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High-Resolution Optical and SAR Image Fusion
for Building Database Updating

Vincent Poulain, Jordi Inglada, Member, IEEE, Marc Spigai,
Jean-Yves Tourneret, Senior Member, IEEE, and Philippe Marthon

Abstract—This paper addresses the issue of cartographic
database (DB) creation or updating using high-resolution syn-
thetic aperture radar and optical images. In cartographic appli-
cations, objects of interest are mainly buildings and roads. This
paper proposes a processing chain to create or update building
DBs. The approach is composed of two steps. First, if a DB is
available, the presence of each DB object is checked in the images.
Then, we verify if objects coming from an image segmentation
should be included in the DB. To do those two steps, relevant
features are extracted from images in the neighborhood of the
considered object. The object removal/inclusion in the DB is based
on a score obtained by the fusion of features in the framework of
Dempster–Shafer evidence theory.

Index Terms—Change detection, data fusion, feature extraction,
image analysis, image databases (DBs).

I. INTRODUCTION

W ITH the recent (or in the very next future) availability of
high-resolution (HR) optical and radar satellite sensors,

such as in the ORFEO program,1 the need of multisensor image
processing chains that are able to assist a human expert in scene
interpretation is increasing.

In this work, we focus on the problem of cartography
creation/update, and more precisely, on built-up areas. We
propose a generic image processing and interpretation chain
for cartography creation/update. This chain is generic because
it can process multisensor data [optical and synthetic aperture
radar (SAR) images are considered in this work] at various
resolutions (between 70 cm and 2.5 m for results presented in
this paper) and can take into account ancillary data (typically a
digital map). HR optical images are often used in cartographic
applications, thanks to their easy interpretation. However, opti-
cal sensors are time and weather dependent. On the contrary,
SAR sensors have an equal effectiveness at any time of the
day and night. They can quickly provide information in emer-
gency situations or in cloudy area for instance. However, the

interpretation of SAR images is more complex. Consequently,
a multisensor application can exploit the complementarity of
sensors to provide a maximum of information on a scene.

Several scenarios are possible according to available images
and data. The basic (and optimistic) case is the one where
available input data are the following: 1) a multispectral HR
image (for instance, Quickbird or Pleiades); 2) an HR SAR
image (for instance, Cosmo-SkyMed or TerraSAR-X); and
3) a vector database (DB). The aim is then to update the vector
DB. However, other (less optimistic) scenarios of input data
are foreseen to be processed by the chain: for instance, the
use of a single optical or SAR image, or two images of the
same kind (Cosmo-Skymed and TerraSAR-X for instance), or
an optical image at a lower resolution (SPOT-5 for instance) or
panchromatic, with or without DB as prior information.

Often, existing methods are specific to one sensor in single
mode. Indeed, in the field of building extraction with a single
optical image, many methods have been proposed. In [1] and
[2], hypotheses of buildings are created by grouping primitives
extracted from airborne images. Buildings are extracted in [3]
from a panchromatic QuickBird image using clustering and
edge detection. Methods based on segmentation of HR images
followed by a segment classification to detect buildings are
presented in [4] with multispectral images, in [5] with panchro-
matic images, and in [6] and [7] with aerial RGB images. Refer-
ence [8] presents a method based on active contours to check a
digital map of buildings using a panchromatic Quickbird image.
Methods based on a shape prior, using morphological operators,
are presented in [9]–[11]. A building detection method based on
the integration of shape priors in a level-set image segmentation
is proposed in [12]. Approaches described in [13] and [14] use
graph theory to extract buildings from optical images.

With SAR sensors, the analysis of a single image to extract
buildings is a more challenging task. Some promising methods
are based on marked point processes [15], [16]. However,
robust results are very hard to achieve. Building detection and
height estimation methods are proposed in [17]–[19] using
interferometric SAR data. A method for extracting building
outlines using a SAR intensity image is explained in [20], and
using features extracted from SAR and optical images in [21].
In dense urban environments, single SAR images are more
efficiently used to extract the road network. For instance, in
[22], a road network extraction is proposed based on a Hough
transform and a road tracking algorithm.

Contrary to these approaches, this paper proposes a generic
chain. It is able to integrate multisensor images and exogenous
data. The goal is to exploit all the available information on
a scene. The proposed chain can also evolve with the easy
integration of new features.



Fig. 1. Processing chain for building DB creation or updating.

