] in the implementation.

• LBF: the Largest Branch First scheduling delivers packets in the largest branch/subtree first.

The size of a branch is the total number of packets in the branch initially. It is an optimal

minimal-length scheduling protocol when transmissions are error-free.

In general, schedule- or TDMA-based protocols are better than contention- or CSMA-based ones

for providing real-time (as demonstrated in, for example, [109] and [75]), since the latter are prone

to repeated collisions that result in excessive and varying exponential backoff, especially under

heavy traffic load. Thus we do not compare against CSMA-based protocols in this study.

Generating networks and traffic. We randomly place n nodes in a unit square. A random node

is selected as the sink. We denote transmission range as ρ. That is, two nodes within the distance

of ρ can communicate with each other. We construct a collection tree rooted at the sink using the
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shortest-path algorithm based on hop count. We assign each link in the tree a random quality in the

range of [α, 1]. Except the root, each node generates a number of packets randomly chosen from 0

to γ.

In the following experiments, we set the default value of n, ρ, α, and γ as 100, 0.2, 0, and 20,

respectively, unless otherwise stated. Figure 119 shows the distribution of hop counts to the sink

in such a network. When varying a parameter to study its effect on real-time data delivery, we run

30 experiments and show the average result.
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Figure 119: Histogram of hop counts to the root in the random network

5.2 Impact of Deadline

In this experiment, we vary D while keeping all other parameters constant. Figure 120 shows the

DCRs of different protocols. We can see BLF outperforms others consistently, especially when D

is small. For instance, the DCR of BLF is 52% when D is 1000, versus 16%, 2%, and 15% of LDF,

CR-SLF, and LBF, respectively. Also, the DCRs of all protocols increase as deadline increases
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since more packets reach the root by deadline.
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Figure 120: Deadline catch ratios of different protocols for various deadlines

5.3 Impact of Link Quality

In this experiment, we set D as 1000 and use the default value of all parameters except α. Fig-

ure 121 shows the DCRs of different protocols. When α is small, i.e., links are unreliable, BLF

is significantly better than other protocols. This clearly shows the benefit of explicitly accounting

for link loss in real-time scheduling. As α grows, links tend to become more reliable, and more

packets are delivered by the same deadline. BLF is still the best among all protocols, even though

its advantage gradually diminishes as links become reliable. In fact, when α is no less than 80%,

BLF becomes indistinguishable from the rest.

5.4 Impact of Traffic Load

In this experiment, we set D as 1000 and keep all parameters intact except γ. A larger γ amounts to

heavier traffic on average by the same deadline. Figure 122 shows the DCRs of different protocols.
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Figure 121: Deadline catch ratios of different protocols for various link qualities

When traffic is light, i.e., γ is small, all protocols enjoy high DCRs. As traffic grows heavier, BLF

still maintains high DCRs relative to other protocols, despite that all protocols’ DCRs decrease.

When γ is 40, BLF still obtains a DCR of 40%, while others only deliver 9% or less of packets in

time.

6 Related work

Much work has studied scheduling real-time traffic in wireless networks, which we categorize as

follows.

Work in the first category is based on the concept of debt. Each flow has a DCR requirement.

The debt of a flow reflects how many timely deliveries the flow is lagging behind to satisfy its

DCR requirement. Larger debt flow is favored upon smaller debt one in scheduling. [57] proposes

a theory of real-time quality of service (QoS) for wireless networks, factoring in deadline, DCR

requirement, and unreliable nature of wireless communication. It derives schedulability test for
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Figure 122: Deadline catch ratios of different protocols for various traffic

admission control that is both sufficient and necessary. Accordingly, largest debt first scheduling

is devised and proved optimal. Though the flexible formulation allows for tractable analytical

results, it only deals with single-hop topologies. [58] extends real-time QoS to multi-hop WSNs.

It derives a sufficient condition for optimal scheduling. For full-duplex radios, Greedy Forwarder

scheduling that transmits a packet belonging to be largest debt flow at each node is proved optimal.

For half-duplex radios, only a heuristic Closest Sensor First scheduling is proposed, which is only

optimal for a restrictive path-topology case. [68] considers scheduling real-time multicast traffic

and shows that a policy that schedules the multicast flow whose users’ sum of debt is maximal is

optimal. However, it works only for one hop scenario. All of the above work provides real-time

QoS for individual flow/user, not for their aggregate as we do.

