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Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the
environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health
care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition
approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a
chronological research trajectory from global representations to local representations, and recent depth-based representations.
For the classification methods, we conform to the categorization of template-based methods, discriminative models, and
generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to
provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed
taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the
directions for future research.

1. Introduction

Human activity recognition (HAR) is a widely studied com-
puter vision problem. Applications of HAR include video
surveillance, health care, and human-computer interaction.
As the imaging technique advances and the camera device
upgrades, novel approaches for HAR constantly emerge. This
review aims to provide a comprehensive introduction to the
video-based human activity recognition, giving an overview
of various approaches as well as their evolutions by covering
both the representative classical literatures and the state-of-
the-art approaches.

Human activities have an inherent hierarchical structure
that indicates the different levels of it, which can be consid-
ered as a three-level categorization. First, for the bottom level,
there is an atomic element and these action primitives consti-
tute more complex human activities. After the action primi-
tive level, the action/activity comes as the second level.
Finally, the complex interactions form the top level, which
refers to the human activities that involve more than two

persons and objects. In this paper, we follow this three-level
categorization namely action primitives, actions/activities,
and interactions. This three-level categorization varies a little
from previous surveys [1–4] and maintains a consistent
theme. Action primitives are those atomic actions at the limb
level, such as “stretching the left arm,” and “raising the right
leg.” Atomic actions are performed by a specific part of the
human body, such as the hands, arms, or upper body part
[4]. Actions and activities are used interchangeably in this
review, referring to the whole-body movements composed
of several action primitives in temporal sequential order
and performed by a single person with no more person or
additional objects. Specifically, we refer the terminology
human activities as all movements of the three layers and
the activities/actions as the middle level of human activities.
Human activities like walking, running, and waving hands
are categorized in the actions/activities level. Finally, similar
to Aggarwal et al.’s review [2], interactions are human activ-
ities that involve two or more persons and objects. The
additional person or object is an important characteristic of
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interaction. Typical examples of interactions are cooking
which involves one person and various pots and pans and
kissing that is performed by two persons.

This review highlights the advances of image representa-
tion approaches and classification methods in vision-based
activity recognition.Generally, for representation approaches,
related literatures follow a research trajectory of global repre-
sentations, local representations, and recent depth-based
representations (Figure 1). Earlier studies attempted to model
thewhole images or silhouettes and represent humanactivities
in a globalmanner. The approach in [5] is an example of global
representation inwhich space-time shapes are generatedas the
image descriptors. Then, the emergency of space-time interest
points (STIPs) proposed in [6] triggered significant attention
to a new local representation view that focuses on the infor-
mative interest points. Meanwhile, local descriptors such as
histogram of oriented gradients (HOG) and histogram of
optical flow (HOF) oriented from object recognition are
widely used or extended to 3D in HAR area. With the
upgrades of camera devices, especially the launch of RGBD
cameras in the year 2010, depth image-based representations
have been a new research topic and have drawn growing
concern in recent years.

On the other hand, classification techniques keep devel-
oping in step with machine learning methods. In fact, lots
of classification methods were not originally designed for
HAR. For instance, dynamic time warping (DTW) and
hidden Markov model (HMM) were first used in speech
recognition [7, 8], while the recent deep learning method is
first developed for large amount image classification [9]. To
measure these approaches with same criterion, lots of activity
datasets are collected, forming public and transparent bench-
marks for comparing different approaches.

In addition to the activity classification approaches,
another critical research area within the HAR scope, the
human tracking approach, is also reviewed briefly in a
separate section. It is widely concerned especially in video
surveillance systems for suspicious behavior detection.

The writing of rest parts conforms to general HAR
process flow. First, research emphases and challenges of this
domain are briefly illustrated in Section 2. Then, effective
features need to be designed for the representation of activity
images or videos. Thus, Sections 3 and 4, respectively, review
the global and local representations in conventional RGB
videos. Depth image-based representations are discussed as
a separate part in Section 5. Next, Section 6 describes
the classification approaches. To measure and compare
different approaches, benchmark datasets act an important
role on which various approaches are evaluated. Section 7
collects recent human tracking methods of two dominant
categories. In Section 8 we present representative datasets

in different levels. Before we conclude this review and
the future of HAR in Section 8, we classify existing
literatures with a detailed taxonomy (Table 1) including
representation and classification methods, as well as the
used datasets aiming at a comprehensive and convenient
overview for HAR researchers.

2. Challenges of the Domain

2.1. Intraclass Variation and Interclass Similarity. Different
from speech recognition, there is no grammar and strict def-
inition for human activities. This causes twofold confusions.
On one hand, the same activity may vary from subject to
subject, which leads to the intraclass variations. The perform-
ing speed and strength also increase the interclass gaps. On
the other hand, different activities may express similar shapes
(e.g., using a laptop and reading). This is termed as interclass
similarity which is a common phenomenon in HAR.
Accurate and distinctive features need to be designed and
extracted from activity videos to deal with these problems.

2.2. Recognition under Real-World Settings

2.2.1. Complex and Various Backgrounds.While applications
like video surveillance and fall detection system use static
cameras, more scenarios adopt dynamic recording devices.
Sports event broadcast is a typical case of dynamic recording.
In fact, with the popularity of smart devices such as smart
glasses and smartphones, people tend to record videos with
embedded cameras from wearable devices anytime. Most of
these real-world videos have complex dynamic backgrounds.
First, those videos, as well as the broadcasts, are recorded in
various and changing backgrounds. Second, realistic videos
abound with occlusions, illumination variance, and view-
point changes, which make it harder to recognize activities
in such complex and various conditions.

2.2.2. Multisubject Interactions and Group Activities. Earlier
research concentrated on low-level human activities such as
jumping, running, and waving hands. One typical character-
istic of these activities is having a single subject without any
human-human or human-object interactions. However, in
the real world, people tend to perform interactive activities
with one or more persons and objects. An American football
game is a good example of interaction and group activity
where multiple players (i.e., human-human interaction) in
a team protect the football (i.e., human-object interaction)
jointly and compete with players in the other team. It is a
challenging task to locate and track multiple subjects syn-
chronously or recognize the whole human group activities
as “playing football” instead of “running.”

Global
representation

Approximately 1980 2003 (STIP) 2011 (RGBD cameras) Year

Local
representation

Depth-based
representation

(i) Silhouette
(ii) Optical flow

(i) Space-time interest point (STIP)
(ii) Dense trajectory

(i) Depth map
(ii) Skeleton

Figure 1: Research trajectory of activity representation approaches.
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2.2.3. Long-Distance and Low-Quality Videos. Long-distance
and low-quality videos with severe occlusions exist in many
scenarios of video surveillance. Large and crowded places like
the metro and passenger terminal of the airport are represen-
tative occasions where occlusions happen frequently. Besides,
surveillance cameras installed in high places cannot provide
high-quality videos like present datasets in which the target
person is clear and obvious. Though we do not expect to
track everyone in these cases, some abnormal or crime-
related behaviors should be recognized by the HAR system
(Figure 2(b)). Another typical long-distance case is the
football broadcast (Figure 2(a)). Due to the long distance
of cameras, the subject is rather small which makes it
difficult to analyze activities of the torso [10], and the
relatively low quality of those long distance videos further
increases the difficulty.

3. Global Representations

Global representations extract global descriptors directly
from original videos or images and encode them as a whole
feature. In this representation, the human subject is localized
and isolated using background subtraction methods forming
the silhouettes or shapes (i.e., region of interest (ROI)). Some
global approaches encode ROI from which they derive cor-
ners, edges, or optical flow as descriptors. Other silhouette-
based global representation methods stack the silhouette
image along the time axis to form the 3D space-time volumes,
then the volumes are utilized for representation. Besides, dis-
crete Fourier transform (DFT) takes advantage of frequency
domain informationofROI for recognition, also being a global
approach. Global representation approaches were mostly
proposed in earlier works and gradually outdated due to the
sensitiveness to noise, occlusions, and viewpoint changes.

3.1. 2D Silhouettes and Shapes. To recognize the human
activities in videos, an intuitive idea is to isolate the human
body from the background. This procedure is called back-
ground subtraction or foreground extraction. The extracted
foreground in the HAR is called silhouette, which is the
region of interest and represented as a whole object in the
global representation approach.

Calculating the background model is an important step
before extracting silhouettes. Wren et al. [11] first proposed

to model the background scene with Gaussian distribution.
Koller et al. [12] pointed out that some foreground values
update unduly and thus they introduced the selective back-
ground update strategy. Stauffer and Grimson [13] proposed
to model the values of a particular background pixel as a
mixture of Gaussians to replace the strategy of using only
one Gaussian value in the previous approach. The Gaussian
mixture model (GMM) has been applied widely but the
introduction of expectation maximization (EM) algorithm
increases the computational cost. To reduce the cost, k-
means clustering algorithm is used to replace the EM
algorithm with an insignificant loss of accuracy. It is worth
mentioning that current RGBD cameras make it easy to
obtain the silhouette by using the depth data provided by
depth sensors.

