This paper introduces a probabilistic graphical model for continuous action
recognition with two novel components: substructure transition model and
discriminative boundary model. The first component encodes the sparse and
global temporal transition prior between action primitives in state-space model
to handle the large spatial-temporal variations within an action class. The
second component enforces the action duration constraint in a discriminative
way to locate the transition boundaries between actions more accurately. The
two components are integrated into a unified graphical structure to enable
effective training and inference. Our comprehensive experimental results on
both public and in-house datasets show that, with the capability to incorporate
additional information that had not been explicitly or efficiently modeled by
previous methods, our proposed algorithm achieved significantly improved
performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure