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Abstract 
 
In this chapter, we first provide an overview of a number of portfolio planning models 
which have been proposed and investigated over the last forty years. We revisit the 
mean-variance (M-V) model of Markowitz and the construction of the risk-return 
efficient frontier. A piecewise linear approximation of the problem through a 
reformulation involving diagonalisation of the quadratic form into a variable 
separable function is also considered. A few other models, such as, the Mean 
Absolute Deviation (MAD), the Weighted Goal Programming (WGP) and the 
Minimax (MM) model which use alternative metrics for risk are also introduced, 
compared and contrasted. Recently asymmetric measures of risk have gained in 
importance; we consider a generic representation and a number of alternative 
symmetric and asymmetric measures of risk which find use in the evaluation of 
portfolios. There are a number of modelling and computational considerations which 
have been introduced into practical portfolio planning problems. These include: (a) 
buy-in thresholds for assets, (b) restriction on the number of assets (cardinality 
constraints), (c) transaction roundlot restrictions. Practical portfolio models may also 
include (d) dedication of cashflow streams, and, (e) immunization which involves 
duration matching and convexity constraints. The modelling issues in respect of these 
features are discussed. Many of these features lead to discrete restrictions involving 
zero-one and general integer variables which make the resulting model a quadratic 
mixed-integer programming model (QMIP). The QMIP is a NP-hard problem; the 
algorithms and solution methods for this class of problems are also discussed. The 
issues of preparing the analytic data (financial datamarts) for this family of portfolio 
planning problems are examined. We finally present computational results which 
provide some indication of the state-of-the-art in the solution of portfolio optimisation 
problems. 
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1.   Introduction and overview 
 
The mean-variance (M-V) model of Markowitz is a single period static portfolio 
planning model and in recent times, it has become the core decision engine of many 
portfolio analytics and planning systems in the construction of the risk-return efficient 
frontier. 
 
Markowitz shows that for a rational investor maximizing expected utility, a chosen 
portfolio is optimal with respect to both expected return and variance of return.  He 
defines such a non-dominated portfolio as efficient, that is, it offers the highest level 
of expected return for a given level of risk and the lowest level of risk for a given 
level of return.  His normative mean-variance rule for investor behaviour both implies 
and justifies the observable phenomenon of diversification in investment.  
Determining the efficient set from the investment opportunity set, the set of all 
possible portfolios, requires the formulation and solution of a parametric quadratic 
program (QP). Plotted in risk-return space the efficient set traces out the efficient 
frontier. 
 
Hanoch and Levy (1969) show that the M-V criterion is a valid efficiency criterion, 
for any individual’s utility function, when the distributions considered are Gaussian  
normal.  A study comparing alternative utility functions appears in Kallberg and 
Ziemba (1983).  They show that portfolios with ‘similar’ absolute risk-aversion 
indices have ‘similar’ optimal compositions, regardless of the functional form and 
parameters of the utility function.  Hence, M-V analysis is justified for any general 
concave utility function of the Von Neumann-Morgenstern type (Von Neumann and 
Morgenstern 1944). 
 
The estimation of the underlying parameters (returns, variances and covariances)       
which are required as the input to M-V analysis is an important modelling step.  Small 
changes in the input can have a large impact on the optimal asset weights.  Chopra 
and Ziemba (1993) found that, for a typical investor’s risk-tolerance level, errors in 
the forecast means are more than ten times as important as errors in the variance and 
about twenty times as important as errors in covariances.  For practical aspects of 
portfolio analysis see Perold (1984), Hensel and Turner (1998) and Grinold and Kahn 
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(1995).  The modern portfolio theory has developed in tandem with simplifications to 
the QP required by M-V analysis; these simplifications centre around linearizing the 
quadratic objective function or reducing the number of parameters to be estimated.  
Both approaches involve either an approximation or a decomposition of the 
covariance matrix.  

 
 
Tobin (1958) developed the separation theorem which states that, in the presence of a 
risk- free asset, the optimal risky portfolio can be determined without any knowledge 
of investor preferences.  Ziemba et al. (1974) show that the solution to the portfolio 
problem involving a risk-free asset can be obtained by a two-stage process: first 
solving a deterministic linear complementarity problem and then solving a univariate 
stochastic program. 
 