Besides the silhouette representation, the 2D shape of the
silhouette can be used as a feature as well. Veeraraghavan
et al. [14] emphasized the effectiveness of shape features. In
their experiments, shape and kinematics that are being
considered as two important cues in human motion were
evaluated. Tests on both the gait-based human identification
and the activity recognition indicate that shape plays a more
important role. Veeraraghavan et al. then used this shape
representation in their following work [15].

Bobick and Davis [16, 17] stacked the silhouettes as two
components for recognizing activities, respectively, the
motion-energy image (MEI) and the motion-history image
(MHI), which are both 2D representations.

In [18], oriented rectangular patches are extracted over
the silhouettes. Spatial oriented histograms are then formed
to represent the distribution of these rectangular patches.
Those descriptors are finally used to recognize activities.

Extracting silhouettes from a single view is hard to satisfy
view invariant property. To alleviate the influence of view-
point changes, multiple cameras can be used to extract
silhouettes in different viewpoints. Xu and Huang [19]
proposed an “envelop shape” representation using two
orthogonally placed cameras, which is robust to view changes
of yaw rotation. Weinland et al. [20] made the same assump-
tion that only the variations in viewpoints around the central
vertical axis of the human body need to be considered.
Motion history volumes (MHVs) were derived by stacking
4D silhouettes from four orthogonal cameras. In [21], a data
fusion method was proposed, calculating the minimum

(a) (b)

Figure 2: Long-distance videos under real-world settings. (a) HAR in long-distance broadcasts. (b) Abnormal behaviors in surveillance.
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DTW score between the test template and the two orthogonal
view training templates.

3.2. Optical Flow. Optical flow is an effective way to extract
and describe silhouettes for a dynamic background. Lucas-
Kanade-Tomasi (LKT) feature tracker [22, 23] can be used
to obtain the optical flow. Lu et al. [24] used a LKT feature
tracker approach to track joints in key frames and actual
frames. Each activity is represented as a posture sequence,
and each key posture is recorded in a key frame. Specific
posture in actual frames can be recognized by finding corre-
spondence between the actual and key frame. The recognized
posture from the actual frame is compared to the key posture
frame by mapping body locations, and the matched posture
sequences are confirmed as the activity.

For recognizing human activities at a distance (i.e., the
football broadcast video), Efros et al. [10] introduced a
descriptor based on computing the optical flow to describe
the “small” football players in person-centered images.
Obviously, the background is dynamic due to the move-
ment of players which makes it hard to model for back-
ground subtraction.

Tran and Sorokin [25] combined silhouettes and opti-
cal flow features together. Normalized bounding box is
scaled to capture the region of the human body, and the
optical flow measurements within the box are split into
horizontal and vertical channels, while the silhouette gives
the third channel. Subwindows are further divided to cal-
culate histograms, and concatenating histograms of all 3
channels form the final descriptor.

3.3. 3D Space-Time Volumes (STVs). An activity video can be
seen as a series of images that contain activity sequences.
Concatenating all frames along the time axis forms the 3D
space-time volume (STV) which has three dimensions
including two spatial dimensions X and Y and one temporal
dimension T. Representations based on STVs expect to cap-
ture the additional dynamic information which the spatial
representation methods cannot obtain due to the absence of
time dimension. Constructing STVs for different activities is
a global representationmethod.However, the STV sometimes
combines with local features to build the final feature sets.

Blank et al. [5] first introduced the space-time shape to
represent human activities. Space-time shape is obtained by
only stacking the silhouette regions within images. However,
due to the nonrigidity of the constructed 3D space-time
shapes and inherent difference between space and time
dimensions, traditional 3D shape analysis cannot be applied
to the space-time activity shapes. Thus, the solution of the
Poisson equation is used to derive local space-time saliency
and orientation features.

Achard et al. [26] generated semiglobal features named
space-time micro volumes from image sequence to deal with
performances of different temporal durations. Motivated by
seeking the common underlying induced motion fields of
sequences of the same behaviors, Shechtman et al. [27] pro-
posed an approach to compare volumes according to their
patches. This method requires no prior modeling or learning
of activities, being able to handle the complex dynamic

scenes and detect multiple activities that occur simulta-
neously within the camera view. Their method is partially
invariant to the changes in scale and orientation.

In [28], the input videos are segmented into space-time
volumes using mean shift clustering technique. These over-
segmented regions, which are termed “super-voxels,” are
then matched using a proposed shape-matching technique,
which is compared to the traditional silhouette matching
methods. Unlike the previous silhouette-based approaches,
the proposed shape-based representation does not require
background subtraction nor explicit background models.
To avoid the shortages of the shape-matching methods that
are ignoring features inside the shape, Shechtman and Irani’s
flow-based features [27] are further incorporated.

3.4. Discrete Fourier Transform (DFT). The DFT of image
frame is another global feature that contains the intensity
information of the foreground object (i.e., the region of the
subject’s body) provided that the foreground object intensity
is different from the background. Kumari and Mitra [29]
took advantage of this hypothesis and proposed a DFT-
based approach, obtaining information about the geometric
structure of the spatial domain foreground object. Normal-
ized image frame is divided into small size blocks within
which the average of all the DFT values is calculated. Finally
the K-nearest neighbor (KNN) is applied to classify the DFT
features and generate the activity classification result. The
extracted DFT feature is novel compared to the previous
work; however, its performance is restricted to simple back-
grounds. The background in their test video datasets is
almost blank.

4. Local Representations

Instead of extracting the silhouette or STV and encoding
them as a whole, local representations process activity video
as a collection of local descriptors. They focus on specific
local patches which are determined by interest point detec-
tors or densely sampling [30]. Most existing local features
are proved to be robust against noise and partial occlusions
comparing to global features. Local features are then nor-
mally combined with the bag-of-visual-words (BoVW)
model and yield the general pipeline of current state-of-the-
art local representation approaches [31]. Oriented from
bag-of-words (BoW), BoVW-based local representation
mainly contains four steps: feature extraction, codebook gen-
eration, feature encoding, and pooling and normalization.
We follow [32] and state a traditional BoVW pipeline here:
interest points and local patches are first obtained by detec-
tors or densely sampled. Then local features are extracted
from those interest points or patches. Next, a visual dictio-
nary (i.e., codebook) is learned in training set by k-means
or Gaussian mixture model (GMM), the original high-
dimension descriptors are clustered, and the center of each
cluster is regarded as a visual codeword. After that, local fea-
tures are encoded and pooled. Finally, the pooled vectors are
normalized as video representation. Among these steps, the
development of more elaborately designed low-level features
and more sophisticated encoding methods are the two chief
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reasons for the great achievements in this field [32, 33], so in
this part, we review the feature extraction methods in Section
4.1 and Section 4.2, as well as the encoding methods in
Section 4.3.

4.1. Spatiotemporal Interest Point Detector. An intuitive
thought of local representation is to identify those interest
points that contain high information contents in images or
videos. Harris and Stephens [34] first proposed effective 2D
interest point detectors, the well-known Harris corner detec-
tor, which is extensively used in object detection. Then,
Laptev and Lindeberg [6] proposed the 3D space-time inter-
est points (STIPs) by extending Harris detectors. Spatial
interest points in images are extended to spatiotemporal local
structures in videos where the image values have significant
local variations in both space and time. The spatiotemporal
extents of the detected points are estimated by maximizing
a normalized spatiotemporal Laplacian operator over spatial
and temporal scales.

Saliency can also be used to detect interest points.
Saliency means that certain parts of an image are preatten-
tively distinctive and are immediately perceivable [35]. The
spatiotemporal salient point can be regarded as an instance
of the spatiotemporal interest point since both of them are
informative and contain significant variations. The 2D
salient point detection was first proposed by Kadir and Brady
in [35]. Oikonomopoulos et al. [36] extended the 2D saliency
to 3D spatiotemporal salient points that are salient both in
space and time field. The salient points are successfully used
as local features in their proposed activity classification
scheme. Blank et al. [5] used the solution to Poisson equation
to extract local space-time saliency of moving parts in the
space-time shape. The detected salient points along with
the local orientation and aspect ratios of shapes are calculated
as local features.

Although these methods achieved remarkable results in
HAR, one common deficiency is the inadequate number of
stable interest points. In fact, the trade-off between the stabil-
ity of those points and the number of points found is difficult
to control. On one hand, the “right” and “discriminative”
(i.e., stable) interest points are rare and difficult to be
identified. As stated in [37], the direct 3D counterparts
to commonly used 2D interest point detectors are inade-
quate, and true spatiotemporal corners are quite rare in
certain applications. On the other hand, false alarms occur
frequently due to various factors such as unintentional
appearance changes. Ke et al. [38] illustrated two instances
to point out that original detectors may fail in situations
where the motions contain no sharp extrema; however,
these detectors can be triggered falsely by the appearance
of shadows and highlights in video sequences.

Besides the inherent properties of sparse interest points,
many of the mentioned methods are inefficient. Therefore,
these methods are restricted to the detection of a small num-
ber of points, or limited to low-resolution videos [39]. Here,
we introduce some works either efficiency-enhanced or
increasing number of stable interest points in response to
the mentioned deficiency.

