10 research outputs found

    Substructure and Boundary Modeling for Continuous Action Recognition

    Full text link
    This paper introduces a probabilistic graphical model for continuous action recognition with two novel components: substructure transition model and discriminative boundary model. The first component encodes the sparse and global temporal transition prior between action primitives in state-space model to handle the large spatial-temporal variations within an action class. The second component enforces the action duration constraint in a discriminative way to locate the transition boundaries between actions more accurately. The two components are integrated into a unified graphical structure to enable effective training and inference. Our comprehensive experimental results on both public and in-house datasets show that, with the capability to incorporate additional information that had not been explicitly or efficiently modeled by previous methods, our proposed algorithm achieved significantly improved performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure

    Group Action Recognition Using Space-Time Interest Points

    Full text link
    Abstract. Group action recognition is a challenging task in computer vision due to the large complexity induced by multiple motion patterns. This paper aims at analyzing group actions in video clips containing sev-eral activities. We combine the probability summation framework with the space-time (ST) interest points for this task. First, ST interest points are extracted from video clips to form the feature space. Then we use k-means for feature clustering and build a compact representation, which is then used for group action classification. The proposed approach has been applied to classification tasks including four classes: badminton, tennis, basketball, and soccer videos. The experimental results demon-strate the advantages of the proposed approach.

    Human action recognition based on estimated weak poses

    Get PDF

    Continuous Action Recognition Based on Sequence Alignment

    Get PDF
    Continuous action recognition is more challenging than isolated recognition because classification and segmentation must be simultaneously carried out. We build on the well known dynamic time warping (DTW) framework and devise a novel visual alignment technique, namely dynamic frame warping (DFW), which performs isolated recognition based on per-frame representation of videos, and on aligning a test sequence with a model sequence. Moreover, we propose two extensions which enable to perform recognition concomitant with segmentation, namely one-pass DFW and two-pass DFW. These two methods have their roots in the domain of continuous recognition of speech and, to the best of our knowledge, their extension to continuous visual action recognition has been overlooked. We test and illustrate the proposed techniques with a recently released dataset (RAVEL) and with two public-domain datasets widely used in action recognition (Hollywood-1 and Hollywood-2). We also compare the performances of the proposed isolated and continuous recognition algorithms with several recently published methods

    Substructure and boundary modeling for continuous action recognition

    Full text link

    Human action recognition based on estimated weak poses

    Get PDF
    Altres ajuts: Avanza I+D ViCoMo (TSI-020400-2009-133) and DiCoMa (TSI-020400-2011-55)We present a novel method for human action recognition (HAR) based on estimated poses from image sequences. We use 3D human pose data as additional information and propose a compact human pose representation, called a weak pose, in a low-dimensional space while still keeping the most discriminative information for a given pose. With predicted poses from image features, we map the problem from image feature space to pose space, where a Bag of Poses (BOP) model is learned for the final goal of HAR. The BOP model is a modified version of the classical bag of words pipeline by building the vocabulary based on the most representative weak poses for a given action. Compared with the standard k-means clustering, our vocabulary selection criteria is proven to be more efficient and robust against the inherent challenges of action recognition. Moreover, since for action recognition the ordering of the poses is discriminative, the BOP model incorporates temporal information: in essence, groups of consecutive poses are considered together when computing the vocabulary and assignment. We tested our method on two well-known datasets: HumanEva and IXMAS, to demonstrate that weak poses aid to improve action recognition accuracies. The proposed method is scene-independent and is comparable with the state-of-art method

    A Review on Human Activity Recognition Using Vision-Based Method

    Get PDF

    Learning Semantic Features For Visual Recognition

    Get PDF
    Visual recognition (e.g., object, scene and action recognition) is an active area of research in computer vision due to its increasing number of real-world applications such as video (image) indexing and search, intelligent surveillance, human-machine interaction, robot navigation, etc. Effective modeling of the objects, scenes and actions is critical for visual recognition. Recently, bag of visual words (BoVW) representation, in which the image patches or video cuboids are quantized into visual words (i.e., mid-level features) based on their appearance similarity using clustering, has been widely and successfully explored. The advantages of this representation are: no explicit detection of objects or object parts and their tracking are required; the representation is somewhat tolerant to within-class deformations, and it is efficient for matching. However, the performance of the BoVW is sensitive to the size of the visual vocabulary. Therefore, computationally expensive cross-validation is needed to find the appropriate quantization granularity. This limitation is partially due to the fact that the visual words are not semantically meaningful. This limits the effectiveness and compactness of the representation. To overcome these shortcomings, in this thesis we present principled approach to learn a semantic vocabulary (i.e. high-level features) from a large amount of visual words (mid-level features). In this context, the thesis makes two major contributions. First, we have developed an algorithm to discover a compact yet discriminative semantic vocabulary. This vocabulary is obtained by grouping the visual-words based on their distribution in videos (images) into visual-word clusters. The mutual information (MI) be- tween the clusters and the videos (images) depicts the discriminative power of the semantic vocabulary, while the MI between visual-words and visual-word clusters measures the compactness of the vocabulary. We apply the information bottleneck (IB) algorithm to find the optimal number of visual-word clusters by finding the good tradeoff between compactness and discriminative power. We tested our proposed approach on the state-of-the-art KTH dataset, and obtained average accuracy of 94.2%. However, this approach performs one-side clustering, because only visual words are clustered regardless of which video they appear in. In order to leverage the co-occurrence of visual words and images, we have developed the co-clustering algorithm to simultaneously group the visual words and images. We tested our approach on the publicly available fifteen scene dataset and have obtained about 4% increase in the average accuracy compared to the one side clustering approaches. Second, instead of grouping the mid-level features, we first embed the features into a low-dimensional semantic space by manifold learning, and then perform the clustering. We apply Diffusion Maps (DM) to capture the local geometric structure of the mid-level feature space. The DM embedding is able to preserve the explicitly defined diffusion distance, which reflects the semantic similarity between any two features. Furthermore, the DM provides multi-scale analysis capability by adjusting the time steps in the Markov transition matrix. The experiments on KTH dataset show that DM can perform much better (about 3% to 6% improvement in average accuracy) than other manifold learning approaches and IB method. Above methods use only single type of features. In order to combine multiple heterogeneous features for visual recognition, we further propose the Fielder Embedding to capture the complicated semantic relationships between all entities (i.e., videos, images,heterogeneous features). The discovered relationships are then employed to further increase the recognition rate. We tested our approach on Weizmann dataset, and achieved about 17% 21% improvements in the average accuracy
    corecore