Sharpe (1963) proposed that the single-index, or ‘market’, model was a sufficient 
model of covariance.  Subsequently, Sharpe (1964), Lintner (1965) and Mossin 
(1966) independently developed the capital asset pricing model.  This linear model of 
equilibrium asset prices explains the covariance of asset returns solely through their 
covariance with the market.  King (1966) presented evidence of the influence of 
industry factors that the market model did not take into account.  Rosenberg (1974) 
proposed a multifactor model that incorporated industry and other factors.  Ross 
(1976) using factor analysis, developed the arbitrage pricing theory, which is a multi-
index equilibrium model. 
 
Since Markowitz’s seminal paper (1952), a number of alternative models have been 
proposed for portfolio planning.  The main underlying motivations for these 
alternative models are (i) such models are easier to process from a computational 
point of view compared to Markowitz’s quadratic programming approach (ii) they 
take into consideration alternative risk metrics. In section 2 of this chapter we 
describe a number of alternative models taking into consideration the motivations 
discussed above.  In section 3 we introduce alternative risk measures for financial 
planning problems.  Although, not all of them are used as such in a single period 
planning model they play an important role in defining measures which can be used in 
a ‘portfolio analytics’ tool.  In section 4 we present a number of extensions of the 
original Markowitz model.  Some, if not all of these extensions are used in many 
modern portfolio planning systems.  Preparation of asset data in a financial data mart 
is an important aspect of portfolio systems.  The method of preparation of these 
analytic information is discussed in section 5. Real world portfolio planning problems 
include various practical restrictions which reflect financial industry realisms in 
respect of threshold constraints, cardinality of assets held and transaction roundlots. 
These translate to discrete optimisation problems with a convex quadratic objective 
function. The resulting problems are NP-hard. In section 6 we discuss solution 
methods for processing such QP and quadratic mixed integer programming  (QMIP) 
problems. In section 7 we consider computational results based on our experience of a 
current state-of-the-art portfolio optimisation system. We conclude the chapter with a 
discussion of the leading issues. In Appendix 1, we set out the method of linearizing 
and also approximating the QP. In Appendix 2, we provide a comparative analysis of 
alternative portfolio selection models and their relative performance in respect of a 
small, yet representative dataset of assets. 
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2.   Alternative computational models 
 

In this section, we present five different portfolio planning models; (1) Markowitz’s 
MV model presented as two quadratic programs (QP1 and QP2), (2) reformulation of 
QP as diagonal models (DIAG1, DIAG2, DIAG3); the piecewise linear 
approximations of these models are given in Appendix 1, (3) the mean-absolute 
deviation model (MAD), (4) the weighted goal programming (WGP) model and (5) 
the minimax (MM) model. These five models are presented within a unified 
framework. The basic set of notations common to all these models is defined below as 
Indices, Parameters and Decision variables. 

 
Indices: 
Let 
i, j=1,…N: denote the different risky assets 
t=1,…,T:       …     the time periods of past historical data 
 
Parameters: 
Let 

itr : denote the return of asset i at time t 

iµ :   …     the expected return of asset i 

ijσ :  …   the coefficients of the (N×N) variance-covariance matrix V defined for asset 
i and asset j 
 ( iii σσ =  the diagonal coefficients for the asset i) 
 
ρ  :   …   the desired level of return for the portfolio 
   
Decision variables: 
Let 

ix : denote the fraction of the portfolio value invested in asset i   (0 ix≤ ≤ 1) 
 x:     …     the N×1 vector of portfolio weights ix      

 
 

 

2.1   The Markowitz mean-variance model and the risk-return 
frontier       

 
The portfolio selection model of Markowitz (1952, 1959) laid the basis of Modern 
Portfolio Theory. The Markowitz model put forward in 1952, is a multi-(two) 
objective optimisation model which is used to balance the expected return and 
variance of a portfolio. Markowitz (1952) shows how rational investors can construct 
optimal portfolios under conditions of uncertainty. For an investor, the returns (for a 
given portfolio) and the stability or its absence (volatility) of the returns are the 
crucial aspects in the choice of portfolio. Markowitz uses the statistical measurements 
of expectation and variance of return to describe, respectively, the benefit and risk 
associated with an investment. The objective is either to minimise the risk of the 
portfolio for a given level of return, or, to maximise the expected level of return for a 
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given level of risk. The mean-variance (M-V) approach still underpins much of the 
quantitative analysis of portfolio selection as carried out by the financial industry 
today. 