The second category leverages results from real-time systems theory. Generally, these schedul-

ing algorithms quantify the urgency of a packet/flow based on its temporal parameters, borrowing

notations from real-time systems. They schedule the most urgent (e.g., smallest latest-start time,

least laxity, highest static priority) packet/flow first and then add other transmissions as long as
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interference and/or deadline constraints permit. [75] proposes the Channel Reuse-based Smallest

latest-start-time (LST) First (CR-SLF) protocol to schedule real-time packets in multi-hop robotic

sensor networks. The LST of a packet at a hop is defined as the latest time the packet must be trans-

mitted at that hop to reach the destination in time. CR-SLF chooses the packet transmission with

the smallest LST and adds other transmissions as many as possible if they do not interfere with any

existing transmission nor cause any to miss deadline. [93] schedules periodic real-time flows with

given routes and interference matrix using the Interference Aware Anticipatory (IAA) algorithm.

It heuristically schedules flow with the smallest ratio of spatial overlap over laxity first. The spatial

overlap of a flow is defined as the number of different links of other flows it interferes with, and the

laxity of a flow is the tolerable waiting time during its ensuing downstream transmissions. [31] pro-

poses Real-time Flow Scheduling (RFS), an enhanced extension of Real-Time Query Scheduling

(RTQS) [30], for periodic real-time flows in WSNs under generic traffic patterns and interference

models. Each flow is assigned a static priority. In the core of RFS, it schedules multiple flows

concurrently if they are conflict free; when there is a conflict, it preferentially schedules higher pri-

ority flows over lower priority ones. [103] proposes an efficient heuristic algorithm, Conflict-aware

Least Laxity First (C-LLF), to schedule real-time traffic in WirelessHART networks.

Work in the third category is based on Carrier Sensing Multiple Access/Collision Avoidance

(CSMA/CA). The basic idea is to prioritize urgent packets by manipulating channel contention so

that higher priority packets are more likely to win the channel. In [67], the authors propose multi-

hop coordination, where a priority is assigned to each packet as it traverses across various broadcast

regions. A packet’s priority is increased at downstream nodes if it experiences excessive delay at

upstream nodes and is likely to miss its end-to-end deadline, and vice versa. Within a broadcast

region, higher priority packets randomly backoff in smaller contention windows in an extension

of IEEE 802.11 and thus are more likely to capture the channel early on. [20] provides priority

differentiation among soft real-time flows. It uses Black Burst (BB) for channel contention, which

is a jamming signal that a node transmits after hearing the channel idle for a certain duration. The

length of a BB is proportional to its packet priority. This ensures a packet with higher priority is
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favored over one with lower priority when contending the shared channel.

Another closely related line of study is to find a shortest interference-free TDMA schedule,

given the number of packets at each source and conflict graph in a multi-hop collection tree. Ex-

amples include [109] and [46]. A good survey is [94]. They do not address real-time data collection

directly and assume error-free transmissions.

None of the above aims to solve our problem and thus cannot be directly applied.

7 Conclusion

In this paper, we study how to schedule packet transmissions to maximize the expected number of

packets evacuated during a given time period in a lossy multi-hop wireless sensor network. We

formulate it as a finite horizon Markov decision process and solve it optimally. Unfortunately, the

solution becomes computationally intractable as the network and traffic grow. Thus, we propose

the efficient Best Link First Scheduling protocol. BLF greedily schedules the best links first in

a top-down fashion, complying with interference constraints. We prove its optimality for single-

hop networks and develop an approach for distributed implementation. Through simulations in a

plethora of network and traffic settings, BLF is shown to consistently outperform existing work,

mainly by explicitly accounting for link losses in scheduling. Its gains are especially significant

when deadline is small, links are highly unreliable, and traffic load is heavy, making it appealing

to increasingly stringent real-time applications.

Considerable work is required to make BLF ultimately decentralized and field-deployable with

provable properties. Interesting extensions abound and examples include, but are not limited to,

the following: (1) consider more realistic interference models such as the Physical Ratio-K [134]

and SINR models; (2) consider heterogeneous traffic where packets can have different arrival times

and deadlines and also online traffic where packet arrivals are not known a priori; (3) consider link

models other than Bernoulli such as the Gilbert-Elliott or general Markov chain model to account

for burst errors; (4) develop efficient distributed implementation with low control overhead, quick
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convergence, and small memory footprint; (5) consider the problem when in-network aggregation

of raw packets is allowed; (6) consider joint scheduling and routing to maximize expected deadline

catch ratio.
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CHAPTER 5

SUMMARY

My Ph.D. thesis is on predictable and real-time wireless networking for sensing and control. Appli-

cations include, but are not limited to, connected vehicles, microgrids, and industrial automation.

