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ABSTRACT

We derive empirical tests for stochastic dominance that allow for diversification between
choice alternatives. The tests can be computed using straightforward linear
programming. Bootstrapping techniques and asymptotic distribution theory can
approximate the sampling properties of the test results and allow for statistical inference.
Our results could provide a stimulus to the further proliferation of stochastic dominance
for the problem of portfolio selection and evaluation (as well as other choice problems
under uncertainty that involve diversification possibilities). An empirical application for
US stock market data illustrates our approach.

THE THEORY OF STOCHASTIC DOMINANCE (SD; Hadar and Russell, 1969, Hanoch and
Levy, 1969, Rothschild and Stiglitz, 1970, and Whitmore, 1970) gives a systematic
framework for analyzing economic behavior under uncertainty. SD has seen
considerable theoretical development and empirical application in the last decades, in
various areas of economics, finance and statistics (see e.g. Levy, 1992). It is useful
both for positive analysis (where the objective is to analyze the decision rules actually
used by decision-makers) as well as in normative analysis (where the objective is to
support practical decision making). The theoretical attractiveness of SD lies in its
nonparametric orientation. SD criteria do not require a full parametric specification of
decision-maker preferences, but rather rely on general preference assumptions.

For applying SD criteria to empirical data, simple crossing algorithms have been
developed that check the difference of the empirical distribution functions (EDFs) of
the choice alternatives (e.g. Levy and Hanoch, 1970, Porter et al., 1973). This
approach is computationally very efficient; one first constructs the EDFs from the
ordered outcomes of the alternatives and next checks if the EDFs cross for any of the
observed values. Unfortunately, practical application of this approach is restricted to
pairwise comparison of a finite number of choice alternatives, and SD cannot be
applied for problems where full diversification across alternatives is allowed. The
problem is that the ordering of the outcomes (and hence the EDF) of a diversified
portfolio of alternatives cannot be determined in a straightforward way from the
orderings of the individual alternatives. Therefore, the ordering of each portfolio has
to be determined individually. This is computationally impossible if infinitely many
portfolios have to be considered, as is true if we allow for full diversification. Also, in
case of more than two choice alternatives, pairwise dominance is not a necessary
condition for SD inefficiency. Bawa et al. (1985) provide algorithms for applying the
concept of convex stochastic dominance (Fishburn, 1974), which does provide a
necessary and sufficient condition if more than two choice alternatives are compared.
However, also this approach considers only a finite number of choice alternatives, and
it can not account for diversification between the alternatives.

The selection and evaluation of investment portfolios is an important application area
where this problem arises; in many cases the portfolio possibilities consist of
infinitely many weighted averages of available assets. (For simplicity, we will
formulate in terms of this problem. However, our arguments apply with equal strength
for alternative applications of SD.) This subject is of interest both for empirical tests
of theoretical asset pricing models and for practical portfolio management
applications. The focus of the research in this area has predominantly been on mean-
variance analysis (e.g. Kandel and Stambaugh, 1987, 1989, Gibbons et al., 1989,
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MacKinlay and Richardson, 1991, Wang, 1998, and Britten-Jones, 1999), and
extensions of that framework (e.g. Yamakazi and Konno, 1991, and Young, 1998).
The inability to deal with diversification can help explain why SD has not seen the
proliferation that one might expect based on the theoretical benefits of SD.

Some authors suggest ways to test whether a given portfolio is SD efficient relative to
all possible portfolios. The Marginal Conditional Stochastic Dominance (MCSD)
framework by Shalit and Yitzhaki (1994) provides tests for identifying assets whose
portfolio weights should be altered in order to construct alternative portfolios that SD
dominate the evaluated portfolio. These tests give necessary but not sufficient
conditions for SD efficiency, and they may fail to identify inefficient portfolios. By
contrast, Kuosmanen (2001) provides necessary and sufficient tests. He includes the
ordering of the return observations as model variables and provides a linear
programming (LP) relaxation of the resulting mixed integer linear programming
model. Unfortunately, the number of model variables increases progressively with the
number of observations (for second-order SD, the number of observations is a second-
order polynomial; for third-order SD the order is four). The computational complexity
of LP problems (as measured by the number of arithmetic operations, run time and
working memory requirements) increases progressively with the number of model
variables. Hence, the Kuosmanen model is computationally very demanding for real-
life problems (especially if the analysis is complemented with computer intensive
bootstrap techniques; see below). We therefore conclude that there currently are no
computationally tractable necessary and sufficient tests for SD with diversification.
The purpose of this study is to fill this gap; we develop tractable LP algorithms for
testing the SD efficiency of a given portfolio relative to all possible portfolios created
from a set of assets.

Our tests are derived from the optimality conditions for portfolio optimization in the
expected utility framework. The expected utility framework has a number of well-
known limitations (see e.g. Machina, 1987). However, SD criteria are also
economically meaningful for a whole range of non-expected utility theories of choice
behavior under uncertainty (see e.g. Starmer, 2000), like Yaari's (1987) dual theory of
risk (see e.g. Wang and Young, 1998). Our tests rely on constructing utility functions
in a nonparametric fashion, and on testing if the evaluated portfolio is optimal relative
to those utility functions. In this respect, our approach has a strong analogy with the
nonparametric approach to consumer analysis by Afriat (1967) and Varian (1982). In
financial economics, Dybvig and Ross (1982), Varian (1983), and Green and
Srivastava (1985, 1986), among others, have proposed similar approaches to deriving
optimality conditions and to recovering investor preferences.

The SD literature involves a multitude of different criteria, associated with different sets
of preference assumptions. Higher order criteria involve more discriminating power than
lower order ones, because they induce a larger reduction of the set of efficient portfolios.
However, that power has to be balanced against the stringency of the additional
preference assumptions. In general, striking that balance requires a careful consideration
of the structure and the context of the decision problem considered. For the sake of
compactness, we focus on the popular criteria of second-order SD (SSD) and third-order
SD (TSD). The assumptions associated with these criteria have a good economic
interpretation (nonsatiation, risk aversion and skewness preference), and also empirical
evidence exists to support these assumptions for many choice problems. Still, nothing
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excludes the generalization of our analysis towards higher order criteria (although the
computational burden increases substantially for higher-order criteria). A test for first-
order SD (FSD) seems more difficult, as our results critically depend on the concavity
of the utility function (and FSD accounts for the possibility of risk seeking investors
or non-concave utility functions).

The remainder of this paper is organized as follows. Section I recaptures the definition
of SSD for pairwise comparison and discusses generalization of that definition
towards the case with portfolio diversification. Section II gives our LP formulation of
SSD in terms of nonparametric empirical utility functions. Section III provides an
equivalent dual formulation in terms of Bowden's (2000) Ordered Mean Difference
performance measure. Section IV generalizes the analysis towards the more powerful
TSD criterion. Apart from the computational problems associated with portfolio
diversification, another problem in practical applications of SD is the sensitivity of the
results to sampling error. Section V discusses how bootstrapping techniques and
asymptotic distribution theory can approximate the sampling distribution of the test
results and allow for statistical inference. Section VI illustrates our approach by
means of an empirical application for US stock market data. Finally, Section VII
gives conclusions and suggests directions for future research. The Appendix gives the
formal proofs of our theorems.

