1,464 research outputs found

    Option pricing and hedging with minimum local expected shortfall

    Full text link
    We propose a versatile Monte-Carlo method for pricing and hedging options when the market is incomplete, for an arbitrary risk criterion (chosen here to be the expected shortfall), for a large class of stochastic processes, and in the presence of transaction costs. We illustrate the method on plain vanilla options when the price returns follow a Student-t distribution. We show that in the presence of fat-tails, our strategy allows to significantly reduce extreme risks, and generically leads to low Gamma hedging. Similarly, the inclusion of transaction costs reduces the Gamma of the optimal strategy.Comment: 23 pages, 7 figures, 8 table

    Combining Alpha Streams with Costs

    Full text link
    We discuss investment allocation to multiple alpha streams traded on the same execution platform with internal crossing of trades and point out differences with allocating investment when alpha streams are traded on separate execution platforms with no crossing. First, in the latter case allocation weights are non-negative, while in the former case they can be negative. Second, the effects of both linear and nonlinear (impact) costs are different in these two cases due to turnover reduction when the trades are crossed. Third, the turnover reduction depends on the universe of traded alpha streams, so if some alpha streams have zero allocations, turnover reduction needs to be recomputed, hence an iterative procedure. We discuss an algorithm for finding allocation weights with crossing and linear costs. We also discuss a simple approximation when nonlinear costs are added, making the allocation problem tractable while still capturing nonlinear portfolio capacity bound effects. We also define "regression with costs" as a limit of optimization with costs, useful in often-occurring cases with singular alpha covariance matrix.Comment: 21 pages; minor misprints corrected; to appear in The Journal of Ris

    Multi-Period Trading via Convex Optimization

    Full text link
    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single-period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper

    Testing for Stochastic Dominance with Diversification Possibilities

    Get PDF
    We derive empirical tests for stochastic dominance that allow for diversification betweenchoice alternatives. The tests can be computed using straightforward linearprogramming. Bootstrapping techniques and asymptotic distribution theory canapproximate the sampling properties of the test results and allow for statistical inference.Our results could provide a stimulus to the further proliferation of stochastic dominancefor the problem of portfolio selection and evaluation (as well as other choice problemsunder uncertainty that involve diversification possibilities). An empirical application forUS stock market data illustrates our approach.stochastic dominance;portfolio selection;linear programming;portfolio diversification;portfolio evaluation

    Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management

    Get PDF
    To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01

    Portfolio construction through mixed integer programming

    Get PDF
    Title from cover. "May, 1998."Includes bibliographical references (p. 20).Dimitris Bertsimas, Christopher Darnell and Robert Soucy
    • 

    corecore