768 research outputs found

    Incorporating knowledge uncertainty into species distribution modelling

    Get PDF
    Monitoring progress towards global goals and biodiversity targets require reliable descriptions of species distributions over time and space. Current gaps in accessible information on species distributions urges the need for integrating all available data and knowledge sources, and intensifying cooperations to more effectively support global environmental governance. For many areas and species groups, experts can constitute a valuable source of information to fill the gaps by offering their knowledge on species-environment interactions. However, expert knowledge is always subject to uncertainty, and incorporating that into species distribution mapping poses a challenge. We propose the use of the dempster–shafer theory of evidence (DST) as a novel approach in this field to extract expert knowledge, to incorporate the associated uncertainty into the procedure, and to produce reliable species distribution maps. We applied DST to model the distribution of two species of eagle in Spain. We invited experts to fill in an online questionnaire and express their beliefs on the habitat of the species by assigning probability values for given environmental variables, along with their confidence in expressing the beliefs. We then calculated evidential functions, and combined them using Dempster’s rules of combination to map the species distribution based on the experts’ knowledge. We evaluated the performances of our proposed approach using the atlas of Spanish breeding birds as an independent test dataset, and further compared the results with the outcome of an ensemble of conventional SDMs. Purely based on expert knowledge, the DST approach yielded similar results as the data driven SDMs ensemble. Our proposed approach offers a strong and practical alternative for species distribution modelling when species occurrence data are not accessible, or reliable, or both. The particular strengths of the proposed approach are that it explicitly accounts for and aggregates knowledge uncertainty, and it capitalizes on the range of data sources usually considered by an expert

    Comparison of layer-stacking and Dempster-Shafer theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land cover mapping

    Get PDF
    Data fusion has shown potential to improve the accuracy of land cover mapping, and selection of the optimal fusion technique remains a challenge. This study investigated the performance of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-stacking method at the pixel level and Dempster-Shafer (D-S) theory-based approach at the decision level, for mapping six land cover classes in Thu Dau Mot City, Vietnam. At the pixel level, S-1 and S-2 bands and their extracted textures and indices were stacked into the different single-sensor and multi-sensor datasets (i.e. fused datasets). The datasets were categorized into two groups. One group included the datasets containing only spectral and backscattering bands, and the other group included the datasets consisting of these bands and their extracted features. The random forest (RF) classifier was then applied to the datasets within each group. At the decision level, the RF classification outputs of the single-sensor datasets within each group were fused together based on D-S theory. Finally, the accuracy of the mapping results at both levels within each group was compared. The results showed that fusion at the decision level provided the best mapping accuracy compared to the results from other products within each group. The highest overall accuracy (OA) and Kappa coefficient of the map using D-S theory were 92.67% and 0.91, respectively. The decision-level fusion helped increase the OA of the map by 0.75% to 2.07% compared to that of corresponding S-2 products in the groups. Meanwhile, the data fusion at the pixel level delivered the mapping results, which yielded an OA of 4.88% to 6.58% lower than that of corresponding S-2 products in the groups

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory

    Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos

    Full text link
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. A good landslide inventory map is a prerequisite for landslide hazard and risk analysis. In tropical countries, such as Malaysia, preparation of the landslide inventory is a challenging task because of the rapid growth of vegetation. Thus, it is crucial to use rapid and accurate technique and effective parameters. For this purpose, Dempster Shafer theory (DST) was applied in fusing high resolution LiDAR derived data products and Greenness index derived from orthophoto imagery. Two sites were selected, for the implementation and evaluation of the DST model; site “A” for DST implementation and site “B” for the comparison. For model implementation, vegetation index, slope and height were used as effective parameters for identifying automatic landslide detection. Two type of DST based fusions were evaluated; (greenness and height) and (greenness and slope). Furthermore, validation techniques were used to validate the accuracy are confusion matrix and area under the curve. The overall accuracy of the first and second evaluated fusions were (73.4% and 84.33%), and area under the curve were (0.76 and 0.81) respectively. Additionally, the result was compared with Random Forest (RF) based detection approach. The results showed that DST does not require a priori knowledge

    Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    Get PDF
    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme

    Improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer

    Full text link
    © 2018 by the authors. A detailed and state-of-the-art landslide inventory map including precise landslide location is greatly required for landslide susceptibility, hazard, and risk assessments. Traditional techniques employed for landslide detection in tropical regions include field surveys, synthetic aperture radar techniques, and optical remote sensing. However, these techniques are time consuming and costly. Furthermore, complications arise for the generation of accurate landslide location maps in these regions due to dense vegetation in tropical forests. Given its ability to penetrate vegetation cover, high-resolution airborne light detection and ranging (LiDAR) is typically employed to generate accurate landslide maps. The object-based technique generally consists of many homogeneous pixels grouped together in a meaningful way through image segmentation. In this paper, in order to address the limitations of this approach, the final decision is executed using Dempster-Shafer theory (DST) rule combination based on probabilistic output from object-based support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN) classifiers. Therefore, this research proposes an efficient framework by combining three object-based classifiers using the DST method. Consequently, an existing supervised approach (i.e., fuzzy-based segmentation parameter optimizer) was adopted to optimize multiresolution segmentation parameters such as scale, shape, and compactness. Subsequently, a correlation-based feature selection (CFS) algorithm was employed to select the relevant features. Two study sites were selected to implement the method of landslide detection and evaluation of the proposed method (subset "A" for implementation and subset "B" for the transferrable). The DST method performed well in detecting landslide locations in tropical regions such as Malaysia, with potential applications in other similarly vegetated regions

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given
    • 

    corecore