I. SECOND-ORDER STOCHASTIC DOMINANCE

Consider an investment universe consisting of N assets, associated with returns
Nℜ∈x .1 Throughout the text, we will use the index set { }1, , NΙ ≡ L  to denote the

different assets. In addition, we will treat the returns as serially independent and
identically distributed random variables with a continuous joint cumulative
distribution function (CDF) : [0,1]NG ℜ → .2  Investors may diversify between the
assets, and we will use Nℜ∈?  for a vector of portfolio weights. For simplicity, we
will consider the case where short selling is not allowed, and the portfolio weights
belong to the portfolio possibilities set { }1: =ℜ∈≡Λ + e?? TN . However, it is possible
to generalize the analysis towards cases where short selling is allowed and cases
where additional restrictions are imposed on the portfolio weights.3

We consider the problem of establishing whether a particular portfolio, say Λ∈t , is
optimal, i.e. whether it maximizes the expected value of the investor’s utility function

Pu →ℜ1: , u U∈ , with U for the class of von Neuman-Morgenstern utility
                                                                
1 Throughout the text, we will use 

mℜ  for an m-dimensional Euclidean space, and m
+ℜ denotes the

positive orthant. Further, to distinguish between vectors and scalars, we use a bold font for vectors and a
regular font for scalars.
2 This is a standard assumption in the SD literature. Still, there is substantial evidence that the
distribution of assets returns (e.g. risk premia and volatilities) varies through time. Further research
could focus on developing tests that relax the assumption that the observartions are serially IID.
3 Our analysis is based on the optimality conditions from subdifferential calculus for optimizing a
concave utility function over a convex portfolio possibilities set (see the proof to Theorem 2 in the
Appendix). These conditions apply for any non-empty, closed and convex portfolio set. We may
generalize our analysis by simply replacing ? by a more general polyhedron in the dual formulation
(D) developed in Section III.  The generalized primal formulation can then be obtained by applying
linear duality theory to the generalized dual.
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functions, and P  for a nonempty, closed and convex subset of ℜ . The portfolio t  is
optimal if and only if:

(1) )()(max)()( xx?xxt
?

GuGu ∂=∂ ∫∫ Λ∈
.

In practical applications, full information about the utility function typically is not
available, and this condition cannot be verified directly. This provides the rationale
for using SD criteria that rely on a set of general assumptions rather than a full
specification of the utility function. The SSD criterion restricts attention to the class of
nonsatiable and risk-averse investors or the class of strictly increasing and concave
utility functions 2U U⊆ . Note that we do not assume that the utility function is
continuously differentiable. However, utility is concave and hence everywhere
continuous and superdifferentiable. Throughout the text, we will denote
supergradients at x by )(xu∂ .

Apart from the utility function, also the CDF generally is not known in practical
applications. Rather, information typically is limited to a discrete set of time series
observations, say ( )T

Txx L1≡X  with ( ) N
Ntt ℜ∈≡ xxx t L1 , which can be treated

as independent random samples from the CDF. Throughout the text, we will use the
index set { }1, ,TΘ ≡ L  to denote different points in time. Using the observations, we
can construct the empirical distribution function (EDF):

(2) { } TtF t /:card)( xxx ≤Θ∈≡ .

In this paper, we analyze SD for the EDF rather than for the CDF, so as to focus on
the computational problems encountered in practical applications. We discuss the
relationship between the EDF and the CDF in Section V.

For convenience, we assume that the data are ranked in ascending order by the return
of the evaluated portfolio, i.e. txtxtx T21 <<< L . Since we assume a continuous
return distribution, ties do not occur. Still, the analysis can be extended in a
straightforward way to cases where ties do occur e.g. due to a discrete return
distribution or due to measurement problems or rounding, or if a riskless asset is
included in the analysis (see the discussion at the end of Section II). Note that we rank
only based on the returns of the evaluated portfolio. By contrast, the existing crossing
algorithms also rank based on the benchmark portfolio, which introduces
computational problems if the benchmark portfolio is not known at forehand, but
rather has to be selected from infinitely many candidate portfolios.

Using the above notation, SSD for pairwise comparison can be defined as follows:

DEFINITION 1 Portfolio Λ∈?  dominates portfolio Λ∈t  by SSD if and only if, for
all utility functions 2u U∈ , ?  has a higher expected utility than t , i.e.

(3) =∂−∂ ∫∫ )()()()( xxtxx? FuFu ( )∑
Θ∈

∈∀>−
t

tt UuTuu 20/)()( tx?x .
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Note that this definition of SSD uses strict inequalities for all 2u U∈ . By contrast, the
traditional definition uses weak inequalities with a strict inequality for at least one

2u U∈ . This difference is important from a theoretical perspective, and one can think
of examples where the two definitions give different efficiency classifications. For
example, using Definition 1, Λ∈? does not dominate mean-preserving spreads of ? ,
because risk neutral investors are indifferent between alternatives that have identical
means. By contrast, dominance does exist using the traditional definition, because all
strictly risk-averse investors do prefer ?  to mean-preserving spreads. However, from
an empirical perspective, the definitions are indistinguishable, because arbitrary small
data perturbations to the evaluated portfolio can make the classifications consistent.
Related to this, data sets where this theoretical issue has a decisive impact are
extremely unlikely for return distributions that are continuous by approximation. 4

The following is a straightforward generalization of Definition 1 to the case where
diversification is allowed:

DEFINITION 2 Portfolio Λ∈t  is SSD inefficient if and only if some portfolio Λ∈?
SSD dominates it. Alternatively, portfolio Λ∈t  is SSD efficient if and only if no
portfolio Λ∈?  SSD dominates it.

Interestingly, this definition can be rephrased in terms of a minimax formulation:5

THEOREM 1 Portfolio Λ∈t  is SSD inefficient if and only if, for all utility functions
2u U∈ , the maximum expected utility is greater than the expected utility of t , i.e.

(4) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

2

xxtxx?
?

FuFu
Uu

( ) 0/)()(maxmin
2

>
















−∑
Θ∈

Λ∈∈
t

ttUu
Tuu tx?x

?
.

Alternatively, portfolio Λ∈t  is SSD efficient if and only if it is optimal relative to
some utility functions 2u U∈ , i.e.

(5) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

2

xxtxx?
?

FuFu
Uu

( ) 0/)()(maxmin
2

=
















−∑
Θ∈

Λ∈∈
t

ttUu
Tuu tx?x

?
.

                                                                
4 Similar arguments are used in production analysis to establish the empirical equivalence of strong and
weak measures of productive efficiency in case input-output data are generated by a continuous
distribution (see e.g. Kuntz and Scholtes, 2000).
5 Similar minimax formulations exist for many weak measures of productive efficiency, including the
well-known Debreu (1951)-Farrell (1957) measures.
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II. LINEAR PROGRAMMING FORMULATION

The nonparametric approach to consumer analysis constructs piecewise-linear utility
functions that are consistent with optimizing behavior in the sense that observed
behavior (consumer data) is optimal relative to these utility functions (e.g. Afriat,
1967, Varian, 1982). In this spirit, we may ask ourselves if we can construct
piecewise-linear utility functions 2p U∈ that rationalize the evaluated portfolio Λ∈t
(i.e. for which t  is the optimal choice). A piecewise-linear utility function 2p U∈
may be constructed from a series of T linear support lines characterized by intercept
coefficients T

T ℜ∈≡ )( 1 aaa L and (normalized) slope coefficients
{ }1: 21 =≥≥≥ℜ∈≡Β∈ + T

T ßßßßß L  as

(6) )(min),( xxp ttt
ßaßa +≡

Θ∈
.

THEOREM 2 Portfolio Λ∈t  is SSD efficient if and only if t  is optimal relative to a
piecewise-linear utility function 2p U∈ . We may test this condition using the SSD test
statistic

(7)








Ι∈∀≥+−≡ ∑
Θ∈

∈
iTit

t
ttB

0/)(:min)(
,

θθξ
θ

xtxßt
ß

.

Specifically, portfolio Λ∈t  is SSD efficient if and only if )(tξ =0.