Toward this goal, my previous work has generated interesting results, including a real-time routing

protocol that predictably delivers data by their deadlines, a scheduling protocol to ensure a certain

link reliability based on the Physical-ratio-K (PRK) model, which is both realistic and amenable

for distributed implementation, and a greedy scheduling algorithm to deliver as many packets as

possible to the sink by a deadline in lossy multi-hop wireless sensor networks. Together with the

above projects, I attempt to develop a holistic communication stack and solid theoretical foundation

for reliable, predictable, real-time communication for wireless networked sensing and control.
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Towards the end goal of providing predictable real-time wireless networking for sensing and

control, we have developed a real-time routing protocol MTA that predictably delivers data by

their deadlines, and a scheduling protocol PRKS to ensure a certain link reliability based on the

Physical-ratio-K (PRK) model, which is both realistic and amenable for distributed implementa-

tion, and a greedy scheduling algorithm to deliver as many packets as possible to the sink by a

deadline in lossy multi-hop wireless sensor networks.

1. MTA: Real-time routing is a basic element of closed-loop, real-time sensing and control,

but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature

of link/path delays makes the basic problem of computing the probabilistic distribution of

path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time

routing and may well have to be executed by resource-constrained devices in a distributed

manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ

delay conditions in real-time routing, but it has been observed that delay-based routing can

lead to instability, estimation error, and low data delivery performance in general. To address

these challenges, we propose the Multi-Timescale Estimation (MTE) method; by accurately

estimating the mean and variance of per-packet transmission time and by adapting to fast-

varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient

189



estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we

propose the Multi-Timescale Adaptation (MTA) routing protocol; MTA integrates the stabil-

ity of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data

flow control within the DAG to ensure real-time data delivery in the presence of dynam-

ics and uncertainties. We also address the challenges of implementing MTE and MTA in

resource-constrained devices such as TelosB motes. We evaluate the performance of MTA

using the NetEye and Indriya sensor network testbeds. We find that MTA significantly out-

performs existing protocols, e.g., improving deadline success ratio by 89% and reducing

transmission cost by a factor of 9.7.

2. PRKS: Predictable wireless communication is another basic enabler for networked sensing

and control in many cyber-physical systems, yet co-channel interference remains a major

source of uncertainty in wireless communication. Integrating the protocol model’s locality

and the physical model’s high fidelity, the physical-ratio-K (PRK) interference model bridges

the gap between the suitability for distributed implementation and the enabled scheduling

performance, and it is expected to serve as a foundation for distributed, predictable inter-

ference control. To realize the potential of the PRK model and to address the challenges of

distributed PRK-based scheduling, we design protocol PRKS. PRKS uses a control-theoretic

approach to instantiating the PRK model according to in-situ network and environmental

conditions, and, through purely local coordination, the distributed controllers converge to

a state where the desired link reliability is guaranteed. PRKS uses local signal maps to

address the challenges of anisotropic, asymmetric wireless communication and large inter-

ference range, and PRKS leverages the different timescales of PRK model adaptation and

data transmission to decouple protocol signaling from data transmission. Through sensor

network testbed-based measurement study, we observe that, unlike existing scheduling pro-

tocols where link reliability is unpredictable and the reliability requirement satisfaction ratio

can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%) in different

network and environmental conditions without a priori knowledge of these conditions, and,
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through local distributed coordination, PRKS achieves a channel spatial reuse very close to

what is enabled by the state-of-the-art centralized scheduler while ensuring the required link

reliability. Ensuring the required link reliability in PRKS also reduces communication delay

and improves network throughput.

3. BLF: We study the problem of scheduling packet transmissions to maximize the expected

number of packets collected at the sink by a deadline in a multi-hop wireless sensor network

with lossy links. Most existing work assumes error-free transmissions when interference

constraints are complied, yet links can be unreliable due to external interference, shadow-

ing, and fading in harsh environments in practice. We formulate the problem as a Markov

decision process, yielding an optimal solution. However, the problem is computationally in-

tractable due to the curse of dimensionality. Thus, we propose the efficient and greedy Best

Link First Scheduling (BLF) protocol. We prove it is optimal for the single-hop case and

provide an approach for distributed implementation. Extensive simulations show it greatly

enhances real-time data delivery performance, increasing deadline catch ratio by up to 50%,

compared with existing scheduling protocols in a wide range of network and traffic settings.
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