Dollar et al. [37] observed the rarity of the spatiotemporal
interest points and the consequent problems of it in the rec-
ognition scheme. To find more 3D interest points in cuboids
of space and time for activity recognition, the response func-
tion calculated by the separable linear filters is applied. The
filtering is applied separately on the spatial and temporal
dimensions, that is, 2D Gaussian smoothing kernel applied
in spatial dimensions, and 1D Gabor filters applied in tempo-
ral dimension. Number of interest points increases using
their detectors. Ke et al. [38] doubted the assumption that
one can reliably detect a sufficient number of stable interest
points in the video sequence. They extended the notion of
rectangle features [40] into spatiotemporal volumetric fea-
tures and applied the proposed framework on the video’s
optical flow. Their classifier is not limited to the sparseness
nor affected by the instability of detected points.

Aiming at detecting interest points in an efficient way,
Willems et al. [39] presented a dense, scale-invariant yet effi-
cient spatiotemporal interest point detector with minimal
effect on the computation time. First, point localization and
scale selection are combined in a direct way using the deter-
minant of the 3D Hessian matrix, therefore removing the
time-consuming iterative scheme [41]. Further, building on
Ke et al.’s work [38], an implementation scheme using inte-
gral video is developed to compute scale-invariant spatiotem-
poral features efficiently. Using a completely different idea,
Oshin et al. [42] proposed to learn a classifier capable of
detecting interest points in a novel video, given examples of
the type of interest point that wish to get within a training
video. The spatiotemporal Fern classifier (i.e., a seminaïve
Bayesian classifier in [43]) is trained to recognize spatiotem-
poral interest points and thus achieves a high efficiency in
constant time regardless of original detector complexity.

4.2. Local Descriptors. Local descriptors are designed to
describe the patches that sampled either densely or at the
interest points [1]. Effective descriptors are considered to be
discriminative for the target human activity events in videos
and robust to occlusion, rotation, and background noise.

Laptev [41] represented their 3D Harris corner by com-
puting local, spatiotemporal N-jets as the descriptor. The
descriptor is scale-invariant since they estimate the spatio-
temporal extents of detected events by maximizing a normal-
ized spatiotemporal Laplacian operator over spatial and
temporal scales. Moreover, the proposed descriptors are
proved to be robust to occlusions and dynamic cluttered
backgrounds in the human motion analysis.

Similar to works of extending 2D interest point detector
into spatiotemporal domain, such as the Harris corner detec-
tor [34] and the extended spatiotemporal one [41], many
spatiotemporal descriptors were proposed by extending
mutual image descriptors as well. We briefly review these
works including both the original spatial descriptors and
the spatiotemporal version of them.

Lowe proposed the scale-invariant feature transform
(SIFT) in 1999 [44] and further improved it in 2004 [45]. It
is widely used in local representation due to its scale and rota-
tion invariance, as well as the robustness to affine distortion,
changes in 3D viewpoint, addition of noise, and change in
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illumination. Scovanner et al. [46] introduced a 3D SIFT
descriptor and used it in HAR. The 2D gradient magnitude
and orientation are extended in 3D formulation; thus, creat-
ing the subhistograms encode the 3D SIFT descriptor. The
videos are then described as a bag of spatiotemporal words
using the 3D SIFT descriptor. Moreover, a feature grouping
histogram which groups the co-occurred words out of the
original one is used to build a more discriminative action
video representation and finally used for classification.

The speeded-up robust features (SURF) [47] approach is
a scale and rotation invariant detector and descriptor. The
most important property of SURF is the improvement of
efficiency comparing to previous approach. In the interest
point detection, the approach applies the strategy that
analyzing the input image at different scales to guarantee
invariance to scale changes. Taking computation time into
account, a very basic Hessian-matrix approximation which
lends itself to the use of integral images is used for interest
point detection, and it reduced the computation time dra-
matically. Next, a rotation and scale-invariant descriptor is
provided for the detected interest point. The SURF approach
builds on the distribution of first-order Haar-wavelet
responses within the interest point neighborhood, in
contrast with SIFT that extracts gradient information.
Furthermore, integral images are exploited for speed. The
introduction of indexing step based on the sign of the Lapla-
cian further increases the robustness of descriptor and the
matching speed.

An extended 3D SURF descriptor was implemented by
Willems et al. [39]. Both of the 2D and 3D SURF used
Haar-wavelet responses; however, the 3D SURF store the
vector of the 3 axis responses instead of including the sums
over the absolute values since the latter proved to be of no
significant benefit but doubling the descriptor size.

Dalal and Triggs [48] proposed the histogram of oriented
gradients (HOG) descriptor and achieved great success in
human detection with linear SVM classifier. The good
performance is due to the fact that the HOG’s density
distribution of local intensity gradients or edge directions
can well characterize the local object appearance and
shape of target objects.

Lu and Little et al. [49] presented the PCA-HOG descrip-
tor which projects the original histogram of oriented gradi-
ents (HOG) descriptor to a linear subspace by principle
component analysis (PCA). The descriptor was used to rep-
resent athletes to solve the problem of tracking and activity
recognition simultaneously. Using HOG and HOF (histo-
gram of flow) descriptor, Laptev et al. [50] completes a simi-
lar but more challenging activity recognition task as those
activities are extracted from movies.

Klaser et al. [30] generalized the HOG descriptor to video
sequences and proposed the HOG3D. Integral images are
extended to integral videos for efficient 3D gradient compu-
tation. Polyhedrons are utilized for orientation quantization
as an analogy of polygons in 2D space HOG. Optimized
parameters for activity recognition have also been explored
in their work.

Early spatiotemporal methods adopt a perspective of
regarding the video as x-y-t 3Dvolumes [30, 39, 46].However,

recent feature trajectoryapproachconsiders the spatialdimen-
sions x-y very different from the temporal dimension t. This
approach detects the x-y interest points from video frames
and then tracking them through video sequences as a trajec-
tory. For detecting interest point, classic 2D detectors such as
HOGandHOFare still used. In this review,we treat the feature
trajectory as a special kind of the spatiotemporal descriptors
where the time dimension is used to concatenate those 2D
interest points.

Wang et al. [51] proposed dense trajectories by densely
sampling points. Avoiding extracting points frame by frame
and concatenating them, Wang et al. firstly extracted dense
optical flow using Farneback’s algorithm [52], then points
can be densely tracked along the trajectory without addi-
tional cost. HOG and HOF are computed along the dense
trajectories as the descriptors. Dense trajectories were further
improved in [53]. The camera motion, as a main obstacle for
extracting target trajectories from humans or objects of inter-
ests, was highlighted and was tried to be removed. The
authors first match feature points using two complementary
descriptors (i.e., SURF and dense optical flow), then estimate
the homography using RANSC [54]. Through this approach,
the camera motion is explicitly identified and removed. How-
ever, in some cases where humans dominate the frame, the
target human motion may also generate inconsistent camera
motionmatch. To solve this problem, a human detector is fur-
ther explored to remove the inconsistent matches within the
detected human areas. Improved descriptors achieved signif-
icant performance on challenge datasets, such as Hollywood2
where camera motions were used abundantly. Shi et al. [55]
presented a sequential deep trajectory descriptor (sDTD) on
the dense trajectory basis to capture the long-term motion
information. The dense trajectories are projected into two-
dimensional planes and a CNN-RNN network is employed
to learn an effective representation for long-term motion.

4.3. Feature Encoding Methods. The STIP-based descriptors
or other elaborately designed descriptors are all referred as
local features. Local features are then encoded with feature
encoding methods to represent activities and the encoded
features are subsequently fed into pretrained classifiers (e.g.,
SVM) [32]. Encoding feature is a key step for constructing
BoVW representation and utilizing an appropriate encoding
method can significantly improve the recognition accuracy
[56]. Here, we summarize the common feature encoding
methods in recent literatures in Table 2. The number of cita-
tions for each description paper is also provided to facilitate
measurement of their influences.

Several evaluations [56–58] have been conducted to com-
pare the performance of recent encoding methods. Chatfield
et al. [57] compared five encoding methods including LLC,
SVC, FV, KCB, and the standard spatial histograms baseline.
Experiments over PASCAL VOC 2007 and Caltech 101 show
that FV performs best. Wang et al. [56] drew the same con-
clusion on KTH dataset and HMDB51 dataset. Also, a most
recent evaluation [58] showed a consistent finding on UCF-
YouTube and HMDB51 datasets, though slightly slower than
local NBNN on KTH.
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Further exploration has been conducted to match the
best local feature with FV. In [31], six representative methods
including VQ, SA-k, LLC, FV, VLAD, and SVC are evaluated
for two widely used local features, STIPs and improved dense
trajectories (iDTs). The experiment results demonstrate that
the iDT together with the FV yields the best performance on
the test datasets. Wang et al. who proposed the iDT also ver-
ified the best performance of iDT and FV in their work [53].