The test statistic )(tξ  basically asks if we can find support lines for a strictly
increasing and concave piecewise-linear utility function that rationalizes the evaluated
portfolio. If the evaluated portfolio is efficient, then such support lines must exist, and
if such support lines exist then the portfolio must be efficient. The necessary and
sufficient condition can separate efficient portfolios from inefficient ones. However,
we stress that the test statistic does not represent a meaningful performance measure
that can be used for ranking portfolios based on the ‘degree of efficiency’. For
selecting the optimal portfolio from the efficient set, and for measuring the deviation
from optimum, we typically need more information on investor preferences than is
assumed in SD.

The test statistic )(tξ involves a linear objective function and linear constraints, and it
can be solved using straightforward linear programming. The following is a full LP
formulation for )(tξ :

( P ) θ
θ ß,

min

)(,,10/)(s.t. iit
t

tt NiT ?xtxß L=≥+−∑
Θ∈

θ
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free
1

1-,1,0
)(1-,1,0-

θ

ρ

=

=≥
=≥

T

t

ttt

Tt
Tt

ß

ß
ßß

L
L

The shadow prices to the restrictions are given within brackets. This information is
useful for interpreting the dual formulation (see Section III). The problem involves
only T variables and N+T-1 constraints. Further, the model always has a feasible
solution, as e.g. 1=tß  for all t ∈Θ , and Tit

t
t

i
/)(max xtx −= ∑

Θ∈
Ι∈

θ , necessarily

satisfies all constraints. (This solution effectively represents risk neutral investors;
risk neutral investors have linear utility functions and compare portfolios solely in
terms of the expected return.) For small data sets up to hundreds of observations
and/or assets, the problem can be solved with minimal computational burden, even
with desktop PCs and standard solver software (like LP solvers included in
spreadsheets). Still, the computational complexity, as measured by the required
number of arithmetic operations, and hence the run time and memory space
requirement, increases progressively with the number of variables and restrictions.
Therefore, specialized LP solver software is recommended for large-scale problems
involving thousands of observations and/or assets.6

In addition to the value of the test statistic, the model gives information on the shape
of the optimal piecewise-linear utility function. Specifically, the optimal value for
each tß  variable (say *

tß ) represents the slope of the t-th support line of the
piecewise-linear utility function. We may recover a complete piecewise-linear utility
function in the following manner:

(8)
















≥
≤≤+−

≤≤+−

≤+−

=

−

−−−−−

−

=
+

−

=
+

∑

∑

1

12
*

11
*

1

21

1

2

*
2

**
1

1

1

1

*
1

**
1

*

)1(

)(

)(

)(

T

TTTTT

T

s
sss

T

s
sss

zxx
zxzxz

zxzxz

zxxz

xu

ßß

ßßß

ßßß

M

with txx )(5.0 1++≡ tttz  for \t T∈Θ  (see the proof to Theorem 2 in the Appendix
for a formal proof).7,8

                                                                
6 For an elaborate introduction in LP, we refer to Chvatal (1983). In practice, very large LPs can be
solved efficiently by both the simplex method and interior-point methods. An elaborate guide to LP
solver software can be found at the homepage of the Institute for Operations Research and
Management Science (INFORMS); http://www.informs.org/.
7 Alternatively, the intercept coefficients can be includes as variables in the LP model, provided
appropriate restrictions are imposed. To minimize computational burden, we have chosen the
formulation that minimizes the number of variables and constraints.
8 We use \TΘ to denote Θ excluding T, i.e. {1, , 1}T −L .
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If the evaluated portfolio is SSD efficient, then the empirical utility function gives an
example of the type of utility functions that rationalize the portfolio. Still, we stress
the empirical utility function is not intended as an estimate for the utility function of
the investor that holds the evaluated portfolio. One complication for that interpretation
is the possibility of multiple optimal solutions for the slope coefficients. Further, for
every given set of slope coefficients, the empirical utility function is not unique, as we
can choose any [ ]txtx 1, +∈ tttz . Another complication is the sensitivity of the
piecewise-linear utility function for sampling error. While it is possible to perform
powerful and accurate inference about the test statistic (at least in large samples; see
Section V), this seems much more complicated for recovering an entire utility
function; the number of slope coefficients grows with the length of the time series.
We also stress that the interpretation of the empirical utility function is not clear if the
evaluated portfolio is SSD inefficient. At first sight, the empirical function might be
interpreted as the 'most-favorable utility function', i.e. the function that puts the
evaluated portfolio in the best possible light by minimizing the shortfall in expected
utility, and the test statistic might be interpreted as a measure of that minimum
shortfall. However, this interpretation generally is incorrect. The test evaluates the
observation itx , ,i t∈Ι ∈Θ , at the slope coefficient for the associated time period, i.e.

tß . By contrast, the empirical utility function evaluates the observation at the slope

coefficient for the associated return interval, i.e. sß  if itx  is contained in the s-th

element of ] [ ] [ ] [{ }∞∞− −− ,,,z,,,z,, 112211 TTT- zzzz L . Brief, the purpose of our analysis
is to test if a given portfolio is SSD efficient; the empirical utility function is a mere
side-product of the analysis, and we can not derive strong results for it.

The EDFs of two different portfolios can cross T-1 times at maximum. In many
applications, the EDFs cross only a few times (see e.g. Section VI). This is only
natural, as cumulated differences are 'sticky', and a large negative difference (or
alternatively a series of small negative differences) is generally required to change
from a positive sign to a negative sign. Our test generalizes the crossing algorithms to
the case where diversification is allowed, and it is affected in a similar way by the
stickiness of cumulated differences. The piecewise linear utility function can consist
of T different line segments and hence exhibit T-1 kinks. However, in many
applications, large parts of the utility function will have the same slope coefficient,
and only few kinks will occur (see e.g. Section VI). Section III explains this
phenomenon in terms of the stickiness of cumulated differences.

Our analysis allows for including a riskless asset in the analysis, and thus covers not
only SSD but the more powerful SSDR as well (see, for example, Levy, 1998, Section
4.3). Of course, the return observations for a riskless asset involve ties, and hence we
have to account for multiple orderings of the observations. A simple solution to this
problem is available. Specifically, if txtx 1+= tt  for some { }1, , 2t T∈ −L , then we

can drop the restriction 1+≥ tt ßß  and replace it with the restriction 2+≥ tt ßß  plus the

restriction 11 +− ≥ tt ßß  if {2, , 2}t T∈ −L . In addition, if txtx TT =−1 , then we can
replace the restriction 11 =≥− TT ßß  with the restriction 11 ≥− TT ,ßß . The following
example with two time periods, one risky asset, and one riskless asset can provide
some feeling for Theorem 2, as well as the treatment of ties:
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1x 2x
1t = r a− r
2t = r b+ r

where r is the riskless return and a, b>0. In this case, we know that the risky asset, 1x ,
is SSD efficient if and only if b a≥ , and the risk free-asset, 2x , is SSD efficient for
all a, b>0 (e.g. Arrow, 1971). Theorem 2 states that 1x  is efficient if and only if we
can find 1ß  and 2ß  such that 121 =≥ ßß  and +−− ))((1 rarß 0))((2 ≥−+ rbrß

012 ≥−⇔ ßß ab . Such 1ß  and 2ß  can be found if and only if ab ≥ . In this case, the
most favorable utility function is simply ( )u x x= ; comparison based on the average
return puts 1x  in the best possible light. We now turn to testing efficiency for the
riskless asset, 2x . The returns of 2x  are tied, and we therefore have to drop the
restrictions 121 =≥ ßß , and replace it with 121 ≥ßß , . Theorem 2 then states that 2x
is efficient if and only if we can find coefficients 121 ≥ßß ,  such that

+−− ))((1 arrß 0))((2 ≥+− brrß . For all a, b>0, we can find such weights, and
hence 2x  is always efficient. For example, 2x  is the optimal portfolio for all investors

with utility function 
(1 )

( )
c r cx x r

u x
x x r

− + ≤
=  ≥

, with /c b a≥ . These results exactly

conform with the known results for this particular case.

