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Abstract

The fundamental task in human motion analysis is the extraction or capture of
human motion and the established industrial technique is marker-based human
motion capture. However, marker-based systems, apart from being expensive, are
obtrusive and require a complex, time-consuming experimental setup, resulting
in increased user discomfort. As an alternative solution, research on markerless
human motion analysis has increased in prominence. In this thesis, we present
three human motion analysis algorithms performing markerless tracking and clas-
sification from multiple-view studio-based video sequences using particle swarm
optimisation and charting, a subspace learning technique.

In our first framework, we formulate, and perform, human motion tracking as a
multi-dimensional non-linear optimisation problem, solved using particle swarm
optimisation (PSO), a swarm-intelligence algorithm. PSO initialises automat-
ically, does not need a sequence-specific motion model, functioning as a black-
box system, and recovers from temporary tracking divergence through the use
of a powerful hierarchical search algorithm (HPSO). We compare experiment-
ally HPSO with particle filter, annealed particle filter and partitioned sampling
annealed particle filter, and report similar or better tracking performance. Addi-
tionally we report an extensive experimental study of HPSO over ranges of values
of its parameters and propose an automatic-adaptive extension of HPSO called
as adaptive particle swarm optimisation.

Next, in line with recent interest in subspace tracking, where low-dimensional
subspaces are learnt from motion models of actions, we perform tracking in a
low-dimensional subspace obtained by learning motion models of common actions
using charting, a nonlinear dimensionality reduction tool. Tracking takes place
in the subspace using an efficient modified version of particle swarm optimisa-
tion. Moreover, we perform a fast and efficient pose evaluation by representing
the observed image data, multi-view silhouettes, using vector-quantized shape
contexts and learning the mapping from the action subspace to shape space us-
ing multi-variate relevance vector machines. Tracking results with various action
sequences demonstrate the good accuracy and performance of our approach.

Finally, we propose a human motion classification algorithm, using charting-based
low-dimensional subspaces, to classify human action sub-sequences of varying
lengths, or snippets of poses. Each query action is mapped to a single subspace
space, learnt from multiple actions. Furthermore we present a system in which,
instead of mapping multiple actions to a single subspace, each action is mapped
separately to its action-specific subspace. We adopt a multi-layered subspace
classification scheme with layered pruning and search. One of the search lay-
ers involves comparing the input snippet with a sequence of key-poses extracted
from the subspace. Finally, we identify the minimum length of action snippet, of
skeletal features, required for accurate classification, using competing classifica-
tion systems as the baseline. We test our classification component on HumanEva
and CMU mocap datasets, achieving similar or better classification accuracy than
various comparable systems.
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An effort was made to avoid ambiguities in the notation used in mathematical
descriptions. Lowercase Roman letters denote scalar variables, as in x, except
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Chapter 3. Hierarchical Particle Swarm Optimisation(PSO)

N Number of particles

Xt State, or particle set, at time t (Particle filter)

yt Observation at time t (Particle filter)

xi
t, i ∈ {1, . . . , N} i− th particle at time t (Particle filter)

πi
t, i ∈ {1, . . . , N} Normalised weight of i− th particle at time t (Particle filter)

β Smoothing parameter (Annealed Particle Filter)

d Dimension of search space (PSO)

a Search constraint vector (PSO)

b Search constraint vector (PSO)

V Set of velocity vectors (PSO)

vi, i ∈ {1, . . . , N} i− th velocity vector (PSO)

P Set of personal best vectors (PSO)

pi, i ∈ {1, . . . , N} i− th personal best vector (PSO)

g Index of global best particle in swarm (PSO)

ω Inertia parameter (PSO)

φ1 Social component (PSO)

φ2 Cognition component (PSO)

A Starting value of inertia (PSO)

C Number of PSO iterations

K Number of joints in body

r Co-ordinates of root in human body pose

α, β,γ Rotational degrees of freedom of joints in human body pose

Σe(x,z) Edge-based cost function with state x and image z

Σs(x,z) Silhouette-based cost function with state x and image z

xe
s Pose estimated at s-th hierarchical step (A-PSO)

τ0, τ1 Cost function thresholds (A-PSO)
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Chapter 4. Charting-based Subspace Tracking

D Dimension of body joint angles

d Dimension of joint angles subspace

Y Sequence of D-dimensional joint angles

X Sequence of d-dimensional subspace representation

yi, i ∈ {1, . . . , N} i-th joint angle feature vector

xi, i ∈ {1, . . . , N} i-th subspace feature vector

f (y) Forward mapping function (Subspace learning)

g(x) Inverse mapping function (Subspace learning)

W Mapping matrix (Subspace learning)

ε Gaussian noise (Subspace learning)

N Number of frames in video sequence

r Local linear scale (Charting)

c(r) Growth rate(Charting)

µ Mean of Gaussian Mixture Model (Charting)

Σ Covariance of Gaussian Mixture Model (Charting)

m(µ) Measure of co-locality (Charting)

U Locally linear subspace representation (Charting)

ui, i ∈ {1, . . . , N} i-th locally linear subspace feature vector(Charting)

G Affine transform (Charting)

F Indicator matrix (Charting)

d,e Cartesian pixel co-ordinates (Fourier descriptors)

z Complex pixel co-ordinates (Fourier descriptors)

f Fourier co-efficients (Fourier descriptors)

V Input-output training pair of vectors (Regression)

vi, i ∈ {1, . . . , N} i-th input-output training pair of vectors (Regression)

R Input training vectors (Regression)

Z Output training vectors (Regression)

φ(r) Set of basis functions (Regression)

C Weight matrix(Regression)

S Noise matrix(Regression)

α Hyperparameter of basis function(Regression)

Φ Design matrix (Regression)
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Chapter 5. Charting-based Subspace Multi-layered Classification

D Dimension of body joint angles

d Dimension of joint angles subspace

Y Sequence of D-dimensional joint angles

X Sequence of d-dimensional subspace representation

vc
t Subspace feature vector in c-th partition

xc Point co-ordinates in vc
t in c-th partition

sc Spacing co-ordinates in vc
t in c-th partition

Wc Set of cluster centers of vc
t in c-th partition

vc
f Key-frame subspace feature vector in c-th partition

xc
f Point co-ordinates in vc

f in c-th partition

sc
f Spacing co-ordinates in vc

f in c-th partition

Lc Set of cluster centers of vc
f in c-th partition

A, B Sequence of feature vectors (Distance measures)

C Local distance matrix (Dynamic time warping)

D Accumulated distance matrix (Dynamic time warping)

υ Candidate action labels (Classification framework)

Yq Query snippet

η Point-to-set Hausdorff distance value

Uc Set of nearest cluster subspace feature vectors in c-th partition

Pc Final set of candidate subspace feature vectors in c-th partition



Chapter 1

Introduction

This thesis reports work carried out by the author at the School of Computing of

the University of Dundee concerning the markerless human motion tracking and

classification of multiple-view video sequences using particle swarm optimisation

and charting. This work started in September, 2007.

Human motion analysis is an important problem tackled by the computer-vision

research community for a long time. The fundamental problem is the extrac-

tion of relevant human motion information, such as sequences of 3D joint angles,

(body positions) or as single objects from video sequences, which are later inter-

preted for various applications. The complex problem of extraction and interpret-

ation of human motion presents several aspects each receiving specific attention

by various researchers. In this thesis, we aim to contribute towards markerless

multiple-view human motion capture or tracking (estimation of human motion

information from video sequences-extraction) and classification (identifying the

type of action from extracted information-interpretation). In this chapter, we

present the applications of human motion analysis, motivations and scope of our

research, outline of the contributions and finally, the structure of the thesis.
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1.1 Applications of Human Motion Analysis

Human motion analysis has a wide array of applications in the areas of movies,

computer games, biomedical applications, sports, security and surveillance. The

most well-known application of motion analysis is in games and movies. Human

motion capture, here, involves the digital recording and 3D representation of hu-

man motion. Special effects in many films like AvatarTM , Lord of the RingsTM

and computer animated films like Polar ExpressTM rely on human motion capture

data to animate their characters (Figure 1.1). Typically the motion of actors are

digitally captured in studios, using marker-based motion capture systems, and

transferred to computed-generated figures for realistic animation. Similarly com-

puter games also use the captured human motion information to create realistic

character animations in the game [74].

Gait analysis is an important example of biomedical application of human motion

analysis. In gait analysis the degree of change in patient conditions with arthritis

or strokes can be measured from the patient’s motion information history [74].

Similarly, it can be used to monitor the rehabilitation progress of a patient after

surgery or treatment. It is also used to evaluate different prothesis and identify

incorrect postures [24].

Another application domain is sports coaching, where the motion of athletes can

be captured and analyzed. Motion captured from leading athletes can be used as

a basis for comparison, evaluation of other athletes. Moreover they can be used

to detect and prevent mistakes, which could potentially degrade performances or

cause injuries. Cricket, tennis and golf are some of the sports which can benefit

from such coaching tools [68]. Another sport-based application is in post-match

game analysis using the extracted athlete information from the video broadcast

of a game.

In surveillance and security, analysing human motion is important to detect sus-
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(a) Polar expressTM (b) Pirates of the CaribbeanTM

(c) Fifa 2007TM

Figure 1.1: Example of human motion capture, being applied in (a) animated
features, (b) movies and (c) computer games.

picious behaviour or atypical motions, and trigger some alerts[29, 74]. Moreover,

the gait of a person can be used as a biometric signature for security systems

[74]. In human-computer interface-based applications for smart-homes, where

the recognition of human gesture and motion can be used as communication tool

for interaction with homes or offices, for example, switching on the lights, heat-

ers or air-conditioners allowing the user to interact easily with their environment

[18, 74].

1.2 Motivation and Scope of our Research

Vicon systems [139] are the established industrial state-of-the-art technique in

marker-based human motion capture for the extraction of human motion inform-
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ation at high accuracy, making such systems ideal for animation, games and the

film industry. However these motion capture systems are invasive, requiring the

users to wear special clothing and markers, resulting in unnatural human motion

[89]. Moreover, they require a complicated and time-consuming preparation. Fi-

nally they are very expensive, which makes them unsuitable for many practical

applications. An alternate approach addressing the above issues is markerless

motion capture.

A key component in markerless human motion tracking systems are cameras,

which are typically low-cost and flexible devices. In recent years, technological

advancements have resulted in cameras providing high-resolution human mo-

tion information, easier integrability with computers and multiple camera syn-

chronisation, making markerless capture systems suitable for many applications.

Ideally a markerless tracking system should be able to extract human motion

information from “any” video sequences, independent of the environment or the

user. However this general problem remains largely unsolved and the existing

state-of-the-art markerless tracking systems are constrained to specific environ-

ments. Similarly our markerless human motion tracking (Chapter 3 and 4) and

classification system (Chapter 5) are constrained to studio environments with

multiple cameras, and assume only one subject in every sequence. Furthermore,

we do not tackle the problem of background subtraction, with human figure (fore-

ground) being extracted from chroma-keyed studio background or provided by

public datasets like HumanEva [114], as readily available foreground information.

In our markerless multiple-view human motion tracking, the main challenges in-

clude the complex nature of human motion, style and speed variations among

different subjects performing the same action at different time instants, high-

dimensional search space, noisy information from the cameras and self-occlusion

from the limbs. We formulate the full-body articulated tracking from multiple-

view sequences as a non-linear optimisation problem solved using a powerful
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swarm-intelligence algorithm, particle swarm optimisation (PSO). Our PSO-

based tracker eliminates the need for sequence-specific motion model, thus func-

tioning as a black-box system. The same algorithm with unmodified parameter

settings is able to track different motions with no prior information. However the

fixed parameter settings result in increased computational complexity for certain

actions. We address this issue by proposing a modified PSO-based tracker, the

adaptive PSO-based tracker (A-PSO), wherein information from tracking is used

to vary the parameters online. Although we report good tracking results using

these systems, a motion model can be used to improve the tracking accuracy and

the overall robustness of the system, at the cost of limiting the number of actions

tracked. We exploit prior motion information in the form of a low-dimensional

subspace, a reduced dimensionality representation, which functions as a good ap-

proximation of high-dimensional data and forms the basis for our second tracking

framework.

In our subspace multiple-view markerless tracking system, we learn the motion

models of common actions in a low-dimensional subspace using charting, a non-

linear subspace learning technique. Tracking takes place in the subspace using

a modified particle swarm optimisation algorithm biased for subspace optim-

isation. Additionally we aim to reduce the computational cost associated with

the previous system’s hypothesis evaluation, by using shape context histograms-

based descriptors as our feature descriptors instead of silhouettes. Finally in

order to evaluate hypotheses in subspace, we learn the mapping from the learnt

low-dimensional subspace to the the shape context histogram-based descriptors

using multi-variate relevance vector machines (MVRVM). We demonstrate good

tracking accuracy, where our subspace tracking system performs better than our

black-box systems, while achieving comparable accuracy with similar existing

state-of-the-art tracking system.

The final component of our human motion analysis system is the multiple-view
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classification algorithm. Similar to human motion tracking, human motion clas-

sification is also an important problem in human motion analysis with similar

challenges, including high-dimensional search space, the complex and unpre-

dictable nature of human motion and the noisy image or motion information.

Additionally, an important challenge in classification is the similarity between

certain actions, for example a fast walk would be similar to a slow jog, mak-

ing it difficult to classify such actions. We propose a multi-layered classification

framework for multiple-view sequence of extracted human motion information,

which are either the output of our markerless tracking system or obtained from

marker-based human motion capture systems. Similar to our subspace tracking

system, the classification is performed in the low-dimensional subspace learnt

using charting. The main motivation of adopting a multi-layered classification

scheme is the successive pruning of candidate actions at each layer with less

demanding classification search, until only fewer actions with subtle variations

remain in the final layer. Here a demanding classification search is performed

using multi-dimensional dynamic time warping, a feature vector alignment al-

gorithm. Additionally, we present two variations of our classification framework,

In our first approach, each action is mapped to a single subspace space, learnt

from multiple actions. In the second approach, instead of mapping multiple ac-

tions to a single subspace, each action is mapped separately to its action-specific

subspace. We report good classification accuracies, on the HumanEva dataset

and CMU motion capture dataset, which are comparable with the existing state-

of-the-art classification systems. We also compare our two proposed classification

variations on the same dataset, and report our observations.

1.3 List of our Key Contributions

In this section, we summarise the key contributions of our three human motion

analysis systems. We highlight the major contributions with bold texts, while
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the minor contributions are highlighted in italics. Additionally we provide a short

description of each contribution.

• Markerless human motion tracking using particle swarm optimisation
without any motion prior (Chapter 3)

– Particle swarm optimisation used for articulated full-body
tracking.

∗ A novel, hierarchical version of particle swarm optimisation al-
gorithm (H-PSO) is used for full-body markerless human motion
tracking.

∗ A guiding-cylinder scheme is proposed for the hypothesis evalu-
ation in H-PSO, providing spatial and temporal constraints and
reducing the computational complexity.

∗ An adaptive version of H-PSO is proposed, wherein the system
parameters are automatically varied online based on the accuracy
of tracking, thus reducing the computational complexity.

• HPSO and APSO function as a model-free system with fixed system para-
meters, automatically initialise in the first frame of the video sequence and
importantly addresses the issue of divergence, whereby the system is able
to recover after a wrongly estimated pose.

• Markerless human motion tracking with particle swarm optimisation using
subspace learning-based motion prior (Chapter 4)

– Charting not previously used for subspace human motion
tracking.

– Particle swarm optimisation not previously used for subspace
tracking.

– A modified particle swarm optimisation, specific for subspace
tracking and called subspace PSO is proposed.

• Our proposed charting-based subspace tracking framework automatically
initialises, recovers online from wrong estimates and avoids divergence, due
to a nearest-neighbour retrieval scheme present in our tracking framework.

• Markerless human motion classification with multi-layered classification
framework (Chapter 5)
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– Charting not previously used for human motion classification.

– Estimating the minimum length of skeletal features required
for accurate human motion classification.

∗ Derivation of sequence of key-poses from the human action sub-
space.

∗ Comparison of multiple subspace and single subspaces for human
action classification.

• Our proposed multi-layered human motion classification framework reports
good classification accuracy with efficient layered pruning of candidate ac-
tion sets.

1.4 Outline of the Thesis

In this chapter, we have provided a brief overview of human motion analysis

along with its application. Additionally, we introduce the work done in the

thesis. In Chapter 2, we discuss the related approaches to human motion ana-

lysis. Chapter 3 deals with our hierarchical particle swarm optimisation-based

markerless human motion tracking system. We provide a detailed comparison

of our system with the particle filtering paradigm using our experimental res-

ults. Additionally, we also demonstrate our system behaviour to detailed system

parameter changes. Finally, we explain our proposed adaptive version of H-

PSO (A-PSO) and evaluate its tracking accuracy. In Chapter 4, we present our

proposed subspace tracking algorithm, where we exploit the prior motion inform-

ation, by learning the low-dimensional subspace using charting, and estimate the

human pose using a modified particle swarm optimisation. In Chapter 5, we

describe our multi-layered charting-based classification with experimental results

on HumanEva and CMU mocap dataset [27], used for comparison with existing

state-of-the-art classification algorithms. Finally we perform a detailed analysis

of the system behaviour with system parameter changes. Finally in Chapter 6,
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we present our conclusions and possible future extensions. An overall layout of

the thesis is shown in Figure 1.2.

Figure 1.2: Thesis chapter layout



Chapter 2

Human Motion Analysis:

Literature Review

2.1 Introduction

Articulated human motion tracking and classification is one of the most challen-

ging problems in computer vision, and remains unsolved in its generality. The

challenges can be attributed to the generally unpredictable and often complex

nature of human movements, of self-occlusions created by limbs, of the high-

dimensional search space induced by the skeletal models needed (between 20 and

40 degrees of freedom), shape variations existing among humans, and segment-

ation in non-studio applications. The literature of articulated human motion

tracking and classification has grown very rapidly and in this chapter we present

an overview of different motion analysis techniques. Firstly, we will present a brief

overview of existing commercial motion capture systems. Next, we will provide

a detailed survey of video-based markerless human motion tracking approaches

and, finally, a detailed review of the human motion classification systems.

32
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2.2 Commercial Motion Capture System

Typically commercial motion capture systems (mocap) use mechanical, electro-

magnetic or optical components to capture human motion information from sub-

jects, without using video as an input. The systems essentially obtain the 3D

position and orientation of the markers, which are attached to the subject. The

3D position and orientation of the different joints in the human body are then

extracted from the captured marker positions. Some of them incorporate soft-

ware to estimate the 3D position and orientation of the joints from those set of

markers.

Optical Motion Capture Systems. Among the different types of mocap systems,

optical motion capture systems are the most popular and widely used. Vicon

system [139] and Qualisys [93] are examples of optical systems. These systems

require the actor performing the motion to wear a special suit with markers,

either reflective balls or pulsed light-emitting diodes, attached at various body

positions. In reflective systems, infra-red light emitting diodes placed around the

camera lens emit light, which are reflected by the markers and captured by the

camera lens, fitted with infra-red pass filters [21, 149]. In case of pulsed systems,

the infra-red light is emitted by the markers itself directly. Although the optical

systems are accurate and widely-used, they are the most expensive technique .

Mechanical Motion Capture Systems. The Gypsy system of MetaMotion [69]

and Physilog [86] are mechanical motion capture systems available commercially

[21]. These systems have accelerometers and gyroscopes attached to the actors,

which detect the body motion. The captured motion information are then either

transmitted in real-time to the computer (Gypsy system) or recorded, processed
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and transmitted at the end (Physilog) [131]. These systems are cheaper than

other type of mocap systems, but they tend to be less accurate [21, 131, 149].

Magnetic Motion Capture Systems. The MotionStar from Ascension [7] and

Liberty from Polhemus [63] belong to another category of motion capture systems

measuring the magnetic field generated by markers or sensors, attached to the

body. However this system is highly susceptible to noise, especially when mul-

tiple actors perform in the same environment causing interference of the magnetic

fields [149]. Moreover, the markers in these systems move during capture, and

often require recalibration, but magnetic mocap systems tend to be cheap [149].

The mocap systems discussed so far usually capture the 3D position and/or

orientation of the markers, and require external software to infer the 3D joint

angles of the articulated human body [131]. While Vicon provides the software

along with their mocap system for this inference, other systems need separate

softwares like MotionBuilder [76] to perform this inference task.

Although the commercial motion capture systems described so far are accur-

ate and the established state-of-the-art, they have some serious disadvantages,

in terms of cost, restrictiveness, and time-consuming experimental setups. All

these factors compounded by the availability of cheap, high-quality cameras are

responsible for the growth in interest for markerless vision-based human motion

tracking and classification systems, which we review in the next section.

2.3 Video-based Markerless Human Tracking

Vision-based motion tracking systems, with cameras as sensors, continue to be an

active research area attempting to address the issues with marker-based motion

tracking. The problem of human motion tracking is significantly different and
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(a) (b)

Figure 2.1: Examples of (a) occluded silhouette and (b) noisy silhouette with
missing body part [8].

more difficult than the general object tracking problem, because of the human

body structure and human motion dynamics. An important challenge in hu-

man motion tracking is foreground segmentation, difficulties include background

noise and appearance variation among different human subjects. This has res-

ulted in segmentation in itself being a separate, focused area of research. Since

our work does not contribute to the human body segmentation literature, we do

not provide a detailed report of the existing segmentation technique and refer

the readers to [89, 74, 73]. Apart from typically noisy segmented human figures

as shown in Figure 2.1, challenges include the generally unpredictable and po-

tentially complex nature of human movements, self-occlusions created by limbs,

occlusion from background objects, the high-dimensional search space induced

by the skeletal models used (between 20 and 40 degrees of freedom), and ap-

pearance variations existing among humans and a large body of work in human

body tracking exists focusing on addressing these issues. We next provide a brief

overview of popular tracking algorithms, followed by a classification of different

human motion tracking algorithms.
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2.3.1 Human Motion Tracking Algorithms

Popular tracking algorithms used in markerless human motion tracking include

filtering techniques like the classic Kalman filter and its variations [142, 70], mean

shift [23], multiple-hypothesis tracking [61], importance sampling approaches like

the particle filter (PF) [30, 92] and variations, iterative closest point (ICP) and

variations [72], constrained non-rigid factorization [105], Markov models [85] and

gradient boosting [12]. Wang and Rehg [142] reported a comprehensive compar-

ison of particle filter algorithms for articulated figure tracking and proposed a

new algorithm, the optimised unscented particle filter. Tweed and Calway [129]

report a variation of particle filter with the introduction of bindings or subordin-

ation amongst particles, enabling the algorithm to handle multiple occlusions.

Gradient-based methods have also been used to estimate pose and track articu-

lated human figures in multiple-camera sequences. For example, Choo and Fleet

[22] report a filter using hybrid Monte Carlo (HMC) and multiple Markov chains

to generate samples from the target posterior distribution. The filter explores

the state space rapidly, generating a substantially reduced number of particles

compared to conventional PF.

In recent years, evolutionary optimisation approaches, like genetic algorithms,

have been reported for articulated pose estimation from video sequences [147,

82]. In our work, we use particle swarm optimisation (PSO) an evolutionary

optimisation approach introduced in [55], where a population of particles explore

simultaneously the search space generated at each time instant. Each particle

has a position and a search velocity associated with it. The search behaviour of

the particles is governed by their interaction and designed originally to simulate

the swarming behaviour of bird flocks in their search for food. PSO has been

growing in popularity in a number of research areas as a technique to solve large,

non-linear optimisation problems, as shown in the recent survey by Poli [87],

but its applications to computer vision are still rather limited. To the best of
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our knowledge, our work is the first application of PSO to full body articulated

human motion tracking.

2.3.2 Classification of Human Motion Tracking Systems

In this section, we present two different classification methodologies for human

motion tracking literature. In the first methodology, the human motion tracking

literature is divided into two categories, generative and discriminative tracking

human methods. In the second methodology, we categorise the existing literature

based on the algorithm parameters.

2.3.2.1 Generative and Discriminative Methods

Methods for markerless, articulated motion tracking are frequently classified as

generative or discriminative.

Generative Methods use the analysis-by-synthesis approach, whereby a pose

hypothesis is applied explicitly to the three-dimensional body model (skel-

eton and surface) to generate synthetic images (or features or parts there of)

for each camera, and the real and generated images compared within an ap-

propriate likelihood function to evaluate the quality of the pose hypothesis

[30, 54, 85, 115, 72, 16, 112, 98]. The full-body model, used in generative meth-

ods, typically consists normally of an articulated skeleton capturing pose, and

surfaces “fleshing out” each limb of the skeleton. Very often simple geometric

primitives like cylinders or cones are used, but more complex surfaces have been

used in some cases [28, 50] (Figure 2.2). Balan et al. [9] use a stochastic optim-

isation based on annealed particle filter, where SCAPE model is used to generate

images for likelihood evaluation of the hypothesis. Bandouch et al. [10] propose
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(a) (b) (c)

Figure 2.2: Examples of full body 3D body models (a) Cylindrical body model
[8], (b) SCAPE body model [9] and (c) Catmull Clark’s subdivision model [51]

a system using hierarchical annealed particle filter and RAMSIS body model to

generate images for evaluation. A summary of some representative generative

tracking methods are provided in Table 2.1.

Discriminative Methods infer the pose directly from the image by either learning

the mapping between the pose space and a set of image features [12, 116] or

using an exemplar approaches, where human pose is infered from input images

by matching the input images to a set of stored exemplars of image-based features

[34, 75, 128]. A few representative techniques for learning the mappings between

the pose space and image space include relevance vector machines, support vector

machines [3], mixture of Gaussians [2] or mixture of Gaussian processes [133].

While generative techniques are easier, flexible and more accurate, they tend to

be computationally expensive. Compared to generative methods, discriminative

methods tend to be faster once trained properly. However in some cases they are

not as accurate as generative models [80]. We provide a summary of a few recent

discriminative tracking systems in Table 2.2, at the end of the chapter.

Combinations of Generative and Discriminative approaches have also been repor-

ted [113, 118, 9], combining the advantages of both the techniques. Typically, the
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discriminative approaches are used to initialise the generative tracking framework

or localise the search in every frame [40, 44].

2.3.2.2 Literature Classification based on Algorithm Parameters

Articulated motion tracking solutions can also be classified using the parameters

of the algorithm, including number of cameras, acquisition environment, and the

use of priors in the form of motion models and/or search limits.

Number of Camera Views Based on the number of camera views, human

motion tracking algorithms can be classified as either single view (monocular)

or multiple view. A single camera tends to be cheap and can be setup in dif-

ferent environments. So monocular view algorithms can be used in uncontrolled

environments, resulting in a wide range of applications [79, 42, 111, 94, 136, 84].

However, they provide less descriptive human motion information for tracking

compared to multi-view techniques. Moreover, using a single camera results in

self-occlusions and depth ambiguities (Figure 2.3 (a)). On the other hand, mul-

tiple camera systems provide rich human motion information, and simultaneously

address self-occlusion and depth ambiguities [100, 19, 112, 9] (Figure 2.3 (b)).

However, multiple camera systems tend to be expensive and are difficult to setup,

as the cameras need to be synchronised. This limits the multi-camera systems

to different applications, especially in outdoor environments.

Acquisition Environment Human motion tracking algorithms can be classi-

fied as outdoor or studio environment. Outdoor scenes are not controlled and can

be noisy, due to the varying background and lighting conditions. Furthermore,

in addition to self-occlusions, the persons are typically occluded by other objects
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(a) (b)

Figure 2.3: (a) Depth ambiguity with monocular views [46] and (b) Depth am-
biguity and occlusion can be avoided with multiple camera views [8]

in the scene [79, 94, 85, 19, 84, 136, 42]. This makes tracking human motion in

outdoor environment challenging. On the other hand, in indoor studio environ-

ments, the scenes can be controlled with specific lighting conditions, ideal camera

positions etc. However they are difficult to setup and expensive [30, 72, 9, 111].

Constraints Finally, human motion tracking algorithms can be classified based

on the constraints used to estimate the pose from the video sequences. Apart

from algorithms not using any constraint, which form a class on themselves, the

literature of human motion tracking can be classified based on the type of search

constraints and motion constraints.

Search Constraints. An important challenge in for the different search tech-

niques in articulated human tracking is the high-dimensional search space. Many

researchers have sought to reduce the complexity of high-dimensional search by

either partitioning the search space [67] or by learning the joint limits [43]. The

search space is partitioned, for example, according to the limb hierarchy [48, 67].

In hierarchical search, the poses of the body parts are estimated sequentially,

each estimate constraining the possible configurations of subsequent limbs in the

chain [70, 48]. An inherent problem with this approach is the need to estimate

accurately the initial partition, as a wrong pose estimate for the initial segment
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can distort the pose estimates for subsequent segments [10]. Considering this

limitation of hierarchical schemes, adding a motion model to the tracking system

would greatly constrain the search problem.

Motion Constraints. The key motivation behind using motion models is to con-

strain the very expensive or unfeasible search problem [19, 100, 85]. We can

regard motion models for human motion tracking as instantaneous or extended.

Instantaneous motion models consist of recursive equations predicting the next

pose from previously estimated ones. The classic example is Kalman filtering

(KF) [70, 65], extended subsequently by particle filtering and its variations [30].

Extended motion models, on the other hand, seek to describe whole actions (e.g.,

walking, sitting down) or behaviours [19, 100, 85, 136]. The rationale is that ac-

tion models provide a context which strongly constrains pose expectation in the

next frame. The price is a reduced generality, as this idea requires a pre-defined

set of actions. In terms of extended motion models, a widely popular approach

used in recent years is learning the low-dimensional subspace of the whole actions,

using the learnt model, of typically <10D, to constrain the search, increasing the

tracking accuracy at reduced computational cost. In Chapter 4, we propose such

a tracking framework in the low-dimensional subspace learnt using charting, a

dimensionality reduction algorithm.