Recent stacked Fisher vectors [32] further improved the
performance of iDT+FV and achieved superior performance
when combining traditional FV. Evaluation on the YouTube,
J-HMDB, and HMDB51 datasets demonstrates that it has
become the state-of-the-art method. Pipelines of SFV and
corresponding FV are given in Figure 3.

The core idea of both FV and SFV is trying to catch more
statistical information from images; in contrast, BoVW only
retains the zero order statistics. Take an l-dimension local
descriptor as an example. Assuming that the size of
prelearned GMM is K (K is the size of codebook). For
the conventional BoVW, the final encoded feature is K-
dimension histograms that indicate the frequency of code-
words. However, FV can obtain a 2Kd-dimension (d is

the Gaussian distribution dimension). In another word,
FV retained more information (i.e., high-order statistics)
regarding to same size of codebooks.

SFV further improved FV owing to a simple and intuitive
reason that SFV densely calculated local features by dividing
and scanning multiscale subvolumes. The main challenge is
the holistic combination of those local FVs since encoding
them using another FV directly is impossible because of the
high dimension of them (2Kd-dimension). Thus, a max-
margin method is tactfully used to reduce dimensionality.
As the local FVs are more densely sampled than the conven-
tional FV and consequently contain more high order statis-
tics, therefore, iDT with SFV achieves even better result
than the state-of-the-art iDT with FV.

5. Depth-Based Representations

Previous research of HAR mainly concentrates on the video
sequences captured by traditional RGB cameras. Depth cam-
eras, however, have been limited due to their high cost and
complexity of operation [74]. Thanks to the development of
low-cost depth sensors such as Microsoft Kinect [75], an
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Figure 3: Pipeline of Fisher vector and Stacked fisher vector. (a) Fisher vector. (b) Stacked fisher vector.

Table 2: Feature encoding methods.

Method Proposed Description paper, the number of citations

Vector quantization (VQ)/hard assignment (HA) Sivic et al. (2003) [59], 5487

Kernal codebook coding (KCB)/soft assignment (SA) Gemert et al. (2008)
[60], 586;
[61], 761

Spase coding (SPC) Yang et al. (2009) [62], 2529

Local coordinate coding (LCC) Yu et al. (2009) [63], 614

Locality-constrained linear coding (LLC) Wang et al. (2010) [64], 2410

Improved Fisher kernel (iFK)/Fisher vector (FV) Perronnin et al. (2010) [65], 1590

Triangle assignment coding (TAC) Coates et al. (2010) [66], 976

Vector of locally aggregated descriptors (VLAD) Jegou et al. (2010)
[67], 1135;
[68], 710;

Super vector coding (SVC) Zhou et al. (2010) [69], 459

Local tangent-based coding (LTC) Yu et al. (2010) [70], 122

Localized soft assignment coding (LSC/SA-k) Liu et al. (2011) [71], 398

Salient coding (SC) Huang et al. (2011) [72], 131

Group salient coding (GSC) Wu et al. (2012) [73], 33

Stacked Fisher vectors (SFV) Peng et al. (2014) [32], 149
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affordable and easier way to access the depth maps is pro-
vided. Furthermore, Kinect SDK released the application that
can directly obtain the skeletal joint positions in real-time
(adopting algorithms in [75]). The available depth maps
and the skeletal information (see Figure 4) vigorously
contributed to the computer vision community. These two
features and their derivative features also triggered a wide
interest to solve HAR problems using depth-based solutions,
replacing conventional RGB-based methods, or acting as
supplements to enhance the RGB-based methods. In this sec-
tion, we separately reviewed the recent advance of activity
representations using depth maps or skeletons.

5.1. Representations Based on Depth Maps. Depth maps con-
tain additional depth coordinates comparing to conventional
color images and are more informative. Approaches pre-
sented in this section regard depth maps as spatiotemporal
signals and extract features directly from them. These fea-
tures are either used independently or combined with RGB
channel to form multimodal features.

Li et al. [76] employed the action graph model, which
represents activities using several salient postures serving as
nodes in action graph. All activities share same posture sets
and each posture is characterized as a bag of 3D points from
the depth maps. However, involving all the 3D points is com-
putationally expensive; thus, a simple and effective method to
sample the representative 3D points is proposed, achieving
over 90% recognition accuracy by sampling approximately
1% points according to their report.

Zhao et al. [77] proposed a framework of combing RGB
and depth map features for HAR and presented an optimal
scheme. For the RGB channels, spatiotemporal interest
points are generated solely from it and the HOG and HOF
are calculated to form the RGB based descriptors. For the
depth channel, they proposed a depth map-based descriptor
called local depth pattern (LDP), which simply calculates
the difference of average depth values between a pair of cells
within the STIP surrounding region.

Yang et al. [78] proposed to use HOG on depth maps.
Depth maps are projected onto three orthogonal planes
and the depth motion maps (DMM) are generated by accu-
mulating global activities through entire video sequences.
HOG are then computed from DMM as the representation
of an action video. Another depth image-based work similar
to the HOG is [74] where the histogram of oriented 4D nor-
mals (HON4D) descriptor, as a further generalization of
HOG3D to four-dimensional depth videos, is proposed.
HON4D descriptor calculates the histograms of oriented
4D surface normals in 4D space of time, depth, and spatial
coordinates. A quantization of the 4D space is also pre-
sented. The approach in [79] is also based on the polynormal
which is a cluster of neighboring hypersurface normals from
a local spatiotemporal depth volume. A designed scheme
aggregates the low-level polynormals in each adaptive
spatiotemporal cell. The concatenation of feature vectors
extracted from all spatiotemporal cells forms the final repre-
sentation of depth sequences.

Jalal et al. [80] considered multifeatures from depth
videos, extracting 3D human silhouettes and spatiotemporal
joints values for their compact and sufficient information for
HAR task.

5.2. Skeleton-Based Representations. Skeletons and joint posi-
tions are features generated from depth maps. Kinect device
is popular in this representation due to its convenience of
obtaining skeleton and joints. Application in Kinect v1 SDK
generates 20 joints, while the later version (Kinect v2) gener-
ates 25 joints, adding 5 joints around the hands and neck (see
Figure 4).We reviewed recent papers on skeleton-based repre-
sentations and summarize three aspects efforts on improving
the performance of skeleton-based representation.

First, skeleton model has an inherent deficiency that it
always suffers the noisy skeleton problem when dealing with
occlusions (see Figure 5) [76]. Features from inaccurate
skeletons and joints may completely be wrong. Current
approaches often solve it by combining other features that

(a) (b)

(c) (d) (e) (f)

Figure 4: Kinect RGBD cameras and their color images, depth maps, skeletal information. (a) Kinect v1 (2011). (b) Kinect v2 (2014). (c)
Color image. (d) Depth map. (e) Skeleton captured by Kinect v1. (f) Skeleton captured by Kinect v2.
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robust to occlusion or alleviate occlusion problem by separat-
ing the whole skeleton into different body parts and handling
them independently since not all body parts are occluded.

Second, an intuitive fact can be observed that not all
skeletal joints are involved in a particular activity, and only
a few active joints are meaningful and informative for a cer-
tain activity [81]. Concentrating on these active joints and
abandoning the other inactive parts will generate more
discriminative and robust features and are beneficial to deal
with intraclass variations [82].

Finally, as an extracted feature from depth maps itself,
skeleton-based representation is often combined with origi-
nal depth information to form more informative and robust
representation [82, 83].

Xia et al. [84] proposed a skeleton-based representation
named HOJ3D, the spherical histograms of 3D locations of
selected joints. After reprojected using LDA and clustered
into vocabularies, the encoded features are fed to hidden
Markov model (HMM) for classification. The HOJ3D is
robust to view changes due to the design of the spherical
coordinate system and robust skeleton estimation.

Yang and Tian [85] proposed a new type of feature named
EigenJoints. 3D position differences of joints are employed to
characterize three kinds of activity information including pos-
ture feature, motion feature, and offset feature. To reduce
redundancy and noise, PCA is further employed and the
efficient leading eigenvectors are selected. Finally, the
constructed features were fed into the naïve-Bayes-nearest-
neighbor (NBNN) [86] and obtained improved performance.

Wang et al. [82] indicated that using joint positions alone
is insufficient to represent an action, especially for the case
involving interaction with objects. Consequently, they pro-
posed a depth-based feature called local occupancy pattern
(LOP) to describe the occupancy of the neighborhood of each
point, for example, the occupied space around the hand joint
when lifting a cup. The local occupancy information is
described by the 3D point cloud around a particular joint.

Moreover, to select the active and discriminative joint feature
subset (i.e., actionlet) for a particular activity, a data mining
solution is leveraged and then actionlet ensemble which
is linear combination of actionlets is obtained to represent
each activity. Similar to actionlet, Zhu et al. [87] learned
the co-occurrences of joints by designing regularization
in deep LSTM (long short-term memory) RNNs (recurrent
neural networks).

Shahroudy et al. [83] proposed a multimodal multipart
approach for activity recognition in depth map sequences,
which combines the complementary skeleton-based features
LOP in [82] and depth-based features local HON4D in [74]
of each part together and builds up a multimodal multipart
combination. The multimodal multipart features are formu-
lated into their framework via the proposed hierarchical
mixed norm.