This paper is organized as follows. Section II gives an
overview of this work by describing our generic processing
chain. Section III describes features used to characterize the
objects of interest (buildings). A fusion method allowing one
to combine all advantages of these features is studied in
Section IV. Finally, results are presented in Section V.

II. PROCESSING CHAIN

Our processing chain is presented in Fig. 1. Inputs of the
chain are HR images, i.e., an optical and/or a SAR image.
Resolution of images should be in the range of 0.6–2.5 m for
the optical images, and around 1 m for the SAR images. A
cartographic DB can be available. The registration of images
and DB is not part of this work. Thus, images and DB are
assumed to be registered. As we work at object level with buffer
regions, a coarse registration (that can be performed automati-
cally with an accuracy of several pixels) is sufficient to define
appropriate buffer regions. Consequently, a fine registration is
not needed. The goal of this chain is to update (if available) or
create a vector DB representing buildings. If a DB is available,
our approach consists of two steps: First, we consider each
DB object and we check if the object is present in the SAR
and optical images. To do so, some relevant features based on
primitives are computed in the neighborhood of each object and
fused to decide if the object should be kept in the DB. The
second step consists of detecting buildings that are missing in
the DB and including them in the DB. The proposed method is
similar to the first step. However, instead of considering each
DB object, we consider each region coming from a multiscale
segmentation [23] of the optical image. In this work, an optical
image is required to extract new buildings. If no optical image
is available, the detection of new buildings should be performed
with approaches specific to building detection in SAR images
such as [15] and [16]. However, these methods are not used in
this work.

Fig. 2. Characterization of buildings in optical and SAR images.

The goal of the two steps presented in Fig. 1 is to provide
a score for each object (coming from the DB or from the
segmentation) representing its likelihood of being a building.
Consequently, simple cases can be processed automatically,
whereas more complex cases may require the intervention of
a human operator.

Moreover, a constraint of our algorithm is the absence of
learning set to classify building candidates. Therefore, the
classification has to be performed with prior knowledge on
buildings. However, if a DB is available, the DB verification
will be performed with the prior knowledge. Accepted build-
ings after this step will be used to optimize parameters of the
building detection algorithm.

III. FEATURE EXTRACTION

A. Hypothesis Generation

In the DB verification step, we consider objects coming
from the DB (for buildings, these objects are polygons). As
detailed in Fig. 1, objects are subject to feature computation,
feature fusion, and decision. For the detection of new objects
(left part of the chain shown in Fig. 1), the three same steps
are applied to objects (polygons). To do so, we must generate
these objects, i.e., extract object hypotheses from images. In
this work, we only extract hypotheses from the optical images.
They can also be extracted from SAR images, however, it is
more challenging. To generate building hypotheses, we perform
a multiscale segmentation of the optical image by using the
mean-shift algorithm [23]. This algorithm requires the follow-
ing three parameters: 1) spatial radius; 2) spectral radius; and
3) minimum region size. We use various spectral radii to obtain
segmentations at different scales. The resulting regions are then
transformed into polygons that will be used for the detection of
new objects. Note that if a DB is available, it was checked in the
previous step. Consequently, building hypotheses are regions
coming from the segmentation of the optical image that do not
intersect polygons kept in the DB.

B. Feature Computation

The goal of feature computation is to find clues in images
about the presence of buildings. As the proposed approach must
be generic, we have to find features common to most kinds
of buildings. As represented in Fig. 2, in optical images, most
buildings contrast with their surrounding, cast a shadow (as a
building is higher than its surrounding), contain no vegetation,
and have linear walls (this feature characterizes man-made
structures). In SAR images, some buildings present a contrast
between the layover and the shadow area [24]. However, these
characteristics are not observed for all buildings. Indeed, if the
Sun is at its zenith, elevated objects do not cast a shadow.
Moreover, small houses do not have long enough walls to be



TABLE I
FEATURE EXTRACTION

detected as meaningful segments. A fusion process detailed
in the next part is used to combine all available information
extracted from images. The result of this fusion is used to make
a decision on the relevance to include an object in the DB.

Algorithms used to extract primitives associated to this prior
information are provided in Table I. Once primitives have been
extracted from input images, appropriate features are computed
in the vicinity of each building hypothesis providing a score
associated to the presence of buildings. These features are listed
as follows.

1) Shadow: This feature requires to know the direction of
the Sun as a prior information on the optical image.
This information is used to determine which building
hypothesis walls are oriented toward the Sun. A shadow
mask is also required. In this work, we obtain the shadow
mask by using an empirical thresholding of the optical
image. However, automatic methods such as the ones
developed in [25] and [26] could also be used for that
purpose. We consider building hypothesis wall pixels,
which are pixels of the optical image lying on the edges of
input polygons. Around each building hypothesis wall not
oriented toward the Sun, we define a buffer region (width
of several pixels depending on the image resolution) and
compute the percentage of wall pixels that contain a
shadow pixel in their neighborhood.

2) Line segments: Segments are extracted from the optical
image using the line segment detector [27]. For each
building hypothesis wall (each line of input polygon), we
consider extracted segments that are in their neighbor-
hood and parallel to the wall (for our tests we allowed a
tolerance of 10◦). We compute the percentage of building
hypothesis wall pixels containing an extracted segment
parallel to the wall in their neighborhood.

3) Edges: We compute the contrast between the building
hypothesis and its neighborhood. The resulting score is
the mean distance between building hypothesis borders
and optical image nearest edges (extracted using mean
shift [23]).

4) No vegetation: This feature requires a multispectral im-
age. We determine the percentage of not vegetated pixels
located inside the building hypothesis (a vegetation mask
is obtained thanks to a thresholding of the normalized dif-
ference vegetation index [28] of the multispectral image).

5) SAR contrast: We define buffer regions around walls
oriented toward the sensor (layover region) and be-

hind opposite walls (shadow region). For each building
hypothesis, we compute the ratio of means: score =
log(m(layover)/m(shadow)).

These five features are examples that have been implemented
to provide data to the fusion step, which is the crucial point
of this work. Moreover, once the strategy of feature adding
has been set up, new features can be easily integrated to the
proposed generic processing chain. Note that according to the
scenario, some features may not be computable. For instance,
if only one optical panchromatic image is available, only three
features will be computed (shadow, line segments, and edges).
The score indicating the likelihood of being a building is
computed from a fusion procedure described in Section IV.

IV. FEATURE FUSION

A. Fusion Framework

As explained in Section III, several features are extracted
from images. Each feature brings evidence on the presence
of a building. To benefit from all information brought by
features, we need to combine scores coming from each fea-
ture. The goal of the fusion is to exploit redundancy and
to reduce uncertainty. Evidential reasoning can be based
on the following three frameworks: 1) Bayesian probability
theory [30]; 2) Dempster–Shafer theory of evidence [31]; and
3) possibility theory [32]. The Bayesian probability theory
is a classical method for data fusion that is based on a
well-developed decision-making theory. However, it requires
a considerable amount of prior knowledge and cannot easily
model imprecise, incomplete, and not totally reliable infor-
mation. The Dempster–Shafer theory of evidence is a gener-
alization of probability theory that allows us to capture the
imprecise nature of evidence. The resulting decision is not
very well defined since degrees of likelihood are measured by
probability intervals instead of probabilities for the Bayesian
framework. The possibility theory, based on fuzzy set theory
[33], is also adapted to uncertain and imprecise information.
It might be used as well in our application. However, with
the possibility theory, several combination rules are possible,
and the choice between these rules is not straightforward.
The Dempster–Shafer evidence theory has a clearer and more
rigorous foundation. Moreover, it provides interesting byprod-
ucts, such as conflict between sources and ignorance (as the
confidence is expressed through intervals). These information



can be used to analyze complex cases that do not fit the
established model. A human operator might want to focus on
those complex cases, while cases with a great confidence value
might be processed automatically. In our application, features
bring pieces of evidence on the probability of being a building.
However, most of them do not discriminate buildings alone (for
instance, absence of vegetation can be an evidence of presence
of buildings, as well as roads). The Dempster–Shafer theory of
evidence appears as the best adapted framework to represent
and manage imprecision of features, as well as allow the easy
integration of new features in the chain.

B. Evidence Theory

In the Dempster–Shafer framework, evidence is assigned to
elements of the set of all possible propositions called frame

of discernment, often denoted by Θ. The power set P(Θ) is
the set of all possible subsets of Θ. Subsets of Θ are called
propositions. The quantity of evidence that a source assigns to
a proposition is represented by a mass function (MS: also called
basic probability assignment). An MFm satisfies the following
properties:

m : P(Θ) → [0, 1],
∑

Ai⊆Θ

m(Ai) = 1,m(∅) = 0. (1)

Subsets that are assigned a mass by a source are called focal

sets of the source.
The uncertainty corresponds to the set Θ. Considering the

focal set model built according to feature imprecision, masses
assigned to sets included in (resp. containing) the building set
will constitute the belief (resp. the plausibility) of building
hypothesis. After defining focal sets for each feature, the fusion
of information is performed, thanks to the Dempster–Shafer
orthogonal rule. The mass of a proposition P , resulting from
the combination of two sources 1 and 2 is expressed as follows:

m12(P ) = m1 ⊕m2(P ) =
1

1− κ

∑

A∩B=P

m1(A)m2(B) (2)

with κ =
∑

A∩B=∅ m1(A)m2(B).
Information about each proposition is represented by an

interval, bounded by two values, namely, 1) the belief and 2) the
plausibility. The belief function contains all evidences attached
to subsets of the proposition P , i.e.,

Bel(P ) =
∑

A⊆P

m(A). (3)

The plausibility function is the sum of all the masses that
intersect the set of interest P , i.e.,

Pl(P ) =
∑

A|A∩P 6=∅

m(A). (4)

There are various ways to take a decision in the Dempster–
Shafer framework. The main decision rules are the maximum
of belief, the maximum of plausibility, and the center of the
interval whose boundaries are belief and plausibility. For our
tests, we have chosen the tradeoff consisting of taking the mean
of belief and plausibility.

C. Imprecision Representation

To take into account the imprecision of our features, we
build a model representing relationships between focal sets.
To build the model, we consider each feature and the type of
object they can discriminate. The approach is given as follows.
A ground truth of an image is used to generate samples of
various classes in an image. In a dense urban environment, we
consider typically the following classes: building, vegetation,
road, shadow, water, and heterogeneous regions (regions com-
posed of parts of other classes). Feature values for the various
classes are used to build histograms. For instance, histograms
for the features Shadow and No vegetation are represented in
Fig. 3. The histogram depicted in Fig. 3(a) shows that elements
of classes Roads, Shadows, and Heterogeneous objects have
a very low value, while elements of classes Buildings and
Vegetation are more spread over the histogram. Consequently,
most buildings and vegetation can be distinguished from the
other classes. Moreover, the histogram depicted in Fig. 3(b)
shows that the feature No vegetation allows one to discriminate
between vegetation and buildings. More generally, considering
histograms for the five features, the analysis of feature value
repartition for each class leads to following properties:

1) Buildings contain no vegetation. However, there are other
objects that are not vegetated (like roads).

2) Objects contrast with their surrounding.
3) Most buildings and trees project a shadow.
4) Most objects with linear borders are man-made structures

(roads or buildings).
5) Only some buildings present a contrast between the lay-

over and the shadow area.

Based on these remarks, we build the model of relationships
between focal sets displayed in Fig. 4. This figure shows
relationships of partial or total inclusion between focal sets.
Even if most buildings contain no vegetation, a nonvegetated
object is not always a building. Consequently, the set Building

(hatched in Fig. 4) is included in the focal set No vegetation. We
mentioned previously that the feature Shadow can distinguish
elevated objects (high vegetation and most buildings) from
other objects. Consequently, in the prior model of Fig. 4, the
only nonvegetated set included in the Shadow border focal set
is the Building set. Other elements of the Shadow border set
are vegetated objects. In SAR images, according to their size
and their orientation, some buildings present a contrast between
layover and shadow area. Consequently, the SAR contrast focal
set is totally included in the Building set. The Dempster–Shafer
evidence theory assigns pieces of evidence to each focal set.
During the fusion step, the mass of each set is computed
according to the Dempster–Shafer orthogonal rule. Finally, the
decision is taken according to the value of belief and plausibility
of the building set (hatched in Fig. 4). This model gathers
prior information on feature imprecision. Data fitting will be
represented by MFs detailed in the next part.

Note that the Bayesian probability theory would be more
complicated to apply. Indeed, it would require to define the con-
ditional probabilities of each subset for the fusion (for instance,
as the shadow feature cannot discriminate between buildings
and trees, P (Building|Cast shadow) and P (Tree|Cast shadow)
should be known, which requires a lot of prior knowledge).



Fig. 3. Examples of histograms for features (a) Shadow and (b) No vegetation.

Fig. 4. Model of focal sets.

D. Representation of Uncertainty

MFs have to be defined to represent uncertainty. MFs de-
termine the quantity of evidence brought by a source to each
set defined in the model represented in Fig. 4. Each feature
that we have implemented brings information to the following
three sets: 1) the corresponding focal set; 2) its complementary;
and 3) its uncertainty. To determine the quantity of evidence
brought to each of these sets, we use trapezoidal MFs that have
shown simplicity and efficiency in a similar application [34].
The trapezoidal functions used in our study are represented
in Fig. 5. For instance, an object with a high score for the
feature No vegetation will lead to a high mass for the set No

Fig. 5. Model for mass functions.

vegetation and a low mass for the uncertainty. Conversely, if
the object is composed of vegetation pixels in almost half of
its surface, the uncertainty will be high for this feature. MFs
depend on four parameters (as represented in Fig. 5) gathered in
θj = (aj , bj , cj , dj), where j varies from 1 to 5 and corresponds
to each feature. At the beginning of the chain, MF parameters
have to be set up. It can be achieved empirically, or optimized,
thanks to a ground truth. After the DB verification (if a DB
is present), a learning set of verified buildings is available.
Section IV-E addresses the problem of optimizing the vector
θ = (θ1, . . . , θ5), thanks to a learning set. In our tests, we
have used true buildings coming from a ground truth, and
false buildings (corresponding to other objects like shadows,
roads, trees, and heterogeneous objects). Then, MFs have been
optimized using the method detailed in Section IV-E. Note that
once MFs have been optimized with an image data set, they can
be used to process other images acquired in the same conditions
(image type, resolution, environment, illumination, . . .).

E. Parameter Optimization

For each feature (shadow, line segment, edge, no vegetation,
and SAR contrast), three MFs are needed (for the focal set, its
complementary and uncertainty), which lead to four parameters
to optimize per feature (so 20 parameters in total). As described
in the processing chain shown in Fig. 1, parameter optimization
is conducted in the case of an available DB. After verifying the
DB, input objects are divided into the following two classes:
1) buildings kept in the DB and 2) buildings removed from
the DB. We use those samples to optimize the 20 parameters
of the MF model, which is used to perform the detection of
new buildings. The function that is minimized to estimate θ is
defined as

F (θ) = p

n0
∑

i=1

(

1−
Bel(Bi) + Pl(Bi)

2

)2

+ (1− p)

N
∑

i=n0+1

(

Bel(Bi) + Pl(Bi)

2

)2

where B1, . . . , BN represent the Building focal set of each
object. We consider that objects numbered from 1 to n0 are kept



Fig. 6. Optimized mass functions for the feature No vegetation.

in the DB, while those numbered from n0 + 1 toN are removed
from the DB. Minimizing F (θ) consists of maximizing the
mean of belief and plausibility for accepted buildings and
minimizing this mean for rejected buildings, with p weighting
the two terms appearing in F (p is set to 0.5 in this paper
reflecting the absence of knowledge for this parameter). The
optimization can be achieved using a numerical optimization
procedure. Results presented in this paper have been obtained,
thanks to the Nelder–Mead method [35].

MFs optimized for the feature No vegetation are provided in
Fig. 6. The four parameters for this feature are estimated using
real buildings (coming from an up-to-date DB) and false build-
ings (corresponding to other objects). Parameters are initialized
using prior information: We consider that the uncertainty is
maximum when half of object pixels are vegetation pixels
(b = 50). Moreover, we have chosen a = 0 and c = 100 and a
reliability (parameter d) equal to 0.8 (as we have no information
about these parameters). The result of the optimization proves
that most of buildings contain no vegetation. Indeed, if an
object contains at least 5.5% of vegetated pixels (b = 94.5), no
evidence will be brought to the No vegetation focal set. The
reliability of this feature has a value of 0.75. Consequently, a
highly vegetated building will present an uncertainty of 0.25,
keeping a possibility to be considered as a building if it has
other characteristics of a building (like a contrast in SAR
images, line parallel to its wall, . . .).

Note that if some wrong buildings are kept in the DB or if
true buildings are rejected, the parameter estimation will be
impacted. According to the application, solutions are possible
to overcome this issue. For instance, a human operator can
be included in the chain after the DB verification step to
validate results. He will focus on uncertain and complex cases.
Consequently, the learning step will be performed with a correct
learning set. If the chain is used in a fully automatic way, errors
after the DB verification will reduce the quality of the object
detection step.

V. SIMULATION RESULTS

Experiments have been performed to evaluate both the DB
verification and the detection of new buildings. Two data sets
are available. The first one has been acquired over Toulouse,

France, in an urban environment. More precisely, we used
a Pleiades-simulated image (coming from the airborne sen-
sor PELICAN downsampled to 70 cm and to 2.5 m) and a
TerraSAR-X satellite image at 1 m resolution associated to the
same area. The test area contains 111 buildings, i.e., 70 982 pix-
els in the 70-cm-resolution optical image (whose size is 787 ×
888 pixels). The second data set has been acquired over Haiti. It
consists of a 60-cm QuickBird image and a TerraSAR-X image
at 1 m resolution. This test area contains 100 buildings, i.e.,
175 824 pixels in the 60-cm-resolution optical image (whose
size is 1100 × 1332 pixels). Building DBs contain vector data
representing the 2-D coordinates of building outlines.

Results are evaluated both at object and pixel levels. At the
object level, a reference building is considered as detected if
more than 50% of its surface has been detected. A detected
object is considered as a false alarm if more than 50% of its
surface does not correspond to a building in the ground truth.
Note that this threshold of 50% is a balanced value used in our
tests. However, a stricter criterion might be used, for instance,
by considering a building as detected if at least 90% of its
surface has been detected, and an object as a false alarm if more
than 10% of its surface does not correspond to a building. Such
a strict criterion would tolerate less imprecision in the detected
building delineation. In our tests, it would not impact the DB
verification results because we use a ground truth to provide
true buildings. A correctly accepted building is a true positive
(TP). A correctly rejected object is a true negative (TN). A
wrongly rejected building is a false negative (FN). A wrongly
accepted object is a false positive (FP). Considering the number
of TP, TN, FN, and FP for each case, we compute precision
and recall [36]. The precision can be seen as a measure of
correctness (corresponds to the probability that an accepted
object is a true building), whereas the recall is a measure of
completeness (corresponds to the probability that a reference
building is accepted). The closer those coefficients are to 1,
the better the result will be. The F -measure corresponds to
the harmonic mean of precision and recall. The pixel level
evaluation is performed using the false alarm rate (FAR) and
the detection rate (DR). It is a classical evaluation method in
this type of work. However, this evaluation is not suitable for
the object level evaluation of new building detection. Indeed,
FAR depends on the number of TNs (false buildings correctly
rejected). In the building detection step, the number of false
buildings is huge (they are due to oversegmentation). Conse-
quently, FAR is always very low and, thus, is not interesting to
evaluate results. The advantage of recall/precision evaluation is
its independence to the number of TNs.

For the first data set, acquired over Toulouse, results are
presented in the following seven cases, which gather possible
scenarios of our processing chain:

Case 1: a multispectral 70-cm-resolution image and a 1-m-
resolution TerraSAR-X image;

Case 2: a multispectral 70-cm-resolution image;
Case 3: a panchromatic 70-cm-resolution image and a 1-m-

resolution TerraSAR-X image;
Case 4: a panchromatic 70-cm-resolution image;
Case 5: a multispectral 2.5-m-resolution image and a 1-m-

resolution TerraSAR-X image;
Case 6: a multispectral 2.5-m-resolution image;
Case 7: a 1-m-resolution TerraSAR-X image.



TABLE II
DB VERIFICATION RESULTS USING TOULOUSE DATA SET

For the second data set, acquired over Haiti, scenarios are
given as follows:

Case 1: a multispectral 60-cm-resolution QuickBird image
and a 1-m-resolution TerraSAR-X image;

Case 2: a multispectral 60-cm-resolution QuickBird image;
Case 3: a panchromatic 60-cm-resolution QuickBird image

and a 1-m-resolution TerraSAR-X image;
Case 4: a panchromatic 60-cm-resolution QuickBird image;
Case 5: a 1-m-resolution TerraSAR-X image.
The proposed decision is taken thanks to a threshold T that

can vary in the interval [0, 1]. An object is accepted if

Pl(B) + Bel(B)

2
≥ T. (5)

This threshold is empirical and depends on the application
where a low FAR or a high DR may be preferred. It can be
adjusted by a human operator accordingly, or kept to a default
value in a fully automatic use of the processing chain.

A. DB Verification

To evaluate the DB verification with the data set acquired
over Toulouse, we have created a DB composed of true building
outlines coming from a ground truth (111 buildings) and of
false buildings (polygons) created manually (148 objects). The
evaluation consists of checking if the processing chain is able
to keep true buildings and remove false buildings. Results are
presented in Table II for the seven cases. Our results prove
that the DB verification step can be performed efficiently in
the first six cases. However, the problem is more challenging
when only a SAR image is available. The analysis of cases 5
and 6 highlights the interest of a 1-m-resolution SAR image
when the optical image has a resolution of 2.5 m. However,
when the optical image has an HR (70 cm), cases 1 and 2
show that the presence of a 1-m-resolution SAR image does not
improve results. Fig. 7 illustrates the DB verification procedure
for the first case. The threshold T mentioned in (5) was tuned
empirically to have a balanced result, with three FPs and three
FNs. This result was obtained with a threshold value of 0.25.

To obtain those results, MFs have been determined, thanks
to a parameter optimization based on samples coming from a
ground truth. Some results associated to the DB verification for
case 1 are presented in Table III. This table shows interesting
objects [referred to as case (a)–(f)] extracted from Fig. 7 and the
corresponding masses brought by each feature. The third and
fifth rows of this table correspond to the hypothesis of building
outline projected, respectively, on the optical and SAR images.
The fourth row corresponds to primitives extracted from the

Fig. 7. Result of DB verification with the Toulouse data set for case 1, with the
following colors: TP (in green), 108 buildings correctly accepted; FN (in red),
three buildings wrongly rejected; FP (in blue), three objects wrongly accepted;
and TN (in white), 145 objects correctly rejected.

optical image with the following colors: edges in white; line
segments in red; vegetation mask in green; and shadow mask in
blue. The considered cases have the following characteristics.

1) Case (a) corresponds to a true building correctly kept in
the DB (like 107 other buildings). It is a large and high
building that contrasts with its neighborhood, projects a
large shadow, with linear boundaries, contains no vege-
tation and presents a layover and a shadow area in the
SAR image. Masses assigned to each focal set highlight
the presence of all characteristics for this building. Con-
sequently, the score corresponding to the mean of belief
and plausibility for the set Building is high (0.87).

2) Case (b) corresponds to a real building that has been
removed from the DB (like two other buildings). MFs
show that it is caused by the absence of cast shadow
(because of high vegetation surrounding the house), the
absence of noticeable contrast in SAR image, and the
absence of linear boundaries.

3) Case (c) corresponds to a false building accepted in
the DB (like two other false buildings). The polygon is
located in a heterogeneous region, close to edges and
linear boundaries due to the road. Note that the belief
value of the Building set is the same as that for the
previous case. However, this case is accepted, thanks to
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its high plausibility value, due to the high uncertainty of
most features.

4) Case (d) corresponds to a true building that has been
accepted with a high value of conflict. As explained
previously, the conflict is an interesting byproduct of the
Dempster–Shafer evidence theory. Conflict denotes an
error in the model, or a problem of feature reliability. In
this case, the building is high and projects a large shadow.
However, in the optical image, its radiometry is very close
to the radiometry of the adjacent road. Consequently,
edges between the building and the road are not detected
by the edge detector. The polygon is considered as located
far from edges, and a conflict appears between the fea-
tures “shadow” and “edges.” For this situation, a human
operator should be alerted to process himself complex
cases that do not correspond to the model. Indeed, risks
to have a wrong automatic decision in those cases is high.

5) Case (e) corresponds to a small house, correctly kept
in the DB. As this house is very low, its shadow is
not visible. Moreover, in the SAR image, dimensions of

the house are too small to present a significant contrast
between the layover and the shadow area. However, this
house contrasts with its neighborhood, linear boundaries
are present, and it contains no vegetation. Therefore,
even if the belief of the Building set is equal to 0, the
plausibility is high enough to be kept in the DB.

6) Case (f) corresponds to a false building correctly removed
from the DB (like 144 other false buildings). The building
hypothesis has been positioned in a parking lot. There-
fore, it contains no vegetation, the outline is far from
the edges, it does not project a shadow, it has no linear
boundaries, and it does not present a contrast in the SAR
image. Thus, the plausibility of the Building set is low,
and the object has been rejected.