 
The classical M-V model (Markowitz (1952, 1959)) and an alternative approach 
towards computing the Markowitz Efficient Frontier (MEF) are set out below. 
           
QP 1:                   

                                  Min     Z 1QP = ijj
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i
xx σ��

== 11
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                                             =�
=

i

N

i
ix µ

1

ρ                                                   (2) 

                                                 1
1

=�
=

N

i
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                                                   x i   ≥ 0       i=1,…,N                                 (4) 

 
 
 

Varying the desired level of return, ρ, in QP1 and repeatedly solving the quadratic 
program identifies the minimum variance portfolio for each value of ρ. These are the 
efficient portfolios that compose the efficient set. By plotting the corresponding 
values of the objective function (the variance) and ρ (the return) respectively, we trace 
out the MEF in the mean-variance plane. Markowitz (1956) describes a ‘critical line’ 
solution algorithm tracing out the efficient frontier by identifying ‘corner’ portfolios- 
points at which a stock either enters or leaves the current portfolio. It is normal 
practice to use standard deviation rather than variance as the risk measure because the 
σ versus ρ frontier is linear if a risk-free asset exists, see Tobin (1958) and Ziemba et 
al. (1974). 
 
An alternative formulation of QP1 explicitly trades risk against return in the objective 
function using the Arrow-Pratt absolute risk-aversion index AR  (see Kallberg and 
Ziemba 1983). AR  is defined as  
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where w is portfolio wealth and u ′ , u ′′  are the first and second derivatives of a Von 
Neumann-Morgenstern utility function u.  
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QP2: 
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By increasing AR  from zero and solving the different instances of QPs, we trace out 
the efficient frontier. Empirical results by Kallberg and Ziemba (1983) show that 

AR ≥  6 leads to very risk-averse portfolios, 2 4≤≤ AR  represents moderate absolute 
risk aversion and AR 2≤  leads to risky portfolios. 4=AR  corresponds approximately 
to pension fund management (typically, holdings of 60% stocks and 40% bonds). In 
practice, it is common to model the risk-return trade-off using a parameter λ , 0 ≤ λ ≤ 
1, with the following objective function                                                     
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shows equivalence with the objective function in QP2. The same efficient frontier 
generated by QP1 can be traced out by varying the value of  λ and repeatedly solving 
QP2. This is the most frequently used way of generating the efficient frontier, the 
parameter λ is systematically varied between 0 and 1, which correspond to the 
maximum return and minimum variance portfolios respectively. 
 

2.2   Models with diagonal quadratic form as objectives  
 
Diagonal models are of interest as the corresponding quadratic forms can then be 
expressed as variable separable functions which in turn are approximated as piecewise 
linear functions (see appendix). Since these are convex programming problems, 
piecewise linear approximations lead to a linear programming (LP) reformulation of 
the given problem; the solution of the LP guarantees global optimum solution of the 
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given approximated QP. A detailed description of diagonalisation methods (based on 
Cholesky decomposition, an approach that exploits the decomposition of the 
covariance matrix (see also Vanderbei and Carpenter (1993)) and diagonal QPs based 
on index or factor models for describing asset returns) can be found in Horniman et al. 
(2000). 