III. DUAL FORMULATION

In a recent study, Bowden (2000) introduced a novel statistic termed the Ordered
Mean Difference (OMD). Using our notation, the OMD is defined as follows:

(9) Θ∈−≡ ∑
=

tt
t

s
sst

1

/)(),( τλρ xxt? .

The OMD represents a running mean for the difference between the return of the
benchmark portfolio ?  and the evaluated portfolio t . Since the returns are ranked on
the basis of the return of the evaluated portfolio, the OMD is different from the
cumulated difference between the quantiles of the EDF of ?  and t . (The quantiles of
the EDF of ?  require ranking based on ?xt  rather than txt ; the OMD uses a 'less
favorable' ranking and hence gives an upper bound for the cumulated difference
between the quantiles.)

The OMD was introduced by Bowden to measure (in pairwise fashion) the
performance of the evaluated portfolio relative to a benchmark portfolio.
Interestingly, SSD in case of portfolio diversification can also be defined in terms of
this statistic:

THEOREM 3 Portfolio Λ∈t  is SSD efficient if and only if, for some Λ∈? , the OMD
),( t?tρ  is greater than or equal to zero for all t ∈Θ , with at least one strict

inequality. We may test this condition using the test statistic
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(10) { }TttT \0),(:),(max)( Θ∈∀≥≡
Λ∈

t?t?t
?

ρρψ .

Specifically, portfolio Λ∈t  is SSD efficient if and only if 0)( =tψ .

The test statistic )(tψ  in fact is a dual formulation of the test statistic )(tξ . This
statistic can also be computed using straightforward LP. (The Appendix gives a
formal proof of the equivalence between )(tψ  and )(tξ , as well as a full LP
formulation of )(tψ ).

In addition to the value of the SSD test statistic, the dual identifies a solution
portfolio. Specifically, the optimal values of the dual variables i? , i ∈Ι , represent the

shadow prices for the constraints Ι∈≥+−∑
Θ∈

iTit
t

tt ,0/)( θxtxß . These constraints

are binding for the assets that constitute the portfolio that maximizes the value of the
test statistic, and the optimal ?  gives the composition of this portfolio. Since the
solution portfolio is found by maximizing the highest order OMD subject to
restrictions on the lower order OMDs, the portfolio will be efficient in many cases.
However, the solution portfolio is selected using the ranking for the evaluated
portfolio rather than the less favorable ranking of the solution portfolio itself. For this
reason, the solution portfolio can in fact be inefficient. In addition, even if the solution
portfolio is efficient, it need not SSD dominate the evaluated portfolio, i.e. an efficient
portfolio need not be preferred to the evaluated portfolio for every utility function

2u U∈ . In our opinion, efficiency or dominance of the solution portfolio is not a very
important issue. It is relatively simple to identify efficient or even dominating
portfolios. For example, one can take a specific utility function and find the portfolio
that maximizes the expected utility for this function (see e.g. Yitzhaki, 1982, Kroll et
al., 1984, and the discussion in Levy, 1998, Section 14.1). Further, Shalit and
Yitzhaki (1994) suggest an iterative approach to finding efficient portfolios that
dominate the evaluated portfolio. However, even if a portfolio is efficient and even if
it dominates the evaluated portfolio, then it is only one element of the SSD efficient
set, and that there is no prior reason to prefer this portfolio to other efficient
portfolios. For selecting the optimal portfolio, one typically needs more information
than is assumed in SD. Hence, as is true for the empirical utility function discussed in
section II, the solution portfolio is used as an instrument for testing if the evaluated
portfolio is efficient, not as a portfolio that is efficient, dominant, or even optimal for
a given investor.

The dual formulation can help explain why large parts of the piecewise linear utility
function typically have the same slope coefficient (see Section II),  i.e. 1+= tt ßß  for
many Tt \Θ∈ . It follows from the proof to Theorem 3 that Tt t /),( t?ρ  represents
the shadow price for the primal restriction 01 ≥− +tt ßß , Tt \Θ∈ . Duality implies
that 01 >− +tt ßß  only if 0),( =t?tρ , and 01 =− +tt ßß  if 0),( >t?tρ . The OMD is
a running mean, and it is very 'sticky', as ++=+ )1/(),(),(1 tt tt t?t? ρρ

)1/()(1 +−+ tt t?x . Therefore, if the evaluated portfolio is inefficient i.e. 0),( >t?Tρ ,
then there typically exist few Tt \Θ∈  for which 0),( =t?Tρ  and hence

01 >− +tt ßß .
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IV. THIRD-ORDER STOCHASTIC DOMINANCE

The SSD criterion relies on the assumptions of non-satiation and risk aversion solely.
By imposing minimal assumptions, the criterion can involve low discriminating power,
i.e. the efficient set can be large. Fortunately, the above analysis can be extended in a
straightforward way towards more powerful higher-order SD criteria. In this section, we
will discuss the generalization towards TSD. For the sake of compactness, we will focus
on the primal formulation in terms of empirical utility functions only; linear duality
theory can obtain a dual formulation by analogy to our treatment of SSD in Section III.

For analytical simplicity, we now assume that the utility function is once continuously
differentiable, and we will use )(xu′ for the gradient or 'marginal utility function’ at
x , and ))()(()( txtxt T1 uuu ′′≡′ L  for the gradient vector. TSD focuses on the class
of non-satiable and risk-averse investors that prefer positively skewed distributions
(more probability in the right tail).9 Interestingly, empirical evidence suggests that
investors display this kind of skewness preference (e.g. Arditti, 1967, Kraus and
Litzenberger, 1976, Cooley, 1977, and Friend and Westerfield, 1980). The TSD
investors can be represented by the class of von Neuman-Morgenstern utility functions
with a strictly positive, decreasing and convex marginal utility function, or 3U U⊆ .
Note that we do not assume that the marginal utility function is continuously
differentiable. However, marginal utility is convex and hence everywhere continuous
and subdifferentiable. Throughout the text, we will denote subgradient vectors of the
marginal utility function by ))()(()( txtxt T1 uuu ′∂′∂≡′∂ L .

By analogy to Definition 2 and Theorem 1, TSD can be defined as follows:

DEFINITION 3 Portfolio Λ∈t  is TSD inefficient if and only if, for all utility functions
3u U∈ , the maximum expected utility is greater than the expected utility of t , i.e.

(11) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

3

xxtxx?
?

FuFu
Uu

( ) 0/)()(maxmin
3

>
















−∑
Θ∈

Λ∈∈
t

ttUu
Tuu tx?x

?
.

Alternatively, portfolio Λ∈t  is TSD efficient if and only if it is optimal relative to
some utility functions 3u U∈ , i.e.

(12) { }{ }=∂−∂ ∫∫Λ∈∈
)()()()(maxmin

3

xxtxx?
?