The evaluation of the DB verification with the Haiti data
set is presented in Table IV. The DB was composed of
100 true buildings and 50 false buildings created manually. Re-
sults presented in Table IV confirm the ability of the processing
chain to perform the DB verification in various environments.
Fig. 8 represents accepted and rejected building hypotheses
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Fig. 8. Result of DB verification with the Haiti data set for case 3, with the
following colors: TP (in green), 93 buildings correctly accepted; FN (in red):
seven buildings wrongly rejected; FP (in blue), four objects wrongly accepted;
and TN (in white), 46 objects correctly rejected.

for the third case (a panchromatic 60-cm-resolution QuickBird
image and a 1-m-resolution TerraSAR-X image). This figure
shows that most FN buildings are very small. Their primitives
are hard to detect, even in a 60-cm-resolution image. FN objects
are located near linear edges. As in this scenario (case 3), the
multispectral information is not available, and the presence of
vegetation cannot be used to reject building hypotheses located
over a vegetated area.

B. Building Detection

The previously checked DB was finally used for parameter
optimization. To evaluate the detection of new buildings, we no
longer use this DB. Indeed, in an operational use of this chain,
we could try to detect buildings that are not in the DB. However,
this number of buildings is very small after the DB verification.
To have more representative results, we have considered an
empty DB. In this case, the ideal goal of the chain is to detect
all buildings in the images, i.e., to create the DB. In this step,
we consider polygons provided by the multiscale segmentation
of the optical image. These polygons are processed similarly to
DB objects, as detailed in the previous part.

Results are presented in Fig. 9 for the first six cases related to
the Toulouse data set described previously. The case where only
a SAR image is available has not been considered here because

Fig. 9. Building detection: evaluation (a) at object level with precision–recall
curves and (b) at pixel level with receiver operating characteristic curves.

there was no building extraction method from SAR images
available in the free image processing library Orfeo Toolbox.
The object level evaluation is represented with precision–recall
curves in Fig. 9(a). The pixel level evaluation is represented in
Fig. 9(b). These curves are obtained by changing the value of
the threshold T defined in (5). Curves shown in Fig. 9 confirm
that the availability of a SAR image slightly improves results.
Moreover, Fig. 9(a) shows that, contrary to the DB verification,
building detection is performed better with a 70-cm-resolution
panchromatic image than with a 2.5-m-resolution multispectral
image. In the building detection step, the spectral information
seems more important than the spatial resolution. This is due
to the segmentation step, which is used to generate building
hypotheses. A good delineation of buildings is hard to achieve
with the segmentation of a panchromatic image. Results show



Fig. 10. Building detection without DB: building outlines projected (a) on the
optical image and (b) on the SAR image.

that for the first case, at pixel level, almost 70% of building
pixels are detected for only 2% of false alarm. This result
corresponds to a precision of 72% and a recall of 62%. Detected
buildings for this result are represented in Fig. 10. Results
projected on the optical image [Fig. 10(a)] and on the SAR
image [Fig. 10(b)] highlight that small houses are hard to detect.
When buildings are correctly segmented in the optical image,
results are very close to those obtained in the DB verification
step. It corresponds to buildings that present a high contrast
with their neighborhood. On the contrary, Fig. 10(a) shows that
some large buildings whose radiometry is close to the adjacent
road are not correctly detected. This is due to the problem of
segmentation. Indeed, at a coarse scale, those buildings are
merged with the adjacent road. However, at a fine scale, they are
divided into small regions, which do not verify characteristics
of a building.

VI. CONCLUSION

This paper has described a generic processing chain to
update/create a cartographic DB with SAR and optical input
images. Our results showed that the chain can process images

in a large range of resolution (tested at 0.6 and 2.5 m resolution
for the optical image and at 1m for the SAR image). The chosen
fusion framework was well adapted to the representation of
feature imprecision. New features can be easily included in the
proposed chain to improve the building detection. A score for
each building hypothesis based on belief and plausibility gave a
confidence value for each DB element. It also allowed a human
expert to focus only on complex cases while simple elements
where processed automatically. Future work will consist of
analyzing these complex cases to extract new features able to
discriminate these elements. For instance, new features could
characterize the shape of segmented regions in the optical im-
age. This will be useful to discriminate buildings and vegetation
if just a panchromatic image is available. A similar processing
chain is currently under investigation to perform the update of
road DBs. Finally, it is interesting to mention that the proposed
building processing chain was implemented using CNES
ORFEO Toolbox free software http://www.orfeo-toolbox.org.
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