Diagonal model 1 
 
By applying Cholesky decomposition the given covariance matrix, V, can be re-
expressed as  
 
                                              V = L T L 
 
where L(N×N) is a lower triangular matrix. The objective function of model QP1, in 
matrix form is Z =1QP x T V x which can be expressed as Z =1QP  x T L T Lx. Defining a 
new  vector y (N×1) such that y = Lx with elements 
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           Ni ,...,1=                                (11) 

   
leads to the equivalent formulation of the portfolio selection problem, model DIAG1. 
The number of terms in the objective function of model QP1 is reduced from N 2 to N 
at the cost of N additional constraints (11) and N additional variables (11).          
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For a general quadratic form, iy  would be a free variable (−∞< iy < +∞). However, 
with constraints (14,15, and 16), there are finite upper and lower bounds on                              
x i  for i=1,…,N. As a consequence, there exist finite upper ( y

ih ) and lower ( y
ig )   

bounds on iy , i=1,…,N (see Brearley et al. (1975)). These bounds are a necessity for 
the piecewise linear approximations of the quadratic terms.    

Diagonal model 2 
 
A similar approach (see Vanderbei and Carpenter (1993)) exploits the composition of 
the covariance matrix V given that it has been calculated from returns R observed over 
T periods. Given that the matrix of mean returns is R , the covariance matrix V is 
calculated as  
 

                              V = RR
N

−
−

(
1

1 ) T (R- R ) 

 
Defining S (T×N) as    
 

                                     S = )(
1

1 RR
N

−
−

, 

 
The covariance matrix can be expressed as  
 
 
                                     V = S T S 
 
This leads to a model similar to DIAG1 with T (instead of N) new decision variables 

ty  and T (instead of N) additional constraints compared to model QP1. We refer to it 
as DIAG2. 
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y
tg   ≤  ty  ≤  y

th             t=1,…,T                               (23) 
 
In this instance, the number of terms in the objective function (19) is reduced to T, 
with the addition of T variables (23) and T constraints (19). Again, there are finite 
upper  ( y

th ) and lower ( y
tg ) bounds on ty , t=1,…,T.         

Diagonal model 3 
 
The use of factor models to describe asset returns can also lead to a diagonal form 
provided the composition of the covariance matrix is appropriately exploited. Sharpe 
(1971) introduced this feature for the single index model and the technique can be 
extended to any number of factors or indices (see Rosenberg (1974) and Perold 
(1984)). For a model with K factors, let kf  denote the level of the thk  factor, β ik  the 
sensitivity of asset i to factor k, α i  the mean return of asset i and ie  the random 
component of return of asset i; then asset returns r i can be expressed as a linear form 
by: 
 

                                                  ik

K

k
ikii efr ++= �

=1
βα  

 
If the factors are constructed (or transformed) so that there is no correlation between 
the factors and specific returns, and it is further assumed that the specific returns are 
uncorrelated, the covariance matrix, V, can be decomposed as  
 
                           
                                                    V = B T QB+ D 
 
where B is the K×N matrix of factor sensitivities, Q is the K×K diagonal matrix of 
factor variances 

kf
2σ , and D is the N×N diagonal matrix of specific variances, 2

iεσ . (If 

the factors are constructed to be orthonormal, then Q reduces to the K×K identity 
matrix). 
 
Having decomposed the covariance matrix in this fashion, model DIAG3 can be 
stated as follows. 
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In this approach, the objective function of QP1 is reduced to a sum of squares in N+K 
terms with an additional K variables kPy ,  (expressed as linear forms of ix ) (25) with 

finite upper ( y
ku ) and lower  ( y

kl ) bounds (see (29)). 
 

2.3   The mean-absolute deviation (MAD) model 
 
Konno (1988) proposed a portfolio optimisation model using a piecewise linear risk 
function. The MAD model, a special case of the piecewise linear risk model, has been 
shown to be equivalent to the Markowitz model under the assumption that returns are 
multivariate normally distributed (Konno and Yamazaki (1991)). That is, under this 
assumption, the minimisation of the L 1  measure, (the sum of absolute deviations of 
portfolio returns about the mean), is equivalent to the minimisation of the L 2  
measure, (the variance). Let m t  denote the absolute deviation of the portfolio return 
(from the mean) at time t, then the MAD model is stated as:  
 

MAD:  
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                                                           tm  ≥ 0                 t=1,…,T                        (35) 
 
                                                             x i  ≥ 0       i=1,…,N                                 (36) 
 
 
 
The objective function (30) minimises the mean of the absolute deviation calculated 
using constraints (31) and (32), with tm  restricted to be non-negative (35).  