2.3.3 Placing Our Work in Human Motion Tracking

Classification

In the context of our classification of human motion tracking, our first human

motion analysis work (Chapter 3) presents a generative markerless multiple-view

(number of cameras) human motion tracking algorithm using studio sequences

(acquisition environment) using a hierarchical particle swarm optimisation

(hierarchical search constraint) system functioning as a black-box system
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(no motion prior).

2.4 Markerless Human Motion Tracking in a

Low-Dimensional Subspace

Recent research in markerless human motion tracking has focused on approaches

using learnt low-dimensional subspace of action models (Figure 2.4). Typically,

low-dimensional subspace of human actions are learnt using a dimensionality re-

duction algorithm, and subspace tracking is performed. Tracking in the recovered

subspace results in reduced computational complexity, increased accuracy and

the possibility of real-time tracking, but at the cost of model switching [45]. The

key component in subspace tracking approaches is dimensionality reduction or

subspace learning algorithms. Several linear and non-linear dimensionality tech-

niques have been proposed in the machine learning literature. Principal compon-

ent analysis (PCA) is a linear dimensionality reduction technique, for example,

used by Urtasun et al. [135] and Sidenbladh et al. [110]. However the map-

ping between the original pose space and subspace is in general non-linear, and

linear PCA would fail to accurately learn the mapping. As a result, non-linear

dimensionality reduction techniques like Isomap [124], locally linear embedding

[101], Gaussian process latent variable model (GPLVM) [59], and local linear

co-ordination (LLC) [102] are used to learn the human action manifold. Among

the techniques described above, dimensionality reduction techniques like Isomap

[124] or locally linear embedding [101] learn the non-linear mapping from high-

dim space to low-dim subspace, but are not invertible, resulting in the need for

separately learning the inverse mapping from the latent pose space to full-dim

pose space using techniques like Bayesian mixture of experts (BME) [52], radial

basis functions (RBF) [32] or relevance vector machines (RVM) [126]. On the

other hand, techniques like Gaussian process latent variable model (GPLVM)
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(a) (b)

Figure 2.4: (a) Learnt low-dimensional subspace representation of walk action[32]
and (b) charting-based subspace (Chapter 4 and 5)

[26, 45, 137, 135, 96, 95], local linear co-ordination [61], and charting [15] for-

mulate the inverse mapping directly within their dimensionality reduction frame-

work. Similar to high-dimensional human motion tracking systems, the subspace

systems can also be categorised into generative or discriminative approaches.

2.4.1 Generative Subspace Techniques

Similar to high-dimensional generative human tracking algorithms, subspace gen-

erative methods use the analysis-by-synthesis approach (Section 2.3.2.1). The

central ideas in generative approaches are the following. Firstly, the pose in

high-dimensional space are mapped to a low-dimensional subspace. Secondly,

the low-dimensional subspace tracking technique is defined. Thirdly, a hypo-

thesis evaluation scheme is defined. We next provide an overview of different

generative subspace tracking systems, and discuss the popular techniques used

in each module (three central ideas) described above.

Dimensionality Reduction. Firstly, based on an overview of recent generative sub-

space algorithms, GPLVM and its variations are the most widely dimensionality

reduction technique. GPLVM is a non-linear dimensionality reduction technique,

which learns a smooth mapping from the subspace to the full-dim pose space.
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However the local distances in the pose space are not preserved by GPLVM [136],

resulting in an inefficient tracking formulation. Back-constrained GPLVM solve

this problem, by learning an additional mapping from full-dim pose space to

subspace [45]. Another issue with the original GPLVM algorithm [59] is its limit-

ation to smaller training sets, which is addressed in Urtasun et al. [138] by using

sparse Gaussian processes. This variation is termed as the locally-linear GPLVM

(LL-GPLVM).

Subspace Tracking. Secondly, tracking in subspace is largely performed by some

flavour of particle filtering (PF) [45, 33, 39], multiple hypothesis tracker [61], or

deterministic approaches [134].

Hypothesis Evaluation. Thirdly, the most popular approach for hypothesis eval-

uation involves mapping the subspace hypothesis to full-dim pose space creating

the body models, and generating the synthetic image for evaluation with real im-

ages [96, 95, 58]. However this method of evaluation is computationally expens-

ive. Alternatively, the hypothesis evaluation can be performed in the subspace

itself without the need for any inverse mapping [40], specifically a mapping is

learnt between the subspace of actions and the image space (e.g., silhouettes).

Typically, image features like silhouettes are represented by low-dim descriptors,

for example [40, 39], first reduce the silhouette to low-dim representation us-

ing vectorised descriptor-based on Gaussian mixture model. The bi-directional

mapping between the vectorised descriptor and pose subspace is learnt using a

Bayesian mixture of experts [40] and relevance vector machines, for evaluation.

Jaeggli et al. [52] first learnt the pose subspace and appearance subspace using

LLE and binary-PCA respectively. Next, the inverse mapping is learnt using

RVM. Finally, for pose evaluation they learn the mapping from pose subspace to

appearance subspace using RVM for evaluation.

In all the approaches discussed, the learnt low-dimensional subspace significantly

increases the accuracy of the estimated pose. A further reduction in computa-
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tional complexity and increase in accuracy can be obtained by the modelling of

subspace dynamics. To this end, Gaussian process dynamical model (GPDM,

[140]) was proposed as an extension of the GPLVM, where in addition to learn-

ing the low-dimensional subspace, variation in pose and appearance in subspace

motion is also modelled.

2.4.2 Discriminative Subspace Tracking

In case of discriminative approaches, the pose is inferred from the image directly

using two learnt mappings. First, from test image to learnt appearance repres-

entation (subspace); Second, from appearance subspace to pose space [32]. In

Elgammal and Lee [32], LLE is used to learn the silhouette embedding and the

mapping from low-dimensional silhouette subspace space to pose space is learnt

using RBF. In Ukita et al. [130], the appearance subspace is learnt from a 3D

visual hull generated from multiple-view silhouettes using GPDM. The pose sub-

space is learnt using PCA and, finally, the mapping from appearance to pose

subspace is learnt using RVM. Similarly, in Sun et al. [121], a mixture of prob-

abilistic PCA is used to learn the appearance subspace from silhouettes of image

sequences. PCA is used to learn the pose subspace and RVM to learn the map-

ping between the appearance and pose subspace. Then, using the learnt models,

the test silhouette is mapped to appearance subspace, then the embedded sil-

houette data is mapped to pose subspace using RVM, before estimating the pose

using inverse PCA in the pose subspace.

Finally, in a few subspace tracking systems, the advantages of generative and

discriminative have been combined together within the same framework [40, 4].
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2.4.3 Placing Our Work in the Subspace Human Motion

Tracking Classification

In the context of our classification of human motion tracking (Section 2.3.2), our

second human motion analysis work (Chapter 4), presents a generative mark-

erless multiple-view (number of cameras) human motion tracking algorithm

using studio sequences (acquisition environment) and learnt action subspace

(extended motion model-constraint)

In the context of the three central ideas in generative subspace human motion

tracking (Section 2.4.1), firstly, we use charting, a dimensionality reduction al-

gorithm, to learn the action model. Secondly, we use a modified version of the

particle swarm optimisation for our subspace tracking. Thirdly, the hypothesis

from PSO is evaluated without using any inverse mapping. We represent the

multi-view silhouettes using low-dim shape context-based histograms representa-

tion and learn the mapping between the pose space and shape-context histogram

space using multi-variate relevance vector machine. Given the learnt mappings,

we map our hypothesis from pose space to shape-context histogram space for

evaluation with test shape context histogram.

2.5 Video-based Human Motion Classification

Vision-based human action classification is the method of assigning an action

label to an input video sequence, with applications in surveillance and security,

gait analysis in sports, bio-medical and animation. The main challenge in human

motion classification is modelling the complex, unpredictable human motion.

Human action classification has been studied extensively in recent years. We

give a brief overview here and refer the reader to [74, 90] for recent surveys.

The steps involved in video-based human motion classification include extraction
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of discriminative features from video sequence, and assigning an action label to

extracted features from a set of predefined action class labels. The extraction

of discriminative features is essential for accurate human motion classification.

Broadly, the human action classification literature can be classified based on di-

mensionality of feature. The derived features can be further classified as either

image-based features [25] or skeletal features [66]. We next provide a brief sum-

mary about a few representative human motion classification algorithms in each

literature class.

2.5.1 High-Dimensional Feature-based Classification

Of the two types of features, image-based ones are extracted directly from the

video sequences for classification, while skeletal features are obtained from motion

capture data or from tracking algorithms (Chapter 3 and Chapter 4). Image-

based features are more widely used in human motion classification systems. The

feature representations should, ideally, generalise over inter-person appearance

variations for the same action, while simultaneously being discriminative enough

to achieve accurate action classification.

Image Features. Bobick and Davis [14] use a silhouette-based feature known

as binary motion energy image, obtained by summing the differences between

successive frames in an action. The motion energy image provides a map of

motion occurrence in the image. Wang et al. [143] obtain a silhouette-based

representation, by applying a R-transform [41]. Blank et al. [37] represent the

silhouette sequence information as 3D space-time features. In the work of Lin

et al. [64], shape and motion information are extracted from the images and

represented as action-prototype tree for efficient classification. Ning et al. [81]

use appearance and position context descriptors as features; they train a dis-

criminative conditional random field, termed latent pose estimators, where the

observation layer of the random fields is replaced by an image-to-pose discrimin-
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ative model. The above described approaches are 2D and depend on the camera

view point. Weinland et al. [145] address this issue by creating a 3D voxel

model obtained by combining silhouettes from multiple cameras. A recent de-

velopment in human motion classification is the use of key-frames or prototypes

to classify actions [90]. Sullivan and Carlsson [120] propose a shape-matching

classification algorithm, where the test input sequence is compared with labelled

key poses. Weinland and Boyer [144] propose a distance-based representation for

silhouettes, using distance between action sequences and a set of discriminative

key-pose exemplars.

Skeletal Features. While image-features are popular and have received great

interest in the research community, there are a few human motion classification

algorithms which are based on skeletal features. Zsolt et al. [47] propose such

a system based on action primitives, which are sub-sequences of action derived

from the complete action sequence. Lv et al. [66] model the dynamics of 3D

joint position using HMM and learn a weak classifier for each joint position,

which are then combined by the multi-class adaboost. A few algorithms combine

tracking and classification [47]. Natarajan et al. [77] propose a similar system

using conditional random fields.

2.5.2 Low-Dimensional Features-based Classification

The work discussed so far in human action classification use high-dimensional

feature representations, resulting in increased computational complexity while

assigning the action label. An alternative approach addressing computational

complexity is learning low-dimensional subspaces for image or skeletal features.

Techniques for identifying low-dimensional subspaces include local linear embed-

ding [52], GPVLM [59] and its variations, locality preserving projections (LPP)

[141], and local spatio-temporal discriminant embedding [53]. Similar to high-

dim features-based classification, low-dim features-based classification can also
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be further categorised into techniques using image features and skeletal features.

Image Features. Image-features-based classification algorithms are comparatively

more popular than skeletal-features-based algorithms and widely used, with the

pre-dominant feature being silhouettes. Wang [141] uses LPP with image sil-

houettes to learn the subspace for action classification. Chin et al. [122] learn

silhouette subspaces using local linear embedding (LLE). Jia and Yeung [53] use

local spatio-temporal discriminant embedding (LSTDE), where similar class sil-

houettes are mapped to nearby positions in the subspace. Niebles et al. [78]

calculate patches of normalised space and time derivatives, and reduce the di-

mensionality using PCA after smoothing. Recently, Blackburn et al. [13] used

Isomap to learn the subspace representation for smoothed silhouette sequences.

Dynamic time warping is later used for matching test trajectories with database

trajectories.

Skeletal Features. A few algorithms derive the low-dimensional subspace for

skeletal features. In Han [57], the subspace for multiple actions are learnt from

3D skeletal features using hierarchical GPLVM (HGPLVM), a hierarchical exten-

sion of GPLVM. Additionally, there are subspace systems which again function

as combined tracking-classification systems [96]. Chen et al. [20] use switched-

GPDM to perform simultaneous action tracking and classification in the sub-

space. Similarly Jaeglli et al. [52], in addition to tracking in a subspace learnt

using LLE, also perform action classification. Raskin et al. [96, 58] propose

two systems for simultaneous action tracking and classification using HGPLVM

[96] and GPLVM [58]. Recently, a few algorithms focus on enhancing the inter-

class distance in the subspace. Such classification algorithms can be termed as

discriminative classifiers [132, 109]. In Shyr et al. [109], a novel subspace es-

timation technique called sequence kernel dimension reduction is proposed for

classification. Urtasun et al. [132] propose a discriminative GPLVM for action

classification.
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Based on our survey of the classification literature, we observe that image-based

features are more widely used. This can be primarily attributed to the need

to extract skeletal features either using a tracking algorithm or a motion cap-

ture system, whereas image-based features can be readily extracted from video

sequences.

2.5.3 Placing Our Work in the Human Motion

Classification Literature

In the context of existing human classification literature, our final motion ana-

lysis work presents markerless multiple-view human motion classification using

low-dimensional skeletal features. Charting to learn separate action-specific sub-

spaces (low-dimensional) from 3D joint angles (skeletal features). Moreover,

we derive discriminative subspace motion patterns and key-frame-based repres-

entations from skeletal features, which are used in a multi-layered classification

scheme.
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Table 2.1: Summary of some representative generative human motion tracking
approaches

Algorithms Basic idea of the algorithms

[9] Tracking is performed using a stochastic optimisation based on annealed particle filter

using Scape body model.

[10] Hierarchical annealed particle filter, combining partitioned sampling and annealed particle

filter is proposed for tracking using a RAMSIS body model.

[16] Tracking is set up as simple linear systems based on differential motion estimation using

the product of exponential maps and twist motions. Additionally a novel factorization

technique is proposed to recover the kinematic chain model.

[17] Tracking is performed using particle filtering constrained by an anthropomorphic walker, a

stochastic controller that generates forces.

[19] A particle filter-based algorithm using high-level behaviour, learnt using variable length

markov models is proposed to track movements in real-time. Additionally a fast evaluation

method based on volumetric reconstruction and blobs fitting is proposed.

[22] A filtering based approach is proposed that uses hybrid Monte Carlo (HMC) to obtain

samples in high dimensional spaces. An important component of the approach is the use of

Multiple Markov chains that use posterior gradients to rapidly explore the state space,

yielding fair samples from the posterior.

[35] A multi-layer tracking framework that combines stochastic optimization (interactive

simulated annealing), filtering, and local optimization is proposed.

[42] An efficient Nonparametric Belief Propagation (NBP) algorithm is proposed in this paper

for 2D articulated body tracking

[48] A hierarchical partitioned particle filter (HPPF), is proposed using the prior knowledge of

the structure of the human body. Additionally a motion model defined as action primitives,

a sequence of consecutive poses, is used for stochastic prediction.

[54] 2D human body part decomposition algorithm (HBPDA) that recovers all the 2D body

parts of a subject by observing the shape of silhouette deformation, is proposed. The

recovered 2D body parts are then integrated to obtain a 3D model of the subject.

[70] Tracking is performed using extended Kalman filter, where the measurements are labeled

voxel data.

[72] Markerless motion capture system using a repository of visual hulls and articulated ICP.

[79] A particle filtering based system, which estimates the pose from monocular image

sequences.

[84] Tracking framework is proposed using dynamic Bayesian network and switching linear

dynamical system using 2D scaled prismatic model.

[85] A tracking framework is proposed to handle real-world conditions including occlusions,

error recovery, auto-initialisation. The action of different people are modelled using

factored hierarchical hidden Markov model.

[100] Tracking framework incorporating a motion prior modelled as twists. The tracked motion

patterns are matched to training patterns, based on which prediction for the next frame is

performed.

[110] Tracking is formulated using a Bayesian framework integrated with stochastic optimisation.

3D pose is estimated from monocular images.

[142] In this work, quantitative evaluation of different particle filtering human motion tracking

algorithms is performed. Additionally a novel particle filter termed as optimal unscented

particle filter is proposed.
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Table 2.2: Summary of some representative discriminative human motion track-
ing algorithms

Algorithm Basic idea of tracking algorithms

[12] Pose estimation frameworks is proposed by learning the mapping from Haar features to

pose space using multi-dimensional gradient boosting regression.

[105] Tracking framework is formulated as a probabilistic inference problem. First, feature points

are localised to landmark points in the human body such as elbows position, limb end-point

position, before mapping to 3D pose using the probabilistic framework.

[116] A mixture density propagation algorithm, based on conditional Bayesian mixture of experts,

is proposed to estimate 3D human motion from silhouettes.of monocular video sequences.

[104] Pose is estimated by learning the mapping from image space, comprised of a combination of

histogram of shape context and histogram of local appearance context, using relevance

vector machine.

[3] Quantiative evaluation of different regression techniques, ridge regression, relevance vector

machine (RVM) regression and support vector machine (SVM) regression, are evaluated for

a single mapping from shape descriptors to pose space and RVM is found to perform the

better than the other techniques.

[83] Pose is inferred from histogram of gradient orientation using multiple support vector

machine-based local linear regressors

[148] SIFT-like descriptors are represented in a bag-of-words framework and the mapping

function from image space to pose space is learnt using Gaussian process regression.

[133] An online probabilistic regression scheme is proposed, where a local mixture of Gaussian

processes are used to estimate the poses

[125] Multivariate relevance vector machines are used to learn the mapping from image space to

pose space and infer the pose from a given input image.

[38] Bayesian mixture of experts is used to learn the mapping from novel silhouette descriptors,

called Gaussian mixtures silhouette shape descriptor, to pose space to infer the pose.

[34] An exemplar-based approach, where test motion exemplars are matched with training

motion exemplars and pose is estimated from the match.

[106] An exemplar-based approach, where matching is performed through brute force, using a

variation of locality sensitive hashing for fast matching.

[128] An exemplar-based approach using a probabilistic exemplar tracking model

[75] An exemplar-based approach, where exemplar 2D views of the human body with different

configurations and viewpoints, with labelled joint locations are stored. Given an input

images, matching is performed with the stored views using shape context matching and

pose is inferred.
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Table 2.3: Summary of some representative subspace human motion tracking
approaches

Algorithm Basic idea of the tracking algorithms

[45] Generative subspace technique, where first the latent pose space is obtained using

back-constrained GPLVM. Next, the subspace is partitioned into clusters using

unsupervised EM clustering and the temporal dependencies between the clusters are learnt

using variable length Markov model. Finally, an efficient volumetric reconstruction

algorithm, is used to evaluate the candidate pose obtained from the probabilistic subspace

tracking algorithm.

[110] Generative subspace technique, where PCA is used to reduce the dimensionality of a

created action database, and particle filter is used as the tracking algorithm

[135] Generative tracking using hill climbing approach in subspace, learnt by GPLVM.

[1] Generative tracking framework, where the training data is clustered and PCA is used to

reduce the dimensionality in each cluster. Next, the local dynamics are learnt and used

within an pose inference algorithm defined in the subspace.

[52] Generative tracking framework in subspace learnt using LLE, where the pose is inferred

using a recursive Bayesian sampling algorithm. The evaluation of the hypothesis is

performed using the pose subspace to appearance subspace mapping learnt using RVM.

[26] Generative tracking framework in latent pose space learnt using hierarchical GPLVM and

annealed particle filter is used to estimate the pose.

[137] Generative tracking framework in subspace learnt using GPDM. The pose estimation is

performed using an approximate recursive estimation technique.

[96] Generative tracking framework, which is an extension of [58]. Tracking is performed in

subspace learnt using hierarchical GPLVM. Additionally, the pose estimation is performed

using a novel hierarchical annealed particle filter.

[61] Generative tracking system using LLC to learn the subspace, where a simple

multi-hypothesis tracker is used.

[33] Generative tracking framework in a subspace, defined by torus, which is obtained as a

combined representation of appearance and pose information. The pose is estimated using

Bayesian tracking

[32] Discriminative tracking framework, where LLE is used to learn the silhouette embedding

and the mapping from low-dimensional silhouette subspace space to pose space is learnt

using RBF

[121] Discriminative tracking system, where mixture of probabilistic PCA is used to learn

appearance subspace for silhouettes. RVM is used to learn the mappings between the

appearance subspace and pose subspace, learnt using PCA.

[130] Discriminative tracking framework similar to [121], where GPDM is used to learn the

appearance subspace. Unlike similar discriminative subspace tracking systems, a particle

filtering based scheme is employed in the appearance subspace to estimate the state, which

is mapped to pose subspace and full-dim pose space using RVM and PCA respectively.

[40] Combination of discriminative and generative methods, where GPLVM used to learn both

the pose and appearance subspaces. Bayesian mixture of experts and RVM are used to

learn mappings between the two subspaces. BME used to initialise generative tracker in

pose subspace, discriminatively. The candidates from the pose subspace are evaluated

through RVM mapping learnt from pose subspace to appearance subspace.
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Table 2.4: Summary of some representative human action classification al-
gorithms

Algorithm Basic idea of algorithm

[25] High-dim classification algorithm where actions are represented using 3D occupancy grids, derived

from image features.

[66] High-dim classification algorithm where actions are represented as set of feature spaces corresponding

to joint motion. Additionally, the dynamics of each action class is learned using HMM. Finally several

weak classifiers defined on HMM’s observation probability are combined using multi-class Adaboost

algorithm.

[64] High-dim classification approach, where an action is represented as a sequence of prototypes.

Specifically, an action prototype tree is learnt from joint shape and motion space. Using the prototype

learnt, a lookup table of prototype-to-prototype distances is created. The actions are classified by

sequence matching between the lookup table and action prototype tree.

[71] High-dim classification scheme, where action is represented as a vocabulary forest of local

motion-appearance features. The appearance features are obtained using various interest point

detectors: MSER, Harris Laplace and Hessian-Laplace. Additionally, associated motion vectors are

derived from optic flow.

[81] High-dim classification algorithm based on conditional random field. A novel conditional random field

is proposed, where the observation layer, defined on silhouette, is replaced with a latent pose estimator.

[62] High-dim classification scheme is proposed, where human actions are represented as action graphs,

where each node corresponds to a bag of 3D points, derived from sequences of depth maps.

[47] High-dim combined tracking and classification scheme is proposed by introducing an action primitives

model, which are sub-sequences of action derived from the complete action sequence.

[77] High-dim combined tracking and classification framework using conditional random field, whose

observation potentials are computed using shape similarity, while the transition potentials are

computed using optical flow

[117] High-dim recognised human motions based on discriminative conditional random field (CRF) and

maximum entropy Markov models (MEMM), using image descriptors combining shape context and

pairwise edge features extracted on the silhouette

[141] Low-dim subspace classification framework, where dynamic shape subspaces of moving humans,

represented by silhouettes, are learnt using locality preserving projections (LPP). Action classification

is then achieved in a nearest-neighbor framework.

[57] Low-dim subspace classification framework is proposed, where firstly, action subspace of skeletal poses

are learnt using hierarchical Gaussian process latent variable model (HGPLVM). Next motion patterns

are extracted from the subspace and used in a cascade CRF. Finally a trained SVM classifier is used to

predict the action class.

[96] Low-dim subspace combined tracking and classification framework using hgplvm and hierarchical

annealed particle filter.

[20] Low-dim subspace combined tracking and classification framework, where switched GPDM is used to

learn a shared subspace from skeletal pose and silhouette moment features.

[109] A novel dimensionality reduction called sequence kernel dimension reduction approach (S-KDR) is

proposed to find a low-dim representation to perform efficient classification.

[122] Low-dim subspace classification scheme, where the silhouette images are represented as a subspace

learnt using LLE. Additionally, the learnt activity subspaces are extrapolated to a new test silhouette.

[53] Low-dim subspace classification system is proposed for classifying human actions on embedded

low-dimensional subspaces, learnt using a novel subspace embedding method, called local

spatio-temporal discriminant embedding (LSTDE).



Chapter 3

Markerless Human Motion

Tracking using Hierarchical

Particle Swarm Optimisation

3.1 Introduction

Tracking articulated human motion from video sequences forms the backbone of

video-based human motion analysis with applications in virtual character anima-

tion, medical gait analysis, biometrics, human–computer interaction and others.

In this chapter, we present our first human motion analysis algorithm, a gen-

erative full-body markerless human motion tracking framework from multi-view

sequences. We formulate tracking as a non-linear optimisation problem which we

solve using particle swarm optimization (henceforth PSO), a swarm-intelligence

55
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algorithm with growing popularity [55, 87]. We show experimentally that a small-

scale particle swarm, used with a standard body model and cost function, can

produce tracking results which compare well or surpass those of recent, sophist-

icated algorithms based on particle filtering [30].

Literature Classification Context. In the context of classification of human motion

tracking literature, defined in Section 2.3.2, we present a generative markerless

multiple-view (number of cameras) human motion tracking algorithm using

studio sequences (acquisition environment) using hierarchical particle swarm

optimisation (hierarchical search constraint) based system functioning as a

black-box system (no motion prior).

System Overview. In this chapter, we present our first human motion analysis

algorithm, a markerless full-body articulated human motion tracking algorithm

formulated for multi-view video sequences acquired in a studio environment, using

a novel, hierarchical version of the PSO algorithm, called H-PSO (for hierarch-

ical PSO), overcoming the limits of the popular particle filtering (Section 2.3.1)

(henceforth PF) applied to articulated body tracking. Firstly, it removes the need

for a sequence-specific motion model: the same algorithm with unmodified para-

meter settings is able to track different motions with no prior knowledge of the

motion itself, producing results comparable with or superior to PF and related

approaches. Secondly, HPSO addresses the problem of divergence, whereby the

system is able to recover after a wrongly estimated pose. Divergence is sometimes

combated by introducing additional, higher-level motion models [45] devising ac-

curate predictions in the presence of known types of motions. In contrast, our

tracking approach is designed to recover efficiently from an incorrect pose es-

timate and continue tracking without motion models. Thirdly, using the same

mechanism deployed to recover from an incorrect pose estimate, HPSO estim-

ates the first-frame pose with remarkable robustness, starting the search from a

canonical pose.
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HPSO extends our previous work on upper-body static pose estimation (no track-

ing) from multiple still images in videoconferencing-like scenes [50], by propagat-

ing the information from the previous instant (location of optimum at conver-

gence) to the next instant and initializing the search around it (tracking). In order

to ensure a fair quantitative comparison of HPSO and PF-based approaches, we

use the computational framework provided by Brown University [8] to evaluate

articulated full-body tracking algorithms using multi-view sequences. This pack-

age includes an implementation of PF and APF. We implemented our tracking

approach within their framework by substituting the PF code with our HPSO al-

gorithm and our implementation of partitioned sampling annealed particle filter

(PSAPF). All other parts of the original implementation were kept the same.

We report a comprehensive and comparative experimental evaluation of HPSO.

First, we report results of experimental comparisons of our algorithm with

the particle filter (PF), the annealed particle filter (APF) and the partitioned

sampling annealed particle filter (PSAPF) using the computational framework

provided by Balan et al. [8]. HPSO accuracy and consistency are better than

PF and compare favourably with those of APF and PSAPF, outperforming it in

sequences with sudden and fast motion. Second, we analyse the effect of different

cost functions. Third, we test the behaviour of the algorithm against variations

of parameters and settings, specifically number of particles, number of cameras,

model hierarchy, and localization of search for limb-specific pose estimation (guid-

ing cylinders). While the hierarchical PSO (HPSO) approach, successfully estim-

ated a wide range of different motion with a fixed set of parameters resulting in

an unnecessary overhead in computational complexity. We address this in an

adaptive approach, called APSO, which preserves the black-box property of the

HPSO in that it requires no parameter value input from the user. Instead, it

adaptively changes the value of the search parameters online, depending on the

quality of the pose estimate in the preceding frame of the sequence. We compare

the adaptive hierarchical PSO with HPSO and report the results. Finally, we
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compare the adaptive hierarchical PSO with HPSO and report the results.

Chapter Layout. This chapter is organised as follows. Since we compare our

proposed algorithm with particle filtering, we give a brief introduction to particle

filtering, annealed particle filtering and partitioned sampling annealed particle

filtering in Section 3.2. Section 3.3 presents the general PSO algorithm. Section

3.4 presents the genetic algorithm and simulated annealing. In Section 3.5 we

present a discussion of PSO behaviour. Section 3.6 describes the body model and

cost function used in our tracking approach while Section 3.7 presents the HPSO

algorithm. Section 3.8 addresses the issue of adaptively setting the HPSO para-

meters to reduce the computational complexity. Section 3.9 reports the results

of our experimental evaluation. Finally, Section 3.10 offers some conclusions and

ideas for future work.

3.2 Particle Filtering

3.2.1 Standard Particle Filter

We briefly revise particle filtering (PF) as the basis of several recent articulated

body trackers, and the main solution we use for comparative experiments. In

PF, the tracking problem is formulated in a Bayesian framework: the goal is to

estimate the posterior probability density function (pdf) p(Xt|Yt:1) of the state

Xt at time t given a sequence of observations Y1:t until that time instant.