Chen et al. [81] proposed a skeleton-based two-level hier-
archical framework. In the first layer, a part-based clustering
feature vector is introduced to find out the most relevant
joints and clustered them to form an initial classification.
Note that the recognition task is divided into several smaller
and simple tasks, which are performed within a specific
cluster. It is of benefit to solving the high intraclass variance
since distinct sequences of the same action are grouped into
different clusters. In the second layer, only the relevant joints
within specific clusters are utilized for feature extraction,
which enhances the validity of the features and reduces the
computational costs.

Besides depth-based features, skeleton data can be
combined with other RGB features. To deal with the noisy
skeleton problem, Chaaraoui et al. [88] proposed to combine
skeletal and silhouette-based features using feature fusion
methods. The noisy skeleton problem caused by occlusions
of body part is partially elevated by the silhouette-based
features. Shahroudy et al. [83] separately extracted dense
trajectories features from RGB channel and 3D locations of
skeleton joints from depth channel. A hierarchical feature
fusion method based on structured sparsity was developed
to fuse these two heterogeneous features.

6. Activity Classification Approaches

The next stage of HAR is the classification of activities that
have been represented by proper feature sets extracted from
images or videos. In this stage, classification algorithms give
the activity label asfinal result. Generally speaking,most activ-
ity classification algorithms can be divided into three catego-
ries namely template-based approaches, generative models
and discriminative models. Template-based approaches is a
relatively simple and well accepted approach; however, it can
be sometimes computationally expensive. Generative models
learn a model of the joint probability P(X,Y) of the inputs X
and the label Y, then P(Y|X) is calculated using Bayes rules
and the algorithms finally picking the most likely label Y
[89]. In contrast, discriminative models determine the result
label directly. Typical algorithmsof generativemodels are hid-
den Markov model (HMM) and dynamic Bayesian network
(DBN),while support vectormachine (SVM), relevancevector

Figure 5: Noisy skeleton problem caused by self-conclusion.
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machine (RVM), and artificial neural network (ANN) are
typical discriminative models.

6.1. Template-Based Approaches.Template-based approaches
try to portray common appearance characteristics of a certain
activity using various representations. These commonappear-
ance characteristics, such as 2D/3D static images/volumes or a
sequence of view models, are termed as templates. Most
template-based methods extract 2D/3D static templates and
compare the similarity between the extracted images/volumes
of test videos and the stored templates. For the classification
based on a sequence of key frames, dynamic time warping
(DTW) is an effective approach.

6.1.1. TemplateMatching.Bobick andDavis [16, 17] proposed
a temporal-template-based approach. Two components, the
motion-energy image (MEI) which represents the presence
of motion and the motion-history image (MHI) which indi-
cates the recency of motion, are generated for each template
of an activity. In fact, the generated template images can be
regarded as weighted projection of the space-time shape.

Shechtman and Irani [27, 90] constructed the 3D space–
time intensity video volume template from a short training
video clip. This small template is compared to every segment
of same size in the test video over all three dimensions. The
degree of similarity between two segments (i.e., the template
and a same size video segment from the test video) is evalu-
ated by the proposed intensity patch-based approach. It
divides the segments into smaller patch units, then computes
and integrates local consistency measures between those
small space-time patches. This method has an impressive
ability of detecting multiple different activities that occur at
the same time.

Common template-based methods are unable to generate
single template for each activity. They often suffer the high
computational costdue tomaintainingandcomparingvarious
templates. Rodriguez et al. [91] proposed to use themaximum
average correlation height (MACH), which is capable of
capturing intraclass variability by synthesizing a single action
MACH filter for each activity class. They also generalized the
MACH filter to video and vector valued data by embedding
the spectral domain into a domain of Clifford algebras, build-
ing an effective approach in discriminating activities.

6.1.2. Dynamic Time Warping. Dynamic time warping
(DTW) is a kind of dynamic programming algorithm for
matching two sequences with variances. Rabiner and Juang
[7] first developed it for speech recognition problem, repre-
senting the words as template sequence and assign matching
scores for new word. DTW is also applicable to HAR prob-
lem since the human activities can be viewed as a sequence
of key frames. The recognition problem is transformed to a
template matching task.

Darrell and Pentland [92] proposed to build the repre-
sentation of gestures using a set of learned view models.
DTW algorithm is used to match the gesture template
obtained from the means and variations of correlation scores
between image frames and view models.

Veeraraghavan et al. [93] proposed the DTW-based
nonparametric models for the gait pattern problem. They
modified the DTW algorithm to include the nature of the
non-Euclidean space in which the shape deformations take
place. By comparing the DTW-based nonparametric and
the parametric methods and applying them to the problem
of gait and activity recognition, this work concluded that
the DTW is more applicable than parametric modeling when
there is very little domain knowledge.

Although the DTW algorithm needs a few amounts of
training samples, the computational complexity increases
significantly when dealing with growing activity types or
those activities with high inter/intra variance, because exten-
sive templates are needed to store those invariance.

6.2. Generative Models

6.2.1. Hidden Markov Model Approach. The recognition task
is a typical evaluation problem which is one of the three
hidden Markov model problems and can be solved by the
forward algorithm. HMMs were initially proposed to solve
the speech recognition problem [8]. Yamato et al. [94] first
applied the HMM to recognize activities. Features that indi-
cate the number of pixels in each divided mesh are obtained
as observations for each frame. Then, the HMMs are trained
using the observation feature vector sequences for each
activity, including the initial probability of hidden states,
the confusion matrix, and the transition matrix. By applying
the representation mentioned above, the HAR problem
(recognition of various tennis strokes) is transformed into a
typical HMM evaluation problem, which can be solved using
standard algorithm.

A brief summary of the deficiencies of basic HMM and
several efficient extensions are presented in [95]. The basic
HMM is ill-suited for modeling multiple interacting agents
or body parts since it is single variable state representation,
as well as those actions that have inherent hierarchical struc-
ture. Take human interaction as an example, as a kind of
complex activities, it always contains more than one person
in the video, to which the basic HMM is ill-suited since the
standard HMM is suitable for the time structure. Another
deficiency is the exponentially decayed duration model for
state occupancy. This duration model has no memory of
the time that has already spent on the state, which is unreal-
istic for activities. This is implicitly obtained from the
constant state transition probability and the first-order
Markov assumption, which implies that the probability of a
state being observed for a certain interval of time decays
exponentially with the length of the interval [96].

Previous work has proposed several variants of HMM to
handle the mentioned deficiencies [95–97]. Motivated by this
human interaction recognition task that have structure both
in time and space (i.e., modeling activities of two or more
persons), Oliver et al. [97] proposed the coupled HMM
(CHMM) to model the interactions. Two HMM models are
constructed for two agents and probabilities between hidden
states are specified.

Flexible duration models were suggested including the
hidden semi-Markov model (HSMM) and the variable
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transition HMMs (VT-HMM). The hidden semi-Markov
model (HSMM) is a candidate approach that has explicit
duration model with specific distribution. Duong et al.
[98] exploited both the inherent hierarchical structure
and the explicit duration model and the switching hidden
semi-Markov model (S-HSMM) is introduced with two
layers to represent high-level activities and atomic activi-
ties separately. Another semi-Markov model (HSMM)
based work is shown in [96].

Alternatively, Ramesh and Wilpon [99] broke the
implicit duration model by specifying the dependency
between the transition probability and the duration. The var-
iable transition HMMs (VT-HMMs, originally called inho-
mogeneous HMM in [99]) was proposed and applied in
speech recognition. In VT-HMM, the transition probability
of two states depends on the duration which is no longer
constant. Natarajan and Nevatia [95] then presented a
hierarchical variable transition HMM (HVT-HMM) based
on Pamesh and Wilpon’s work to recognize two-hand ges-
tures and articulated motion of the entire body. The HVT-
HMM has three layers, including a composite event layer
with a single HMM representing the composite actions, a
primitive event layer using a VT-HMM to represent the
primitive actions, and a pose track layer with a single
HMM. The pose is represented using a 23 degrees body
model, including 19 degrees for joint angles, 3 degrees for
direction of translation (x, y, z), and 1 degree for scale.

6.2.2. Dynamic Bayesian Networks. A dynamic Bayesian net-
work (DBN) is a Bayesian network with the same structure
unrolled in the time axis [100]. An important extension of
DBN is that its state space contains more than one random
variables, in contrast with the HMM that has only one single
random variable. Thus, the HMM can be viewed as a simpli-
fied DBN with constrained number of random variables and
fixed graph structures.

Figure 6 presents a typical DBN. Suk et al. [101] proposed
this structure for two hands gesture recognition, from which
we can see that there are three hidden variables. The three
hidden variables represent the motion of two hands and their
spatial relation, while five features including two hands’
motion and the position relative to the face, as well as the spa-
tial relation between hands are designed as observations.
Then, the DBN structure is built and simplified using the
first-order Markov assumptions. They proposed the DBN

tailored for hands gesture recognition in contrastwith the pre-
vious fixed structure of CHMM [102] which is not deemed
effective for other than tight-coupled two-party interactions.