FuFu
Uu

                                                                
9 This kind of skewness preference is strongly related to the concept of decreasing absolute risk aversion
(DARA; Pratt, 1964), which underlies DARA SD (DSD; Vickson, 1975).  Roughly speaking, DARA
means that the dislike for absolute uncertainties decreases as the levels of the outcomes increase.
Theoretically, TSD is a sufficient but not necessary condition for DARA, and TSD therefore is less
powerful than DSD. However, DSD is difficult to fit to empirical data, and in addition the
improvement in power is minimal. For these reasons, Vickson and Altman (1977) conclude that TSD is
likely to be a suitable approximation for DSD for practical purposes.
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Our approach to SSD relies on constructing piecewise-linear utility functions, and on
checking if the evaluated portfolio is optimal relative to those utility functions. This
approach cannot be extended directly towards TSD, because piecewise-linear utility
functions exhibit risk neutrality on the line segments, and therefore these utility
functions exhibit skewness preference only if they consist of a single line. Still, we
may ask ourselves if we can construct piecewise-quadratic utility functions 3Up ∈′
that 'rationalize' the evaluated portfolio Λ∈t . A continuous piecewise-quadratic
utility function may be constructed from intercept coefficients )( 1 Taaa L≡ , slope
coefficients )( 1 Tßßß L≡  and curvature coefficients )( 1 T??? L≡  as

(13) )5.0(min),( 2xx,xp tttt
?ßa?ßa ++≡′

Θ∈
.

Imposing appropriate restrictions on a, ß, and ? can guarantee that p′  exhibits
monotonicity, concavity, and skewness preference.

THEOREM 4 Portfolio Λ∈t  is TSD efficient if and only if t  is optimal relative to a
piecewise-quadratic utility function 3p U′∈ . We may test this condition using the test
statistic

(14)








Ι∈∀≥+−+≡ ∑
Θ∈

Ω∈
iTit

t
tttt 0/))((:min)(

,),(
θθζ

θ
xtxtx?ßt

?ß
,

with

(15) { ;tttttt
TT tx?ßtx?ß?ß 111:),( +++− +≥+ℜ×ℜ∈≡Ω

;; tttttttttttt tx?ßtx?ßtx?ßtx?ß 111111 ++++++ +≥++≤+

}1max1 =+Θ∈∀≤
Θ∈
Ι∈

+ it

t
i

TTtt \T;t x?ß?? .

Specifically, portfolio Λ∈t  is TSD efficient if and only if 0)( =tζ .

The test statistic )(tζ  involves a linear objective function and linear constraints, and
it can be computed using straightforward linear programming. The problem involves
2T+1 variables and N+4T-3 constraints. Further, the model always has a feasible
solution, as e.g. 1=tß , 1=t?  for all t ∈Θ  and T-

t
tit /)(∑

Θ∈

= txxθ  (the 'risk-

neutral' solution) necessarily satisfies all constraints.
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V. STATISTICAL INFERENCE

We have thus far discussed SD relative to the EDF rather than the CDF. Generally,
the EDF is very sensitive to sampling variation and the test results are likely to be
affected by sampling error in a non-trivial way. For example, if we compare two
alternatives with the same population distribution, then we know that there exists no
pairwise dominance relationship in the population. Still, the probability of finding a
dominance relationship based on two independent random samples of 1000
observations can be as high as 50 percent (see Dardanoni and Forcina, 1999). In
addition, the outcomes of various simulation studies (Kroll and Levy, 1980, Stein et
al., 1986, among others) cause serious doubt about the reliability of SD applications
that rely in a naïve way on the EDF without accounting for sampling error. The
applied researcher must therefore have knowledge of the sampling distribution in
order to make inferences about the true efficiency classification. In the SD literature,
two approaches have been developed to approximating the sampling distribution:
bootstrapping and analytical asymptotic analysis.

The bootstrap method, first introduced by Efron (1979) and Efron and Gong (1983), is
a well-established tool to analyze the sensitivity of empirical estimators to sampling
variation in situations where the sampling distribution is difficult or impossible to
obtain analytically. Bootstrapping is based on the idea of repeatedly simulating the
CDF, usually through resampling, and applying the original estimator to each
simulated sample or pseudo-sample so that the resulting estimators mimic the
sampling distribution of the original estimator. Key to the success of the bootstrap is
the selection of an appropriate approximation for the CDF. If the approximation is
statistically consistent, then the bootstrap distribution gives a statistically consistent
estimator for the original sampling distribution. In the context of our SD tests, the
EDF is an appropriate approximation for the CDF; under the assumption that the
return distribution is serially IID (see section I), the EDF is a consistent estimator of
the true CDF. This suggests bootstrapping samples would be simply obtained by
randomly sampling with replacement from the EDF along the lines of the 'correlation
model' proposed by Freedman (1981) in a regression framework. Nelson and Pope
(1991) demonstrated in a convincing way that this approach can quantify the
sensitivity of the EDF to sampling variation, and that SD analysis based on the
bootstrapped EDF is more powerful than comparison based on the original EDF.10

The computational ease of the crossing algorithms allows for substituting brute
computational force to overcome the analytical intractability of SD. Interestingly, the
tractable LP structure of our tests suggests that it is possible also in the case with
portfolio diversification to substitute brute computational force to overcome analytical
intractability.

The alternative approach is to derive an analytical characterization of the asymptotic
sampling distribution (see e.g. Beach and Davidson, 1983, Dardanoni and Forcina,
1999, Davidson and Duclos, 2000). The literature thus far invariantly deals with
comparing a finite number of choice alternatives, and it is not immediately clear how

                                                                
10 Interestingly, bootstrapping is used successfully also for the nonparametric approach to analyzing
productive efficiency, which has a similar structure as SD analysis. See Simar and Wilson (1998),
among others.
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to generalize the existing results towards the case with diversification possibilities.11

The remainder of this section therefore develops an asymptotic test that is especially
tailored to our SSD test statistic )(tξ . There are various hypotheses that could serve
as the null hypothesis in a test procedure. In the analysis of pairwise SD dominance, a
typical null hypothesis is that the two choice alternatives are independent random
variables with the same population distribution, or alternatively the choice alternatives
are contemporaneously IID. We generalize this approach towards our case by using
the null that all N assets are contemporaneously IID, and hence ∏

∈

=
Ii

iHG )()( xx

with ]1,0[: →ℜH  for a univariate CDF with variance ∞<2σ . This is a very
conservative hypothesis, because minimal sampling variation suffices to classify an
efficient portfolio as inefficient. The shape of the distribution of )(tξ  under the null
generally depends on the shape of )(xH . Our approach will be to focus on the least
favorable distribution, i.e. the distribution that maximizes the size or relative
frequency of Type I error (rejecting the null when it is true). This approach stems
from the desire to be protected against Type I error. For each )(xH , the size is always
smaller than the size for the least favorable distribution. Interestingly, the least
favorable distribution is relatively simple and known results can derive the asymptotic
probability of exceedance or p-value for )(tξ . The use of the most favorable
distribution implies that we accept a high frequency of Type II error (accepting the
null when it is not true) or a low power (1- the relative frequency of Type II error).
Future research could focus on tests that minimize Type II error.12

THEOREM 5 For the asymptotic least favorable distribution of )(tξ , the p-value

))(( 0HyP ≥tξ , 0≥y , equals the integral ( )∫
≤

Φ∂−
ex

x
y

1  with ( )xΦ  for the N-

dimensional multivariate normal distribution function with zero means, variance
terms

(16) Ti
k

ki /)12( 222 σσ +−≡ ∑
Ι∈

tt , Ι∈i ,

and covariance terms

(17) Tji
k

kij /)( 22 σσ ttt −−≡ ∑
Ι∈

, jiji ≠Ι∈ :, .