The pdf is obtained recursively using the state dynamics p(Xt|Xt−1) and the

image observation likelihood p(yt|Xt), which is used as the weighting function,

w(X). Using these distributions, the pdf is formulated as

p(Xt|yt) =
ˆ
p(Xt|Xt−1)p(yt|Xt)dXt−1 (3.1)
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This pdf is approximated by a set of N samples (called particles), each represent-

ing a particular instance of the state vector. Each particle is associated with a

weight reflecting the estimate of the pdf value for the state that the particle rep-

resents. Weights are denoted with (xit, πit)Ni=1, where xit represents the ith particle

at time step t and πit is the normalised weight of the particle (related to the estim-

ated pdf value). At each time step, the particle set is propagated using the state

dynamics. The propagated particle set is then weighted by the likelihood w(X)

and normalised. A new unweighted particle set is obtained by resampling; in this

step, particles are drawn from the particle set according to their weights. The

process runs once for every time step. A detailed introduction and pseudocode

of particle filters can be found in [6].

PF moves beyond traditional KF as it deals with non-linear non-Gaussian (hence

multi-modal) pdfs. A number of variations of the PF have been proposed for

articulated body tracking, including the annealed particle filter [30] and the par-

titioned sampling approach [67]. A brief introduction to the latter two is given

below.

3.2.2 Annealed Particle Filtermeters

Deutscher and Reid in subspace [30] introduced the annealed particle filter (APF)

for articulated human tracking, in which simulated annealing is used to guide the

particles towards the global optimum and reduce the risk of getting stuck in local

optima. Simulated annealing is integrated into the particle filter framework by

introducing a parameter βm (Eq. 3.2), which smoothes the original weighting

function wm (Eq. 3.2) within a multi-layered search. Each layer corresponds to

a different particle filter

wm(X) = wm(X)βm . (3.2)
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Following the simulated annealing paradigm, the weighting function is smoothed

in the initial layers, then becomes increasingly detailed. This is achieved by a

set of values βm < ... < β1 < β0, with m the number of layers, similar to an

annealing schedule. A diffusion covariance is used to scatter the particles at each

annealing layer; the amount of diffusion decreases with each layer. A detailed

description of the APF is found in Deutscher and Reid [30].

3.2.3 Partitioned Sampling

A well-known approach for reducing the complexity of search in many di-

mensions is the hierarchical decomposition of the search space into sub-spaces

whenever these can be identified meaningfully within a given problem. Parti-

tioned sampling, as proposed by [67] for hand tracking, hierarchically decom-

poses the search space into partitions, which are estimated independently of one

another. Partitioned sampling obtains superior results over particle filtering, by

applying the dynamics and an appropriate weighted resampling sequentially in

each partition. The weighted resampling is used to obtain a new particle set,

re-weighted with respect to an importance function, which is peaked in the same

region, as the posterior restricted to the current partition. Additionally, the

weighted resampling operation ensures the pdf is not altered. The algorithm can

only be used when specific conditions hold [67]. In partitioned sampling the de-

composed dynamics and weighted resampling operations are applied sequentially

to each partition. The weighted resampling operation ensures more particles

populate the peak regions of the posterior restricted to the partition. The joint

observation likelihood in the final partition evaluates the complete search space

and constructs the posterior pdf. Bandouch et al. [10] incorporate an APF within

the partitioned sampling framework (PSAPF), which implies that an annealing-

like iterative approach is adopted in the decomposed dynamics and importance

function of each partition. PSAPF is used for estimating articulated human pose:
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the pose of the torso is estimated before focusing the search on the limbs and

head. This is formulated as a set of hierarchically coupled local annealed particle

filters. This approach does result in better accuracy than APF.

Our system seeks to address the following three drawbacks of the PF approaches:

(i) divergence: the inability to recover from wrong pose estimates and resume

tracking correctly; (ii) the need for manual initialization; (iii) the need for a

sequence-specific motion model.

3.3 Particle Swarm Optimisation

PSO is a swarm intelligence technique introduced by Kennedy and Eberhart [55].

The idea originated from the simulation of a simplified social model, where the

agents were thought of as birds and the original intent was to graphically sim-

ulate the unpredictable choreography of a bird flock in their search for food.

The original PSO algorithm was later modified by several researchers to im-

prove its search capabilities and convergence properties. In this thesis we use

the PSO algorithm with inertia introduced by Shi and Eberhart [107]. PSO

has been growing in popularity in a number of research areas as a technique

to solve large, non-linear optimisation problems, as shown in the recent survey

by Poli [87], but its applications to computer vision are still rather limited. To

the best of our knowledge, ours is the first application of PSO to articulated

human body tracking. Zhang et al. [146] report an application of a variant of

PSO, called sequential PSO, to box tracking in video sequences. The authors

suggest, in fairly descriptive terms, that the PSO part of their framework could

be regarded as multi-layer importance sampling, although the exact relationship

between importance sampling and PSO has not yet been completely analyzed; we

offer some observations in Section 3.5.3. Anton-Canalis et al. [5] and Kobayashi

et al. [56] are other examples of work in which PSO has been applied to non-

articulated object tracking. Systems using PSO to estimate upper-body human



CHAPTER 3. HIERARCHICAL PARTICLE SWARM OPTIMISATION 63

pose with static frames [50, 51], and preliminary attempts to PSO tracking using

stereo data [99] are reported. The work reported in this chapter hinges on an

experimental analysis of our particle swarm search, HPSO, compared to recent

PF-based approaches, and others with qualitative comparisons. In addition, this

chapter differs from our previous work in several ways, including using video se-

quences instead of single frames, multi-view silhouettes instead of stereo data,

and full-body model instead of an upper-body one.

3.3.1 PSO with Inertia

Assume a d-dimensional search space S ⊆ Rd defined by a pair of constraint

vectors a,b ∈ Rd, a swarm consisting of N particles, each particle representing

a candidate solution to the search problem and a cost function f : S → R

defined on the search space. The i-th particle is represented as an d-dimensional

vector xi = (x1, x2, ..., xd)T ∈ S subject to a ≤ xi ≤ b. The velocity of this

particle is also an d-dimensional vector vi = (v1, v2, ..., vd)T ∈ S. The best

position encountered by the i-th particle so far (personal best) is denoted by

pi = (p1, p2, ..., pd)T ∈ S and the value of the cost function at that position

pbesti = f(pi). The index of the particle with the overall best position so far

(global best) is denoted by g and gbest = f(pg). The PSO algorithm can then be

stated as follows:

1. Initialisation:

• Initialise a population of particles {xi}, i = 1 . . . N, with positions

randomly within S and velocities randomly within [−1, 1]. For each

particle evaluate the desired cost function f and set pbesti = f(xi).

Identify the best particle in the swarm and store its index as g and its

position as pg.

2. Repeat until the stopping criterion is fulfilled:
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• Move the swarm by updating the position of every particle xi, i =

1 . . . N , according to the following two equations:

vit+1 = ωvit + ϕ1(pit − xit) + ϕ2(pgt − xit)

xit+1 = xit + vit+1 (3.3)

where subscript t denotes the time step (iteration).

• Ensure that a ≤ xi ≤ b. Search constraints are easily enforced

through particle velocities. If the particle violates the search space

boundary in some dimension, its position in that dimension is set to

the boundary value and the corresponding velocity entry reversed.

• For i = 1 . . . N update pi, pbesti, pg and gbest.

The stopping criterion is usually either a maximum number of iterations or a

threshold on gbest improvement. The parameters ϕ1 = c1rand1() and ϕ2 =

c2rand2(), where c is a constant and rand() is a random number drawn from

[0, 1], influence the social and cognition components of the swarm behaviour,

respectively. In line with [1], we set c1 = c2 = 2, which gives the stochastic factor

a mean of 1.0 and causes the particles to "overfly" the target about half of the

time, while also giving equal importance to both social and cognition components.

Parameter ω is the inertia weight which we describe in more detail next.

3.3.2 The Inertia Weight

The inertia weight ω plays an important role in directing the exploratory beha-

viour of the particles: higher inertia values push the particles to explore more

of the search space and emphasise their individual velocity, while lower inertia

values force particles to focus on a smaller search area and move towards the best
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solution found so far.

The inertia weight can remain constant throughout the search, or change with

time. In our work, we use a time-varying inertia weight. We model the change

over time with an exponential function which allows us to use a constant sampling

step while gradually guiding the swarm from a global to a more local search:

ω(c) = A

ec
, c ∈ [0, ln(10A)], (3.4)

where A denotes the starting value of ω when the sampling variable c = 0 and

c is incremented by ∆c = ln(10A)/C, where C is the desired number of inertia

weight changes. The optimisation terminates when ω(c) < 0.1.

As shown in Figure 3.2 (a), when the inertia is high, the particles explore larger

portions of the search space (global search); with decreasing inertia, they settle

around the globally best particle (local search).

3.4 Comparable Optimisation Algorithms

3.4.1 Genetic Algorithm

Genetic algorithm (GA) is an example of evolutionary algorithms generating solu-

tion to an optimization problem [82], with a technique inspired by natural evol-

ution. Specifically, genetic operators such as mutation, selection, and crossover

are used. In GA, a population of chromosomes (hypotheses) explore the search

area and find the optimal solution at the end of a run, defined as the number

of generations, or iterations. In the algorithm run, a population of chromosomes

are randomly initialised, then evaluated using the defined fitness function. Next,

based on the fitness of the chromosomes, the next generation is selected, followed

by the application of crossover operation, creating a child by combining feature
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(a) (b)

(c)

Figure 3.2: The effect of decreasing inertia, shown for a 3 DOF search space.
The bounding box represents the search limits. The pink dot gives the i-th
particle position, and the green dot, the global optimum for the frame considered.
At high inertia values (a), particles explore large portions of the search space;
particles overshooting the allowed boundary are placed onto the boundary for that
iteration. The swarm localization effect for decreasing inertia values is shown in
(b-c): fewer particles try to search outside the boundary, and search concentrates
around the global optimum.
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parameters from selected parents, and mutation operation, randomly changing a

few feature parameters in each chromosome. This process is then repeated until

the terminating condition is met.

3.4.2 Simulated Annealing

Simulated annealing (SA) is an optimisation technique [51], inspired by anneal-

ing process of metals. It seeks to avoid being trapped in local minima. Unlike

gradient descent, SA accepts occasionally states which increase the fitness func-

tion, in addition to accepting states which decrease the fitness function. The

annealing schedule uses a parameter termed as temperature T. Initially a global

search is performed at high T, which is gradually decreased until a local search

is performed. The annealing schedule is repeated until the terminating condition

is met.

3.5 PSO Discussion

In this section, we present a discussion of PSO, and compare its behaviour with

GA, SA and Bayesian filtering, before discussing convergence and its behaviour

with multimodal fitness functions.

3.5.1 Comparison of PSO with GA

PSO is similar in a number of ways to GA. Both algorithms have a popula-

tion of candidates; both update their population iteratively, while searching for

the optimum stochastically. However, PSO differs from GA in the following

ways. Firstly, PSO does not use genetic operators like crossover and mutation.

Secondly, in GA, selection is used to choose chromosomes for each generation,

while PSO does not have a selection parameter and the entire population is up-
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dated in each iteration. Finally, in GA all chromosomes share information with

each other, while in PSO only the global best particle’s information is shared with

the population. Compared with GA, in PSO all the particles tend to converge

to the optimum solution quicker [31]. Additionally, in PSO, the search limits or

constraints are directly integrated into the framework, whereas such a provision

is not present in GA.

3.5.2 Comparison of PSO with SA

The annealing schedule of SA and varying inertia weight in PSO produce sim-

ilar behaviour: an initial global search followed by decreased search area [51].

However, there exists a basic difference in the optimisation framework, primarily,

PSO is a population-based optimisation scheme, while SA has only candidate

hypothesis. Ivekovic et al. [51], demonstrate that PSO is able to estimate poses

more accurately, than SA, which can be attributed to population of particles

(candidates) in PSO.

3.5.3 PSO and Bayesian Filtering

It is a common misconception that the PSO algorithm is an implementation of

a Bayes filter, in particular, the particle filter (PF), and that the PSO particles

should therefore model a probability distribution over the available system states.

The confusion usually arises from the choice of terminology: the particle filter uses

particles to estimate the probability distribution over the system states, while the

PSO uses particles to explore the cost function landscape. The PSO cost function

does not have to be a probability distribution. The fitness associated with the

PSO particle is therefore not the same as the PF particle weight. Additionally,

each PSO particle also has its own velocity, a notion not present in the PF. Note

that the PSO particle velocity is a property of the particle and not a component

of the estimated state. A comparison of APF and PSO is shown in Figure 3.3.
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Figure 3.3: Illustration of pose estimation in a given frame for (left) APF and
(right) PSO, where the red particle is the global best particle.

3.5.4 Convergence

Although the PSO algorithm appears deceptively simple, it is in fact a stochastic

interacting particle system which is non-trivial to analyse. Its convergence de-

pends, among others, on the choice of a cost function. The research on PSO

convergence is still very much ongoing and the latest results by Poli [88] analyse

the convergence behaviour of a stochastic PSO system under stagnation and give

full account of the PSO sampling distribution, modelling PSO search behaviour.

A number of experimental studies demonstrating the power of PSO search on

specific problems have also been published recently [5, 56].

3.5.5 Multimodality

In our implementation, PSO particles always converge to a single state estimate
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(the global optimum estimate). One reason is that the velocity update equation

uses an inertia value parameter which is made to decrease over the iterations.

As this happens, the attraction of every particle to the current global optimum

increases until it eventually completely dominates the PSO behaviour, focusing

the search of all particles and forcing them to converge onto a single estimate.

Notice that the swarm could also be partitioned into sub-swarms, each using its

own global best (i.e., over the sub-swarm). In this case, the algorithm would

return a set of candidate optima at convergence. Our implementation does not

support this option, as a single estimate seems to provide sufficient accuracy in

our experiments.

3.5.6 Search Complexity

Unlike the Bayesian filtering scheme, PSO is an iterative search algorithm. Note

that, although, PF is not an iterative algorithm, some variations like the APF

[30] are iterative. Consequently, PSO, being an iterative search algorithm, does

require more search effort to estimate the global optimum, compared to the PF

algorithm. However, PF in order to estimate the global optimum requires a

higher number of particles (order of hundred or thousand), while PSO requires

fewer particles (order of ten). Furthermore, in our implementation, the increased

PSO search effort does not result in an increase pose estimation time, owing to

our proposed hierarchical evaluation scheme.

3.6 Body Model and Cost Function

This section summarizes the main features of the computational framework made

available by Balan et al. [8], which we use in our experiments to enable a fair

comparison with other tracking algorithms..
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3.6.1 Body Model

The human body is modelled as a collection of truncated cones (Figure 3.4), and

the underlying articulated structure is modelled with a kinematic tree containing

13 nodes. Each node corresponds to a specific body joint. For illustration, the

indexed joints are shown overlaid on the test subject in Figure 3.4(b). Every node

can have up to 3 rotational DOF, while the root node also has 3 translational

DOF. In total, there are 31 parameters to describe pose and location of the full

body (Table (3.1)). Each location of the particle in the swarm represents a 3D

body model. The particles are evaluated by projecting the 3D body model onto

the image as described in the next subsection.

The co-ordinates of a PSO particle in this 31-dimensional space represent a body

pose and the position of the skeleton in the 3D world:

xi = (rx, ry, rz, α1
x, β

1
y , γ

1
z , ..., α

K
x , β

K
y , γ

K
z ) (3.5)

Here, rx, ry, rz denote the co-ordinates of the root of the kinematic tree, which

identify the position of the entire body in the world coordinate system; αkx, βky , γkz ,

k = 1 . . . K, are the rotational degrees of freedom of joint k around the x, y, and

z-axis, respectively. The equation does not strictly represent the state vector as

many parameters have a fixed value (e.g., the elbow joint only uses 1 of the avail-

able 3 DOF). The actual state vector used in our experiments is given in Table

(3.1). Considering the root position co-ordinates, rx, ry, rz, the total number of

DOF in the kinematic tree is K + 3, in our case 31, as said above.
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(a) (b) (c)

Figure 3.4: (a) The truncated-cone body model. (b) Joint positions. (c) Kin-
ematic tree

Table 3.1: Joints and their DOF
JOINT (index) # DOF

Global body position (1) 3 rx, ry, rz
Global body orientation (1) 3 α1

x, β
1
y , γ

1
z

Torso orientation (2) 2 β2
y , γ

2
z

Left clavicle orientation (3) 2 α3
x, β

3
y

Left shoulder orientation (4) 3 α4
x, β

4
y , γ

4
z

Left elbow orientation (5) 1 β5
y

Right clavicle orientation (6) 2 α6
x, β

6
y

Right shoulder orientation (7) 3 α7
x, β

7
y , γ

7
z

Right elbow orientation (8) 1 β8
y

Head orientation (9) 3 α9
x, β

9
y , γ

9
z

Left hip orientation (10) 3 α10
x , β

10
y , γ

10
z

Left knee orientation (11) 1 β11
y

Right hip orientation (12) 3 α12
x , β

12
y , γ

12
z

Right knee orientation (13) 1 β13
y

TOTAL 31

3.6.2 Cost Function

The cost function for PSO measures how well a pose hypothesis matches the

multi-view data from a set of synchronized cameras. The cost function proposed
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by Balan et al. [8] is shown in Eq. (3.9); we shall refer to it as model weighting

function. It consists of an edge-based part and a silhouette-based part.

(a) (b)

Figure 3.5: The sampling points obtained from the 3D cylinders for a) edge-
pixel map along the contours of the cylinder and b) uniformly sampled inside the
cylinders for the silhouette [30].

Edge-based Part. A binary edge map is obtained by thresholding the image

gradients. This map is then convolved with a Gaussian kernel to create an edge

distance map, which determines the proximity of a pixel to an edge. The model

points along the edge of the truncated cones are projected onto the edge map

and the sum of squared difference (SSD) between the projected points and the

edges in the map is computed using

Σe(X,Z) = 1
N

n∑
i=1

(1− pei (X,Z))2 (3.6)

where X are the projected model points, Z is the image from which the edge

distance map is computed and pei (X,Z) represent the value of the pixel map at

the projected model points.

Silhouette-based Part. A silhouette is obtained from the input images by stat-

istical background subtraction with a Gaussian mixture model. A pixel map is

then constructed, with foreground pixels set to 1 and background pixels set to

0. A predefined number of points on the surface of the 3D body model is then

projected into the silhouette image and the SSD between the projected points
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and the silhouette computed.

Σs(X,Z) = 1
N

n∑
i=1

(1− psi (X,Z))2 (3.7)

where psi (X,Z) represent the value of the pixel map at N projected model points,

which are sampled from the surface of the body model. The configurations of the

sampling points for the silhouette and edge-based part are shown in Figure 3.5.

Examples of an edge-distance and silhouette map are shown in Figure 3.6.

Finally, the edge and silhouette parts are combined to give the cost function value

f(xi) of the i-th particle :

f(xi) = Σe(X,Z) + Σs(X,Z) (3.8)

and for multi-camera systems the cost function is obtained by summing over

multiple (C) cameras,

f(Xi) =
C∑
j=1

Σe(Xi,Zj) + Σs(Xi,Zj) (3.9)

The accuracy of the pose estimate depends on that of the data computed from

the observations, here edge and silhouette maps. Clean (a,b) and noisy (c,d)

maps are shown for illustrations in Figure 3.6.
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(a) (b)

(c) (d)

Figure 3.6: (a) A good edge-distance map: all edges found are within the target
figure. (b) A good silhouette map: the contours follow closely those of the target
figure, and the silhouette region is practically complete. (c) A noisy edge-distance
map: some of the figure edges are missing (left contour of torso) and plenty of
distracting edges are present. (d) A noisy silhouette map: the contour departs
from that of the target figure (e.g., right foot area) and the silhouette region has
significant holes. Figures (c) and (d) have been taken from [8].
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3.7 HPSO Algorithm

The HPSO tracking algorithm consists of three main stages: initialisation, hier-

archical pose estimation and next-frame propagation. We describe the three steps

in detail next.

3.7.1 Initialisation

Initialisation is fully automatic. In the first frame of the sequence each particle in

the swarm is assigned a random position within the constrained 31-dimensional

search space S and a random 31-dimensional velocity vector drawn from [-1.0,1.0].

In every next frame, the search is initialised by propagating the solution from

the previous frame and sampling around it, as described later in this section.

3.7.2 Hierarchical Pose Estimation

Not unlike other algorithms, PSO becomes increasingly computationally intensive

as the dimension of the search space increases [99]. To limit this effect, we search

for the best pose hierarchically: the joints in the kinematic tree are optimised in a

sequence, starting with the torso and proceeding towards the limbs. This follows

the inherent hierarchical structure of the human body, where the configuration of

the joints at higher levels of the kinematic tree constrains that of joints appearing

at lower levels in the tree. As done commonly, we use this hierarchy to subdivide

the search space into several sub-spaces, each containing only a subset of DOF. In

our case, the hierarchy of the kinematic structure starts by estimating the position

and orientation of the entire body, considered as a single, rigid object in the world

reference frame. This result affects the configuration of every joint in the model.

The kinematic tree then branches out into five chains: one for the neck and head,

two for left and right arm, and two for left and right leg. The five branches of
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the kinematic tree are shown overlaid on the test subject in Fig. 3.4(c). We

split the search space into 12 different sub-spaces and correspondingly perform

the hierarchical optimisation in 12 steps, detailed in Table 3.2. Furthermore,

the estimate obtained for each sub-space is unchanged once generated. The sub-

spaces are chosen so that only one limb segment at a time is optimised, and

results are propagated down the kinematic tree.

Guiding Cylinders. At each step in the hierarchical search, the cylinders associ-

ated with the joints being optimised are the main optimisation targets (we call

them primary cylinders (PC)) Additionally, adjoining cylinders which follow on

the next hierarchical level are also projected to provide constraints to the search

(guiding cylinders (GC)). For instance, if the pose of the upper arm is being

determined by optimising the shoulder joint, the upper arm is projected as a

primary cylinder and the lower-arm cylinder is projected as a guiding cylinder.

Primary and guiding cylinders for each hierarchical step are shown in Fig. 3.18.

Guiding cylinders provide an effective temporal and spatial constraint in obtain-

ing the optimal pose for a limb. They provide an effective temporal constraint as

the guiding cylinder for the current frame pose estimation is taken from the pose

estimated in the previous frame (the only information propagated by HPSO).

The spatial constraint is obtained from the kinematic tree structure, as the guid-

ing cylinders are adjacent to the primary cylinder. The HPSO hierarchy (Table

3.2) defines which joint angles are estimated in a particular hierarchical step-the

corresponding limb segment is modelled with the primary cylinder. The guiding

cylinders, on the other hand, define which limb segments also have to be projected

at that particular hierarchical step to facilitate the estimation of the angle values

describing the primary cylinder configuration. The use of guiding cylinders does

not change the cost function – it only designates which limb segments should be

used to evaluate the cost function at a particular hierarchical level, in addition

to the limb segments defined by the hierarchy given in Table 3.2, and so provides
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Table 3.2: The 12 hierarchical steps of our HPSO full-body pose optimisation.
(Step 1) Global body position: (Step 7) Right lower arm orientation:

3DOF: rx, ry, rz 2DOF:γ7
z , β

8
y

(Step 2) Global body orientation: (Step 8)Head orientation:
3DOF: α1

x, β
1
y , γ

1
z 3DOF: α9

x, β
9
y , γ

9
z

(Step 3) Torso orientation: (Step 9) Left upper leg orientation:
2DOF: β2

y , γ
2
z 2DOF: α10

x , β
10
y

(Step 4) Left upper arm orientation: (Step 10)Left lower leg orientation:
4DOF: α3

x, β
3
y , α

4
x, β

4
y 2DOF: γ10

z , β
11
y

(Step 5) Left lower arm orientation: (Step 11) Right upper leg orientation:
2DOF:γ4

z , β
5
y 2DOF: α12

x , β
12
y

(Step 6) Right upper arm orientation: (Step 12) Right lower leg orientation:
4DOF: α6

x, β
6
y , α

7
x, β

7
y 2DOF: γ12

z , β
13
y

useful search constraints in case of occlusions (Section 3.9.1.1).

3.7.3 Next-Frame Propagation

HPSO propagates only a minimal amount of information between frames, and

does not incorporate any motion model. Once the pose in a particular frame has

been estimated, the swarm of particles is initialised in the next frame by sampling

a Gaussian distribution centred in the current best estimate. The covariance of

the Gaussian is set to a low value, in our case 0.01 for all joints, to promote

temporal consistency. The lack of a prediction based on a dynamic model is

motivated by two considerations: generality (we do not make assumptions on

the type of motion) and the effectiveness of the swarm search, which can explore

efficiently large portions of the search space starting from the initial distribution

of particles.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.7: The 12 steps in the hierarchical optimisation scheme are illustrated,
where the yellow cylinders correspond to body parts being optimised (primary
cylinders). Furthermore, the red cylinders in (d, f, i, k) are the guiding cylinders,
which constrain the search of the primary cylinders as explained in Section 3.9.1.1
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3.7.4 HPSO Comparative Discussion

Comparison with Hierarchical Filtering. Although both HPSO and PSAPF are

hierarchical algorithms estimating a state vector (pose), we observe two main dif-

ferences. First, similar to PF, the set of particles in PSAPF aims to approximate

a pdf, whereas HPSO does not. Second, PSAPF estimates within each sub-space

are finalised after processing the final sub-space, whereas HPSO’s estimate for

each level of the hierarchy are unchanged once generated.

Comparison with Combined Optimisation-Filtering. Gall et al. [35] describe a

multi-layer generative system combining global optimization, filtering and local

optimisation. A 3rd-order autoregressive motion model is trained online and used

to guide a stochastic optimisation. The first layer runs a global annealing search

in the space of possible skeletal poses. The results are smoothed to reduce jitter,

then used to refine the silhouette segmentation with a level-set algorithm. The

improved segmentation supports a refinement of the pose estimation, achieved

with a local search around the pose estimated in the first layer. Like HPSO,

this approach can initialise independently with no external input. Unlike PSO,

it predicts pose in the next frame with a 3rd-order autoregressive model, while

HPSO carries over to the next frame only the position of the current optimal

estimate of the state. In addition, Gall et al. require two segmentation steps at

each frame, while HPSO uses a single step. The level of sophistication of Gall

et al. is considerably higher than that of HPSO, yet results seem comparable by

accuracy and other parameters (Section 3.9), suggesting that even a small-scale

particle swarm search is capable of exploring a complex space with excellent res-

ults. For this reason HPSO does not employ motion models, either instantaneous

(predictive equations) or global (action models).
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3.8 Adaptive Hierarchical Particle Swarm

Optimisation 1

In this section, we present a new adaptive approach to multi-view markerless

articulated human body pose estimation from multi-view video sequences, using

Particle Swarm Optimisation (PSO). We address the computational complex-

ity of the HPSO, which successfully estimated a wide range of different motion

with a fixed set of parameters, but incurred an unnecemetersssary overhead in

computational complexity, as explained in Section 3.9.1.

When the range of motion we want to estimate with the same parameter settings

is very wide, for example, from a simple slow walk to a fast karate kick, the easy

solution is to set the starting inertia value A high enough to guarantee that the

exploration (rather than exploitation) is given sufficient priority and therefore the

fastest motion will be estimated reliably. While the high inertia value is indeed

necessary for sequences with fast and sudden motion, it is excessive in sequences

where the subject is only walking. In such slow sequences, the high starting

inertia value introduces an unnecessary computational overhead. To address

this inconsistency, we formulate an adaptive extension of the HPSO approach,

the APSO, where the starting inertia value, A, is adjusted on a frame-by-frame

basis. Our adaptive approach, called APSO, preserves the black-box property of

the HPSO in that it requires no parameter value input from the user. Instead,

it adaptively changes the value of the search parameters online, depending on

the quality of the pose estimate in the preceding frame of the sequence. We

experimentally compare our adaptive approach with HPSO on four different video

sequences and show that the computational complexity can be reduced without

reduction in accuracy.
1Dr. Spela Ivekovic was the primary researcher for this work, while the author of the thesis

was a contributing researcher. The contributions of the author include: implementiation of the
algorithm, experimentation, and design of the scheme to set τ0 and τ1.
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3.8.1 APSO Algorithm

In order to adjust the value of A automatically, the adjustment process must

exploit the information about the search performance in the preceding frame.

The APSO approach therefore adaptively changes the next-frame starting iner-

tia value for every hierarchical step in Table 3.2 by making use of two quality

thresholds, τ0 and τ1: when the pose estimate P e
s (t) for a hierarchical step s

in the current frame is evaluated as good, f(xes(t)) ≥ τ1, where f is the fit-

ness function, the search region in the next frame is kept small (At+1
s = w0) as

the tracker is thought to be on the target; when the pose estimate is very bad,

f(P e
s (t)) < τ0, the tracker is losing the target and hence the search region in the

next frame is expanded significantly (At+1
s = w2). When the estimate is average,

τ0 ≤ f(P e
s (t)) < τ1, the search region is expanded moderately (At+1

s = w1), where

w0 < w1 < w2. The process of adaptively changing the inertia value is illustrated

with a state transition diagram in Figure 3.8.

Figure 3.8: Adaptive inertia state transition diagram for step s in the hierarchy.
At the end of the search, the best pose estimate Ps(t) is evaluated against two
cost function thresholds, τ0 and τ1. The higher the f(Ps(t)), the better the pose
estimate and the smaller the starting inertia for this hierarchical step in the next
frame (the smaller the region that will need to be searched to find the pose
estimate in the next frame).

Best Pose Estimate. The adaptive inertia scheme is also used to force the search

into finding the best possible pose estimate in every frame, as follows. If the

quality of the final pose estimate is bad or average, f(P e
s (t)) < τ1, and the

starting inertia value that was used is not the highest inertia value available,
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Ats = wi, i < 2, then the starting inertia value is increased to the next higher

value, Ats = wi+1, and the search is repeated. The process repeats until either

the highest inertia value has been reached, Ats = w2, or the pose estimate is

sufficiently good, f(P e
s (t)) ≥ τ1. The value At+1

s for the next frame is then

determined as described in the previous paragraph and illustrated in Figure 3.8.

The rationale behind the use of this adaptive scheme is in the observation that

even fast and sudden actions like, for example, karate kick (Figure 3.11), consist

of segments with slow, medium and fast motion, and therefore searching with

the highest inertia value in every frame would be excessive. The adaptive scheme

favours a smaller inertia weight and as the experimental results in Section 3.9.3

demonstrate, this is not a bad assumption; the search time indeed decreases in

comparison with HPSO without sacrificing the accuracy of the estimates. In fact,

given the stochastic nature of the PSO, in our limited experimental evaluation

the accuracy actually slightly increases owing to the search repeat strategy which

corrects for bad starting values. Making the starting inertia value dependent on

the quality of the pose estimate very effectively prevents the search from losing

the target and ensures that even very erratic and sudden motion can be followed

without diverging.

3.8.2 Setting τ0 and τ1

As a first attempt, we determined the values for τ0 and τ1 from a video sequence

accompanied with ground truth optical motion capture data. The ground truth

poses were used to evaluate the fitness function over a 200-frame sequence and

the highest and lowest value of the fitness function were recorded. The interval

between the highest and lowest value was then split into three equal bands and

the boundaries of the middle band were used as τ0 and τ1. As we show with the

experimental results, specifying τ0 and τ1 in this way does improve the efficiency

of the pose estimation, however, we must stress that this is by no means the final
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solution. Further research is necessary to find a principled way of setting these

thresholds which will allow an optimal choice of the search region for every frame

of the sequence.

3.9 Experimental Results

In this section, we evaluate the performance of our proposed human motion track-

ing using three different experimental setups. Firstly, we compare our human

motion tracking system with comparable state-of-the-art tracking algorithms on

the Lee walk and Surrey sequences, described below in Section 3.9.1. Secondly,

we report a performance evaluation of our tracking system by varying the al-

gorithm parameters. Finally, we compare the performance of APSO with HPSO

using the and report our observations.

3.9.1 Comparative Experimental Tests

3.9.1.1 Datasets and Algorithm Parameters

Computational Framework. To study the performance of the various tracking

algorithms in the same conditions as much as possible, all tests were conducted

using the Brown University framework. The various algorithms were plugged in,

experiments run on the same data sets, and the same error measure calculated.

Parameters specific to particular algorithms were set so as to optimise accuracy.

Datasets. We used four datasets: the Lee walk sequence included in the Brown

University evaluation software and three sequences courtesy of the University of

Surrey, UK [119] (Jon walk, Tony kick and Tony punch). The Lee walk dataset

was captured with four synchronised grayscale cameras with resolution 640×480

at 60 Hz and came with the ground-truth articulated motion data acquired by

a Vicon system, allowing for a quantitative comparison of the tracking results.
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The three-dimensional error between the estimated and ground truth poses is the

one implemented in the Brown University code, frequently used in the literature.

The Surrey sequences were acquired by 10 synchronised colour cameras with

resolution 720 × 576 at 25 Hz. No ground-truth data for the Surrey dataset

is available; following Wang and Rehg [142], who used an overlap function to

compare the results of various body tracking algorithms, we use the cost function

values of the estimated poses as a means of comparison

HPSO setup. In all experiments, HPSO was run with only 10 particles. The

PSO parameters (inertia weight model, stopping condition, search limits) and the

covariance of the Gaussian distribution used for propagating the swarm into the

next frame were kept the same across all the datasets. The starting inertia weight

was set at two and the stopping inertia was fixed at 0.1 for all the sequences. This

amounted to 60 PSO iterations per hierarchical step, with 12 hierarchical steps

to yield 720 iterations in total. With 10 particles, it takes 7200 cost function

evaluations per frame (one evaluation per iteration per particle) to estimate.

Human biomechanical constraints (hard limits for rotation angles) are adopted

as the search limits; such limits are also kept constant. The person size, including

relative proportions among limbs, is established automatically from markers for

the Lee walk sequence, and manually for the Surrey data set.

APSO setup. HPSO was run with only 10 particles; HPSO starting inertia

weight was set to A = 2 and the stopping inertia was fixed at w = 0.1 for all

sequences. This amounted to 60 PSO iterations per hierarchical step in HPSO or

7200 cost function (likelihood in PF) evaluations per frame. The APSO starting

inertia values were set to w0 = 0.5, w1 = 1.2 and w2 = 2.0, the stopping inertia

was fixed at 0.1 and pose estimate accuracy thresholds τ0, τ1 were derived from

the ground-truth pose estimates of the Lee walk sequence for every hierarchical

step.
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PF/APF. The Brown APF tracker reported in [8] uses a zero- velocity motion

model: particles are diffused using a Gaussian distribution covariance, which is

equal to the maximum inter-frame difference of joint angles and varies for every

dataset. Unlike the original APF algorithm [30], for the Lee walk sequence the

Brown software uses a hard prior trained from motion capture to initialise the

tracking and eliminate particles with implausible poses. Obviously, this improves

significantly the accuracy of APF tracking [8]. To ensure a fair comparison, we

ran the particle filtering algorithms with biomechanical constraints as the hard

prior, rather than action specific constraints. PF/APF were set up to use the

same number of likelihood evaluations to find the solution. The reference number

was provided by HPSO (7200 evaluations per frame, see above); we therefore ran

the PF with 7200 particles, and the APF with 1440 particles and five annealing

layers. We refer to this combination of tracking parameters as the canonical setup

CS for PF and APF.

PSAPF. In addition to the above, we decompose the search space into 12 sub-

spaces corresponding to the HPSO hierarchical steps described in Table 3.2.

Bandouch et al. [10] combine the estimation of the root, torso, thighs and head

into a single hierarchy, resulting in seven hierarchical partitions for the entire

body pose estimation. However in order to ensure a fair comparison between

HPSO and PSAPF, we modified their hierarchy to correspond to the hierarchical

stages in HPSO. Finally the number of particles in PSAPF was also setup based

on the number of likelihood evaluations per hierarchical step (600 evaluations).

Thus PSAPF had 120 particles and five annealing layers or 7200 evaluations for

12 hierarchical steps (partitions). Finally, we refer this setup as the canonical

setup CS.

3D Error Measure. In our experiments, we use the error measure adopted by

Balan et al. [8] in their tracking software. The goodness-of-fit is obtained as a

3D error measure in millimetres, calculated as the average distance of 15 virtual
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Table 3.3: The distance error calculated for the Lee Walk sequences and average
time over 5 trials are reported.

Sequence LeeWalk 60 Hz LeeWalk 30Hz LeeWalk 20Hz
PF 55.8±16mm 62.67± 19mm 101.3±25mm

8hrs30min 4hrs15min 3hrs10min
APF 50.1±10.4mm 59.5± 12mm 94.1±21mm

8hrs30min 4hrs15min 3hrs10min
PSAPF 48.1±12.8mm 54.95±12.1mm 89.59±23mm

5hrs 2hrs50min 2hrs
HPSO 46.5±8.48mm 52.5±11.7mm 72.45±16.7mm

3hrs12min 1hrs35min 1hrs10min

markers on the pose estimate with respect to 15 virtual markers derived from the

ground truth pose. The 15 virtual markers are placed on the pelvis, neck, head,

shoulders, elbow, wrists, hips, knees and ankles [8].

3.9.1.2 Results

Lee Walk. HPSO performance compares favourably to the performance of PF,

APF and PSAPF. Table 3.3 shows the error calculated as the distance between

the ground-truth joint values and the values from the pose estimated in each

frame, averaged over 5 trials. We also downsampled the sequence from 60 to 30

and 20 Hz to simulate faster motion. The Gaussian covariance for PF, APF and

PSAPF was updated accordingly to optimise performance, while the covariance

for HPSO was left unchanged. The distance error tabulated in Table 3.3 shows

that HPSO performs comparably with APF, PF and PSAPF at the reduced

frame rate ( 30 Hz) even with the unchanged covariance. However HPSO performs

better than PF, APF and PSAPF at 20 Hz. Graphs comparing the distance error

for 60 , 30 and 20 Hz sequences are shown in Figure 3.9, and visual illustrations

of performance for the 20 Hz case in Figure 3.10 (a).

Surrey sequences. These sequences contain faster motion (punch, kick) than

the Lee walk sequence; hence the covariance of the Gaussian distributions for PF,
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Table 3.4: The cost function values of the estimated pose for the Surrey sequence.
Smaller number means better performance.

Sequence JonWalk Tony Kick Tony Punch
(5 trials) (5 trials) (5 trials)

PF 0.37±0.03 0.6162±0.1183 0.4995±0.11
4hrs55min 3hr30min 3hr30min

APF 0.334±0.03 0.465±0.03 0.488±0.03
4hrs55min 3hr30min 3hr30min

PSAPF 0.332±0.025 0.45±0.02 0.463±0.01
3hrs45min 2hr45min 2hr45min

HPSO 0.3046±0.0184 0.3984±0.03 0.40±0.22
2hr20min 1hr30min 1hr30min

APF and PSAPF was again adapted accordingly to optimise performance, but

HPSO’s settings were left unchanged. For rapid and sudden motion in the punch

and kick sequence, HPSO performed better than APF, PF and PSAPF (Figure

3.10(b) and 3.11) in terms of accuracy and stability of the tracker. The average

overlap and standard deviation for a given sequence over 5 trials are shown in

Table 3.15.

Recovery from wrong estimates. HPSO showed a systematic ability to re-

cover from wrong estimates within a few frames; examples are shown in Figure

3.12 and Figure 3.14. PF and APF would, on occasion, lose track irrecoverably,

i.e., the estimate would diverge. For example, in Figure 3.11, the right elbow

is estimated wrongly by the APF and PF and never recovered. This behaviour

was even more pronounced with PF. The success of HPSO at recovery beha-

viour is very likely due to the swarm behaviour which guarantees an exploration

of a sufficiently wide region of the search space even with a limited number of

particles.

Automatic Pose Initialisation. Finding the correct pose in the first frame is

similar to recovering from wrong estimates, but the "previous" pose may be even

further away. We used random starting positions of the skeleton model in the

canonical pose (see Figure 3.13) as starting points for all algorithms. The starting

skeleton (canonical pose) was visible from all cameras and oriented vertically,
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Figure 3.9: The distance error graph for (a) 60 Hz, (b) 30 Hz and (c) 20 Hz Lee
Walk sequence.

two constraints satisfied by most sequences to be expected. We also set manually

orientation in the direction of motion in the first frame. This is necessary because

the canonical pose of the cylindrical body model of the Brown framework is

symmetric with respect to the coronal plane, but the configuration of the reference

frames in the joints is not. A more detailed model can eliminate the need for

manual initialization, e.g., the SCAPE model adopted by Balan et al. [9]. We

tested the automatic initialisation on all 4 test sequences. Initial canonical poses

are shown in Figure 3.13(a,f). For the initial frame, the guiding cylinders are not

used to provide temporal constraints, but only spatial constraints as described

in Section 3.9.1.1. However as shown in Figure 3.13 (e,j), HPSO consistently

found the correct position and orientation of the person in the initial frame,

even without the guiding cylinder’s temporal constraint. The particle filtering

frameworks frequently failed to initialise automatically, as they expect a previous
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(a) (b)

Figure 3.10: The results of PF, APF, PSAPF and HPSO for the 20 Hz Lee
Walk sequence (a) and Jon walk sequence (b) are illustrated in the first, second,
third and last row, respectively. The black cylindrical body models (a) represent
the ground-truth, while the coloured cylindrical body models (a,b) represent the
estimated pose



CHAPTER 3. HIERARCHICAL PARTICLE SWARM OPTIMISATION 91

(a) (b)

Figure 3.11: The results of PF, APF, PSAPF and HPSO for the (a) Tony Punch
and (b) Tony Kick are illustrated in the first, second, third and last row, respect-
ively.
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(a) (b)

Figure 3.12: (a) An incorrect HPSO estimate (right arm); (b) the correct pose is
recovered in the next frame.

estimate reasonably close to the current pose.

Search Limits. Search limits can be incorporated naturally and easily in PSO

through simple checks on the particle positions. In particle filtering, instead,

search limits are normally enforced through sample rejection and resampling.

The samples with joint angles exceeding the search limits are discarded and

sampling is repeated until the samples fall within the search limit. This pro-

cess may increase the computational time by unpredictable amounts. Hence the

search limits do increase the accuracy of the estimated pose, but at the cost of

increased computational time. An experiment was conducted on the LeeWalk 60

Hz sequence to evaluate the benefits and shortcomings of incorporating the search

limits. The performance of particle filtering algorithm using CS setup without

any search limits was compared with the CS setup. As can be seen in Table

3.5, the accuracy increases significantly for all the particle filtering algorithms,

however at the cost of significant increases in computational time. The times

reported for all HPSO experiments here include biomechanical derived search

limits.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.13: Automatic initialisation results for Lee walk (top) and Tony Kick
(bottom) sequence. (a,f) The canonical initial pose for all three algorithms.
(b,g) Unsuccessful PF , (c,h) unsuccessful APF and (d,i) unsuccessful PSAPF
initialisation. (e,j) Successful HPSO initialisation.

Table 3.5: Distance errors and computation times with and without search limits
for the Lee Walk sequence processed by the particle filtering algorithms.
Sequence (LeeWalk 60Hz) CS setup without Search Limits CS setup

(5 trials) (5 trials)
PF 70.5±21.2mm 55.8±16mm

7hrs30min 8hrs30min
APF 68.38±17.5mm 50.1±10.4mm

7hrs30min 8hrs30min
PSAPF 63.8±19mm 48.1±12.8mm

4hrs23min 5hrs
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Time. In generative tracking approaches, the time taken by an algorithm de-

pends mostly on the number of likelihood evaluations; thus we used the same

numbers of likelihood evaluations to compare the time taken by the different

algorithms. For the same number of likelihood evaluations, the computation

time for PF, APF and PSAPF is longer than tstill prone to the problemhat of

HPSO. This can be attributed mostly to the implementation of the search limit

constraints, which penalises particle filtering approaches but not HPSO.

The hierarchical optimisation scheme also reduces the computational complexity,

since only selected cylinders corresponding to the body parts being optimised are

projected for evaluation (Figure 3.18). In the Brown implementation, all cyl-

inders are projected for PF and APF evaluation. In the case of PSAPF, the

increase in time arises as a result of joint observation likelihood in the final par-

tition, as described in Section 3.2.3. This issue is addressed in [67], under the

condition of the observation likelihood being expressed as a product of sub-space

likelihoods. Consequently, the partitioned sampling can be formulated by re-

placing the observation likelihood with an importance function, thus reducing

the computational cost. However in the case of observations used by the Brown

framework, i.e., silhouettes and edges, the likelihood observation cannot be fac-

torised into a product of sub-space specific likelihoods, as a result of which, the

hierarchical optimisation scheme could not be implemented.

Accuracy. The results in Table 3.3 and 3.15 suggest that HPSO is able to

estimate the pose more accurately and consistently than PF, APF or PSAPF.

On detailed observation of our results, we noticed that the performance of HPSO,

PF, APF and PSAPF are nearly similar in the initial frames as shown in Figure

3.9. But the tracking performance of PF, APF and PSAPF greatly deteriotes as

a result of divergence, unlike the performance of HPSO. The results in Table 3.3

are average 3D distance errors measured in mm over the entire sequence. A lower

average distance error over the entire sequence (HPSO) not only demonstrates
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better tracking performance but also a measure of divergence avoidance.

However HPSO is prone to occasional wrong estimates (e.g., Figure 3.12, a),

which may depend on various factors, the relative importance of which is difficult

to assess precisely but in specific, obvious input sequences: examples include noisy

silhouette segmentation and self-occlusion creating ambiguous poses. We discuss

this further in Section 3.9.2 along with the different approaches to address these

issues. Examples of HPSO’s prompt recovery from wrong pose estimates are

shown in Figure 3.12 and Figure 3.14.

Cost Function. Balan et al [8] discuss the relative importance of edge and

silhouette and conclude that the best tracking performance is obtained combining

silhouettes and edges in the likelihood evaluation. Furthermore, when it comes

to a single-feature likelihood evaluation (silhouette or edge), the silhouette-only

likelihood evaluation is reported to perform better.

The model weighting function used in our experiments does not estimate how well

the observed image features lie within the projected body pose. By using only a

model weighting function, a wrong candidate pose can be assigned a high weight

as seen in Figure 3.15(a) and Figure 3.16(a). In Figure 3.16(a) even though the

right leg of the candidate body model is wrongly estimated, the body model has

a high weight, as the right leg overlaps the left leg silhouette and edge.

We address this problem by incorporating an additional silhouette weighting func-

tion, which accounts for silhouette pixels lying within the projected body pose.

The silhouette weighting function f(xin) of the i-th particle and n-th frame is

given by:

Sin = M i
n

Tn
(3.10)

where Tn denotes the total number of silhouette pixels in the n-th frame and M i
n
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Results of Lee walk 20 Hz sequence illustrated for frames 13 (a,b
and c) and 14 (d,e and f). The results of HPSO with 10, 20 and 50 particles are
displayed in the first, second, and third column respectively. The first column
(HPSO 10 particles) is an example of error propagation and recovery.



CHAPTER 3. HIERARCHICAL PARTICLE SWARM OPTIMISATION 97

(a) (b)

Figure 3.15: Results of Lee walk 20 Hz sequence illustrated on frames 20 with dif-
ferent cost functions. The results of HPSO(10 particles) with a) model weighting
function and b) combination weighting function are displayed.

represents the number of silhouette pixels lying within the projected body model

corresponding to the i-th particle.

The silhouette weighting function is combined with the model weighting function

to obtain a combined weighting function. We have evaluated the combined cost

function (CS setup + silhouette weighting function) on the Lee walk 20 and

30 Hz sequence for the algorithms. The results obtained are compared with the

model weighting function (CS setup) and tabulated in Table 3.6 and 3.7. Results

suggest that the combined cost function does increase the accuracy of both the

particle filtering algorithms and HPSO (though HPSO is more accurate), at the

cost of an increase in computational time. The computational time increase

is slightly worse for HPSO than for particle filtering algorithms. However the

computational time for HPSO with the combined cost function is better than

that of particle filtering algorithms. This is attributed to HPSO’s hierarchical

optimisation scheme (model weighting), as the computational time attributed to

the silhouette weighting function is nearly similar for all the compared algorithms.
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(a) (b)

Figure 3.16: An example of a) model weighting function and b) combined weight-
ing function.

Table 3.6: The distance error calculated for the Lee Walk 20Hz sequences to
evaluate different cost functions

Sequence (LeeWalk 20Hz) CS setup CS setup with
combined weighting function

(5 trials) (5 trials)
PF 101.3±25mm 88.44±24mm

3hrs10min 3hrs45min
APF 94.1±21mm 87.2±21mm

3hrs10min 3hrs45min
PSAPF 89.5±23mm 74.8±16.5mm

2hrs 2hrs36min
HPSO 72.45±16.7mm 68.7±11.6mm

1hrs4min 1hr50min

Table 3.7: The distance error calculated for the Lee Walk 30Hz sequences to
evaluate different cost functions

Sequence (LeeWalk 30Hz) CS setup CS setup with
combined cost function

(5 trials) (5 trials)
PF 62.6±19mm 58.63 ± 17.71mm

4hrs15min 5hrs20min
APF 59.5±12.1mm 53.95 ± 10.15mm

4hrs15min 5hrs20min
PSAPF 54.95±12.1mm 51.81 ± 7.94mm

2hrs50min 4hrs
HPSO 52.5±11.7mm 49.28 ± 14.41mm

1hr30min 2hrs30min
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3.9.2 HPSO Performance Evaluation against Parameter

Changes

The quantitative results obtained in Section 3.9 suggest the reliable behaviour of

HPSO with respect to the implementations of PF, APF and PSAPF available to

us. We stress that HPSO was run throughout with an unchanged set of parameter

values. In this final section, we investigate the effect of variations of the HPSO

parameters on pose estimation accuracy. In particular, we vary the number of

particles, number of camera views, compare the HPSO algorithm with the PSO

algorithm to ascertain the benefits of the hierarchy, and evaluate the effect of the

guiding cylinders.

Number of Particles. We varied the number of particles, N , within the ca-

nonical setup (CS) and evaluated the performance of HPSO. Unfortunately, the

range of N is limited by feasible computational times on our hardware. So we

ran experiments with 10, 20 and 50 particles over 5 trials and results are tab-

ulated in Table 3.8. Accuracy and consistency improve with an increase of N ,

as predictable, at the cost of increased computational time. HPSO with 20 and

50 particles is able to estimate the pose accurately and avoid error propagation

as seen in Figure 3.14. However the number of likelihood evaluations per frame

and computational cost increases with N : 20 particles result in 14, 400 likelihood

evaluations and 50 particles in 31, 600 evaluations per frame. A full set of exper-

iments to determine the value of N after which no significant benefits occur was

beyond our present hardware.

Additional tests were also run while studying cost functions, as shown in Table

3.8. There, HPSO was run with 20 and 50 particles using the combined cost

function. As can be seen, the combined cost function does increase the accuracy of

the pose estimation in addition to the improvement obtained by varying number

of particles.
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Table 3.8: HPSO’s distance error in mm for the LeeWalk 20 Hz sequence with
varying cost functions and varying number of particles

Number of Particles Model weight Combined weight
HPSO (10 particles) 72.45± 16.7 (CS setup) 68.76± 11.62
HPSO (20 particles) 63.78± 14.5 55.73± 12.7
HPSO (50 particles) 58.76± 14.3 54.73± 11.7

Table 3.9: HPSO’s distance error in mm for the LeeWalk 30 Hz sequence with
varying number of cameras and CS setup

Camera views 4 cameras 3 cameras 2 cameras
HPSO 52.45± 11.7 64.09±13.45 156.1±70.4

Number of Camera Views. In order to evaluate the performance of HPSO

with fewer views, we ran an experiment using CS setup on LeeWalk 30 Hz se-

quence with 4,3 and 2 cameras and the results are tabulated in Table 3.9. Simil-

arly we ran an experiment using CS setup on the Tony Punch sequence with 10,

8, 6 and 4 cameras and the results are tabulated in Table 3.10.

In the LeeWalk sequence, HPSO performs reasonably well with 3 cameras, but

fails with 2. This is similar to the results by Balan et al. [8], where tracking fails

with 2 cameras. Similarly, in the Tony Punch sequence, HPSO tracks reasonably

well with 8, 6 and 4 cameras, without significant deterioration. Furthermore,

HPSO tracking accuracy with 4 cameras is comparable to the performance of

APF and PSAPF with 10 cameras.

Hierarchical vs Non-Hierarchical PSO. To evaluate the quantitative im-

provement brought about by hierarchical search, we ran an experiment using a

non-hierarchical PSO search on the Lee Walk 20 Hz sequence. In order to ensure

fair comparison, PSO setup was normalised to the number of likelihood evalu-

ations of HPSO (7200). Thus for a 10 particle PSO, the number of inertia changes

(C ) was set to 720. The results (Table 3.11) show that the accuracy of PSO is

Table 3.10: HPSO’s Tony punch sequence with varying number of cameras and
CS setup

Camera views 10 cameras 8 cameras 6 cameras 4 cameras
HPSO 0.398±0.03 0.4077±0.03 0.4372±0.05 0.456±0.01
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Table 3.11: PSO’s performance on Lee walk 30Hz sequence compared with per-
formance of PF,APF,PSAPF and HPSO taken from Table 3.5.

10 particles (C=720)
PF 62.67±19mm
APF 59.5±12mm
PSO 58.71±20.1mm

PSAPF 54.95±12.1mm
HPSO 52.5±11.7mm

Table 3.12: HPSO’s performance on Lee walk 30 Hz sequence with and without
guiding cylinders

LeeWalk 30 Hz Guiding Cylinders Without Guiding Cylinders
HPSO 52.5±11.7mm 103.4±23.2mm

comparable to that of APF and PF, while the hierarchical approaches PSAPF

and HPSO are better.

Guiding Cylinders . To evaluate the benefit of the guiding cylinders (hence-

forth GC) in the hierarchical optimisation scheme, we ran HPSO with CS setup

on the LeeWalk 30 Hz sequence with and without GC. The latter involves project-

ing only the primary cylinders concerned with each hierarchical step. The results

obtained are tabulated in Table 3.12; results show that GC bring a substantial

increase in accuracy (about 50mm on this sequence). GC are mostly useful in

recovery, when the limb to be estimated is obscured. For example, in Figure

3.17, where the right upper arm (primary cylinder) is obscured by the torso, the

right lower arm (guiding cylinder) provides an effective constraint in finding the

optimal pose.

Error for Individual Body Parts. HPSO error estimates for individual body

parts (IBP)on Lee walk 30 Hz (CS setup) are reported in Table 3.13. The limbs

are more prone to error, especially the lower arms and legs, whereas the head

and pelvis are tracked fairly consistently. Our results reflect the particle filtering

IBP error estimates observed in Balan et al. [8].
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Figure 3.17: Lee Walk 30 Hz sequence results without (middle) and with (right)
guiding cylinders for Frame 2. Left: the guiding cylinders (red cylinders) obtained
from the previous-frame pose estimate (Frame 1) is shown. Middle: the right
upper arm is obscured by torso and the lower arm is estimated incorrectly. Right:
corrected pose recovered by HPSO with guiding cylinders.

Figure 3.18: Lee Walk 30 Hz sequence results without (middle) and with (right)
guiding cylinders for Frame 19. Left: the guiding cylinders (red cylinders) ob-
tained from the previous-frame pose estimate (Frame 18) is shown. Middle: the
left leg (thigh and knee) is inaccurately estimated. Right: the correct pose es-
timated by HPSO with guiding cylinders.
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Table 3.13: HPSO error estimates for individual body parts on Lee walk @30 Hz
(CS setup)

Individual body parts HPSO error estimate
Lower arms 24.5 ± 9.8 mm
Upper arms 14.28 ± 5.3 mm
Lower legs 15.14 ± 5.3 mm
Upper legs 11.8 ± 4.9 mm

Head 6.5 ± 2.3 mm
Pelvis 8.4 ± 2.9 mm

3.9.3 Comparison of APSO vs HPSO

Lee Walk Results. We tested on a downsampled frame rate of 30 Hz instead

of the original 60 Hz, to test with a faster action. The results in Table 3.14

show that APSO uses less time while also producing on average a more accurate

pose estimate, most likely due to the search restarting several times in the same

frame, every time with a better starting approximation, eventually producing

a more accurate pose estimate. Table 3.14 shows the error calculated as the

distance between the ground-truth joint values and the values from the pose

estimated in each frame, averaged over 5 trials. HPSO took 70 sec per frame,

while APSO varied between 40 sec and 100 sec per frame.

Surrey Results. Surrey test sequences contain faster motion than the Lee walk

sequence. Again, our results for all tested sequences show that APSO reduces the

tracking time while also producing more accurate pose estimates than all other

approaches that we compared to. The average overlap and standard deviation

for the Surrey sequence over 5 trials are shown in Table 3.15.

Recovery. An inherent problem associated with hierarchical search strategies

such as HPSO is error propagation, whereby a wrong estimate in the initial

subspace leads to an incorrect estimation in the subsequent subspaces as shown in

Figure (3.19 a,b,c). However APSO inherently corrects for the error propagation

with its search-restart strategy and thus produces fewer stray pose estimates

Figure (3.19 d,e,f).
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: (a-c) an incorrect HPSO estimate due to error propagation is correc-
ted within two frames. (d-f) APSO does not have the error propagation problem
because of the adaptive inertia loop.

Table 3.14: Lee Walk sequence: the mean and standard deviation of the distance
from the ground truth

Sequence HPSO APSO
Mean ± Std.dev Mean ± Std.dev

Lee Walk 30Hz 52.5±11.7mm 50.8±10.4mm
Average time taken (5trials) 1 hr,35min 1 hr, 5min
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Table 3.15: The cost function values of the estimated pose for the Surrey se-
quence. Smaller number means better performance.

Sequence HPSO APSO
Mean ± Std.dev Mean ± Std.dev

Jon Walk 0.30±0.01 0.26±0.01
Average time taken (5 trials) 2hr,30min 2hr,15min

Tony Kick 0.39±0.03 0.38±0.03
Average time taken (5 trials) 1hr,30min 1hr,15min

Tony Punch 0.40±0.22 0.37±0.01
Average time taken (5 trials) 1hr,30min 1hr,15min

3.9.4 Discussion of Error Measures

In this section, we evaluate the performance of our proposed human motion

tracking using errors in terms of average distance of 3D positions, which is the

error measure calculated in the Brown University framework [8]. In addition

to the Brown University framework, the HumanEva dataset [114], a popular

markerless human tracking dataset, also adopt an error measure using an average

distance of 3D positions. An error measure-based on joint angles variations is not

usually considered as joint angle representations, potentially, give rise to multiple

solutions for the same pose, complicating the error measure [8].

