204,924 research outputs found
Laser-induced-fluorescence measurement of thermal conductivity in warm dense matter generated by pulsed-power discharge
Thermal conductivity in warm dense matter is
one of the interests for thermonuclear fusion
scenarios. Alternative inertial confinement fusion,
which is a fast ignition with applied magnetic
field [1], has been considered to improve
the coupling efficiency. The target behavior of
the fast ignition with applied magnetic field depends
on the anisotropic thermal conductivity.
The magnetic confinement fusion (MCF) [2] Up
to now, the heat load on the divertor in previous
MCF systems has been unreached parameter.
Thus, to predict properties of the divertor under
these heat loads, several experiments have been
performed using several methods[3-6]. To predict
the performance of the tungsten divertor in
MCF, we should analyze not only metallurgical
properties but also thermophysical properties of
ablated tungsten..
Absolute absorption and fluorescence measurements over a dynamic range of 10 with cavity-enhanced laser-induced fluorescence
We describe a novel experimental setup that combines the advantages of both
laser-induced fluorescence and cavity ring-down techniques. The simultaneous
and correlated measurement of the ring-down and fluorescence signals yields
absolute absorption coefficients for the fluorescence measurement. The combined
measurement is conducted with the same sample in a single, pulsed laser beam.
The fluorescence measurement extends the dynamic range of a stand-alone cavity
ring-down setup from typically three to at least six orders of magnitude. The
presence of the cavity improves the quality of the signal, in particular the
signal-to-noise ratio. The methodology, dubbed cavity-enhanced laser-induced
fluorescence (CELIF), is developed and rigorously tested against the
spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density
measurements in a cell. We outline how the method can be utilised to determine
absolute quantities: absorption cross sections, sample densities and
fluorescence quantum yields.Comment: 12 pages, 6 figures, submitted to J. Chem. Phy
iLIF: illumination by Laser-Induced Fluorescence for single flash imaging on a nanoseconds timescale \ud
The challenge in visualizing fast microscale fluid motion phenomena is to record high-quality images free of motion-blur. Here, we present an illumination technique based on laser-induced fluorescence which delivers high-intensity light pulses of 7 ns. The light source consists of a Q-switched Nd:YAG laser and a laser dye solution incorporated into a total internal reflection lens, resulting in a uni-directional light beam with a millimeter-sized circular aperture and 3° divergence. The laser coherence, considered undesirable for imaging purposes, is reduced while maintaining a nanoseconds pulse duration. The properties of the illumination by laser-induced fluorescence (iLIF) are quantified, and a comparison is made with other high-intensity pulsed and continuous light source
An investigation of film wavy structure in annular flow using two simultaneous LIF approaches
The paper is devoted to development and validation of film thickness measurement techniques in interfacial gas-liquid flows. The specific flow investigated here is that of downwards (co-flowing) annular flow in a vertical pipe, however, many of the observations and findings are transferable to similar flow geometries. Two advanced spatially resolved techniques, namely planar laser-induced fluorescence and brightness-based laser-induced fluorescence , are used simultaneously in the same area of interrogation. A single laser sheet is used to excite fluorescence along one longitudinal section of the pipe, and two cameras (one for each method) are placed at different angles to the plane of the laser sheet in order to independently recover the shape of the interface along this section. This allows us to perform a cross-validation of the two techniques and to analyse their respective characteristics, advantages and shortcomings
Wave Structure and Velocity Profiles in Downwards Gas-Liquid Annular Flow
The downwards co-current gas-liquid annular flows inside a vertically oriented pipe have been experimentally investigated. The measurements and characterisation were performed using advanced optical non-intrusive laser-based techniques, namely Laser Induced Fluorescence, and Particle Image/Tracking Velocimetry. The investigated conditions were in the range of ReL = 306 – 1,532 and ReG = 0 – 84,600. Temporal film thickness time traces were constructed using the Laser Induced Fluorescence images. Based on these, the wave frequency was evaluated using direct wave counting approach and power spectral density analysis. Additionally, qualitative PIV observations revealed the presence of recirculation zones within a wave front of disturbance waves
Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field
We report the first use of an extremely thin vapor cell (thickness ~ 400 nm)
to study the magnetic-field dependence of laser-induced-fluorescence excitation
spectra of alkali atoms. This thin cell allows for sub-Doppler resolution
without the complexity of atomic beam or laser cooling techniques. This
technique is used to study the laser-induced-fluorescence excitation spectra of
Rb in a 50 G magnetic field. At this field strength the electronic angular
momentum J and nuclear angular momentum I are only partially decoupled. As a
result of the mixing of wavefunctions of different hyperfine states, we observe
a nonlinear Zeeman effect for each sublevel, a substantial modification of the
transition probabilities between different magnetic sublevels, and the
appearance of transitions that are strictly forbidden in the absence of the
magnetic field. For the case of right- and left- handed circularly polarized
laser excitation, the fluorescence spectra differs qualitatively. Well
pronounced magnetic field induced circular dichroism is observed. These
observations are explained with a standard approach that describes the partial
decoupling of I and J states
Recommended from our members
Planar laser induced fluorescence for temperature measurement of optical thermocavitation
Pulsed laser-induced cavitation, has been the subject of many studies describing bubble growth, collapse and ensuing shock waves. To a lesser extent, hydrodynamics of continuous wave (CW) cavitation or thermocavitation have also been reported. However, the temperature field around these bubbles has not been measured, partly because a sensor placed in the fluid would interfere with the bubble dynamics, but also because the short-lived bubble lifetimes (∼70–200 µs) demand high sampling rates which are costly to achieve via infrared (IR) imaging. Planar laser-induced fluorescence (PLIF) provides a non-intrusive alternative technique to costly IR imaging to measure the temperature around laser-induced cavitation bubbles. A 440 nm laser sheet excites rhodamine-B dye to fluoresce while thermocavitation is induced by a CW 810 nm laser. Post-calibration, the fluorescence intensity captured with a high-speed Phantom Miro camera is correlated to temperature field adjacent to the bubble. Using shadowgraphy and PLIF, a significant decrease in sensible heat is observed in the nucleation site– temperature decreases after bubble collapse and the initial heated volume of liquid shrinks. Based on irradiation time and temperature, the provided optical energy is estimated to be converted up to 50% into acoustic energy based on the bubble's size, with larger bubbles converting larger percentages
Rate constant for the reaction NH2 + NO from 216 to 480 K
The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically
Time-resolved and state-selective detection of single freely falling atoms
We report on the detection of single, slowly moving Rubidium atoms using
laser-induced fluorescence. The atoms move at 3 m/s while they are detected
with a time resolution of 60 microseconds. The detection scheme employs a
near-resonant laser beam that drives a cycling atomic transition, and a highly
efficient mirror setup to focus a large fraction of the fluorescence photons to
a photomultiplier tube. It counts on average 20 photons per atom.Comment: 6 pages, 7 figure
- …