The theorem shows the crucial role of the length of the time series (T) and the length
of the cross-section (N); the p-values decrease as the time series grows, and increase
as the cross section grows. For small time series and large cross-sections, the p-values
are very large and a naïve approach to the test statistic (reject efficiency if 0)( >tξ )
is unlikely to yield anything but noise. A more sound approach is to compare the p-
                                                                
11 Presumably, this is because much of the research on SD is aimed at ordering distributions of poverty,
welfare and inequality, an application area that typically involves the comparison of a small set of
distributions (e.g. for a set of countries) and diversification between the distributions is not allowed.
12 SD is typically used to reduce the number of choice alternatives that are considered in a follow-up
analysis that is intended to select the optimal portfolio. In this context, a Type I error is problematic
because it may exclude the optimal choice alternative. By contrast, a Type II error merely increases the
number of alternatives for further analysis.
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value for the observed value of )(tξ  with a predefined level of significance; we may
reject efficiency if the p-value is smaller than or equal to the significance level. The
following results are useful for implementing this approach in practice:

1. Computing the p-value requires the unknown population variance 2σ . We may
estimate this parameter in a distribution-free and consistent manner using the
sample equivalent :

(18) ∑ ∑
Θ∈
Ι∈

Θ∈
Ι∈

−≡

t
i

t
i

itit NTNT /)/(ˆ 22 xxσ .

2. Many authors have addressed the problem of computing or approximating the
multivariate normal integral. Somerville (1998) provides useful references as well
as a general methodology (and Fortran 90 computer programs).

To assess the goodness of the above approach, we perform a simulation experiment.
We analyze 25 risky alternatives with a multivariate normal return distribution. The
joint population moments are equal to sample moments for the 25 Fama and French
benchmark portfolios used in Section VI (see Table 1 for descriptive statistics). Figure
1 gives a mean-variance diagram with the individual benchmark portfolios (the bright
dots), as well as the mean-variance frontier (the dark, curved line segment)13. Our test
is based on a conservative null where the individual alternatives are not correlated. By
contrast, the Fama and French benchmark portfolios are very highly correlated. This
is reflected in the fact that the efficient frontier tightly envelops the individual
benchmark portfolios. Since a high correlation generally reduces the variability for the
differences between the alternatives, our test is likely to be very conservative for this
application.

We analyze the SSD efficiency of two different test portfolios constructed from the
benchmark portfolios. The first test portfolio (P1) is efficient; it is selected by
maximizing the mean subject to the constraint that the standard deviation is smaller
than or equal to 0.0725. This portfolio consists of only three components: 48.2 percent
of benchmark portfolio 5, 1.3 percent of portfolio 12, and 50.5 percent of portfolio 14.
The second test portfolio (P2) is found as the equally weighed average of all 25
benchmark portfolios. This portfolio is inefficient; it is possible to achieve a higher
mean given the standard deviation, and to achieve a lower standard deviation given
the mean. Both test portfolios are included in Figure 1 (the dark dots).

                                                                
13 Note that this is the frontier for the case without short selling. Again, our tests are developed for the
case where the portfolio possibilities are described by all convex combinations of the individual assets;
see Footnote 3.



17

P1

P2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.05 0.1 0.15 0.2

std. dev.

m
ea

n

Figure 1: Mean-variance diagram of the Fama and French benchmark portfolios (the bright dots), as
well as the efficient test portfolio (P1) and the inefficient equally weighted test portfolio (P2). The
dark, curved line segment represents the efficient frontier.

In this case, we know that P1 is SSD efficient in the population and P2 is SSD
inefficient. Sampling errors complicate the empirical determination of these known
efficiency classifications. A Type I error occurs if the efficient P1 is wrongly
classified as inefficient; a type II error occurs if the inefficient P2 is wrongly
classified as efficient. To assess the size and the power of our test, we draw through
Monte-Carlo simulation 1000 random samples from the multivariate normal
population distribution, and apply the test to each random sample. This experiment is
performed for samples of 25 to 5000 observations and for nominal levels of
significance (a) of 2.5, 5 and 10 percent. Figure 2 gives the size of the test. For all
sample sizes, the size of the test is much lower than the nominal level of significance,
which reflects the conservative nature of our test (for large samples, the size even
approximates zero). Figure 3 gives the power of the test. For this kind of application,
we need at least 1500 to 2000 observations for a test with reasonable power.
Fortunately, large data sets are available for many applications in financial
economics. In addition, the test is likely to be more powerful in applications that
involve individual stocks rather than stock portfolios; the correlation between
individual stocks typically is much lower than for portfolios. For example, using a
zero correlation in our simulation experiment for 1000=T  yields an increase in
power that can be compared with doubling the sampling size.
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Figure 2: Size of the SSD test applied to the efficient test portfolio. The figure displays the size for
nominal levels of significance of 2.5, 5 and 10 percent.
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Figure 3: Power of the SSD test applied to the inefficient equally weighed test portfolio. The figure
displays the power for nominal levels of significance of 2.5, 5 and 10 percent.

VI. EMPIRICAL APPLICATION

To illustrate our approach to SD with diversification, we perform an empirical
application to real-life US stock market data. Specifically, we evaluate whether the
Standard and Poors 500 (S&P 500) index is SSD efficient relative to all possible
portfolios of the 25 Fama and French benchmark portfolios. The benchmark portfolios
are the intersections of 5 portfolios formed on size (market equity) and 5 portfolios
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formed on the ratio of book equity to market equity (BE/ME). The benchmark
portfolios are constructed from all NYSE, AMEX, and NASDAQ stocks. By contarst,
the S&P 500 index is based on a much smaller set of stocks (until 1979, the index was
even limited to NYSE stocks only). We use data on monthly returns (month-end to
month-end) from July 1926 to December 2000 (894 observations) obtained from the
data library on the homepage of Kenneth French (http://web.mit.edu/kfrench/www/).
Table 1 gives some descriptive statistics for these data.

Table 1: Descriptive statistics of the monthly returns (month-end to month-end) from July 1926 to
December 2000 for the S&P 500 index and the 25 Fama and French benchmark portfolios.

Portfolio Mean Standard
Deviation

Skewness Kurtosis

S&P 500 0.0063 0.0463 0.7735 19.1381
No. BE/ME Size
1 Low Small 0.0077 0.1266 2.8118 27.9185
2 2 Small 0.0103 0.1091 3.9491 48.6091
3 3 Small 0.0133 0.0951 2.0006 16.8556
4 4 Small 0.0153 0.0887 2.7616 29.3945
5 High Small 0.0168 0.0983 3.2252 30.4773
6 Low 2 0.0086 0.0805 0.4236 5.1488
7 2 2 0.0127 0.0789 1.8290 19.7922
8 3 2 0.0136 0.0754 2.3155 24.3154
9 4 2 0.0140 0.0768 1.8028 18.6467
10 High 2 0.0151 0.0877 1.6950 15.9496
11 Low 3 0.0100 0.0770 1.0103 9.9357
12 2 3 0.0122 0.0673 0.3120 7.0884
13 3 3 0.0129 0.0685 0.9969 13.0653
14 4 3 0.0133 0.0691 1.2614 13.8547
15 High 3 0.0142 0.0870 1.9309 19.2382
16 Low 4 0.0103 0.0628 -0.1606 3.7688
17 2 4 0.0108 0.0639 1.0598 13.6494
18 3 4 0.0121 0.0641 1.0731 14.9477
19 4 4 0.0131 0.0715 1.9706 21.5985
20 High 4 0.0144 0.0927 2.1360 21.9067
21 Low Big 0.0099 0.0557 -0.0270 5.5123
22 2 Big 0.0095 0.0536 -0.0703 5.2748
23 3 Big 0.0102 0.0581 0.7875 13.6679
24 4 Big 0.0110 0.0702 1.8283 21.3741
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25 High Big 0.0009 0.1441 -3.9635 32.3209

We first evaluate whether the S&P 500 index is dominated by SSD by any of the
individual benchmark portfolios. For this purpose, we use the crossing algorithm by
Levy (1992, Appendix A), as well as the more powerful LP algorithm for convex SD
by Bawa et al. (1985). The outcomes suggest that the S&P 500 index is efficient
relative to the benchmark portfolios. Next, we apply our LP models to check whether
the S&P 500 index is SSD inefficient relative to all possible portfolios of the
benchmark portfolios. Interestingly, the results suggest this is indeed true; we find

0074.0)( =tξ . The empirical piecewise-linear utility function (as obtained from the
primal solution) is given by:
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Figure 4 displays this utility function for our data set. The empirical utility function
has a strongly kinked structure. This suggests that the S&P 500 index is relatively
favorable for investors that are risk neutral for a large portion of the return range, but
with a strong aversion for large negative returns.14 Still, even these investors would
not select the S&P 500 index as the optimal portfolio.
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Figure 4: The empirical piecewise-linear objective function. The strongly kinked structure suggests
that investors with a high aversion for large negative returns (but risk neutrality for most of the return
range) judge the S&P 500 index relatively favorable. Still, even these investors do not select the S&P
500 index as the optimal portfolio.