A distance-based error measure is an useful tool to evaluate tracking performance

of different markerless human motion tracking systems with respect to marker-

based motion capture systems, considered as state-of-the-art for biomedical and

animation scenarios. Specifically, the error measure in terms of the 3D average

distance over an entire video sequence, not only provides an accurate measure of

an algorithm’s tracking performance but also indirectly measures the algorithm’s

ability to avoid issues like divergence. An algorithm which estimates the pose

successfully over the entire video sequence (HPSO), by avoiding divergence, would

have a lower average distance error compared to an algorithm which loses track of

the inital good estimate. Thus a low average distance error could be considered

to be an useful measure to identify and evaluate algorithms for bio-medical and

animation applications.
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3.10 Conclusions and Future Work

This chapter has presented a hierarchical PSO algorithm (HPSO) and its adapt-

ive version (APSO) for full-body articulated tracking using multiple synchronised

views. PSO is applied to articulated body tracking, expanding on our previous

work which applied PSO to static pose estimation. The quantitative results of our

experiments show that HPSO with a small number of particles (10) yields results,

under similar testing conditions, more accurate than those from the implement-

ation of PF, APF, and PSAPF available to us. Advantages become particularly

pronounced with fast and sudden motion (punch, kick). Unlike PF, APF, PSAPF

and the local/global annealing approach, which rely on learning sequence-specific

or weak (general) motion models, HPSO has demonstrated good performance

without any motion prior. Our experiments, moreover, were conducted with the

same algorithm parameter settings (e.g., inertia value) across all sequences used.

Comparative results should be considered in this light.

HPSO successfully addresses the related problems of initialization and recovery.

PF-related algorithms seem to depend often on external initialization. This is

largely due to the effective communication between particles in the swarm search,

which allows PSO to achieve results comparable with or better than those of the

implementation of PF-based algorithms available to us, and of reported results

of the local/global annealing approach. Successful initialization is achieved by

simply running HPSO from the canonical model pose. In our experiments, track-

ing was always lost only temporarily and recovery achieved systematically after

one or a few frames. Wrong pose estimates seem to depend mainly on poor sil-

houette segmentation in some cameras and the small number of particles used.

We have ascertained experimentally that higher numbers of particles reduce po-

sitional errors. This number may depend on many factors (e.g., motion type,

segmentation quality, number and positions of the cameras) and we have not

investigated this point in detail as more powerful platforms than those used for
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this study would be necessary. We notice that a body model composed only by

cylinder, as the one borrowed here from [8] as a uniform basis for fair algorithm

comparison, introduces a front-back ambiguity for poses in which all skeleton

segments lie in a plane. This problem would be solved by nonsymmetric surface

models, as used by Balan et al. [9]. The hierarchical, sequential structure of

HPSO suggests that incorrect estimates at early stages of the kinematic chain

will affect the accuracy of estimates for subsequent limbs. This problem is ad-

dressed by APSO, which additionally reduces the computational complexity and

increases the accuracy. Moreover, nonlinear constraints created by the ranges of

joint angles in the human body are incorporated naturally and very simply in

the PSO paradigm.

Although APSO improves the tracking accuracy and addresses the problem of

“error-propagation”, it is still prone to wrong pose estimate in case of noisy and

occluded silhouettes. Moreover, the computational cost for estimating the pose

is high. In this regard, we propose to constrain the tracking problem, in the next

chapter, by firstly, learning the low-dimensional subspace of common actions

using charting, a non-linear dimensionality reduction algorithm. Prior models

of pose and motion play an important role in 3D people tracking, addressing

problems caused by occlusions, ambiguities and other noises. Secondly, to address

the high computational cost, we set up the tracking formulation in the learnt

subspace using a modified particle swarm optimisation and incorporate subspace

hypothesis evaluation.



Chapter 4

Markerless Human Motion

Tracking using Charting and

Subspace Constrained PSO

4.1 Introduction

In Chapter 3, we presented a hierarchical PSO algorithm (HPSO) and its ad-

aptive version (APSO) for full-body articulated human motion tracking using

multiple synchronised views. We demonstrated good tracking accuracy on our

experimental datasets, besides being able to automatically initialise, and recover

from errors. But the HPSO tracking system does have drawbacks, arising from

the high-dimensional search space, hypothesis evaluation method and absence

of motion prior. Specifically, the high-dimensional search space combined with

the expensive silhouette generation-based hypothesis evaluation results in a high

computational cost. Additionally, the absence of motion prior makes HPSO

highly dependent on the quality of the multi-view silhouettes. In this chapter,

we propose a subspace-based full body tracking system, which aims to address
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the issues associated with HPSO.

Context of Literature Classification. In the context of our defined categorization

of human motion tracking literature (Section 2.3.2), our second human motion

analysis work presents a generative markerless multiple-view (number of cam-

eras) human motion tracking algorithm using studio sequences (acquisition

environment) and learnt action subspace (extended motion model, as con-

straint).

In context of three central ideas in generative subspace human motion tracking

(Section 2.4.1), firstly, we use charting, a dimensionality reduction algorithm,

to learn the action model. Secondly, we use a modified version of the particle

swarm optimisation for subspace tracking. Thirdly, the hypothesis from PSO is

evaluated without using any inverse mapping and in the subspace itself, which

we explain in detail below.

System overview. In this chapter, we present a generative subspace tracking

framework for markerless articulated human motion tracking using motion priors

in multi-view sequences. We learn motion models of common actions in a low-

dimensional subspace using charting, a nonlinear dimensionality reduction tool.

Specifically, the articulated motion performed in a given sequence, captured by

the evolution of the angles of a 31-dimensional 3D skeleton, is modelled in a low-

dimensional subspace using charting [15]. Charting is a dimensionality reduction

technique not yet used in human motion tracking, which estimates automatically

the dimensionality of the embedded subspace and preserves closeness of similar

poses in the subspace. Tracking takes place in the low-dimensional subspace.

The generative component of our tracking system is a modified particle swarm

optimisation (PSO) technique. In practice, we bias the swarm search to keep

it close to the next pose isepredicted by the motion model, while allowing the

particles to explore poses near the action subspaces, learnt during training. To

evaluate a pose hypothesis, the silhouettes observed by the cameras are compared
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with those generated by the candidate pose. The latter are obtained efficiently

by mapping poses from the subspace to the space of silhouette descriptors. This

mapping is learnt using a multivariate relevance vector machine (RVM) [125].

RVM sparsity contributes to the efficiency of pose evaluation. To our best know-

ledge, our work differs from the current literature in at least three ways. First,

the use of charting to generate the subspace, has not been reported before for ar-

ticulated body tracking. Second, PSO has been reported for articulated tracking

but never in a low-dimensional subspace. Third, we propose a PSO variation de-

signed for tracking on a latent-space action model. Tracking results with walking,

punching, posing and praying sequences acquired in our studio and HumanEva

sequence [114], demonstrate the good accuracy and performance of our approach.

Chapter Layout. The rest of this chapter is organised as follows. Section 4.2

summarizes some of the subspace learning techniques used in subspace tracking.

Additionally, we introduce charting and discuss its characteristics in context of

other subspace learning techniques. Section 4.3 presents our tracking framework,

including the learning phase. Section 5.5 presents experimental results of our

proposed system on our studio and HumanEva sequences. Finally in Section 5.6

we summarizes our work and suggest future developments.

4.2 Subspace Learning

Subspace learning is an important task in computer vision, which is based on the

intuition that data lies on or near a complex low-dimensional subspace that is

embedded in the high-dimensional space. Generally in machine learning literat-

ure and in various computer vision applications, the intuition of the presence of

an embedded subspace in high-dimensional space is exploited to reduce the di-

mensionality of the high-dimensional data. Dimensionality reduction is the trans-
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formation of high-dimensional data into a reduced dimensionality representation,

as a good approximation of the original high-dimensional data. Dimensionality

reduction plays an important role in many research areas, as it alleviates the

curse of dimensionality, making the task of storing and searching data easier. A

number of dimensionality reduction techniques have been proposed, varying in

the method of obtaining the low-dimensional representation, they can primarily

be classified as linear and non-linear techniques.

4.2.1 Problem Statement

The problem of dimensionality reduction can be defined as follows. Given a

sequence of vectors, Y = [y1,y2, . . . ,yn], where ynεRD is a data present in a D-

dimensional space, dimensionality reduction attempts to find a low-dimensional

representation X = [x1,x2, . . . ,xn], where xnεRd, and d<D is the reduced di-

mension. Specifically, a mapping function f(Y) → X is learnt. In a few dimen-

sionality reduction techniques [15, 59], the inverse mapping function g(X) → Y

is also learnt.

4.2.2 Linear Subspace Methods

Principal components analysis (PCA) is a popular dimensionality reduction al-

gorithm [135], which obtains a low-dimensional representation of the original

data such that the maximum variance of high-dimensional data is preserved.

This amounts to deriving the linear basis from the high-dimensional data set.

The linear basis is of reduced dimensionality and encompasses the maximum

variance in the data. The d linear basis or principal components correspond to

the eigenvectors/eigenvalue pairs calculated from the covariance matrix of the
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high-dimensional data and are used to reduce the dimensionality of data.

Probabilistic variations of PCA also exist in literature. Tipping and Bishop [127]

formulate such an approach to PCA known as probabilistic PCA (PPCA), where

the high-dimensional data Y is represented as mapping from low-dimensional

data X corrupted by Gaussian noise. This mapping is represented as follows,

Y = WX + ε (4.1)

whereW is the mapping matrix which relates the subspaceX to high-dimensional

space Y and ε is Gaussian noise. The goal of PPCA is to obtain the optimal

mapping between X and Y, which is achieviseed in four steps. First, a con-

ditional probability model for the high-dimensional data is created expressing

a linear relationship between X and Y. Second, a Gaussian prior is specified

over X. Given the Gaussian prior and conditional probability, the subspace vari-

ables X are marginalised and an optimal W is solved using maximum likelihood

estimation.

4.2.3 Non-linear Subspace Methods

In spite of its popularity, PCA and PPCA are limited to high-dim datasets lying

on linear subspaces, thus they are not suitable for 3D full body human action,

which typically lie on a non-linear subspace. Recently, several non-linear dimen-

sionality reduction algorithms have been proposed, which are more suitable for

learning non-linear subspaces. A few representative algorithms include local lin-

ear embedding (LLE) [101], Isomap [124], Laplacian Eigenmaps [11], Gaussian

process latent variable (GPLVM) [59], local linear co-ordination (LLC) [102] and

charting [15].
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Global Distance Preservation. Isomap is a non-linear dimensionality reduction al-

gorithm based on preserving the geodesic distances on the surface of the subspace

represented as a graph. Given the geodesic-distance graph, Isomap attempts to

find a lower dimensional space which preserves the geodesic or global distance on

the subspace.

Local Neighbourhood Structure Preservation. While Isomap preserves the global

distance, LLE and Laplacian Eigenmaps belong to a class of algorithm, which

preserve local neighbourhood structure. In LLE [101], the local structure of high-

dim data is represented as a linear combination of their nearest-neighbours, and

LLE attempts to preserve the linear combination of nearest-neighbours in the

low-dimensional subspace. In case of Laplacian Eigenmaps, the local structure

is represented by the pairwise distances between nearest neighbors. Laplacian

Eigenmaps, then, compute a low-dim subspace preserving the pairwise distance

between nearest neighbours. The subspace distance preservation is done in a

weighted manner, where distance between a given point and its closest neighbour

contributes more to isedimensionality reduction cost function than neighbours

which are farther away.

Combination of Global Distance Preservation and Local Neighbourhood Distance

Preservation. The subspace learning techniques discussed so far obtain a non-

linear low-dimensional space by either preserving global (Isomap) or local prop-

erties of the data (LLE, Laplacian Eigenmaps). A few techniques attempt to

reduce the dimensionality by preserving both global and local properties. This is

achieved by performing a global alignment of several locally linear models. LLC

[102] and subspace charting belong to this class of subspace learning algorithms.

In LLC, firstly, a mixture of locally linear models of high-dim data is obtained

using Expectation Maximization (EM) algorithm, which are then aligned to ob-

tain a single global low-dim subspace. In our work, we use charting to reduce the

dimensionality, as explained in detail in Section 4.2.4.
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Apart from the techniques discussed so far, the most popular and widely used

technique in articulated human motion tracking is the Gaussian process latent

variable model (GPLVM), a probabilistic non-linear dimensionality approach [59].

GPLVM is essentially a non-linear extension of PPCA, where Gaussian processes

are used to map from the subspace X to the high-dimensional data space Y [60].

Though a non-linear extension, GPLVM differs from PPCA in several ways.

Firstly, a Gaussian prior is defined over mapping function W, instead of the

subspace X. Secondly, marginalising is done over W instead of X. Finally, op-

timal X is obtained, instead of W. Basically, GPLVM finds the optimal subspace

X for a given Y (optimal X), whereas PPCA finds optimal mapping from X to

Y (optimal W).

So far in this section, we have provided a brief overview of representative sub-

space learning algorithms belonging to different classes. We next describe in

detail about charting, a subspace learning technique preserving global and local

properties in a probabilistic framework. Charting forms an integral part of our

subspace tracking and classification framework described in Section 4.3.

4.2.4 Charting

Charting constructs a nonlinear mapping from the high-dimensional space, RD,

to a low-dimensional subspace in Rd, where d < D. The mapping preserves local

geometric relations in the subspace and is pseudo-invertible, so that the reverse

mapping is also learnt. In charting similar poses in the high-dimensional joint

angle space are mapped to the same region in the low-dimensional subspace,

which is illustrated in Figure 4.2. The goal of charting is to estimate smooth,

continuous mappings between the high-dimensional space and low-dimensional

subspace. The mapping is expressed as a kernel-based mixture of linear projec-
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tions.

The steps involved in charting include: (a) estimating directly the intrinsic di-

mensionality of the subspace from the training data; (b) obtaining locally linear,

low-dimensional patches (charts), and merging them into a single low-dimensional

space (connection); (c) computing the forward and reverse mappings between the

high-dimensional and low-dimensional spaces. We next provide a description of

all the steps, as described in [15]. Specifically, we provide of a brief overview of

each step, in addition to the mathematical formulation and/or implementation,

as described in [15].

4.2.4.1 Estimating the Intrinsic Dimensionality and Local Scale

Step Overview. Given a n-frame sequence of D-dimensional joint angle vectors,

Y = {yi}ni=1,yiεRD, the intrinsic dimensionality and the locally linear scale is

estimated using a point-growth process, where a ball of radius or scale r, centered

on each point, is grown with increased dimensionality and the number of data

points contained in it, n(r), is recorded. In order to estimate the locally linear

scale, the point-growth process is based on the intuition that at some local scale,

the subspace patch is locally linear with d dimensions, so the number of data

points n(r) in the r-ball grows as rd. The growth rate for a particular value of r

is tracked, c(r) = d
dlogn(r) logr to estimate d. At lower scales noise will dominate

resulting in c(r) being less than 1/d. The same behaviour is also observed at

non-linear scales, where a curvature of subspace patch occurs and c(r) is less

than 1/d. Thus the growth rate c(r), which is maximum at the locally linear

scale and is lower elsewhere.

Implementation. In practice, we follow the intrinsic dimensionality implement-

ation, suggested by Brand [15], where an r-ball is expanded at every high-
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dimensional data point and first peak in c(r), averaged over many neighbourhood

data points, is obtained.

4.2.4.2 Charting Step

Step Overview. An important step in the charting framework is the soft parti-

tioning of the high-dimensional dataset into locally linear partitions by fitting

a Gaussian mixture model (GMM) density to data. As the charting step is a

precursor to the connection step (obtaining a single global co-ordinate system)

the parameters of GMM are learnt with two constraints such that a) the data

in each partition has minimal loss of variance between high and low-dim space,

and b) neighboring charts should span maximally similar subspaces. The first

criterion is obtained by fitting a GMM and maximising the likelihood. The

second criterion is achieved by using a cross entropy-based prior, which ensures

an alignment and overlap of neighbouring charts. The second criterion is im-

portant, as disagreement between neighbouring axis would lead to inconsistent

projections of a high-dim data point resulting in uncertainities and distortions

during low-dimensional data embedding (connection step).

Given the likelihood and prior, the posterior of GMM over the parameters is

formulated, and MAP estimate is used to obtain the optimal parameters, which

ensure that each chart span locally linear patches and neighbouring charts over-

lap and are aligned. Brand [15], has shown that under specific conditions the

posterior would become unimodal and it can be maximised in closed form, which

is described in the mathematical formulation below.

Mathematical Formulation. The first criterion of obtaining the minimal loss of

variance is obtained by maximising the likelihood function of the GMM density

given as
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p(Y; µ,Σ) = ∑
j p(Y | µj,Σj)pj = ∑

j N (Y | µj,Σj)pj

where each Gaussian component in the mixture, corresponds to a local neigh-

bourhood centered around µj with axes defined by the eigenvectors of Σj.

The second criterion can be enforced through the cross-entropy between the Gaus-

sian models of the two neighbourhoods, given as

D(N1||N2) =
ˆ
dY N (Y;µ1,Σ1) logN (Y;µ1,Σ1)

logN (Y;µ2,Σ2) (4.2)

where the terms measure differences in size, orientation, and position, of neigh-

bouring Gaussians with means µ1,µ2 and axes specified by the eigenvectors of

S1,S2. The terms tend to zero when there is maximum overlap between the

Gaussians. To maximize consistency between adjacent neighborhoods, and sat-

isfy the second condition, cross-entropy is used within a prior, defined as

p(µ,Σ) = exp(−
∑
i 6=j

mi(µj)D(N1||N2)) (4.3)

wheremi(µj) is a measure of co-locality and is defined asmi(µj)∞N (µj;µi,, σ2),

with the scale parameter sv specifying the expected size of a neighborhood on the

subspace in sample space. A reasonable choice is sv = r/2, where r is obtained

from intrinsic dimensionality estimation. This choice of sv introduces the locally

linear scale into the GMM and ensures locally linear charts.

Given the likelihood and prior definition, which satisfy the two criterions, the

posterior over the Gaussian parameters is then defined as

p(µ,Σ|Y)∞p(Y | µ,Σ)p(µ,Σ) (4.4)

Brand [15], has shown that under specific conditions the posterior would become
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unimodal and it can be maximised in closed form. This is achieved as µi is

fixed (GMM is centered on each high-dim data point), the pi is uniform, and

neighboring charts span the same subspace, owing to the defined prior model.

Given these specific conditions, the MAP estimates of the GMM covariances are:

Si =
∑

j
mi(µj)((yj − µi)(yj − µi)T + (µj − µi)(µj − µi)T +Sj)/

∑
j
mi(µj) (4.5)

The above equation is arranged in the form of fully constrained linear equations

and solved for mutually optimal values. As each covariance Si is dependent on all

other Sj, global information is bought into each local neighbourbood’s descrip-

tion. Thus even if a given local subspace is noisy, the above formulation results

in the corresponding local chart orienting itself as part of a globally optimal

solution. Thus charting performs better than LLC when learning a smooth sub-

space with noisy data, as each chart MAP estimation depends on all other charts;

bringing non-local information about subspace shape into the local description

of each neighborhood[15].

4.2.4.3 Connection Step

Step Overview. In the final step of charting, a connection for the set of local

charts, specified by GMM, is obtained. Firstly, PCA is used in each chart, to

reduce the dimensionality in each local chart. Specifically, a low-dimensional

representation, Uk, of the kth chart is obtained by PCA using the reference frame

of the first d eigenvectors of the chart’s covariance matrix, Σk. Typically, several

low-dimensional representations are obtained where all the high-dimensional data

points are projected with respect to each PCA chart, Uk = {uki}ni=1,uiεRdand

N is the number of data points. Given all the low-dimensional representations
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Uk, the goal of connection step is to sew together all charts into a single global

low-dimensional subspace by using a weighted average projection.

To connect all charts in a single, consistent representation, each lower-dimensional

chart, Uk is projected to the global low-dimensional co-ordinate system X =

{xi}ni=1,xiεRd using an: a) affine transform, say Gk for the k-th chart and b)

probability-based weighting pk|y(yi), which is the probability that k − th chart

generates point yi.

An affine transform is used for the mapping, and it preserves collinearity of each

locally linear chart. Gk is obtained by solving a weighted least square problem.

The weighted least square problem is based on the assumption, that if a data point

point has non-zero probabilities in neighboring charts, then the neighboring affine

transforms should map the data point to the same point in the global subspace.

Given the solved affine transform and the probability-based weighting func-

tion, the single global co-ordinate system is obtained, which is a smooth low-

dimensional representation of the high-dimensional data. The solution for the

affine transform is described in mathematical formulation given below.

Mathematical Formulation. The affine transform is solved by setting it up as

weighted least square problem given as

G? = [G1; . . . ; Gk] = arg minGk;Gj

∑
i

py|k(yi)py|j(yi)pkpj ‖Gk [uki; 1]−Gj [uji; 1]‖2
F

(4.6)

This equation generates a set of homogeneous equations, from which solution

for affine transform is calculated. Specifically, the solution for affine transform

is obtained in the following steps: first, a constraint is added by anchoring the

chart at origin G1 = [I, 0]T ; second, squared error of affine transforms is defined

in terms of chart-to-origin chart inconsistency and chart-to-neighbouring chart
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inconsistency as follows:

E =
∑
k

φ(GUk − [U1; 0])PkP1 +
∑
j 6=k

φ(GUj −GUk)PkPj

 (4.7)

where φ(X) = trace(XTX) is the Gram trace. The first φ term in Eqn (4.7) pen-

alises inconsistency with anchor chart, while the second term penalises pairwise

inconsistency. Uk = Fk [Uk; 1] ,where Fk = [0, . . . ,0, I,0, . . . ,0]T is the indicator

matrix, with identity matrix in k-th block. Pk = diag(py|k(y1), . . . , py|k(yn)) is

the per-chart probability of all high-dim points.

In the next step, dE
dG is set to 0 and convex function is minimised and G is

obtained as,

G? = arg minG(trace(GQQTGT )) (4.8)

where Q=∑
j 6=k(Uj − Uk)PkPj. G? is finally obtained by setting it to the ei-

genvectors associated with the smallest eigenvalues of QQT . Once the affine

transform is solved, each low-dimensional point, xi, is then obtained from the

corresponding joint angle state vector, yi, as follows

xi |yi =
∑
k

Gk[uki; 1]p(k |y)(yi) (4.9)

which is the weighted average of the projections of sample yi into the low-dim

space. The weighted average-based projection of high-dimensional datapoints

implies that for a given point, the chart with higher probability has higher weight

for the low-dimensional embedding, compared to chart which is not close and has

a lower probability.
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4.2.4.4 Inverse Mapping

Unlike Isomap, LLE, the backward mapping from subspace to high-dimensional

space is formulated within the charting framework itself. Given a probability

density defined in the subspace, the surface passing through the weighted averages

of the µi of all neighbourhood in which yi has non-zero probability is:ise

yi|xi =
∑
k

p(k |x)(xi)(µk + WT
k (Gk[I; 0])+(xi −Gk[0; 1])) (4.10)

where pk|x(xi) is the probability of k − th chart generating xi,Wk is the prin-

cipal component analysis operator used in the connecting step and (.)+ indicates

pseudo-inverse.

The subspace learnt by charting is the integral element of our tracking system,

which we describe in the section below, after providing a brief overview of the

properties of charting.

4.2.4.5 Discussion about Charting

Charting vs GPLVM, LLC, PPCA. Charting is a probabilistic subspace learning

algorithm very closely related to the local coordination of global models method

(LLC) [102], However, the latter model is prone to local minima, which is also

case with algorithms like GPLVM and PPCA. Charting also performs better

than LLC in the presence of locally linear noisy points. LLC in this scenario

would estimate local partitions which are not smooth or continuous. Specific-

ally, neighbouring charts are not constrained to be aligned resulting in scenarios,

where neighbouring partitions could be perpendicular to each other. Charting,

on the other hand, brings non-local information about subspace shape into the

local description of each neighborhood, ensuring that adjoining neighborhoods
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have similar covariances [15]. Thus even in the presence of locally linear noisy

points, which are dense perpendicular to the subspace, the local chart are oriented

parallel to the subspace as part of a globally optimal solution.

Local Neighbourhood Preservation. The learnt subspace representation was shown

to preserve the geometry of high-dimensional local neighbourhoods in the sub-

space [15]. In charting, similar poses in the high-dimensional joint angle space

are mapped to the same region in the low-dimensional subspace, which is illus-

trated in Figure 4.3 and Figure 4.2. This property arises as charting falls into the

class of subspace learning algorithms, that perform a global alignment of locally

linear model, preserving the local neighbourhood structure. The neighbourhood

geometry preservation property can be used to model the subspace dynamics, as

the periodic cycles of an action are well represented in the learnt low-dimensional

subspace as shown in Figure 4.4 and Figure 4.5. Additionally the subspace for

an aperiodic action is also illustrated in Figure 4.6. In our work, we exploit

the neighbourhood and periodicity preservation property to propose a modified

particle swarm optimisation for subspace tracking.

Figure 4.3: 2 dimensional action subspace for punch sequence, where similar
high-dimensional joint angles are mapped to the same subspace region.
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Figure 4.2: 2 dimensional action subspace for body posing sequence, where similar
high-dimensional joint angles are mapped to the same subspace region.

Figure 4.5: 2 dimensional action subspace for jog sequence. It can be observed
that the subspace structure of the jog sequence is similar to subspace structure
of the walk sequence, which is a similar action.
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Figure 4.4: 2 dimensional action subspace for walk sequence, where similar high-
dimensional joint angles are mapped to the same subspace region. Additional the
periodic and cyclic nature of the action is well represented and approximated in
the subspace.

Figure 4.6: 2 dimensional action subspace for right football kick sequence, which
was an aperiodic action, i.e. no cyclic sub-actions where observed.
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4.3 Tracking Framework

Motivation. In this section, we present our subspace human motion tracking

framework that explores the underlying low-dimensional subspace of the human

body pose in common actions and accurately estimates the full-body human pose

in multi-view sequences at reduced computational cost. Our tracking framework

is formulated with two important requirements, namely: a) the exploitation of

2-dimensional action subspace to reduce the search space and increase the track-

ing performance; b) reduce the computational cost by avoiding the expensive

silhouette generation-based hypothesis evaluation (Chapter 3). In this regard,

our subspace multi-view human motion tracking system consists of two main

phases, learning and tracking are shown in Figure 4.7 and 4.10. We first provide

an overview of our tracking framework, before explaining the phases involved in

greater detail.

System Overview. The learning phase is used to the: generate pose subspace

(action model) using charting; generate a low-dim silhouette representation using

vector quantized shape-context histograms (SCH) and finally learn the mapping

from poses to silhouette descriptors using multi-variate relevance vector machines

(MVRVM).

In the 2D tracking phase, a generative tracking algorithm is proposed using a

modified PSO, designed to exploit the low-dimensional action representation, and

effectively constraining the search. Moreover, the candidate poses are evaluated

in the subspace itself by using the MVRVM mapping to SCH descriptor space.

Additionally, we integrate the HPSO tracking algorithm introduced in Chapter

3 in our subspace tracking framework for the following functions: extraction of

joint angles from our studio sequences; automatic initialisation of the subspace

tracker; estimation of the root position and orientation; refining the subspace

pose estimate. Please note that the root position and orientation step is neces-
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sary as the pose estimated in the subspace corresponds to a 2D co-ordinate, and

its inverse mapped pose corresponds to a 3D pose estimate without the root co-

ordinates. As we employ HPSO to estimate the root, we also refine the complete

full body pose using a local search, with fewer HPSO particles and few itera-

tions. We next provide a detailed summary of the learning phase of our subspace

tracking framework.

Figure 4.7: The learning phase of our system

4.3.1 Learning

Overview. The learning phase as shown in Figure 4.7 has four major steps. First,

vectors of joint angles representing instantaneous body poses are estimated for

all frames of training action sequences using either HPSO (studio sequences) or

motion capture data in case of HumanEva dataset. The joint angles are then re-

fined manually to avoid occasional significant errors, obtaining the training data

for our system. Second, the low-dimensional subspace of the poses, J, is obtained

from the manually refined poses using charting [15]. Third, the multi-view image

silhouettes are represented using multi-view shape context histograms [125] and

reduced by vector quantization, yielding a set of shape decriptors, S for each
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camera. Fourth and finally, we learn the mapping between J and S using mul-

tivariate RVM. An important property of subspace charting useful for subspace

tracking is the preservation of high-dimensional data’s local neighbourhood in the

subspace also, which in practice implies the mapping of similar high-dimensional

poses to similar regions in the subspace as shown in Figure 4.2 and Figure 4.3,

this is an useful property for subspace tracking systems, as subspace dynamics

can be easily modelled or exploited. We next provide a detailed description of

the various steps involved in the learning phase of our subspace tracking system.

4.3.1.1 Extracting Joint Angles and Learning the Subspace

For the first step in our learning algorithm, in case of our studio sequences,

or sequences which do not have corresponding motion capture data, the joint

angles are extracted using our HPSO algorithm explained in Chapter 3. Secondly,

in order to obtain a smooth subspace, we smooth the extracted joint angles

before learning the subspaces using charting. While learning the action-specific

subspace, we omit the root position and orientation co-ordinates, as any action

is independent of the root position and orientation. Moreover, the same action

could have several root position and orientations making it difficult to model

the action subspace. Additionally, as shown in Figure 4.8, we also smooth the

joint angles before learning the subspace, as this results in an accurate subspace.

Examples of the subspace learnt for different actions are shown in Figure 4.4,

Figure 4.5, and Figure 4.6.
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Figure 4.8: 2 dimensional action subspace for punch sequence, where smoothing
of joint angles produces a smooth subspace (right) while original joint angles
produce an unsmooth subspace (left).

4.3.1.2 Low-Dimensional Representation of Silhouettes

Image features extracted from the video sequences are used for hypothesis evalu-

ation in case of generative tracking systems and direct pose recovery in discrim-

inative tracking systems. Typically, features such as edges, silhouettes, or colour

are used. Amongst these features, silhouettes are widely used because they can

be extracted relatively robustly. Furthermore, they are also insensitive to colour

and texture variations in the human figure and most importantly they capture

a great deal of information, useful for reasonably accurate 3D pose estimation.

However, silhouettes are considered as high-dimensional image features, based

on the image size, leading to increased computational cost in both generative

and discriminative systems. This can be alleviated by using silhouette-based
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descriptors, which encode the silhouette information at reduced dimension. An

ideal silhouette descriptor should be a low-dimensional feature representation,

that generalises over human figure variations, while simultaneously discriminat-

ing different body poses. In our subspace system, we use vector-quantised shape

context histogram descriptors proposed by Agarwal et al. [3], after experimenting

with Fourier descriptors. We first briefly explain about the Fourier descriptors

and shape context descriptors, before explaining our motivation for choosing the

shape context descriptor.

Fourier Descriptors. Fourier descriptors are shape descriptors, and the basic

premise is to represent a silhouette or any shape by a fixed number n of points

{(d1, e1), . . . , (dn, en)} on the boundary. The sampled points are then transformed

into complex coordinates {z1, . . . , zn}, which are subsequently transformed into

the frequency domain using a Discrete Fourier Transform and obtaining the Four-

ier coefficients {f1, . . . , fn}. Fourier coefficients with lower index represent the

coarse shape information, with the first coefficient representing the position in-

formation. On the other hand, the finer details of the shape are encoded within

the higher Fourier coefficients [91]. Position invariance of Fourier descriptors are

obtained by setting the first Fourier coefficient to zero. Additionally, rotational

invariance is obtained by ignoring the phase information. Finally the descriptors

are made scale invariant by dividing the magnitude of all coefficients by the

second coefficient f2 [91].

Shape Context Histogram Descriptors. In our work, we use shape context

histograms (SCH) to represent our multi-view silhouettes [3]. Shape context

histogram are obtained from n sampled points on the silhouette contours. A

shape context histogram centered on a given contour point describes the spatial

location of other n-1 contour points in a histogram, where the histogram bins

are uniform in log-polar space. The shape context histogram parameters are the

number of radial bins, f, and the number of log-distance bins r. Typically, the
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default values are f = 12 and r = 5 for the number of bins, resulting in a n ×

60-dimensional SCH representation of the entire silhouette. Similar to Fourier

descriptors, SCH is also translation, scale and rotation invariant. Translation or

positional invariance is achieved automatically as only relative spatial information

is measured, avoiding a global position information. In order to achieve scale

invariance, distance between points are normalised by the mean distances between

all point pairs. Finally, rotation invariance is obtained by setting the reference

frame of shape context histogram to the tangent vector of each point, instead of

positive x-axis [91].

Though SCH descriptors reduce the dimensionality of silhouettes, it is still high.

Agarwal et al. [3] proposed the use of vector quantisation to further reduce the

dimensionality of SCH descriptors by obtaining m clusters from SCH space using

K-means clustering over the entire video sequence. Each n × 60-dimensional

SCH descriptors are then represented in terms of m clusters, using hard voting

based on Euclidean distance. In our systems, for each camera, each instantaneous

silhouette contour is sampled with 256 points, and the whole contour represen-

ted by 256, 60-dimensional SCH. In order to reduce the dimensionality of these

descriptors, we vector-quantize the histograms using K-means clustering as de-

scribed in [3], obtaining 40D silhouette descriptors. This representation is able to

distinguish between different poses and have a degree of robustness to occlusion

[91].

Fourier Descriptor vs Shape Context Histogram Descriptors. We com-

pared Fourier descriptors and shape context histogram descriptors-based on their

ability to generalises over human figure variations, while simultaneously discrim-

inating different body poses. In order to evaluate the shape descriptors, we gen-

erate self-similarity distance matrices for shape descriptors (Fourier descriptor

and shape context histogram descriptor) and qualitatively compare the gener-

ated matrices with self-similarity distance matrices of estimated human pose and
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Figure 4.9: Lee walk Sequence: Self-similarity distance matrix for (a) High-dim
joint angles; (b) Subspace of joint angles; (c) Silhouettes in one camera view;
(d) Shape-context histogram in same camera view and (e) Fourier descriptors in
same camera view.
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silhouettes. On visual observation, as shown in Figure 4.9, we can observe that

the self-similarity matrix obtained from SCH (Figure 4.9, (d)) is more similar

to the human pose’s distance matrix (Figure 4.9, (a)) and silhouette’s distance

matrix (Figure 4.9, (b)), whereas the self-similarity matrix of Fourier descriptors

(Figure 4.9, (d)) does not capture the variation and similarities to the same de-

gree. Based on this qualitative analysis, (visual observation) we represented our

multi-view silhouette images using multi-view SCH descriptors.

4.3.1.3 Mapping from Pose to Shape Descriptors

In this subsection, we explain about the mapping function used to learn the

mapping from pose to shape descriptors. We begin with the relevance of the

mapping function in our tracking framework, followed by an overview of the

multi-variate relevance vector machine and finally, we provide a detailed overview

of the mathematical formulation as described in [125].

Relevance to Tracking Formulation. To evaluate pose hypotheses efficiently,

avoiding costly silhouette generation from 3D skeleton and surface models, we

map poses from the subspace to shape descriptors which can be compared dir-

ectly with the observed, or test, SCH representation. This mapping is learnt

online using multivariate relevance vector machines (MVRVM).

Overview. MVRVM were introduced by Thayanathan et al. [125] as an extension

of RVM for handling multivariate outputs. MVRVM is a sparse Bayesian regres-

sion technique used to find the optimal weights required for the mapping from a

given input space to output space. In our case, the input space is the subspace

pose space and the output space is the SCH representation. In MVRVM the

optimal weights are obtained in two major steps; firstly, a posterior distribution

over the weights, conditioned on a set of hyperparameters is obtained. Secondly,
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given the posterior distribution, an optimal set of hyperparameters are found,

which are used to derive the final optimal weights. During the training process,

specifically in the second step, most hyperparameters tend to infinity, which res-

ult in the corresponding weights being set to zero. The remaining examples

with non-zero weights are the relevance vectors. Relevance vectors are normally

few, yielding a sparse representation, which in turn contributes to an efficient

mapping. The rest of this section details the mathematical formulation of the

MVRVM extension of the RVM framework, beginning with problem statement.

Mathematical Formulation. Given a set of training examples V =

{vn}Nn=1consisting of input-output pairs of vectors vn = {rn, zn}, where rnεRLand

znεRMare the input and output vectors, the regression function is defined as

z = Cφ(r) + ε (4.11)

where φ(r)εRP is set of basis function of the form φ(r) = [1,G(r, r1), . . . ,G(r, rn)],

G being a function comparing two feature sets, C = [c1, . . . , cm]T εRM×P is the

weight matrix containing the weights of the basis functions and ε is the Gaussian

noise, ε ∼ N (ε; 0,S), where S = diag(σ2
1, . . . , σ

2
M) is the noise matrix. The

goal of MVRVM is to find the optimal parameters {C,S} of mapping function.

MVRVM obtains the optimal parameters in two major steps, which we describe

below.

Posterior over Weights. To obtain the optimal weights, firstly a posterior distri-

bution over the weights conditioned on a set of hyperparameters are obtained.

The posterior is obtained by, f irstly, defining a Gaussian prior over the weights

of the basis function, conditioned on hyperparameters, is written as,

p(C |A) =
M∏
r=1
N (c; 0,A) (4.12)
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where A = diag(α−2
1 , . . . , α−2

p ), where each element is the hyperparameter of

the associated basis function. Then the prior is written as a product of separ-

ate Gaussians of each output dimension, After the prior has been defined, the

likelihood distribution of the weight matrix C can be written as,

p({zn}Nn=1|C,S) =
N∏
n=1
N (zn|Cφ(rn),S) (4.13)

Finally, given the prior model and likelihood distribution, the posterior on C can

be written as the product of separate Gaussians for the weight vector of each

output dimension:

p(C|{zn}Nn=1,S,A) ∝ p({zn}Nn=1|C,S)p(C|A) ∝
M∏
r=1
N (cr|µr,Σr) (4.14)

where µr = σ−2
r ΣrΦT τrand Σr = (σ−2

r ΦTΦ +A)−1are the mean and covariance of

the distribution of wr. τr is the vector with r-th component of all output vectors.

Φ = [1, φ(r1), φ(r2), . . . , φ(rN)] is the design matrix of all basis functions.

Optimal Set of Hyperparameters. Given the posterior over the weights, the op-

timal weight matrix is chosen, by obtaining the set of hyperparameters that max-

imise the likelihood in Eqn (4.14). In order to obtain the optimal hyperparameter

set, the data likelihood is marginalised over the weights:

p({zn}Nn=1|A,S) =
ˆ
p({z}Nn=1|C,S)p(C|A)dC (4.15)

=
M∏
r=1

ˆ
N (τr|crΦ, σ2

r )N (cr|0,A)

=
M∏
r=1
|Hr|−

1
2 exp(−1

2τ
T
r H−1

r τr),
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where Hr=σ2
rI + ΦA−1ΦT . An optimal set of hyperparameters {αoptj }Pj=1 and

noise parameters {σoptr }Mr=1 is obtained by maximising the marginal likelihood.

Optimal Weights. The optimal hyperparameters are then used to obtain the

optimal weight matrix:

Aopt = diag(αopt1 , . . . , αoptp ) Σopt
r = ((σoptr )−2ΦTΦ + Aopt)−1

µoptr = (σoptr )−2Σopt
r ΦT τr Copt = [µopt1 , . . . , µoptM ]T

4.3.2 Tracking

In the previous section, we provided a detailed overview of our learning frame-

work, which was used to obtain the components required for our subspace track-

ing and evaluation, namely, charting-based action subspace, mapping from pose

space to image space and SCH image representation. In this section, we explain

in detail about the tracking component of our proposed subspace framework,

with specific focus on subspace tracking and evaluation, after providing a brief

overview of the tracking phase.

Overview. Tracking has three major components: automatic initialisation of 3D

pose, pose estimation in subspace, and final pose refinement in joint angle space,

including estimation of the root position in 31D. In the first component, HPSO

described in the previous Chapter is used to initialise the high-dimensional pose,

which is mapped to the learnt subspace and used to initialise our modified PSO.

The modified PSO is used to obtain an optimal subspace pose estimate, which

is a 2D co-ordinate. In the final component, the 2D subspace pose co-ordinate

is inverse mapped to the higher dimensional space and the root position and

orientation are obtained. Additionally, the 31D pose estimate is also refined

using a local search. An overview of subspace tracking is shown in Figure 4.10.
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Each step is described briefly below.

Figure 4.10: The tracking phase of our system

4.3.2.1 Automatic Initialisation of 31D pose

We use the HPSO algorithm proposed in Chapter 3 to estimate the 31D pose

in the first frame, owing to the automatic initialisation property of HPSO as

demonstrated in Chapter 3. The initialised pose is then mapped to a 2D subspace

co-ordinate on the pose subspace using charting’s mapping function, and the

particle swarm is initialised around it using a Gaussian distribution. Similar

to the previous Chapter, the cost function for HPSO measures how well a pose

hypothesis matches the multiview data from a set of synchronised cameras. In our

system, for our studio sequence, we have two sets of multi-view data: silhouettes
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and silhouettes without torso for accurate arm estimation.

4.3.2.2 Subspace Pose Estimation

In order to estimate the pose in subspace, we propose a variation of PSO designed

to polarise the search for the best next pose on or close to the subspace. The

PSO framework was chosen for three reasons. First, it has been shown to estimate

and track well 3D pose in high-dim joint angle space without motion models (but

with long processing times, avoided in our system). Second, it is very easy to

enforce nonlinear constraints on the search space. Third, a tested implementation

was available to us. We first overview the steps involved in the standard PSO

algorithm before presenting our modified PSO algorithm.

PSO.

1. Initialisation:

• Initialise a population of particles {xi}, i = 1 . . . N, with positions

randomly within search space S and velocities randomly within [−1, 1].

For each particle evaluate the desired cost function f and set pbesti =

f(xi). Identify the best particle in the swarm and store its index as g

and its position as pg.

2. Repeat until the stopping criterion is fulfilled:

• Move the swarm by updating the position of every particle xi, i =

1 . . . N , according to the following two equations:

vit+1 = ωvit + ϕ1(pit − xit) + ϕ2(pgt − xit)

xit+1 = xit + vit+1 (4.16)

where subscript t denotes the time step (iteration).
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• Ensure that a ≤ xi ≤ b. Search constraints are easily enforced

through particle velocities. If the particle violates the search space

boundary in some dimension, its position in that dimension is set to

the boundary value and the corresponding velocity entry reversed.

• For i = 1 . . . N update pi, pbesti, pg and gbest.

Subspace constrained PSO. In subspace tracking, it is important to select

a tracking framework, which ensures the search is performed near the learnt

subspace structure, as, typically, the action is not well-defined or modelled at

significant subspace deviations. The particle filtering framework is not suitable

for subspace in this regard, as they have no principled mechanism to enforce

search constraints, as we have described in the previous Chapter.

We address this issue by proposing a variation on the basic PSO, which we term

the modified PSO. In our modified PSO, we replace the global best over the

swarm, pgt , which changes at each iteration, with a fixed "target", the next point

in the subspace in the direction of motion. This reduces the swarm mobility by

forcing the particle to explore new poses in the direction of the evolution of the

motion model, as desired. The final solution (pose estimate) is still chosen as the

best particle in the swarm at convergence, which will be near the poses learnt

but not necessarily one of them. In order to select the pgt for a given frame, we

use the refined 31D pose estimate in the previous frame, and retrieve its nearest

neighbour index from the high-dimensional training dataset using a quick search.

Given the retrieved high-dimensional nearest neighbour index, the corresponding

next subspace index in time, functions as pgt .

We use a low inertia value to keep the search local. Finally, the search constraints

a and b, are set to the minimum and maximum spatial co-ordinates in each

dimension. The search limits ensure the particles do not stray away significantly

from the subspace. We believe this modification makes our proposed PSO tracker

more suited for this problem than the particle filtering frameworks, which are
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used in literature. We provide an illustration comparing the swarm behavior

of the standard PSO algorithm, with the swarm behavior of the modified PSO

algorithm in Figure 4.11.

Subspace Swarm Initialisation. At each frame, a new PSO swarm is created

whenever a new pose must be estimated. The previous best pose estimate in joint

angle space is mapped to the subspace as initial pose (to initialise PSO search).

To do this we perform a nearest-neighbour search in the high-dimensional joint

angle space to retrieve the closest matching pose observed during learning, and

map the pose found to the subspace. The swarm is then initialised using a

Gaussian distribution and search performed.

Subspace Pose Evaluation. Our modified PSO is used to estimate the pose

within the subspace. The subspace PSO hypothesis is evaluated using the learnt

MVRVM mapping. The MVRVM mapping learnt during the training phase is

used to transform the pose hypothesis from the action subspace into a set of shape

context histogram, one for each camera. The similarity between the shape context

histograms from observation and hypothesis is evaluated by Euclidean distance

in each camera, and the overall, multiview similarity computed by summing over

all the cameras.

Error Recovery. The modified PSO, in addition to our instantaneous swarm

initialisation, helps in avoiding divergence and aids in error recovery, as the swarm

initialisation retrieves the closest pose in every frame, and subspace PSO con-

strains the search closer to the retrieved pose.

4.3.2.3 Root Estimation and Pose Refinement

The best particle in the swarm at convergence gives the instantaneous best es-

timate of the pose in subspace. However the best estimate is a 2D subspace
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(a)

(b)

Figure 4.11: Action subspace for the punch sequence, where blue bounding box
denotes search limits and red circles denotes particles searching for optimum in
a) standard PSO algorithm and b) subspace PSO algorithm, where blue star is
the fixed global best particle, which constrains the search of the particles near
the subspace.
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coordinate, without the root position and orientation, which would be needed

for applications like animation. This is addressed in our final step, where we

obtain the corresponding estimate as 31D skeleton, by, firstly,mapping back from

the subspace to joint angle space. Secondly, we need to add an estimate of root

translation. Given the 31D skeleton, we adopt the HPSO framework to estim-

ate the root position and orientation, and in addition to estimating the root

position, we also perform a refinement of the final result, to accomodate sub-

space pose estimate errors. In our final HPSO framework, we exploit the fact

that the back-mapped pose is close to the correct pose, and perform an efficient

local search in 31D (including root translation and body orientation) with few

particles, low inertia value and few PSO iterations. The result is the final pose

estimate as joint angle vector, which is again mapped to the subspace to initialise

the search in the next instant.

4.4 Experimental Results

In this section, we evaluate the performance of our proposed subspace tracking

using three different experimental setups. Firstly, we compare our subspace track-

ing system with comparable state-of-the-art tracking algorithms, especially the

Gaussian process annealed particle filter (GPAPF) [95], on our studio sequences

and HumanEva dataset. In GPAPF, the subspace is learnt using GPLVM and

tracking is performed using APF [95]. Secondly, we report a performance eval-

uation of our subspace system by varying the algorithm parameters. Finally,

we compare the performance of the subspace system with HPSO using the Hu-

manEva dataset.

System Implementation. Our proposed system is entirely based in MATLAB

under Windows with 2.40 GHz processor. In our tracking framework, we imple-
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mented the complete tracking phase and the charting component in the learning

phase, while the SCH representation and MVRVM components where implemen-

ted using existing software.

4.4.1 Comparative Experimental Tests

4.4.1.1 Datasets and Algorithm Parameters

We evaluated our subspace tracking system using two different datasets, our

studio sequences and HumanEva dataset.

Studio Dataset. Our studio dataset was captured with 8 synchronised colour

cameras with resolution 640 x 480 at 30 Hz. The camera was setup, so as to

maximise useful silhouette information, while avoiding similar views. The joint

angles were extracted from the multi-view silhouettes using HPSO. The extracted

joint angles were then manually refined for every frame to be used as the training

data for the learning phase. The manually refined joint angles are the training

data for the learning phase and ground truths for the tracking phase. The training

dataset consists of 300 frames for walk sequence, 200 frames for punch sequence,

250 frames for body pose sequence and 200 frames for prayer sequence. The test

dataset consists of 2 subjects for each action sequence, except the punch sequence,

which has 1 subject. The number of frames present in each test sequence are given

in Tables 4.3 and 4.13. An example of our studio sequence is shown in Figure

4.12.

HumanEva dataset. The dataset contains multiple subjects performing a set

of predefined actions with repetitions, using 7 cameras (3 colour and 4 gray scale

cameras), and was originally partitioned into train, validate, and test sub-sets.

We choose 4 actions: walking; box ; jog and gestures performed by subjects S1, S2
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Figure 4.12: An example of our studio sequence

and S3. We trained our subspace tracking system using the training sub-sets of

S2 and S3, containing approximately 1000 frames per action. Given the training

dataset, we tested our subspace tracking system using the validate partition of

S1, which is a subject not present in the training dataset. The throw-catch action

is not selected as we have frequent frame drops, during the extraction of joint

angles, using the tool provided by the HumanEva dataset itself. This action is

not selected by other authors also [81].

Learning Parameters. Firstly, the sequences of multiple subjects were manu-

ally aligned to form a single sequence. The charting used 40 equally sampled

charts from the dataset to reduce the 3D joint angle (without 6 dim root) to

obtain the 2D joint angle subspace as shown in Figure 4.13. The intrinsic dimen-

sionality for all actions was obtained as 2. We learnt separate mapping functions

between the joint angle subspace and each 40D shape context histogram, for each

camera using MVRVM run for 500 iterations with Gaussian kernel of width 0.5.

Subspace Tracking Parameters. The initialisation HPSO was run with 10

particles and the parameter settings described in Chapter 3. The PSO was run

with only 5 particles for 30 iterations on the subspace space with a fixed inertia

0.5. The search limits for PSO are derived from minimum and maximum co-

ordinates of the joint angle subspace. Finally the pose refinement was run with
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5 particles for 20 iterations for each hierarchical step (12 hierarchical step). The

starting inertia for refinement was 0.5, which amounted to a local search. The

number of likelihood evaluations per frame amounted to 1350 (one evaluation per

particle per iteration).

GPAPF Parameters. For our studio sequence, in order to ensure a fair com-

parison, GPAPF was run with 400 particles and 5 annealing layers to correspond

to the number of likelihood evaluations (1350) of our proposed system. As the

framework of GPAPF algorithm does not support automatic initialisation, we

initialise the algorithm manually. We do not run the GPAPF on the HumanEva

dataset, but report the results published in [97].

3D Error Measure. In our experiments, we use the error measure adopted in

the previous chapter. The goodness of a pose estimate is obtained as a 3D error

measure in millimeters, calculated as the average distance of 15 virtual markers,

corresponding to Brown University software markers, on the pose estimate with

respect to 15 virtual markers derived from the ground truth pose. In our stu-

dio sequence, the ground truth pose are obtained from manually refined HPSO

pose estimates and motion capture-based ground truth poses in the HumanEva

dataset. As the ground truth poses are manually refined from HPSO poses in

our studio sequences, we do not use them to compare our subspace tracker with

HPSO. Instead we use the HumanEva dataset to compare the two tracking al-

gorithms.

4.4.1.2 Results

Accuracy. In order to evaluate our proposed system and compare it with the

GPAPF, the distance error between the manually extracted joint angles (ground

truth) and pose estimates are calculated. The results in Table 4.2, Table 4.3 and
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Figure 4.13, Figure 4.15 and Figure 4.14 suggest that at least in these experiments

our proposed system is able to estimate the pose more accurately than GPAPF.

Similar results are also obtained on the HumanEva dataset as shown in Table

4.7, where our proposed system performs better than GPAPF, APF, HPSO and

tracking system proposed by Husz et al. [49].

Computational Time. Since we evaluate a pose hypothesis without expensive

generation of silhouettes, our computational time is greatly reduced. The PSO

search in subspace (initial estimate) takes 1 sec per frame and final refinement

with root estimation takes 20 sec per frame. On the other hand, in the GPAPF

algorithm, as evaluation of subspace hypothesis is performed by generating sil-

houettes from 3D cylinder, built by reverse mapping of subspace hypothesis to

the high-dimensional space, the GPAPF algorithm takes 100 seconds per frame.

The computational time taken by the different algorithms are shown in Table

4.7.

Refinement of Poses. Occasional wrong estimates are obtained from PSO in

subspaces. This mainly occurs when the particles stray away from the subspace,

inspite of the constraints. However as shown in Table 4.1, the refinement plays

an important role in recovering from the wrong estimate, even when the particles

stray away from the subspace, thus preventing the tracking from diverging (i.e.,

the inability to recover from wrong pose estimates and resume tracking correctly).

Table 4.1: Distance errors computed for subspace PSO estimate and final pose
estimate, showing the effect of refinement step.

Sequence (3 trials) subspace PSO estimate Final pose estimate
Vijay Walk 29.7±20mm 21.7±2.5mm
Jabez Walk 28.7±7.6mm 17.4±4.7mm
Adria Walk 42.3±7.8mm 34.29±7.7mm
Vijay Pose 45.7±8.23mm 28.8±4.28mm
Jabez Pose 63.57±8.5mm 40.58±13.63mm
Vijay Prayer 33.91±9.29mm 15.37±2.65mm
Jabez Prayer 31.29±14.51mm 17.54±9.74mm
Jabez Punch 24.27±5.24mm 12.40±3.12mm
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Table 4.2: Distance error computed for pose estimates of our system and GPAPF.
Algorithm Adria Walk Jabez Walk Vijay Walk
(3 trials) (50 frames) (50 frames) (50 frames)

Charting PSO(accuracy) 22.85 ±10.2mm 17.4 ±4.77mm 21.7±2.5mm
Charting PSO(time) 25min 25min 25min
GPAPF(accuracy) 35.14±13.34mm 46.5±20.6mm 34.4±13.8mm
GPAPF(time) 1hrs40min 1hrs40min 1hrs40min

Table 4.3: Distance error computed for pose estimates of our system and GPAPF.
Algorithm Charting PSO(accuracy + time) GPAPF(accuracy + time)

Vijay Pose (55 frames) 28.28 ±4.2mm (27min) 40.2 ±6.62mm(1hr54min)
Jabez Pose (30 frames) 40.58±13.3mm (15min) 51.2±2.66mm(50min)
Vijay Prayer (30 frames) 15.37 ±2.65mm(15min) 26.76±7.29mm(50min)
Jabez Prayer(40 frames) 17.5±9.74mm(20min) 24.6±6.48mm(1hr12min)
Jabez Punch(30 frames) 12.4±3.12mm(15min) 21.19±1.74mm(50min)

Figure 4.13: Tracking results of our system for Adria walk sequence displayed
every 5th frame.

Figure 4.14: Tracking results of our system for HumanEva walk sequence, every
100th frame
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Figure 4.15: Tracking results of our system for Jabez kick sequence, every 10th
frame

4.4.2 Performance Evaluation of Subspace Tracking

To evaluate the benefits of subspace evaluation and integration of subspace con-

strained PSO in our proposed algorithm, we ran a modified subspace tracking

system with two important changes, as shown in Figure 4.16, firstly, we use the

standard PSO algorithm for the subspace pose estimation. Secondly, we perform

the subspace hypothesis evaluation by inverse mapping the hypothesis, build-

ing the 3D body model and generating expensive silhouettes. Henceforth, we

refer to the modified subspace tracking system, as PSO-Silhouette Evaluation

Tracker (PSO-S), and our original proposed subspace algorithm in Section 4.3.2,

as Modified PSO-Shape Context Descriptors Evaluation Tracker (MPSO-SCH).

The automatic initialisation of 3D pose and pose refinement in PSO-S, is done

using the steps discussed in Section 4.3.2 (MPSO-SCH). The differences occur

in the subspace pose estimation and evaluation step, which we next explain in

greater detail.



CHAPTER 4. CHARTING AND SUBSPACE CONSTRAINED PSO 149

Figure 4.16: The tracking phase of our modified system

4.4.2.1 PSO-S Subspace Pose Estimation

The subspace swarm initialisation is created, similar to MPSO-SCH, by perform-

ing a nearest-neighbour search and retrieving the closest matching pose. Given

the initialised PSO swarm, we generate candidate hypothesis using the standard

PSO, instead of subspace constrained PSO, as a result of which the particles are

free to explore a wider search area, only constrained by the search limits.

To evaluate the candidate hypothesis, firstly we map the subspace particles back

to the high-dimensional joint angle space (3D) using the inverse mapping learnt

by charting. Secondly, rotation and translation parameters (6D) are added to the

inverse mapped joint angles to obtain valid poses. 3D poses are used to generate
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Table 4.4: Distance errors computed for subspace PSO estimate and final pose
estimate, showing the effect of refinement step. The errors displayed correspond
to the joint angles without the root co-ordinates.

Sequence (3 trials) Unrefined estimate Final pose estimate
Vijay Walk (50 frames) 26.97±4.10mm (50 sec) 18.57±4.7mm(25min)
Jabez Walk (50 frames) 24.78±4.87mm (50sec) 15.4±4.05mm(25min)
Adria Walk (50 frames) 39.5±7mm (50sec) 31.77±5.87mm(25min)
Vijay Pose (55 frames) 50.96±10.3mm (55sec) 31.7±9.2mm(27min)
Jabez Pose (30 frames) 59.3±11.1mm (30sec) 39.67±11.63mm(15min)
Vijay Prayer (30 frames) 28.7±3.31mm (30sec) 25.60±3.3mm(15min)
Jabez Prayer (40 frames) 45.18±14.22mm (40sec) 24.54±5.55mm(20min)
Jabez Punch (30 frames) 34.71±5.15mm (30sec) 15.92±2.13mm(15min)

a cylindrical 3D body model. Finally, the hypotheses are evaluated by selecting a

predefined number of points on the surface of the 3D body model and projecting

the surface points into multi-view silhouette observation. The goodness-of-fit is

obtained in terms of the mean square error between the projected points and the

silhouettes. The global best particle, pg, at the end of PSO iteration is considered

to be the pose estimate for the given frame, which is then refined using HPSO

with fewer iterations and particles. We report the performance of PSO-S below.

4.4.2.2 Dataset and Algorithm Parameters

We evaluated PSO-S and MPSO-SCH using our studio sequences. We setup the

algorithm using the tracking parameters defined in Section 4.4.1.1.

4.4.2.3 Results

Accuracy. The results in Table 4.4 and Table 4.5 suggest that, at least in these

experiments, MPSO-SCH is able to estimate the pose more accurately than PSO-
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Table 4.5: Distance error computed for pose estimates of our modified PSO-based
system and standard PSO-based system.

Algorithm MPSO-SCH PSO-S
Adria Walk(50frames) 22.85 ±10.2mm(25min) 18.57±4.7mm(1hr40min)
Jabez Walk(50frames) 17.4 ±4.77mm(25min) 15.4±4.05mm(1hr40min)
Vijay Walk(50frames) 21.7±2.5mm(25min) 31.77±5.87mm(1hr40min)
Vijay Pose (55 frames) 28.28 ±4.2mm(27min) 31.7±9.2mm(1hr54min)
Jabez Pose (30 frames) 40.58±13.3mm(15min) 39.67±11.63mm(50min)
Vijay Prayer (30 frames) 15.37 ±2.65mm(15min) 25.60±3.3mm(50min)
Jabez Prayer(40 frames) 17.5±9.74mm(20min) 24.54±5.55mm(1hr11min)
Jabez Punch(30 frames) 12.4±3.12mm(15min) 15.92±2.13mm(50min)

S in a majority of actions (Vijay walk, Vijay pose, Vijay prayer, Jabez prayer,

Jabez punch), while reporting similar accuracy for the remaining actions (Adria

walk, Jabez walk and Jabez pose). This can be attributed to the subspace search

constraint, that we have introduced in our modified PSO. In the absence of such

a constraint, the standard PSO is less likely to obtain similar results, a result

of frequent deviation from the learnt subspace. It is worth noting that in spite

of better performance, the modified PSO is formulated only for tracking with a

prior motion model, with a fixed pg at each instant. On the other hand, the

standard PSO provides the solution for an optimisation problem, without any

prior motion information, functioning as a generic optimisation algorithm.

Computational Time. Similar to the results observed in Section 4.4.1.1,

our modified subspace system takes 100 seconds per frame, which is similar to

GPAPF’s computational time, owing to hypothesis evaluation using expensive

silhouette generation. This demonstrates the computational advantage in evalu-

ating our hypothesis in the subspace itself.

Refinement of Poses. The pose refinement step in our modified subspace

tracking system does improve the tracking accuracy, similar to the behaviour

observed in MPSO-SCH. This is shown in Table 4.4.
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4.4.3 Experiments to Compare MPSO-SCH with HPSO

In this subsection, we evaluate the benefit of incorporating a motion prior, in

the form of learnt sub-space, within the tracking framework. We perform a

quantitative analysis using the HumanEva dataset, and report our observations

based on the experimental results obtained.

4.4.3.1 Dataset and Algorithm Parameters

We use the HumanEva-I dataset and perform our experiments on walk, jog, ges-

ture and box actions. Our proposed subspace system was trained using subjects

S2 and S3, while testing was performed on subject S1. We used the HPSO para-

meter settings used in Chapter 3, and similarly, we used the algorithm parameters

specified in Section 4.4.1.1.

4.4.3.2 Results

Accuracy. In order to evaluate the subspace tracking system and compare

it with HPSO tracking system, the distance error between the ground truth

joint angles (ground truth) and pose estimates are calculated. The results in

Table 4.6, and Table 4.7 suggest that at least in these experiments, MPSO-

SCH performs marginally better than HPSO in a few sequences, while HPSO

performs marginally better on a few sequences. Moreover, we also compare the

performance of our tracking systems, both MPSO-SCH and HPSO system, with

other state-of-the-art tracking systems on the S1 walk sequence. We obtain

the error values, for S1 walk sequence, from the corresponding publications of
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Test Sequence (580frames) HE-I (S1 walk, validate)
MPSO-SCH 82mm(5hrs20min)

HPSO 88mm(14hrs50min)
GPAPF [97] 86.3mm(16hrs12min)
APF [97] 95.4mm(19hrs33min)

Husz at al [49] 101.8mm(NA)

Table 4.6: Distance errors computed for HumanEva dataset.

Test Sequence (HumanEva-I) MPSO-SCH HPSO
S1 Jog (517-667) 80mm(1hrs25min) 85mm(4hrs15min)

S1 Gestures (386-486) 22mm(50min) 20mm(2hrs50min)
S1 Box (396-496) 70mm(50min) 68mm(2hrs50min)

Table 4.7: Distance errors computed for HumanEva dataset.

the tracking systems [97, 49], which do not report results on other sequences of

S1. As shown in Table 4.6, our subspace tracking systems performs the best,

being marginally better than the subspace tracking system (GPAPF). Though

the performance of HPSO is weaker than the subspace systems, the tracking

accuracy is better than APF as well as the tracking system proposed by Husz et

al. ([49]).

Computational Time. Apart from the reduction in computational complexity

owing to the subspace evaluation scheme, there exists an inherent reduction in

computational time as a result of using motion priors, as effective constraints

in the search space. In practical terms, this implies that the subspace based-

PSO has learnt search limits, pertaining to each action. While in HPSO, as the

search space is constrained by the generic biomechanical joint limits, rather than

action-specific limits. This leads to an increased number of particles and search

iterations in HPSO compared to subspace PSO.
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4.4.4 Analysis of Experimental Results

Comparison with State-of-the-Art. Based on the experimental results, the track-

ing performance of our subspace framework (MPSO-SCH and PSO-S) is compar-

able and marginally better than comparable state-of-the-art tracking algorithms

including GPAPF and APF. The tracking performance of our proposed algorithm

can be attributed to the reduced search space, and the integration of HPSO, for

initialisation and refinement. Additionally, the modified PSO plays an important

role in the pose estimation, by constraining the search near the subspace, and

incorporating subspace search limits, features not present in the original APF

algorithm.

In addition to the comparable or marginally better tracking performance, an

important feature of our subspace tracking algorithm is the greatly improved

computational time, which varies between 1sec for subspace pose estimation and

20 sec for full-body estimation. Note that for applications, where the root position

and orientations are either fixed or assumed, only the subspace pose estimation

is required. The improvement in computational time can be attributed to our

subspace evaluation scheme, in addition to the reduced subspace, resulting in

fewer search iteration.

Comparison of MPSO-SCH and PSO-S. A comparative analysis between MPSO-

SCH and PSO-S clearly demonstrates the benefits of selecting a modified PSO

for subspace pose estimation, instead of the standard PSO, as the fixed target in

each iteration serves to constrain the search near the expected subspace regions.

Additionally, the computational advantage of our subspace evaluation scheme

is demonstrated with the significant reduction in MPSO-SCH’s computational

time.

Comparison of MPSO-SCH and HPSO. Based on our experimental results, our

proposed subspace tracking framework performance is comparable and marginally
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better than HPSO, in addition to reduced computationl time.

General. Inspite of the advantages of subspaces tracking discussed above us-

ing a motion prior in the subspace tracking system has a few drawbacks when

compared with systems like HPSO. Firstly, the subspace tracking system is an

action-specific tracking system, i.e., prior knowledge of the action being tracked

is required, whereas HPSO functions as a black-box system with fixed para-

meter settings for different actions. Secondly, HPSO can be used across different

datasets, while the subspace tracking system can only be used in the studio en-

vironment from which the learning data is acquired, due to the camera invariant

property of shape context descriptors-sensitivity to camera position in the studio.

Summarising the two systems a trade-off between HPSO and MPSO_SCH exists,

namely, the reduced computational time and increased accuracy of MPSO-SCH

and the general black-box tracking property of HPSO at similar accuracy and

increased computational time.

4.5 Conclusion and Future Work

In this chapter, we have presented a framework for markerless articulated hu-

man motion tracking in multiple-view sequences using charting to learn the low-

dimensional subspace for common actions. To our best knowledge, charting is

used within articulated body tracking for the first time. Additionally, tracking

is performed in the subspace space using a variation of PSO, which enforces a

soft constraint to keep the search close to the action subspace, still admitting

reasonable departures from poses observed during learning. Our proposed track-

ing framework is able to track efficiently without learning explicit models of the

subspace dynamics, avoid divergence and recover from wrong estimates. The use



CHAPTER 4. CHARTING AND SUBSPACE CONSTRAINED PSO 156

of motion prior, greatly reduces the computational time when compared with

HPSO-based tracking system. Moreover, we have demonstrated better perform-

ance than similar subspace tracking systems, GPAPF. However the drawback of

incorporating the motion prior is the dependence on specific action and datasets.

Addressing these issues would be the focus of our current and future work. The

subspace tracking system can be made capture-environment invariant by using 3D

shape descriptors such as [108], instead of 2D shape context histogram descriptors

which depend on the camera view. A primary requirement of our current sub-

space tracking system is the manual selection of the subspace corresponding to

the action being tracked; this can be avoided by incorporating an action recogni-

tion framework within the subspace tracking framework, which forms the basis of

our next motion analysis system-subspace human motion classification system,

explained in the next chapter.



Chapter 5

Classifying Multi-View Human

Action Snippets using Charting

and Action Subspace Features

5.1 Introduction

In the previous chapters (Chapter 3 and 4), we addressed an important area of

research in human motion analysis, namely, human motion tracking, and extract-

ing human motion information from video sequences. The extracted information

is used in a wide number of applications including animation, sports analysis,

and biomedical analysis. Another important area of human motion analysis is

human motion classification, defined as the assignment of an action class label to

video sequences. Some of the applications include video surveillance, object-level

157
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video summarization and indexing.

In this chapter, we introduce a framework to classify full-body, markerless ar-

ticulated human motion. The input are skeletal poses represented by a vector

of joint angles obtained either from a commercial mocap system dataset [27] or

from our automatic pose tracking system (Chapter 3 and 4). The pose estim-

ated by a tracking algorithm in each frame corresponds to a coordinate in the

subspace, and the entire estimated sequence of poses is represented by a curve in

this subspace. The classification of the motion is based on the comparison of the

sequences of subspace coordinates (subspace trajectories) to sequences that rep-

resent different actions. These subspace trajectories are used to classify human

motion. Additionally, with on-line scenarios in mind, we identify the minimum

sub-sequence length allowing reliable recognition (over the set of actions learnt

in this work). We call such sub-sequences snippets.

Classifying articulated motion is an important problem and a challenging one

because of the complex and generally unpredictable nature of human movements

and the high-dimensional search space, with typically 20 − 50 degrees of free-

dom for 3D skeletal pose ([47]) and > 100 degrees of freedom for image-based

descriptors like shape context and HOG ([81, 25]). An important challenge posed

by variations in motion style within the same action (intra-class variations); for

example, a walk can vary in speed and style. Another challenge is the similarities

between certain actions; for example, slow running is similar to jogging. A good

human action classification approach should be able to generalize over intra-class

variations, while providing good inter-class discrimination. In our work, we are

particularly interested in addressing the issues of high-dimensional search, while

simultaneously maintaining a high classification accuracy.

Typically, in a video-based human motion classification algorithm there are two

main steps: extracting discriminative features from video sequence, and assigning

an action label to extracted features from a set of predefined action class labels.
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The most important step is the extraction of discriminative features, either image-

based features [25] or skeletal features [66]. Image-based features are extracted

directly from the video sequences, while the skeletal-based features are obtained

either from motion capture data or as the output of a tracking algorithm. Several

human motion classification algorithms are based on image-based features, where

an important goal is the extraction and representation of discriminative features.

Shape and motion information [64], 3D space time features [37], appearance and

position context descriptors [81] are representative of the different discriminative

features used in human motion classification algorithms.

In addition to the type of features, another paradigm used for categorising hu-

man motion classification is the size of the search space. Most papers in human

action classification include high-dimensional feature representations, resulting

in increased search complexity. However in recent years, the literature includes

a number of motion classification systems learning low-dimensional, non-linear

subspaces to address the issues of high dimensionality and complex human mo-

tion. Techniques for identifying low-dimensional subspaces in subspace include

local linear embedding [52], GPVLM [59] and its variations, locality preserving

projections (LPP) [141], and local spatio-temporal discriminant embedding [53].

Most such systems learn a single subspace from examples of multiple actions,

[132, 109] so that adding new actions may decrease the degree of class discrimin-

ation, reduce consistency and smoothness of the subspace structure [96], make it

difficult to establish useful embeddings with discriminative features, and increase

embedding complexity [36]. These challenges have been the primary focus of at-

tention in recent subspace classification systems, for example the discriminative

GPLVM [132] and discriminative dimensionality reduction [109]. An alternate

approach would be to create separate, action-specific subspaces, resulting in a

straightforward approach to the above issues. This approach allows for an easier

incremental addition of newer actions in subspace, whereas a single subspace
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would have to be re-learnt. In this chapter, we propose, and evaluate, human

motion classification systems using both single subspace and multiple subspaces.

Context of Literature Classification. In the context of our defined classification

of human motion classification literature (Section 2.3.2), our final motion ana-

lysis work, presents markerless multiple-view human motion classification using

charting to learn separate action-specific subspaces (low-dimensional) from 3D

skeletal features (features). Moreover, we derive discriminative latent-space

motion patterns and key frame-based representations, which are used in a multi-

layered classification scheme.

System Overview. In our multi-view classification framework, the extracted

skeletal features from the video sequences are represented using their subspaces.

We adopt charting [15] to model the evolution of the angles of 3D skeleton in

a low-dimensional sub-space. Charting, a dimensionality reduction technique

not yet used in human motion classification, estimates automatically the dimen-

sionality of the embedded subspace, preserves closeness of similar poses in the

subspace. In order to assign an action label to the subspace features, we adopt

a multi-layered classification framework in the subspace. The set of candidate

actions (subspace) is pruned at each layer. In the final layer, where only similar

classes with subtle variations remain, multi-dimensional dynamic time warping,

a feature vector alignment algorithm [123], is used to classify the query snippet.

To the best of our knowledge, our work differs from the current literature in at

least five ways. First, we investigate charting for action classification. Second,

we derive a novel action representation based on subspace features. Third, we

determine the minimum snippet length required for accurate classification for

subspace skeletal features. Fourth, we use a compact representation based on key-

frames in subspace for early pruning of action candidates. Finally, we compare

and analyze subspace classification systems with single subspace and multiple

subspaces.
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We test our systems on HumanEva and CMU mocap datasets, achieving compar-

able or better classification accuracy than various comparable systems. Finally,

we evaluate the single subspace and multiple subspace system and report our

observations, based on the results obtained.

Chapter Layout. The rest of this paper is organised as follows. In Section 5.2, we

explain about the first step involved in our multi-view classification framework,

extraction of subspace discriminative features, obtained using charting. Next

in Section 5.3, we present a brief overview of different distance metrics, which

form the basis of our multi-layered classification system. Section 5.4 presents our

single subspace classification framework, and our multiple subspace classification

framework. Section 5.5 presents experimental results of our proposed system on

HumanEva and CMU mocap Dataset. Section 5.6 summarizes our work and

suggests future developments.

5.2 Charting-based Subspace Features

In Chapter 4, we provided a detailed overview of charting and used it within our

subspace human motion tracking framework. Charting was used to model the

evolution of 3D joint angles, obtaining a low-dimensional subspace representation.

The learnt subspace representation was shown to preserve the geometry of high-

dimensional local neighbourhoods in the subspace [15], a property which we used

to propose a modified particle swarm optimisation to estimate the pose in the

subspace. In this section, we provide an illustration of charting’s inter-frame

spacing preservation properties. Furthermore we also explain about the derived

subspace features vectors used in our classification framework, before discussing

about our key-frame-based subspace representation, used as a pruning layer in

our multi-layered classification framework. Finally, we compare and analyse the

single and multiple subspaces learnt from multiple actions.
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Inter-frame Spacing Preservation. In addition to preserving the geometry of local

neighbourhoods, charting also preserves the high-dimensional spacing between

the poses, or frames, in the subspace. An illustration of the spacing preserva-

tion is shown in Figure 5.2. The spacing between high-dimensional poses are

obtained as the distance between two position vectors, where each position vec-

tor corresponding to the vector defined between the origin and pose in a frame.

Similarly, the spacing between subspace co-ordinates are also obtained as the dis-

tance between two position vectors. As shown in Figure 5.2, charting preserves

the spacing between the poses in the subspace. The degree of spacing preserva-

tion is obviously increased, when the subspace is learnt for specific body parts.

An example of which can be seen in Figure 5.2 (b-g). Figure 5.2 (b) shows the

spacing preservation of subspace learnt for the upper body of the walk action

and Figure 5.2 (c) shows the spacing preservation of lower body walk subspace.

More examples of the same property is observed for the jog, box and gesture

action. Charting’s spacing-preservation property is used in our multi-layered

classification framework, with dynamic time warping, to discriminate between

similar actions, for example, walk and run. Specifically, they are used in our

subspace feature vector, and as shown in our experimental section, the subspace

feature vector in addition to the dynamic time warping increases the classification

accuracy.

Subspace Feature Vector. We derive discriminative features in the action-specific

subspaces, one for each action. We found by observation that discriminative

high-dimensional 3D skeletal pose information is well captured, in 2D subspace,

by two features: (a) absolute position of a point (pose in a frame), and (b)

relative position of neighboring points (poses in successive frames), i.e., length

of the vector connecting the two points. While the spatial co-ordinates alone

are sufficient to classify very different actions like walking and punching, spacing

greatly aid to distinguish similar actions like walking and jogging, especially in

the multiple subspace framework. The training set of subspace feature vectors is
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(a) Full Body subspace (b) Upper body subspace

(c) Lower body subspace (d) Right arm subspace

(e) Left arm subspace (f) Right leg subspace

(g) Left leg subspace

Figure 5.2: Illustration of spacing preservation in the learnt subspace of Lee walk
action. Additionally the spacing preservation in hierarchical subspaces is shown
(b-g), where spacing preservation is increased.
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(a) Walk-Multiple subspace (b) Jog-Multiple subspace

(c) Box-Multiple subspace (d) Gesture-Multiple subspace

Figure 5.3: An illustration of spacing preservation for HumanEva action dataset
on a multiple subspace (Walk, Jog, Gestures and Box).
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(e) Walk-Single subspace (f) Jog-Single subspace

(g) Box-Single subspace (h) Gestures-Single subspace

Figure 5.4: An illustration of spacing preservation for HumanEva action dataset
on a single subspace(Walk, Jog, Gestures and Box).
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given as, Vc
t = {viji=1} with position and spacing co-ordinates in the cth partition

of the single subspace (single subspace classification) and cth separate subspace

(multiple subspace classification). Each subspace feature vector vct in the training

dataset of a given partition, is represented as:

vct = [xc, sc] (5.1)

where xc gives point co-ordinates, and sc is the spacing between neighboring

points.

Clustering of Feature Vectors. To support layered classification, the subspace

feature vectors training dataset Vc
t are clustered using K-means algorithms and

the corresponding j cluster centers are stored as Wc = {wi
j
i=1}. The number of

cluster centers are given in the experimental section.

Finally, each vct subspace feature vector, in the training dataset Vc
t , is assigned

the label of its nearest cluster center j. The clustering of feature vectors is per-

formed to reduce the computational complexity, by storing fewer examples from

the training dataset. Additionally, the assignement of labels to each subspace

feature vector is necessary to identify vectors from similar clusters for a detailed

comparison in the final layers, as explained in detail in layer 3 of Section 5.4.2

and layer 2 of Section 5.4.1,

Key-Frames Representation. To obtain a concise representation of actions, we

compute a set, Lc, of key-frames in subspace, for each partition. As in animation,

we define our key-frames as the starting and ending points of low-curvature sub-

space regions in subspace, currently using an empirical threshold on the angles

between consecutive vectors. Such regions of high curvature (key-frames) corres-

pond to instants in which an action changes significantly (see example in Figure

5.5). Finally we generate a feature vector,vf c, of the key frames identified, in the

same way as in Eqn (5.1).



CHAPTER 5. CHARTING AND SUBSPACE CLASSIFICATION 168

vf c = [xf c, sf c] (5.2)

The set of key frame-based feature vector, Lc, gives the concise representation

of the cth space and is used in our layered classification scheme to prune the

candidate actions.

Multiple and Single Subspace. An important consideration for subspace-based

human motion classification algorithms is the number of subspaces. Recent

subspace-based human motion classification algorithms tend to learn a single

subspace for multiple actions, where the primary focus of attention is to increase

the discrimination among the classes. In our charting-based multiple and single

subspace, as illustrated in Figure 5.6, we observe that the subspace structure

demonstrates increased smoothness and consistency in the multiple action sub-

space, as a result of which, the extraction of key-frames representations are easier

in this approach.

5.3 Distance Measures

In this section, we provide a brief overview of Euclidean and Hausdorff distance

metrics. Additionally, we explain about dynamic time warping and its extension,

the multi-dimensional dynamic time warping.

Euclidean Distance. The Euclidean distance is the simplest and most widely used

distance metric in various machine learning and computer vision applications. In

Cartesian coordinates, if p and q are two vectors in d-dimensional space, then

d(p,q) is given by:

d(p,q) =
√

(q1 − p1)2 + . . .+ (qd − pd)2 (5.3)
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(a) Walk and Jog-HumanEva

(c) Box-HumanEva (d) Gestures-HumanEva

(e) Walk-CMU (f) Jump-CMU

Figure 5.5: Examples of key-frames extracted from multiple subspaces (Separate
subspaces learnt for each action)
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(a)

(b) Walk (c) Jog

(d) Box (e) Gestures

Figure 5.6: A comparison of (a) single subspace and (b-e) multiple subspace
learnt for HumanEva
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Hausdorff Distance. The Hausdorff distance is a metric between two point sets.

Given two point sets A = {ak}nk=1, akεRd and B = {bk}nk=1,bkεRd the Hausdorff

distance between them is defined as:

H(A,B) = max(h(A,B), h(B,A)) (5.4)

h(A,B) = maxaεAminbεB ‖a − b‖ (5.5)

where h(A, B) is called the directed Hausdorff distance from set A to B, which

we use in our multi-layered framework. While the Euclidean distance metric

measurement is a distance metric between any two point, the Hausdorff distance

is a distance metric between any two point-sets.

Multi-Dimensional Dynamic Time Warping. Dynamic time warping (DTW) is a

distance metric, between two sequences of possible varying lengths, which aligns

the two sequences and obtains the ideal warp, or synchronisation, which min-

imises the distance between them. The optimal alignment is calculated using

dynamic programming. A brief overview of DTW and its extension, the multi-

dimensional dynamic time warping is given.

Given two sequences A = {ak}nk=1, akεRd and B = {bk}mk=1,bkεRd, where d=1

and length is m and n. Firstly, DTW algorithm creates a m-by-n local distance

matrix C, where each (ith ,jth) element represents the distance d(ai,bj). Next,

an accumulated distance matrix D is created, to accumulate the total distance

between each possible pair of points of the two 1-dimensional sequences. The

total distance in each matrix element (ith ,jth) in D is obtained from the sum of

(ith ,jth) value in C and the smallest neighbouring accumulated distance. The

main objective of DTW is use to obtain a warping function that minimizes the

total distance between respective points of the sequence. This is is achieved by
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finding the path with least cost, or smallest accumulated distances in D. The

shortest possible path starts at the right bottom of the matrix D and goes to

the left-top element in it, representing the best synchronization between the two

sequences.

The original DTW was designed for one-dimensional sequences only, but there

are many applications, as in our case, where the sequences are multi-dimensional.

Recently, Holt et al. [123], proposed an extension of an extension of the original

dynamic time warping algorithm (DTW) [123], known as multi-dimensional dy-

namic time warping (MD-DTW). In MD-DTW, the distance matrixC is obtained

by computing the distances between k-dimensional points of the two sequences,

unlike the original DTW algorithm, where C is calculated from 1-dimensional se-

quences. Furthermore, in MDDTW the input sequences are pre-processed before

computing C. Specifically, each dimension in A and B is separately normalised

to zero mean and unit variance. The normalisation step is necessary to obtain

a distance measure, where each dimension is comparable. Finally, similar to

the original DTW algorithm, given C, the accumulated matrix D is calculated,

from which the path with least cost or smallest accumulated distance is obtained

(md-dtw distance).

5.4 Subspace Classification Framework

In order to classify a test human action sequence, which forms a trajectory in

the subspace, typically, two categories of algorithms exist. In the first group of

algorithms, the focus is on enhancing the discrimination among the classes during

the subspace learning process. Discriminative GPLVM and sufficient discrimin-

ative dimensionality reduction algorithms belong to this category. In the second

group of algorithms the inter-class distance is not enhanced, instead computation-

ally expensive trajectory, or curve matching algorithm, like the Frechet distance

[96] or dynamic time warping [123] is incorporated within the classification frame-
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work. Our work belongs to the latter category, where we use multi-dimensional

dynamic time warping, in a multi-layered classification framework, to match the

embedded test trajectory with the learnt subspace trajectories. Although we

adopt charting to learn the subspace representation of actions, which does give

a degree of discrimination among the classes, we do not focus on enhancing the

inter-class distance. In our work, the subspace of actions is learnt in two different

ways, firstly, a single subspace is learnt for multiple actions. Secondly, multiple

subspaces are learnt for multiple actions (single subspace for each action). As

illustrated in Section 5.2, few variations occur in the single and multiple subspace

structures, which is accounted for in our multi-layered classification framework.

Classification Overview. In our classification framework, we propose a multi-

layered classification framework, where the main motivation is to perform a

layered pruning of candidate actions. Specifically, in our initial layers we com-

pare our test human action sequence with the entire training dataset, containing

candidate actions, using a computationally inexpensive search, and prune can-

didate actions which are dissimilar. Given the set of pruned candidate actions,

we employ a detailed search using dynamic time warping. The multi-layered

classification can be summarised as a scheme, where the search complexity is

increased with a simultaneous reduction or pruning of candidate actions, thus

functioning as a computationally efficient scheme.

Additionally we setup our mult-layered classification scheme in both the single

subspace as well as the multiple subspace, primarliy to evaluate the two types of

subspaces and analyse the corresponding classification results. We next explain

about our single subspace multi-layered classification framework, before providing

a detailed overview of the multiple subspace multi-layered classification frame-

work.
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5.4.1 Single Subspace Multi-layered Classification

In our single subspace, we adopt a three-layered classification scheme with can-

didate action labels υ in the single learnt subspace υ = [υ1, υ2, ..., υC ], where C

is the number of action classes in the single subspace, which are pruned success-

ively till the the correct action class υo, corresponding to output class label is

obtained. The multi-layered scheme provides an efficient search; the more sim-

ilar two modelled actions, the more effort is needed to assign the query to one

of them. So classification may terminate successfully after any layer, depending

on the query and the dictionary of actions learnt. While our search, after test

snippet mapping, is increasingly detailed at each layer, the number of search-

candidate features vectors are simultaneously reduced, resulting in near-uniform

computational time across layers, shown in Section 5.5.

Overview of Framework. Our classification scheme has three layers, after the

mapping of the query snippet as shown in Figure 5.7 (a). The first layer performs

a simple, quick search using key-frames, compared by the point-to-set Hausdorff

distance. The second layer allocates the query to the nearest cluster in each inde-

pendent subspace. The final layer uses multi-dimensional dynamic time warping

to obtain the final output class. We describe the different layers in detail below.

5.4.1.1 Classification Layers

First Layer. The classification process begins with mapping a query snippet

Yq = [y1,y2, ...,yn], with yk ∈ RD and n number of frames, to the single subspace

and generating vq, the query subspace feature vector. Once mapped, we exploit

key-frames to prune candidate actions with a simple, quick search. We compute

the point-to-set Hausdorff distance, ηc, between vq, and the set of feature vectors

of key-frames for each action c, Lc. Intuitively, in our case, this finds the distance

of the nearest key-frame of each action’s subspace to the query. The effect is to
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eliminate actions for which the mapped query lies significantly away from the

action subspace, without employing a detailed search. The rule is

ηleast = min
c
ηc, (5.6)

υc =


0 if(ηc − ηleast) > ε, class pruned

1 class not pruned

(5.7)

where ε is set to 2 ∗ ηleast for all our experiments.

Second Layer. For each remaining candidate action, we compute the Euclidean

distance between the query latent feature vector vq and set of cluster centers Wc

and retrieve the nearest cluster center wj. We then retrieve all subspace feature

vectors vct belonging to jth cluster, with cluster center wj and obtain a set of u

subspace feature vectors Uc = {viui=1}. The cluster label associated with each

training subspace feature vector is used for this operation.

Next we compute the similarity of vq with Uc using the Euclidean distance and
retrieve the p nearest subspace feature vectors in Uc and form the set Pc =
{vipi=1}. This set of candidates is passed to final layer, for the final detailed
search.

Third Layer. In this layer we use MDDTW, which finds the optimal alignment

between vq and latent feature vectors in Pc. The final output class label (υo) is

then obtained as the action class c, whose candidate set Pc gives the smallest

md-dtw distance. Though MDDTW improves the classification accuracy (Section

5.5), the computational cost is very high and not suited for an exhaustive search

on all actions.
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5.4.2 Multiple Subspace Classification

The main challenges of single subspace-based classification systems, with increase

in number of actions, include decrease in degree of class discrimination, reduction

of consistency and smoothness of the subspace structure [96], difficulty in estab-

lishing useful embeddings with discriminative features, and increased embedding

complexity. Moreover, the subspace needs to be re-learnt for a new action. An

alternate approach would be to create separate, action-specific subspaces, ad-

dressing the above issues. We next provide an overview of our multi-layered

multiple subspace classification framework.

Overview of Framework. In our multi-subspace classification framework, we ad-

opt the classification scheme used for the single subspace framework, with two

extensions, effectively functioning as a four layered classification system. Firstly,

to ensure a fair comparison across the different, independent subspaces, we scale-

normalise the subspaces before deriving the subspace feature vectors. Our clas-

sification scheme has four layers, as shown in Figure 5.7 (b). The first layer

performs mapping of the query snippet (high-dim joint angle subsequence) us-

ing charting, generating a query feature vector in subspace. The second layer

performs the key-frames-based point-to-set Hausdorff distance. The third layer

identifies the nearest cluster in each independent subspace. The fourth layer uses

multi-dimensional dynamic time warping to obtain the final output class. We

next explain about the first layer in detail, before summarising about the re-

maining layers, which are similar to the layers in the single subspace framework.

5.4.3 Classification Layers

First layer. Processing begins with mapping a query snippet Yq = [y1,y2, ...,yn],

with yk ∈ RD and n number of frames, to the subspace of each candidate action

class using charting. Snippet mapping performs an evaluation of the snippet
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within the charts of every candidate action via Eqn (4.9). Query snippets eval-

uated with charts belonging to similar action classes will have a higher sum of

probability, while charts belonging to dissimilar action classes would have near

zero or zero sum of probability, as they would be treated as outliers. Action

classes with low probabilities are pruned from the set of candidate actions and

the query snippet is not mapped to the particular subspace. The query sub-

space feature vector vqc is then generated from the mapped query snippets in the

remaining candidate action classes.

When a query snippet is mapped, we estimate the probability eck = p(k|Yq)c,

where Yq is the query snippet, that the data point belongs to each kth chart in

action c. Using the parameters learnt (i.e., covariance Σk in Eqn (4.9)) directly

could result in poses with significant style changes not being recognised; for

example, an exaggerated right hand forward pose of the walk cycle may not

be recognised as walk, if it was not present in the training data. We address

this problem by inflating the entries of the covariance matrix by 10% (uniformly

increasing scale), which performed well in our experiments. The classification

rule is

υc =


1 if

∑
k(eck)� 0

0 if
∑
k(eck) ' 0

(5.8)

where Σk refers to the sum over k charts and not covariance.

