We describe a novel experimental setup that combines the advantages of both
laser-induced fluorescence and cavity ring-down techniques. The simultaneous
and correlated measurement of the ring-down and fluorescence signals yields
absolute absorption coefficients for the fluorescence measurement. The combined
measurement is conducted with the same sample in a single, pulsed laser beam.
The fluorescence measurement extends the dynamic range of a stand-alone cavity
ring-down setup from typically three to at least six orders of magnitude. The
presence of the cavity improves the quality of the signal, in particular the
signal-to-noise ratio. The methodology, dubbed cavity-enhanced laser-induced
fluorescence (CELIF), is developed and rigorously tested against the
spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density
measurements in a cell. We outline how the method can be utilised to determine
absolute quantities: absorption cross sections, sample densities and
fluorescence quantum yields.Comment: 12 pages, 6 figures, submitted to J. Chem. Phy