Park and Aggarwal [103] presented a hierarchical
Bayesian network methodology for recognizing five two-
person interactions. The proposed method first segments
the body-part regions and estimates each of the body-part
poses separately in thefirst level. Then, the individualBayesian
networks are integrated in a hierarchy to estimate the overall
body poses of a person in each frame. Finally, the pose estima-
tion results that include two-person interactions are
concatenated to form a sequence with DBN algorithm.

Cherla et al. [21] indicated the contradiction for DTW
between the robustness to intraclass variations and the
computational complexity. Multiple templates for each
activity handle the intraclass variations well but increase
the computational complexity, while average templates
reduce the complexity but are sensitive to intraclass varia-
tions. Cherla et al. proposed the average template with
multiple feature representations to counterbalance them
and achieve good performance.

6.3. Discriminative Models

6.3.1. Support Vector Machines. Support vector machines
(SVMs) are typical classifiers of discriminative models and
gained extensive use in HAR. Vapnik et al. [104] designed
the SVM and originally used it for the problem of separating
instances into two classes. It aims to find the hyperplane
which maximizes the margin of two classes.

Schüldt et al. [105] combined SVM with their proposed
local space-time features and applied their “local SVM
approach” for HAR. A video dataset, known as the KTH
dataset which had been one of the benchmarks of HAR sys-
tems, was recorded by them. The KTH dataset is introduced
later in this paper (see Section 8.2.1).

Laptev et al. [50] used a nonlinear SVM with a multi-
channel Gaussian kernel and their SVM achieved high
accuracy (91.8%) on the KTH dataset along with the
HOG&HOF descriptors and local spatiotemporal bag-of-
features. The well-known challenging Hollywood dataset
(see Section 8.3.1) was provided and used to evaluate the
proposed approach.

6.3.2. Conditional Random Fields. Conditional random fields
(CRFs) are undirected graphical models that compactly rep-
resent the conditional probability of a particular label
sequence Y, given a sequence of observations X. Vail et al.
[106] compared the HMMs and CRFs for activity recogni-
tion. They found that the discriminatively trained CRF per-
formed as well as or better than an HMM even when the
model features are in accord with the independence assump-
tions of the HMM. This work pointed out a significant differ-
ence between the HMMs and CRFs: the HMMs assume that
observations are independent given their labels; thus, com-
plex features of the observation sequence will invalidate the
assumption of this model and thenmake the HMMno longer
a proper generative model. This inherent assumption of
HMMs is abandoned in CRF, which conditions on the entire
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Figure 6: A typical dynamic Bayesian network [101].
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observation and therefore does not require any independence
assumptions between the observation variables. A test was
done by incorporating features which violate independence
assumptions between observations (i.e., velocity thresholds
in [106]) to explore the influence on both models. The result
demonstrates that the CRF always outperforms the HMM,
and with the increasingly severe violation of the indepen-
dence assumptions, the HMM gets worse.

Natarajan and Nevatia [107] presented an approach
for recognizing activities using CRF. Synthetic poses from
multiple viewpoints are firstly rendered using Mocap data
for known actions. Then, the poses are represented in a
two-layer CRF, with observation potentials computed
using shape similarity and transition potentials computed
using optical flow. These basic potentials are enhanced
with terms to represent spatial and temporal constraints,
and the enhanced model is called the shape, flow, duration
conditional random field (SFD-CRF). Single human activ-
ities as sitting down or standing up were recognized in
their experiment.

Ning et al. [108] proposed a model that replaced the
observation layer of a traditional random fields model
with a latent pose estimator. The proposed model con-
verted the high-dimensional observations into more
compact and informative representations, and enabled
transfer learning to utilize existing knowledge and data
on image-to-pose relationship. This method has been
shown to improve performance on the public available
dataset HumanEva [109].

6.3.3. Deep Learning Architectures. Basically, the deep learn-
ing architectures can be categorized into four groups, namely
deep neural networks (DNNs), convolutional neural net-
works (ConvNets or CNNs), recurrent neural networks
(RNNs), and some emergent architectures [110].

The ConvNets is the most widely used one among the
mentioned deep learning architectures. Krizhevsky et al. [9]
first trained the deep ConvNets in a sufficiently large image
datasets consisting of over 15 million labeled images. The
impressive results lead to the extensively used of ConvNets
in various pattern recognition domains [111]. Compared
with traditional machine learning method and their hand-
crafted features, the ConvNets can learn some representa-
tional features automatically [112]. Mo et al. [113] used
ConvNets directly for feature extraction, and a multilayer
perceptron is designed for the following classification.

One challenge for HAR using deep learning is how to
apply it on small datasets since HAR datasets are generally
smaller than what the ConvNets need. Common solutions
include generating or dumpling more training instances, or
converting HAR to a still image classification problem to
leverage the large image dataset (e.g., ImageNet) to pretrain
the ConvNets. Wang et al. [114] developed three strategies
to leverage ConvNets on small training datasets. First, 3D
points of depth maps are rotated to mimic different view-
points, and WHDMMs at different temporal scales are con-
structed. Second, ConvNets model trained over ImageNet is
adopted through transfer learning. Finally, different motion

patterns are encoded into the pseudo-RGB channels with
enhancement before being input to the ConvNets. On the
other hand, Simonyan and Zisserm [115] leverage the large
image dataset to pretrain the ConvNets. They investigated
an architecture based on two separate streams (spatial and
temporal), while the spatial stream contains information on
appearance from still frames and is implemented using a
spatial stream ConvNet. The spatial ConvNet is image classi-
fication architecture itself; thus, it is pretrained on the large
image classification dataset.

The most recent research aims to further improve the
performance of ConvNets by combining it with other
hand-crafted features or representations. Li et al. [116] noted
that the long-range dynamics information is necessary and
should be modeled explicitly. Thus, they proposed a repre-
sentation named VLAD3, which not only captures short-
term dynamics with ConvNets but also utilizes the linear
dynamic systems and VLAD descriptor for medium-range
and long-range dynamics. Wang et al. [117] proposed a
trajectory-pooled deep-convolutional descriptor (TDD)
which combined the hand-crafted local features (e.g., STIP,
improved trajectories) and deep-learned features (e.g., 3D
ConvNets [76, 118], two-stream ConvNets [115]). The pro-
posed TDD integrates the advantages of these two features
and adopts the state-of-the-art improved trajectories and
two-stream ConvNets.

Unlike ConvNets, DNNs still use hand-crafted features
instead of automatically learning features by deep networks
from raw data. Berlin and John [119] used Harris corner-
based interest points and histogram-based features as input.
The proposed deep neural network with stacked auto
encoders are used to recognize human-human interactions.
Huang et al. [120] learned Lie group features (i.e., one of
the skeletal data representations that are learned by
manifold-based approaches) by incorporating a Lie group
structure into a deep network architecture.

RNNs are designed for sequential information and have
been explored successfully in speech recognition and natural
language processing [121, 122]. Activity itself is a kind of
time-series data and it is a natural thought to use RNNs for
activity recognition.

Among various RNNs architectures, the long short-term
memory (LSTM) is the most popular one as it is able to main-
tain observations in memory for extended periods of time
[123]. As an initial study for activity recognition, a LSTM
network was utilized to classify activities in soccer videos
[124]. Then, further research [123] explicitly demonstrated
the robustness of LSTM even as experimental conditions
deteriorate and indicated its potential for robust real-world
recognition. Veeriah et al. [125] extended the LSTM to differ-
ential recurrent neural networks (RNNs). By computing the
different orders of derivative of state which is sensitive to
the spatiotemporal structure, the salient spatiotemporal
representations of actions are learned, while in contrast,
the conventional LSTM does not capture salient dynamic
patterns of activity.

In addition to videos, RNNs can also be applied to skele-
ton data for activity recognition. Du et al. [126] proposed a
hierarchical RNNs structure for skeleton-based recognition.
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The human skeleton from Kinect are divided into five parts
and are fed into subnets separately. Representations from
subnets are hierarchically fused into a higher layer and finally
fed into a single-layer perceptron, whose temporally accumu-
lated output is the final decision.

A detailed taxonomy about the representation, classifica-
tion methods, and the used datasets of the introduced works
in this review are presented in Table 1.

7. Human Tracking Approaches

Besides the activity classification approaches, another critical
research area is the human tracking approach, which is
widely concerned in video surveillance systems for suspicious
behavior detection. Human tracking is performed to locate a
person along the video sequence over a time period, and then
the resultant trajectories of people are further processed by
expert surveillance systems for analyzing human behaviors
and identifying potential unsafe or abnormal situations
[127]. In this section, we briefly review recent literatures of
two dominant approaches, namely kernel-based tracking
and filtering-based tracking.

7.1. Filter-Based Tracking. Filtering is one of the widely used
approaches for tracking, and the representative Kalman filter
(KF) [128] and particle filter (PF) [129] are two commonly
used classic filtering techniques.

KF is a state estimate method based on linear dynamical
systems that are perturbed by Gaussian noise [130]. Patel and
Thakore utilized traditional KF to track moving objects, in
both the indoor and outdoor places. Vijay and Johnson
[131] also utilized traditional KF for tracking moving objects
such as car or human. However, the tested scenarios of these
cases are relatively spacious and thus seldom occlusion occur.
Despite the good results that are achieved by the KF-based
method, it is strictly constrained with effective foreground
segmentation, and its ability is limited when handling the
occlusion cases. Arroyo et al. [127] combined Kalman filter-
ing with a linear sum assignment problem (LSAP). To deal
with the occlusion problem, visual appearance information
is used with image descriptors of GCH (global color histo-
gram), LBP (local binary pattern), and HOG (histogram of
oriented gradients) representing the color, texture, and gradi-
ent information, respectively.

Particle filter, or sequential Monte Carlo method [132], is
another typical filtering method for tracking. PF is a condi-
tional density propagation method that is utilized to deal
with non-Gaussian distributions and multimodality cases
[130]. Ali et al. [133] combined a head detector and particle
filter for tracking multiple people in high-density crowds.
Zhou et al. [130] presented a spatiotemporal motion energy
particle filter for human tracking, which fuses the local fea-
tures of colour histograms as well as the spatiotemporal
motion energy. The proposed particle filter-based tracker
achieved robustness to illumination changes and temporal
occlusions through using these features, as the motion energy
contains the dynamic characteristics of the targeted human.
As a specific branch of particle filter research, the sequential
Monte Carlo implementation of the probability hypothesis

density (PHD) filter, known as the particle PHD filter, is
well developed for solving multiple human tracking prob-
lems. A series of research have been conducted by Feng
et al. in [134–138].

7.2. Kernel-Based Tracking. Kernel-based tracking [139] or
mean shift tracking [140] tracks the object (human) by com-
puting the motion of one or more spatially weighted color
histograms (i.e., single kernel/multiple kernels) from the cur-
rent frame to next frame based on an iteratively mean-shift
procedure. The kernel-based approach has fast convergence
speed and low computation requirement inherited from the
efficient mean shift procedure [141].

Traditional kernel-based tracking used symmetric con-
stant kernel, and it tends to encounter problems of object
scale and object orientation variation, as well as the object
shape deformation. Research was conducted concerning
these problems. Liu et al. [142] presented a kernel-based
tracking algorithm based on eigenshape kernel. Yilmaz
[143] introduced a kernel-based tracking algorithm based
on asymmetric kernel for the first time. This kernel uses the
initial region inside the outline of the target as kernel tem-
plate and generates a precise tracking contour of the object.
Yuan-ming et al. [144] noticed the shortage of the fixed
asymmetric kernel. They combined the contour evolution
technology with the mean shift and proposed an enhanced
mean shift tracking algorithm based on evolutive asymmetric
kernel. Liu et al. [145] presented an adaptive shape kernel-
based mean shift tracker. Shape of the adaptive kernel is
reconstructed from the low-dimensional shape space
obtained by nonlinear manifold learning technique to the
high-dimensional shape space, aiming to be adaptive to the
object shape.

Early literatures reported tracking methods using single
kernel scheme. However, the single kernel-based tracking
could fail when the human is concluded, that is, the object
could be lost or mismatch due to the partial observation.
Thus, multiple-kernel tracking is adopted in most cases of
recent researches. Lee et al. [146] evaluated two kernel and
four kernel schemes [147] and presented a similar two and
four kernal evaluation. Chu et al. [148] proposed to utilize
projected gradient to facilitate multiple-kernel tracking in
finding the best match under predefined constraints. The
occlusion is managed by employing adaptive weights, that
is, decreasing the importance of the kernel being occluded
whilst enhancing the ones which are well-observed. Hou
et al. [149] integrated the deformable part model (DPM)
and designed multiple kernels, each of which corresponds
to a part model of a DPM-detected human.

8. Representative Datasets in HAR

Public datasets could be used to compare different
approaches in the same standards therefore accelerate the
development of HAR methods. In this section, several repre-
sentative datasets are reviewed, organized as a three-level cat-
egory mentioned in the beginning of this review (i.e., action
primitive level, action/activity level, and interaction level).
There have been a published good survey [4] which presents
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the available important public datasets; however, it mainly
focused on the conventional RGB-based datasets and missed
current depth-based datasets. Thus, several important bench-
mark depth or RGB-D datasets are also reviewed in this sec-
tion, with an overview of them (Table 3).

8.1. Action Primitive Level Datasets. While action primitives
often act as components of high level human activities (e.g.,
the action primitives are served as a layer in hierarchical
HMM to recognize activities [95] or interactions [97]), some
typical and meaningful action primitives, such as poses and
gestures [150], gait pattern [151], are studied as separate
topics. These topics aroused wide research interest due to
their importance in applications such as human-computer
interaction and health care. Here, we present two recent ges-
ture dataset based on RGB-D as the representative dataset in
this level.

8.1.1. NTU-MSR Kinect Hand Gesture Dataset (2013). The
NTU-MSR Kinect hand gesture dataset [152] is considered
as an action primitive level since it is developed for gesture
recognition. Gestures in it were collected by Kinect, and each
of them consists of a color image and the corresponding
depth map. Totally, 1000 cases of 10 gestures were collected
by 10 subjects, and each gesture was performed 10 times
by a single subject in different poses. The dataset is
claimed as a challenging real-life dataset due to their clut-
tered backgrounds. Besides, for each gesture, the subject
poses with variations in hand orientation, scale, articula-
tion, and so forth.

8.1.2. MSRC-Kinect Gesture Dataset (2012). The MSRC-
Kinect gesture dataset [153] is another typical action primi-
tive level dataset, in which large amounts of limb level move-
ments (e.g., karate kicking forwards with right leg) were
recorded. There are totally 6244 instances of 12 gestures per-
formed by 30 people, collected by Kinect. Positions of 20
tracked joints are provided as well.

8.2. Action/Activity Level Datasets. According to our defini-
tion, action/activity is middle level human activity without
any human-human or human-object interactions. We first
review two classic datasets, namely KTH human activity
dataset andWeizmann human activity dataset. Though these
two datasets have gradually faded out of state-of-the-art and
are considered as easy tasks (e.g., 100% accuracy for Weiz-
mann in [18, 25, 95]), they did play important roles in the
history and act as benchmarks in earlier HAR works. Then,
the well-known benchmark dataset for depth-based
approaches, MSR Action3D dataset, is introduced next.

8.2.1. KTH Activity Dataset (2004). The KTH dataset [105] is
one of the most frequently cited datasets. It contains 6 activ-
ities (walking, jogging, running, boxing, hand waving, and
hand clapping) performed by 25 subjects in controlled scen-
eries including outdoors, outdoors with scale variation, out-
doors with different clothes, and indoors. One important
factor in their success is the high intraclass variation in it
which is one of the criteria for evaluation algorithms.
Although the videos were still taken using static cameras,
the high variation details, such as various scenarios and

Table 3: Overview of representative datasets.

Dataset Modality Level Year References Web pages Activity category

RGBD-
HuDaAct

RGB-D
Interaction

level
2013 [163]

http://adsc.illinois.edu/sites/default/files/files/
ADSC-RGBD-dataset-download-instructions

.pdf

12 classes: eat meal, drink
water, mop floor, and so forth

Hollywood RGB
Interaction

level
2008 [50]

http://www.di.ens.fr/~laptev/download
.html#actionclassification

8 classes: answer phone, hug
person, kiss, and so forth

Hollywood-2 RGB
Interaction

level
2009 [158]

http://www.di.ens.fr/~laptev/download
.html#actionclassification

12 classes: answer phone,
driving a car, fight, and so

forth

UCF sports RGB
Interaction

level
2008 [91]

http://crcv.ucf.edu/data/UCF_Sports_Action
.php

10 classes: golf swing, diving,
lifting, and so forth

KTH RGB
Activity/

action level
2004 [105] http://www.nada.kth.se/cvap/actions/

6 classes: walking, jogging,
running, and so forth

Weizmann RGB
Activity/

action level
2005 [5]

http://www.wisdom.weizmann.ac.il/~vision/
SpaceTimeActions.html

10 classes: run, walk, bend,
jumping-jack, and so forth

NTU-MSR RGB-D
Action
primitive
level

2013 [152] http://web.cs.ucla.edu/~zhou.ren/ 10 classes: it contains 10 dif-
ferent gestures.

MSRC-
Gesture

RGB-D
Action
primitive
level

2012 [153]
http://research.microsoft.com/en-us/um/

cambridge/projects/msrc12/
12 classes: it contains 12 dif-

ferent gestures.

MSR
DailyAction3D

RGB-D
Interaction

level
2012 [160]

http://research.microsoft.com/en-us/um/
people/zliu/actionrecorsrc/default.htm

16 classes: call cellphone, use
laptop, walk, and so forth

MSR
Action3D

Depth
Activity/

action level
2010 [76]

http://research.microsoft.com/en-us/um/
people/zliu/actionrecorsrc/default.htm

20 classes: high arm wave,
hand clap, jogging, and so

forth
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actors’ clothes, as well as the different viewpoints, make itself
a fair and convincing datasets for comparison. Most of the
collected human activities in it were performed by a single
person without any human-object interaction; thus, it is
categorized in the activity/action level.