The dual solution portfolio consists of 5.2 percent invested in benchmark portfolio 5,
86.3 percent invested portfolio 8, and 8.5 percent invested in portfolio 20. Not
surprisingly, these three funds exhibited a relatively high average return during our
sample period (see Table 1 above). Applying the SSD test to the solution portfolio
itself, we find that the solution portfolio is SSD efficient. However, the solution
portfolio does not SSD dominate the S&P 500 index, because it exhibited larger
negative returns than the S&P 500 index during the sample period (especially during
the stock market crash of October 1987). Again, our procedure is aimed at testing if
the evaluated portfolio is SSD efficient, not at identifying an alternative portfolio that
SSD dominates the evaluated portfolio.

                                                                
14 Risk neutral investors have a linear utility function and compare portfolios based on the expected
return only. Indeed, 0074.0)( =tξ  comes very close to the difference in average return between the
solution portfolio and the S&P 500 index. Still, a fully risk-neutral investor would invest exclusively in
the fund with the maximum expected return (for our sample period: benchmark portfolio 5 with mean
0.0168).
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The above analysis is based on empirical data rather than the true (unknown) return
distribution, and the results are likely to be affected by sampling error in a non-trivial
way. As discussed in Section V, the LP structure of our tests suggests that the brute
force approach of bootstrapping can help assess the sampling properties of our results.
We generate through random sampling with replacement from the EDF 1000 pseudo-
samples, and compute the SSD statistic relative to each of the samples. Figure 5 gives
the resulting bootstrap distribution of the SSD test statistic. In only 3 out of 1000
random pseudo-samples, the S&P 500 index is classified as efficient. In addition, the
90 percent bootstrap confidence interval (constructed using the bias-corrected and
accelerated method described in Efron, 1987) is given by [0.0007, 0.0112], and it does
not include the value zero. The asymptotic test developed in Section V gives another
approach to sampling error. Again, the test is based on the asymptotic least favorable
distribution and it involves low power for a sample of 894 observations (see Figure
3).  Still, the p-value is as low as 8 percent in this case. These findings suggest that the
S&P 500 index is SSD inefficient to a statistically significant degree.
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Figure 5: The bootstrap distribution of the SSD test statistic for 1000 replications. The simulations
suggest that the S&P 500 index is SSD inefficient to a statistically significant degree.

Our results do not imply that investing in the S&P 500 index is irrational. For
example, transactions costs not included in our model may 'rationalize' the index for
some investors. The Fama and French benchmark indexes are not a real alternative for
private investors that face relatively high transaction costs. Exchange-traded index
funds and index trackers that follow the S&P 500 index are available and offer the
diversification benefits of the index at low transaction costs. By contrast, replicating
the Fama and French benchmark indexes is very costly, especially since the indexes
are rebalanced on a yearly basis. However, for institutional investors that face
relatively low transaction costs, our results do call into question the use of the S&P
500 index rather than a broader market benchmark for indexation. Naturally, broader
indexes typically involve higher transaction costs, because they include more stocks
and because they typically include relatively more small caps. For example, the
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Vanguard 500 Index Fund (based on the S&P 500 index) currently has an expense
ratio of 18 basis points per annum, while the Vanguard Small Cap Index (based on the
Russell 2000 index) has an expense ratio of 27 basis points. Therefore, it is interesting
to determine the level of additional transaction costs required to reverse the
inefficiency classification. The critical value for )(tξ  at a 10 percent significance
level is 0070.0 . The observed value 0074.0)( =tξ  therefore means that we have to
lower the difference in mean return between the benchmark portfolios and the S&P
500 index by 4 basis points percent per month (or 48 basis points per annum) to
classify the index as efficient with 90 percent confidence. This percentage is
substantially above the level of additional transaction costs typically reported for
index funds that follow broad small cap indexes. Therefore, transaction costs are
unlikely to rationalize the S&P 500 index for institutional investors. Still, we stress
that this application is used for the purpose of illustration. A sound empirical study
requires more rigor than is possible here (e.g. accounting for possible investment
restrictions not included in our model, and assessing the sensitivity of our results to
the sample period and the return horizon); we leave this for further research.

VII. CONCLUDING REMARKS AND SUGGESTIONS

We have derived necessary and sufficient empirical tests for SSD efficiency in case
diversification between choice alternatives is allowed. Our approach relies on
building nonparametric piecewise-linear utility functions, and on checking whether
the evaluated portfolio is optimal relative to these utility functions. Put differently, our
approach relies on checking if we can find portfolios that satisfy dual conditions on
the Ordered Mean Difference relative to the evaluated portfolio. We have also
discussed how the SSD test can be generalized towards TSD: by constructing
piecewise-quadratic utility functions (or alternatively by piecewise-linear marginal
utility functions). Further, we have discussed how bootstrapping techniques and
asymptotic distribution theory can approximate the sampling properties of the test
results and allow for statistical inference.

Straightforward linear programming can apply our tests to empirical data. The primal
and dual problems can be solved with minimal computational burden, even with
desktop PCs. For example, the computations for the S&P application (894
observations, 25 individual portfolios) used the simplex module of Aptech Systems'
GAUSS software, operated on a desktop PC with a 1700 MHz Pentium IV
microprocessor and with 512 MB of working memory available. The computations
required only minimal burden; the run time for the SSD tests was less than 1 minute
on average. With the current exponential growth of computer power, the
computational burden can be expected to drop much further in the foreseeable future.
Still, the computational complexity of the model increases as the number of
observations and/or the number of assets increases, and specialized LP solver
software is recommended for large-scale problems involving thousands of
observations and/or assets (or if higher-order criteria are used).

The computational ease is an important advantage relative to the Kuosmanen
approach (see the Introduction). While the number of variables in our tests increases
linearly with the number of observations, the number of variables in the Kuosmanen
tests explodes as the time series grows. For example, for our S&P application, the



23

Kuosmanen SSD test would involve more than 5108 ⋅ model variables and the TSD
test would involve more than 11106 ⋅ model variables, which is far beyond the
computational possibilities, at present and in the foreseeable future. In our opinion,
the computational ease does not involve a substantial loss of information. Kuosmanen
focuses on identifying an efficient solution portfolio that SD dominates the evaluated
portfolio. By contrast, our approach focuses on identifying (a set of subgradients of) a
rationalizing utility function. Theorem 1 implies that both approaches are equivalent
in terms of the efficiency classification (efficient or inefficient) of the evaluated
portfolio. In addition, as is true for the empirical utility function and the solution
portfolio identified with our approach, the solution portfolio in the Kuosmanen
approach comes as a 'side-product' to the efficiency classification, and it is unlikely to
be very robustness to sampling variation. Finally, the solution portfolio -even if it can
be computed and if it is robust- is only one element of the SSD efficient set, and there
is no prior reason to prefer this portfolio to other efficient portfolios.