Second-fourth layers are similar to the first three layers of the single subspace

classification framework. However, unlike the single subspace framework, we

have c-separate query subspace feature vectors vqc . Summarising the similar-

ities in two systems. Firstly, the mapped query snippet is compared with the

key-frame-based subspace feature vector in each subspace, and the point-to-set

Hausdorff distance is used to prune dissimilar subspaces. Secondly, in the re-
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maining subspaces, for the mapped query snippet, the nearest cluster center and

its associated subspace feature vectors are retrieved, from which a few candidate

subspace few vectors are used to form the final candidate set. Finally, we com-

pute the mddtw distance between mapped query snippet and final candidate set

in the remaining subspaces to finally obtain the correct action label.

5.5 Experimental Results

In this section we evaluate the performance of our proposed subspace classific-

ation framework by comparing the classification accuracies of the multiple sub-

space classification framework with the single subspace classification framework

on the CMU mocap dataset [27] and HumanEva dataset [114]. Additionally, we

compare the classification accuracies of our system with comparable state-of-the-

art classification algorithms. We then report a performance evaluation of the

multiple subspace and single subspace by varying the algorithm parameters. Our

proposed system is entirely implemented in MATLAB under windows with 2.40

GHz processor, without using any existing softwares.

5.5.1 Comparative Experimental Results

5.5.1.1 HumanEva Experiments (Dataset and Algorithm

Parameters)

Dataset. HumanEva dataset contains multiple subjects performing a set

of predefined actions with repetitions, and was originally partitioned into

train, validate, and test sub-sets. We choose 4 actions: walking, box, jog and

gestures performed by subjects S1, S2 and S3. We use the train partition of

the S1, S2 dataset and test our sequences using validate partition of all three

subjects. Our test bed choices are similar to the reported tests in Ning et al.
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[81] and Zsolt [47]. The throw- catch action is not selected as we have frequent

frame drops, during the extraction of joint angles, using the tool provided by the

HumanEva dataset itself. This action is not selected by other authors also [81].

Training Parameters. We used 20 charts to reduce the 26D skeletal angles

(without 6D root) to separate 2D joint angle subspaces (multiple subspace) and

single 2D joint angle subspaces (single subspace). The intrinsic dimensionality

selected by charting was 2 for all actions. To obtain a smooth subspace, we remove

subsequences of the training data set with joint angle discontinuities which could

be attributed to bad or inconsistent marker data. Finally we smooth the pruned

data set. The result is 2000− 3000 frames per action in the training dataset.

To determine the minimum length of action snippets required for consistent and

reliable classification accuracy, we varied the length of x in v within the set

[3, 8, 16, 30, 50, 75]. s is subsequently derived for each x length, to form the con-

catenated feature vector v. This is also done for vf in Eqn (5.2). Furthermore,

we obtain 10 clusters, w, in set W (layer 3, Section 5.4.2 and layer 2, Section

5.4.1) and the number of candidate latent feature vectors in P (layer 3, Section

5.4.2 and layer 2, Section 5.4.1) is 3. Finally in each subspace, we derive 20− 40

key-frames, located at the regions of high-curvature, a sample key-frame from

each high-curvature region is shown in Figure 5.5 for all actions.

5.5.1.2 HumanEva Experiments (Results)

Classification Accuracy. We evaluate both our classification systems with

500 − 1500 test action snippets per action and owing to the difference in the

nature of comparative algorithms, we compare with the best accuracies reported

by each system, treating the different classification algorithms as a black box.

Ning et al. [81]. The average classification accuracy for query snippets of varying

length is shown in Figure 5.8 and Table 5.1, where our result with 75-frame action
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Table 5.1: Comparison of classification accuracy on the HumanEva dataset
Algorithm Walk Jog Box Gestures Average
Ning et al. 100 100 98.5 79.1 95.2

Single subspace 100 100 100 100 100
Multiple subspace 97.8 100 93.2 83.4 93.5

snippets of the multiple subspace framework is comparable to the classification

rate reported by Ning et al. [81], while we achieve 100% classification accuracy

with the single subspace framework. It is worth noting that Ning et al. [81]

represent the feature vectors in a bag-of-words framework, using a 300 − bin

histogram for each frame in a 7-frame test/training feature vector sequences,

amounting to a 2100D feature vector. Our feature vector, for comparison, has

298 numbers only (x : 75× 2, s : 74× 2).

Zsolt et al. [47]. We also compare our algorithm with Zsolt et al. [47], with 17D

full-body joint angles in sequences of varying lengths (action primitives), the max-

imum length being 25 frames (425 dim). Zsolt et al. [47] report their classification

results for HumanEva dataset, with 95% accuracy for S1 walk sequence, while

we obtain better classification accuracy at 98.1% for S1 walk sequence with mul-

tiple subspace and 100% accuracy with single subspace system, compared with

average walk accuracy of 97.8% (Table 5.1).

Minimum Length of Snippets. An important consideration for classifying hu-

man actions are the required length of action snippets for accurate classification.

For image-based high-dim classification framework [103], show that a length of

5 frames (snippets) is required for accurate classification, and Ning et al. ([81]),

report their classification framework using a 7-frame action sequence for image-

based subspace classification framework. Similar to the work by Schindler et

al. [103], we attempt to identify the minimum length of snippets to accurately

classify action for skeletal features-based subspace classification framework. We

use the classification accuracy reported by Ning et al [81] as the baseline in our

experiment to identify the minimum action length, and based on our experi-
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(a) Avg. class. accuracy (b) Walk

(c) Jog (d) Box

(e) Gestures action

Figure 5.8: Comparison of classification accuracy for multiple subspace and single
subspace classification system for HumanEva dataset, with varying length of
query snippets
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mental results, the minimum length for comparable accuracy for single subspace

framework is 8 frames (Table 5.2 (b)) and obtain better results from 30 frames

(Table 5.2 (d-e)). The multiple subspace framework, on the other hand, reports

comparable accuracy for 75-frame snippets (Table 5.2(e)). We report our classi-

fication results, as confusion matrices, in Table 5.2 and Figure 5.8. The confusion

matrices for single subspace and multiple subspaces are shown in 5.4 and 5.3.

5.5.1.3 CMU Motion Capture Experiments (Dataset and Algorithm

Parameters)

Dataset. We use motion capture data of walk, run and jump performed by

different subjects from the CMU mocap database [27]. Each observation is a 56D

vector of joint angles that characterise the pose. The original 120 Hz framerate

is subsampled by 4 to obtain mocap data by 30Hz framerate. This particular set

of actions was chosen, so we could compare the performance of our algorithms

with the result reported in a recent state-of-the-art classification algorithm [109].

Training Parameters. We used the same training parameters as for the Hu-

manEva data set. The CMU data set uses 56D joint angle poses. The training

and test data sets consist, for each action, of 3 to 5 subjects, 500-800 train-

ing frames, and 100 − 500 test query snippets. The test data set contains new

subjects, not present in the training data set.

5.5.1.4 CMU Motion Capture Experiments (Results)

Classification Accuracy. We compare our classification accuracy with the res-

ults reported in Shyr et al. [109] for the same set of actions, i.e., walk, run and

jump. Our classification accuracy for the 75-frame action snippets as shown in

Table 5.5, is either better (single subspace) or comparable (multiple) to perform-

ance of Shyr et al. [109] algorithm for multi-frame snippets. Additionally they

also report the classification accuracy for a few other algorithm, which we report
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Table 5.3: HumanEva confusion matrices for different query snippets
lengths(multiple subspaces)

Walk Jog Box Gestures

Walk 72 28 0 0

Jog 1 99 0 0

Box 0 0 81 19

Gestures 0 0 23 77

Walk Jog Box Gestures

Walk 62 36 0 2

Jog 1 88 3 8

Box 0 8 64 19

Gestures 0 12 43 45

(a) 30-frames (b) 50-frames

Walk Jog Box Gestures

Walk 97.8 2.2 0 0

Jog 0 100 0 0

Box 0 0 93.2 6.8

Gestures 0 1 15.6 83.4

(c) 75-frames

Table 5.4: HumanEva confusion matrices for different query snippets
lengths(single subspace)

Walk Jog Box Gestures

Walk 100 0 0 0

Jog 0 100 0 0

Box 0 0 83 17

Gestures 0 0 0.4 99.6

Walk Jog Box Gestures

Walk 100 0 0 0

Jog 0 100 0 0

Box 0 0 95 5

Gestures 0 0 0 100

(a) 30-frames (b) 50-frames

Walk Jog Box Gestures

Walk 100 0 0 0

Jog 0 100 0 0

Box 0 0 100 0

Gestures 0 0 0 100

(c) 75-frames
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Table 5.5: CMU dataset: comparison of classification accuracy for multi-frame
motion capture sequences

Algorithm SDR[109] KDR [109] SVM [109] PCA[109] Single subspace Multiple subspace

Class. Accuracy % 97.1 96 95 92 98.3 96.3

Table 5.6: CMU dataset: comparison of classification accuracy with varying
query length

Algorithm Single subspace Multiple subspace

75-frames 98.3 96.3
50-frames 90 80
30-frames 87 70
16-frames 81 63
8-frames 78 60
3-frames 75 52

in Table 5.5. We can observe that the performance of our algorithm is better

than the reported algorithms. The average classification accuracy over varying

length query snippet is shown in Figure 5.9.

Minimum Length of Snippets. The results obtained on CMU dataset, re-

flect the results observed for HumanEva dataset. Specifically we obtain the best

classification accuracies with 75 frame snippets as reported in Table 5.6. Similar

to the results observed on HumanEva dataset, the classification accuracy of the

multiple subspace framework degrades substantially compared with the single

subspace framework. The classification accuracies across varying query snippet

lengths is shown in Figure 5.9. The confusion matrices for single subspace and

multiple subspace is shown in Table 5.7 and 5.8.

In this section, so far, we have reported the classification accuracies of our

frameworks and compared the results obtained with comparable state-of-the-

art systems, Additionally, we have also identified the minimum snippet length

required for skeletal-features-based subspace human action classification frame-

works. Moreover, we have demonstrated that the single subspace classification

framework, consistently outperforms the multiple subspace classification frame-

work over varying query snippet lengths. We next evaluate both the algorithms,
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(a) Average class accuracy (b) Walk

(c) Run (d) Jump

Figure 5.9: CMU dataset: comparison of classification accuracy for single and
multiple subspace frameworks
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Table 5.7: CMU confusion matrices for different query snippets lengths(multiple
subspaces)

Walk Run Jump

Walk 63 35 2

Run 19 80 1

Jump 2 28 70

Walk Run Jump

Walk 72.1 18.1 9.8

Run 9.5 90.5 0

Jump 7 13.1 78.9

Walk Run Jump

Walk 94.5 5.5 0

Run 0 100 0

Jump 2.2 3 94.8

(a) 30-frames (b) 50-frames (c) 75-frames

Table 5.8: CMU confusion matrices for different query snippets lengths(single
subspace)

Walk Run Jump

Walk 83 15 2

Run 19 74 7

Jump 0 0 100

Walk Run Jump

Walk 85 13 2

Run 16 83 1

Jump 0 0 100

Walk Run Jump

Walk 99.5 0.5 0

Run 5 95 0

Jump 0 0 100

(a) 30-frames (b) 50-frames (c)75 frames

before summarising our observations.

5.5.2 Performance Evaluation of Multiple Subspace

Classification

5.5.2.1 Distance Measure Evaluation

The MDDTW is an important layer in our human action classification frame-

work to classify actions with subtle variations, in our case walk-jog (HumanEva)

and walk-run (CMU). We test the effectiveness of using MDDTW, by comparing

the results of 4 layered scheme with a 3 layered scheme, obtaining the output

class label with Euclidean distance measure alone, i.e. the action class c, whose

candidate set U c gives the smallest Euclidean distance. The comparison results

are shown in Figure 5.10 and Figure 5.11 where using MDDTW significantly

improves the classification accuracy for both HumanEva and CMU dataset con-
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(a) HumanEva-Walk (b) HumanEva-Jog

(c) HumanEva-Box (d) HumanEva-Gestures

(h) Avg HumanEva

Figure 5.10: Comparison of classification accuracy for multiple subspace frame-
work, on HumanEva dataset, with and without MDDTW
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(e) CMU-Walk (f) CMU-Run

(g) CMU-Jump (i) Avg CMU

Figure 5.11: Comparison of classification accuracy for multiple subspace frame-
work, on CMU dataset, with and without MDDTW
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(a) Multiple subject vs single subject training

Figure 5.12: CMU dataset: comparison of classification accuracy for single sub-
ject and multiple subject training (multiple subspace)

sistently across the varying query snippet lengths.

5.5.2.2 Single-Subject Training

We vary the number of subjects present in the training dataset and evaluate the

performance of our algorithm. In the CMU training data set, we train using one

subject, and test using different subjects. The results obtained in Figure 5.15

show that performance is, for this set of actions, nearly comparable to the one

when training on multiple subjects.

5.5.3 Performance Evaluation of Single Subspace

Classification

5.5.3.1 Distance Measure Evaluation

Similar to the test performed on the multiple subspace framework, we also test

the effectiveness of using MDDTW by comparing the results of 3 layered scheme

with a 2 layered scheme, obtaining the output class label with Euclidean distance

measure alone. The comparison results are shown in Figure 5.13 and Figure 5.14,
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where MDDTW improves the accuracy across varying snippet lengths.

5.5.3.2 Single-Subject Training

We test system performance with a single subject in the CMU training data set,

testing on different subjects (multi-subject test dataset). We use queries with

100− 300 frames. The results obtained in Figure 5.15 show that performance is,

for this set of actions, nearly comparable to the one when training on multiple

subjects.

5.5.4 Comparative Discussion of Multiple Subspace and

Single Subspace Classification

We have demonstrated that single subspace framework performs consistently bet-

ter than multiple subspace framework, which can be attributed to inter-class

spatial distances, which is inherent in single subspaces and absent in multiple

subspaces. Specifically, as shown in Figure 5.16 (a), a discernible distance is seen

across different actions in single subspace. The inter-class spatial distance is in-

herent to single subspace framework, as we have a single co-ordinate system for

multiple actions. On the other hand, multiple subspace framework does not have

a single co-ordinate system or inter-class spatial distance, as separate subspaces

with independent co-ordinate systems for multiple actions are learnt.

In Figure 5.16, an example of gesture query embedding in single and multiple

subspace framework is shown. As seen in Figure 5.16(a), the gesture query snip-

pet is mapped closest to gesture partition in single subspace and the next nearest

partition is box action-a similar action. In case of multiple subspace framework,

we can see that gesture is mapped accurately onto both gesture and box subspace

Figure 5.16(b), as they are similar actions. This mapping property, especially for

similar actions, demonstrates that in multiple subspace framework, the classifica-
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(a) HumanEva-Walk (b) HumanEva-Jog

(c) HumanEva-Gestures (d) HumanEva-Box

(h) HumanEva-Avg

Figure 5.13: Comparison of classification accuracy for single subspace framework,
on CMU and HumanEva dataset, with and without MDDTW
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(e) CMU-Walk (f) CMU-Run

(g) CMU-Jump (i) CMU-Avg

Figure 5.14: Comparison of classification accuracy for single subspace framework,
on CMU and HumanEva dataset, with and without MDDTW

(a) Multiple subject vs single subject training

Figure 5.15: CMU dataset: comparison of classification accuracy for single sub-
ject and multiple subject training (single subspace)
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tion depends greatly on mddtw measurement. While spatial distance and mddtw

measurement are used for action classification in single subspace classification

framework.

Computational Time. We report the time taken for our multi-subspace classific-

ation algorithm. Each snippet is classified with an average time of 90 sec (layer

one: 87-88 sec, layer two: 0.007 to 0.02 sec, layer three: 0.06 to 0.1 sec and layer

four: 0.1 to 0.3 sec), with time varying with the snippet length. It is worth noting,

how computational time increases (layers 2-4) after mapping (layer 1), reflect-

ing increased ambiguity among classes, and increasingly demanding classification

search. On the other hand, in the single subspace classification framework, each

snippet is classified with an average time of 23 sec (mapping query: 20-25 sec,

layer one: 0.007 to 0.02 sec, layer two: 0.06 to 0.1 sec and layer three: 0.1 to 0.3

sec), with time varying with the snippet length.
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(a)

(b)

Figure 5.16: Query action mapping to (a) single subspace and (b) multiple sub-
space

5.6 Conclusion and Future Work

In this chapter, we have presented a framework for markerless articulated human

motion classification with multiple-view sequences. Our main contributions to

the current literature, include an investigation of charting for action classification;

identification of minimum snippet length required for accurate classification for
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subspace skeletal features; and a comparison of our subspace classification sys-

tems with single subspace and multiple subspaces. We deploy a multi-layered

classification scheme, using a a compact representation based on key-frames in

subspace for action pruning of action. Our proposed tracking framework is able

to classify efficiently without learning explicit models of transition or increasing

the inter-class discrimination . However, we believe that incorporating a model to

increase the inter-class discrimination during subspace learning, similar to Shyr

et al. [109] and linear discriminant analysis, would not only improve the classi-

fication accuracy for shorter snippets, but would be useful when the number of

candidate actions are high. In our current and future work, we would be con-

centrating on incorporating an inter-class discrimination enhancement algorithm

like linear discriminant analysis within the charting framework. Additionally we

would investigate switching between motion models in subspace, robust analysis

of long sequences, and the application of our scheme to biomedical and animation

scenarios. Finally we would like to avoid the use of threshold parameters in our

system.



Chapter 6

Conclusion and Future Work

6.1 Introduction

In this chapter, we review and summarise the work presented in this thesis, high-

lighting the key-contributions of our research. We also identify the limitations of

our system, with their possible causes, before discussing the possible extensions

and future direction of our research.

Chapter Layout. This chapter is organised as follows. Section 6.2 summarises the

work presented in our thesis. The key contributions of our work are summarised

in Section 6.3. In Section 6.4 we discuss the limitations of our work and their

possible causes, which form the basis for our possible extensions and potential

future direction of our work in Section 6.5. Finally, we conclude our thesis in

Section 6.6.

198
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6.2 Summary of Thesis

In this thesis, we contribute to the existing literature of vision-based human

motion analysis by introducing two human motion tracking algorithms and a

human motion classification algorithm. The human motion analysis techniques

described in our work are video-based, markerless, multiple-view and studio-

based algorithms, and typically, marker-less human motion algorithms address

the expensive and time-consuming setup associated with commercial marker-

based motion capture systems, considered as state-of-the-art. We next provide a

summary of our work.

Hierarchical Particle Swarm Optimisation. In our first markerless human mo-

tion tracking system (Chapter 3), we formulate a full-body articulated tracking

from multiple-view sequences as a non-linear optimisation problem. We adopt

a powerful swarm-intelligence algorithm, the particle swarm optimisation (PSO)

to solve this problem. Additionally, we exploit the inherent hierarchy within the

kinematic structure of the human body, to propose a hierarchical human motion

tracking algorithm. Our PSO-based tracker eliminates the need for sequence-

specific motion model, initialises automatically and functions as a black-box

system-same algorithm with fixed parameters across different motions. How-

ever the black-box system results in increased computational complexity, which

is addressed in a modified PSO-based tracker termed as the adaptive PSO-based

tracker (A-PSO). APSO uses the online tracking information to adaptively vary

the algorithm parameters. We perform three sets of experiments, namely compar-

ison of HPSO and APSO with comparable state-of-the-art tracking algorithms;

evaluating the effect of algorithmic parameter change; comparison between HPSO

and APSO. Based on our experimental results, both our systems (HPSO and

APSO) demonstrate good tracking accuracy across different actions on different

datasets including HumanEva, Surrey sequences, Lee Walk and our studio data-

set. The tracking performance of HPSO and APSO is comparable to existing
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algorithms, while performing better on certain faster actions. Finally, we show

that APSO, compared to HPSO, reduces the computational complexity, while

reporting similar tracking performance.

Charting-based Subspace Tracking. In our second markerless human motion track-

ing system (Chapter 4), we exploit the prior information of motion being tracked

to improve the tracking accuracy and the overall robustness of the system. We ex-

ploit the prior motion information in the form of low-dimensional subspace learnt

using charting, a non-linear subspace learning technique. Tracking takes place in

the learnt subspace using a modified particle swarm optimisation algorithm biased

for subspace optimisation. Our proposed modified particle swarm optimisation

uses motion information as a temporal and search constraint. Additionally, the

computational cost associated with generative tracking’s hypothesis evaluation

is avoided, by using shape context histograms-based descriptors as our feature

descriptors instead of multi-view silhouettes. Finally, during tracking, the sub-

space hypothesis are evaluated by learning the mapping from the subspace to the

shape context histogram-based descriptors using multi-variate relevance vector

machines (MVRVM). Similar to the experimental setup for HPSO, we perform

three sets of experimental analysis on our proposed subspace tracking system.

Firstly, we compare our proposed charting-based subspace tracking system with

comparable state-of-the-art tracking algorithms. Secondly, we perform a compu-

tational and performance evaluation of our subspace system, specifically focusing

on the modified particle swarm optimisation and subspace hypothesis evaluation.

Finally, we compare our subspace tracking system with our first tracking system

(HPSO) and report our observations. We perform our experiments on HumanEva

and our studio dataset. In our first experimental setup, we show that the tracking

performance of charting subspace tracking algorithm is better than GPAPF and a

few comparable algorithms, across all actions, while reporting similar accuracies

for a few actions. In the second set of experiments, we show that modified particle

swarm optimisation and subspace hypothesis evaluation increases tracking per-
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formance, while greatly decreasing the computational time. Finally, we show

that our subspace-based tracking system performs comparably to HPSO, while

greatly reducing the computational time.

Charting-based Multi-Layered Human Action Classification. In our third and

final human motion analysis system (Chapter 5), we have presented a frame-

work for markerless articulated human motion classification with multiple-view

sequences using skeletal features obtained from either our first two systems or

marker-based motion capture systems. We perform our classification, assignment

of action labels to video sequences, in a low-dimensional subspace learnt using

charting. We present a multi-layered classification scheme using key-frames ex-

tracted from the subspace. The main motivation of adopting a multi-layered

classification scheme is the layered pruning of candidate actions with less de-

manding classification search till only fewer actions with subtle variations remain

in the final layer. In our final layer we adopt multi-dimensional dynamic time

warping, a feature vector alignment algorithm, to accurately assign the action

label to the video sequence.We present two variations of subspace-based human

motion classification algorithm, namely single subspace and multiple subspace

multi-layered classification algorithm-the difference being the method of learning

the charting-based subspaces for different actions. In the first system, a single

subspace is learnt for multiple actions, providing a single subspace co-ordinate

system for all actions. On the other hand, in the second system, we learn separate

independent subspaces for each action, thus obtaining separate co-ordinate sys-

tems for each action. We report good classification accuracies, on the HumanEva

dataset [114] and CMU motion capture dataset [27], which are comparable with

the existing state-of-the-art tracking systems. Furthermore, we compare the mul-

tiple subspace and single subspace systems, and present our observations of the

differences in the two algorithms.
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6.3 Summary of Key Contributions

In this section, we summarise the key contributions of our three human motion

analysis systems. We highlight the major contributions with bold texts, while

the minor contributions are highlighted in italics.

• Markerless human motion tracking using particle swarm optimisation
without any motion prior (Chapter 3)

– Particle swarm optimisation used for articulated full-body
tracking.

∗ A novel, hierarchical version of particle swarm optimisation al-
gorithm (H-PSO) is used for full-body markerless human motion
tracking.

∗ A guiding-cylinder scheme is proposed for the hypothesis evalu-
ation in H-PSO, providing spatial and temporal constraints and
reducing the computational complexity.

∗ An adaptive version of H-PSO is proposed, wherein the system
parameters are automatically varied online based on the online
accuracy of tracking, thus reducing the computational complexity.

• Markerless human motion tracking with particle swarm optimisation using
subspace learning-based motion prior (Chapter 4)

– Charting not previously used for subspace human motion
tracking.

– Particle swarm optimisation not previously used for subspace
tracking.

– A modified particle swarm optimisation, specific for subspace
tracking called subspace PSO is proposed.

• Markerless human motion classification with multi-layered classification
framework (Chapter 5)

– Charting not previously used for human motion classification.
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– Estimating the minimum length of skeletal features required
for accurate human motion classification.

∗ Derivation of sequence of key-poses from the human action sub-
space.

∗ Comparison of multiple subspace and single subspaces for human
action classification.

6.4 Limitations and Possible Causes

In this section, we first report a few identified limitations of our system, suggest

the possible causes for the weaknesses.

6.4.1 Hierarchical Particle Swarm Optimisation

We identify four main weaknesses in our first proposed markerless tracking

framework-hierarchical particle swarm optimisation. Firstly, as our proposed

system belongs to a generative tracking framework and eliminates the need for a

motion model, the tracking performance depends on the quality of measurement,

in our case of silhouettes, which tend to be noisy. Additionally, in the absence

of motion model, tracking in the presence of occlusions is challenging. In our

experiments, tracking error was present for a few frames and recovery achieved

systematically after one or a few frames, for those few errors. Wrong pose estim-

ates seem to depend mainly on poor silhouette segmentation in some cameras.

Secondly, the hierarchical structure of HPSO suggests that incorrect estimates

at early stages of hierarchy will affect the accuracy of estimates for subsequent

limbs. Although APSO improves the tracking accuracy and addresses the prob-

lem of “error-propagation”, it is still prone to wrong pose estimate in case of

noisy and occluded silhouettes. Thirdly, the body model that we use, composed

of cylinders [8] introduces a front-back ambiguity for poses in which all skeleton
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segments lie in a plane. This problem would be solved by nonsymmetric surface

models, as used by Balan et al. [9]. Finally, the computational time is high,

owing to the expensive silhouette-based hypothesis evaluation.

6.4.2 Charting-based Subspace Tracking

In our charting-subspace-based tracking framework, we demonstrated the benefits

of incorporating a motion prior in the tracking framework. However, integrating

a subspace-based motion prior in the tracking, requires the initialisation of the

tracking algorithm manually. Specifically, the subspace corresponding to the

action being tracked needs to be selected manually. Another identified weakness

is the use of 2D shape descriptors, making our subspace-based tracking system

dependent on a particular camera-view and studio setup. In practical terms, the

learning of subspace, shape context descriptors and mapping is specific for each

studio setup, and is incompatible with a different studio setup, especially if the

camera arrangements are different. This arises as a result of our shape-context

histogram-based descriptors not being camera-invariant.

6.4.3 Charting-based Human Motion Classification

In our charting-based human motion classification, we report good classification

accuracy. However, we believe that our system would not be able to identify sim-

ilar actions with subtle style changes, for example, normal walking, sad walking

and happy walk. Our proposed tracking framework is able to classify efficiently

without learning explicit models of transition or increasing the inter-class dis-

crimination for the number of actions we have used. However, we believe that an

increase in the number of actions (>10) could result in a possible reduction of

inter-class spatial distances in the single subspace, as described in Section 5.5.4,

resulting in an increase in the minimum length of action snippets required.
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6.5 Future Work

In the previous section, we identified certain weaknesses in our work and sugges-

ted possible causes, which are addressed in this section in context of our discussion

of the future direction of our work.

6.5.1 Hierarchical Particle Swarm Optimisation

In our charting-based tracking system, we incorporated the motion prior, thus

increasing the robustness of the tracker, while greatly decreasing the computa-

tional time. However, there is sufficient scope for future work on HPSO in the

high-dim space itself, which would improve the tracking accuracy and reduce the

computational complexity. Firstly, the front-back ambiguity can be avoided by

using a complicated body model, which would increase the pose estimation ac-

curacy to a certain degree. Secondly, a motion prior from learnt examples can

be used as a prior to initalise the PSO search in every frame. Thirdly, a discrim-

inative framework can be integrated within our generative scheme, which can be

used to initialise the PSO search in every frame, this would be useful, especially

for fast actions like a break dance. Finally, as ascertained from our experimental

results, the tracking accuracy increases with the number of particles. However

using, say, 100 particles would greatly increase the computational time, which

can be avoided by using GPU-based particle swarm optimisation.

6.5.2 Charting-based Subspace Tracking

The manual identification of subspace before initialisation of tracking, can be

eliminated by incorporating an action classification within the subspace tracking

framework. In our future work, we would address the issue of tracking a multiple

action video sequence by either learning a single representation, for example sub-
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space, for multiple actions or by learning the transition model between different

subspaces. Additionally, we would like to incorporate hierarchical subspaces (eg,

hGPLVM) and subspace dynamics (eg, GPDM) which could improve the track-

ing accuracy. Finally, the camera variant problem of 2D shape descriptors can be

avoided by using 3D shape descriptors [108] in our subspace tracking framework.

6.5.3 Charting-based Human Motion Classification

In our future work, we would be focusing on improving the classification accur-

acy and reducing the length of minimum snippets, by formulating charting as a

discriminative classifier to increase the inter-class discrimination in the subspace,

especially when the number of actions are high. In this regard, we would be

investigating techniques like sufficient dimensionality reduction [109] and linear

discriminant analysis. Additionally we would investigate switching between mo-

tion models in subspace. Finally we would like to avoid the use of threshold

parameters in our system.

6.6 Concluding Remarks

Given the current state-of-the-art and advances in human motion analysis, we

believe that many challenges present in markerless human motion analysis will be

met. This would meet the requirements of an ideal video-based human motion

analysis system, capable of robustly and accurately extracting human motion

information from any video sequence, potentially captured in a wide-range of

environments.
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