8.2.2. Weizmann Activity Dataset (2005). The Weizmann
activity dataset [5] was created by the Weizmann Institute
of Science (Israel) in 2005. The Weizmann dataset consists
of 10 natural actions (running, walking, skipping, bending,
jumping-jack, galloping-sideways, jumping-forward-on-
two-legs, jumping-in-place-on-two-legs, waving-two-hands,
and waving-one-hand) with 10 subjects. Totally, 90 video
sequences in a low resolution of 180∗144, 50 fps were
recorded using a fixed camera and a simple background. To
address the robustness of the proposed algorithm in [5], ten
additional video sequences of people walking in various com-
plicated scenarios in front of different nonuniform back-
grounds were collected. Similar to the KTH dataset, most
human activities in Weizmann were performed by a single
person without any human-object interaction; thus, it is
categorized in the activity/action level.

8.2.3. MSR Action3D Dataset (2010). The MSR Action3D
dataset [76] is widely used as the benchmark for depth-
based HAR approaches. Depth maps of 20 activity classes
performed by 10 subjects are provided in it (high arm wav-
ing, horizontal arm waving, hammering, hand catching, for-
ward punching, high throwing, drawing cross, drawing tick,
drawing circle, clapping hand, waving two hand, side-boxing,
bending, forward kicking, side kicking, jogging, tennis swing,
tennis serve, golf swing, pickup, and throw). MSR Action3D
is a pure depth datasets without any color images in it.

8.3. Interaction Level Datasets. Interaction level datasets are
relatively difficult tasks. Due to the human or human-object
interactions, interaction level human activities are more real-
istic and abound in various scenarios such as sport events
[91], video surveillance, and different movie scenes [50]. In
this section, we review two conventional RGB datasets (i.e.,
Hollywood human activity dataset and UCF sports human
activity dataset) and a RGB-D dataset (i.e., MSR DailyActivi-
ty3D dataset). Designed to cover indoor daily activities, MSR
DailyActivity3D dataset [160] is more challenging and
involves more human-object interactions compared to MSR
Action3D [82].

8.3.1. Hollywood Human Activity Dataset (2008 and 2009).
Another well-known interaction level dataset is the Holly-
wood human activity dataset [50, 158]. As a representative
of realistic activity dataset, the Hollywood dataset is intro-
duced here as a challenging task compared to previous data-
sets due to its frequently moved camera viewpoints,
occlusions, and dynamic backgrounds with seldom provided
information [1]. The initial version published in 2008 [50]
contains approximately 663 video samples (233 samples in
automatic training set, 219 samples in clean training set,
and 211 samples in test set) of eight actions (answering
phone, getting out of car, hugging, handshaking, kissing, sit-
ting down, sitting up, and standing up) from 32 movies.

Recognition of natural human activities in diverse and realis-
tic video settings, which can be tested on this dataset, was
discussed in [50]. Then, the extended Hollywood dataset
was created in 2009 [158], involving four additional activities
(driving a car, eating, fighting, and running) and more sam-
ples for each class, totally, 3669 video clips from 69 movies.
Both human interaction (e.g., kissing, fighting) and human-
object interactions (e.g., answering phone, driving a car) are
included. Marszalek et al. [158] exploited the relationship
between context of natural dynamic scenes and human activ-
ities in video based on this extended Hollywood dataset.

8.3.2. UCF Sports Dataset (2007). The UCF sports dataset
[91] is a specific interaction level dataset focused on various
sports activities from television broadcasts. It is one of the
datasets collected by Computer Vision Lab, University of
Central Florida. There are over 200 video sequences in this
dataset, covering 9 sport activities including diving, golf
swinging, kicking, lifting, horseback riding, running, skating,
swinging a basketball bat, and pole vaulting. While it covers
only 9 human activities in sports scenes, it is still a challeng-
ing task for recognition due to its unconstrained environ-
ment and abound intraclass variability.

8.3.3. MSR DailyAction3D Dataset (2012). The MSR Dai-
lyActivity3D dataset [160] is an interactive level dataset cap-
tured by Kinect device. In contrast with the previous MSR
Action3D, this dataset provides three types of data including
depth maps, skeleton joint positions, and RGB video. 16
activity classes performed by 10 subjects (drinking, eating,
reading book, calling cellphone, writing on a paper, using
laptop, using vacuum cleaner, cheering up, sitting still,
tossing paper, playing game, lying down on sofa, walking,
playing guitar, standing up, and sitting down) are recorded
in it.

9. Conclusions and Future Direction

Human activity recognition remains to be an important
problem in computer vision. HAR is the basis for many appli-
cations such as video surveillance, health care, and human-
computer interaction. Methodologies and technologies have
made tremendous development in the past decades and have
kept developing up to date. However, challenges still exist
when facing realistic sceneries, in addition to the inherent
intraclass variation and interclass similarity problem.

In this review, we divided human activities into three
levels including action primitives, actions/activities, and
interactions. We have summarized the classic and represen-
tative approaches to activity representation and classification,
as well as some benchmark datasets in different levels. For
representation approaches, we roughly sorted out the
research trajectory from global representations to local repre-
sentations and recent depth-based representations. The liter-
atures were reviewed in this order. State-of-the-art
approaches, especially those depth-based representations,
were discussed, aiming to cover the recent development in
HAR domain. As the next step, classification methods play
important roles and prompt the advance of HAR. We
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categorized classification approaches into template-matching
methods, discriminative models, and generative models.
Totally, 7 types of method from the classic DTW to the new-
est deep learning were summarized. For human tracking
approaches, two categories are considered namely filter-
based and kernel-based human tracking. Finally, 7 datasets
were introduced, covering different levels from primitive
level to interaction level, ranging from classic datasets to
recent benchmark for depth-based methods.

Though recent HAR approaches have achieved great
success up to now, applying current HAR approaches in
real-world systems or applications is still nontrivial. Three
future directions are recommended to be considered and
further explored.

First, current well-performed approaches are mostly hard
to be implemented in real time or applied to wearable devices,
as they are subject to constrained computing power. It is
difficult for computational constrained systems to achieve
comparable performances of those offline approaches.
Existing work utilized additional inertial sensors to assist in
recognizing, or developed microchips, for embedded devices.
Besides these hardware-oriented solutions, from a computer
vision perspective, more efficient descriptor extracting
methods and classification approaches are expected to train
recognition models fast, even in real time. Another possible
way is to degrade quality of input image and strike a balance
among input information, algorithm efficiency, and recogniz-
ing rate. For example, utilizing depth maps as inputs and
abandoning color information are ways of degrading quality.

Second, many of the recognition tasks are solved case by
case, for both the benchmark datasets and the recognition
methods. The future direction of research is obviously
encouraged to unite various datasets as a large, complex,
and complete one. Though every dataset may act as bench-
mark in its specific domain, uniting all of them triggers more
effective and general algorithms which are more close to real-
world occasions. For example, recent deep learning is
reported to perform better in a four-dataset-combined larger
datasets [114]. Another promising direction is to explore an
evaluation criterion which enables comparisons among wide
variety of recognition methods. Specifically, several vital
measuring indexes are defined and weighted according to
specific task, evaluating methods by measuring indexes such
as recognition rate, efficiency, robustness, number, and level
of recognizable activities.

Third, mainstream recognition system remains in a rela-
tively low level comparing with those higher level behaviors.
Ideally, the system should be able to tell the behavior “having
a meeting” rather than lots of people sitting and talking, or
even more difficult, concluding that a person hurried to catch
a bus rather than just recognizing “running.” Activities are
analogous to the words consisting behavior languages. Ana-
lyzing logical and semantic relations between behaviors and
activities is an important aspect, which can be learned by
transferring from Natural language processing (NLP) tech-
niques. Another conceivable direction is to derive additional
features from contextual information. Though this direction
has been largely exploited, current approaches usually intro-
duce all the possible contextual variables without screening.

This practice not only reduces the efficiency but also affects
the accuracy. Thus, dynamically and reasonably choosing
contextual information is a future good topic to be discussed.

Finally, though recent deep learning approaches achieve
remarkable performance, a conjoint ConvNets + LSTM
architecture is expected for activity video analysis in the
future. On the one hand, ConvNets are spatial extension of
conventional neural networks and exhibit its advantage in
the image classification tasks. This structure captures the spa-
tial correlation characteristics, however, ignores the temporal
dependencies of the interframe content for activity dynamics
modeling. On the other hand, LSTM as a representative kind
of RNN, is able to model the temporal or sequence informa-
tion, which makes up the temporal shortage of ConvNets.
LSTM is currently used in accelerometer-based recognition,
skeleton-based activity recognition, or one-dimensional sig-
nal processing, but has not been widely concerned in combi-
nation with ConvNets for two-dimensional video activity
recognition, which we believe is a promising direction in
the future.
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