From a theoretical perspective, SD is an attractive approach to analyzing economic
behavior under uncertainty. In nonparametric fashion, SD allows the data 'to speak for
them selves' (at least in large samples), rather than being forced to speak the idiom of
prior assumptions about the return distribution. In contrast to mean-variance analysis
and its extensions, SD accounts for the full distribution rather than a finite number of
moments only. By extending the SD approach towards the case where diversification
between choice alternatives is allowed, we hope to provide a stimulus to the further
proliferation of SD for the problem of portfolio selection and evaluation (as well as
other choice problems under uncertainty that involve diversification possibilities).

This paper forms the starting point for developing a full framework for SD with
diversification possibilities. Further research could deal with the following subjects:

1. Our LP tests can be very useful for portfolio evaluation i.e. for evaluating whether
a given portfolio is efficient. For selecting the optimal portfolio, one typically
needs more information on investor preferences than is assumed in SD, and SD
has to be complemented with other research instruments, like interactive Multi-
Criteria Decision-Making procedures. Still, SD can be very useful as a pre-
analysis screening device for reducing the number of choice alternatives. Further
research could focus on obtaining a full characterization of the set of SD efficient
portfolios.

2. The statistical test developed in Section V is based on the asymptotic least
favorable distribution, and it involves low power in small samples. Fortunately,
large data sets are available for many applications in financial economics. In
addition, the test is likely to be more powerful in applications where the assets are
not as highly correlated as the Fama and French benchmark portfolios. Still, it is
desirable to develop a more powerful test, e.g. a test that explicitly minimizes the
probability of Type II error rather than Type I error, or a test that is based on a
particular class of return distributions.
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APPENDIX

Proof of Theorem 1: The class of utility functions 2U  and the feasible set Λ
are both convex. Therefore, Sion's (1958) minimax theorem implies that we can
without harm change the order of the two optimization operators:
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for all Λ∈? , and there doesn’t exist a portfolio Λ∈?  that SSD dominates t .
Q.E.D.

Proof of Theorem 2: The necessary condition follows from the optimality
conditions for convex problems and the properties of the solution set (see e.g. Hiriart-
Urruty and Lemaréchal (1993), Thm. VII:1.1.1 and Cond. VII: 1.1.3). Specifically, t
is an optimal portfolio i.e. ∑

Θ∈Λ∈
=

t
t Tu /)(maxarg ?xt

?
 for 2u U∈  only if

all portfolios Λ∈? are enveloped by the tangent hyperplane defined by a
supergradient vector ))()(()( txtxt T1 uuu ∂∂≡∂ L , i.e.
(20) Λ∈∀≥−∂∑
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??xtxtx 0/))((
t

ttt Tu .

This inequality is similar to the well-known Kuhn-Tucker conditions for selecting an
optimal portfolio if short selling is not allowed. The Kuhn-Tucker conditions apply
for continuously differentiable utility functions ; inequality (20) is a generalization
towards superdifferentiable utility functions (recall that we use piecewise-linear utility
functions, which generally are not continuously differentiable).

If t  is optimal relative to some 2u U∈ , then it is also optimal relative to the
standardized utility function 2))(/( Uuuv T ∈∂≡ tx . By construction, )(tv∂  is a
feasible solution to the primal problem, i.e. Β∈∂ )(tv . The inequality (20) implies
that this solution is associated with a solution value of zero. Hence, we find the
necessary condition; t  is SSD efficient only if 0)( =tξ .

To establish the sufficient condition, use Β∈≡ )( **
1

*
Tßßß L  for the optimal solution
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The piecewise-linear function 2
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By construction, we have ?xßaßa?x ttttp **** ),( +≤  for all Λ∈? , and

txßaßatxt ttt,p *** )( += . Combining this with equality (18), we find that t  is
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By construction, )( ** ßa ,xp  is strictly increasing and concave and hence belongs to

2U . Therefore, we find the sufficient condition; portfolio Λ∈t  is SSD efficient if
0)( =tξ .  Q.E.D.

Proof of Theorem 3: The proof is best phrased in terms of the LP dual of ( P ):
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Again, the primal variables that correspond to each of the dual constraints are given
within bracket, so as facilitate the interpretation and the relationship between the
primal and the dual. The first 1T −  inequality restrictions are always binding (the
primal positivity restrictions 1-,1,,0 Ttt L=≥ß , are redundant because the primal
also requires 121 =≥≥≥ Tßßß L ), and hence the optimal solution is
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=−=  for 1, , 1t T= −L . Substituting these

expressions in (P), and dividing each *
tρ  term by /T t , we directly obtain (10). Since

( P ) always has a feasible solution (see Section II), )(tψ = )(tξ . Hence, Theorem 2
implies that portfolio Λ∈t  is SSD efficient if and only if )(tψ =0. Q.E.D.

Proof of Theorem 4: By analogy to the proof to Theorem 2, the necessary
condition follows from the optimality conditions for optimizing a concave function
over a convex set. Since u is continuously differentiable, we can now use the well-
known Kuhn-Tucker conditions. Specifically, t  is an optimal portfolio i.e.
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standardized utility function 3))max(/( Uuuv it
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with ))()(()( txtxt T1 vvv ′∂′∂≡′∂ L  for a subgradient of )(tv′ , is a feasible solution,
i.e. Ω∈′∂′ ))(),(( tt vv . The inequality (23) implies that this solution is associated with
a solution value of zero. Hence, we find the necessary condition;  t  is TSD efficient
only if 0)( =tζ .

To establish the sufficient condition, use Ω∈),( ** ?ß  for the optimal solution. From
this optimal solution, we can construct the following continuous piecewise-linear
marginal utility function
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range, decreasing and convex. Integrating x*
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where ta  is free. The integrated functions can be combined to yield the continuous
piecewise-quadratic utility function:
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Hence, we find the sufficient condition; portfolio Λ∈t  is TSD efficient if 0)( =tζ .
Q.E.D.

Proof of Theorem 5: Since the unity vector is a feasible solution to the primal
problem, i.e. Β∈e , we know that
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Known results can derive the exact asymptotic sampling distribution of )(tω . Under
the null, itx , Ι∈i , Θ∈t , are serially and contemporaneously IID with variance
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It follows directly from (28) that ))(( 0HyP >tξ  is bounded from above by

))(( 0HyP >tω  for all return distributions )(xH . Moreover, there exist )(xH  for
which )(tξ  approximates )(tω , and therefore the asymptotic distribution of )(tω
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also represents the asymptotic least favorable distribution for )(tξ . A simple example
is the binomial distribution with probability a, 10 << a , of finding 0=x  and

probability (1-a) of finding bx = , ∞<< b0 , i.e. 
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parameters a and b can be used to control the population variance 22 )1( baa −=σ , as
well as the probability distribution of the number of observations that take a zero

value, say Z , i.e. the binomial probability == )( zZP  )()1( zNTz aa
z
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


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,

0≥≥ zNT . For any given N, T, and 2σ , we may set a  such that the probability of
finding multiple zeros, i.e. )1( >ZP  approximates zero, and we only have to consider
the case with no zeros, i.e. 0=Z , and the case with a single zero, i.e. 1=Z . If no
zeros occur, then bit =x  for all Θ∈Ι∈ ti , , and hence 0)()( == tt ωξ . If one zero
occurs, say 0=ksx , Θ∈Ι∈ sk , , then we have to distinguish between the case with

0=kt  and the case with 0>kt . If 0=kt , then itt b xtx ≥=  for all Θ∈Ι∈ ti , , and
hence 0)()( == tt ωξ . If 0>kt , then bts =< txtx  and we must set 1=≥ ts ßß
for all st \Θ∈  (recall the restriction Β∈ß ; see Section II). Since biss =< xtx  for
all ki \Ι∈ , the optimal value for sß is unity, and hence Tb /)()( == tt ωξ .?
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