A comparison of the M-V model and the MAD model   
 
Konno and Yamazaki claim that the MAD model credibly replaces the M-V model as 
it incorporates all its positive features; they present the following three arguments in 
support of their claim. 
 

a) In the formulation of the MAD model, there is no requirement for the 
covariance matrix of asset returns, 

b) the relative ease with which a linear program can be solved compared to a 
quadratic one- thus large scale problems can be solved faster and more 
efficiently, 

c) mean absolute deviation portfolios have fewer assets- this fact implies lower 
transaction costs in portfolio revisions. 

 
 
Simaan (1997) discusses the advantages and disadvantages of the MAD model. He 
puts forward a contrary viewpoint and shows that ignoring the covariance matrix 
results in greater estimation risk that outweighs the benefits. In both models, 
estimation risk is more severe in small samples (small observations relative to the 
number of assets) and for investors with high risk tolerance. The M-V model’s lower 
estimation risk is most striking in small samples and for investors with a low risk 
tolerance. 
 

2.4   The goal programming model 
 
Goal Programming is a branch of multi-objective decision-making and is based on the 
concept of finding feasible points as close as possible to a number of goals. A set of 
targets/goals is chosen by the decision maker. Any (unwanted) deviations from these 
targets are penalised in order to get a satisfactory solution. How these penalties are 
implemented depends on the type of goal program.  
 
Weighted Goal Programming (WGP) attaches weights according to the relative 
importance of each objective as perceived by the decision maker and minimises the 
sum of the weights. Zero weights are attached to deviations that do not have to be 
minimised (for example, positive deviations from the expected portfolio return goal). 
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Lexicographic Goal Programming (LGP) separates the objectives into a number of 
priority levels where the satisfaction of goals with higher priority is regarded as 
infinitely more important than the satisfaction of lower level goals. A practical LGP 
model, first introduced by Lee (1980), and a WGP formulation of Lee’s model can be 
found in Tamiz (1996). 
    
Tamiz et al. (1996), using a factor model of stock returns, measure the risk of a 
portfolio as the sum of absolute deviations of the portfolio’s factor sensitivities from 
those of a specified target. Unsystematic risk receives no direct treatment. To force 
diversification of the stock specific risks, they apply a constraint on the total holdings 
allowed in each industry sector. 
 
We present a simplified version of such a WGP model; the objective of the model is 
to minimise the risk associated with the portfolio and maximise the expected return. 
We do not specify a particular measure of risk. The only limit on the risk measure is 
that the portfolio risk is a linear combination of the risks associated with the 
component stocks. 
 
We also introduce a few additional parameters and variables for this model.  
 
Parameters: 
Let 

1W :    denote  the positive penalty weight associated with shortfalls in portfolio return 
below the target 

2W :    denote the positive penalty weight associated with excess portfolio risk in 
relation to the target 

PRisk :  denote risk associated with the portfolio 

iRisk :       …     risk associated with the asset i   
 
Decision variables: 
Let 

1n :     denote the negative deviation from the target level of portfolio return 

1p :         …   the positive deviation from the target level of portfolio return 

2n :         …   the negative deviation from the target risk level 

2p :      …   the positive deviation from the target risk level 
 
 

WGP: 
 
                         Min   2211 pWnWZWGP +=                                             (37) 
 
               subject to       

                                     ρµ =−+�
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The objective function (37) seeks to minimise risk and maximise return by penalising 
excess risk and shortfalls in return, relative to the respective targets. Lower levels of 
risk and higher levels of return are not penalised. The shortfalls in return and excesses 
in risk are determined by constraints (38) and (39) respectively.  
 
The MAD model can be formulated as a weighted goal program. By replacing 
inequalities (31) and (32) with the constraints 
 
 

                                ii

N

i
it xr )(

1
µ−�

=

 = tt np −                                          (43) 

 
                                            0≥tp                                                          (44) 
   
                                             0≥tn                                                          (45) 
 
 
and replacing tm  in the objective function by tt np + . This results in a weighted goal 
program that penalises absolute deviations from the portfolio mean. By not penalising 
deviations above the mean, using a zero penalty weight on tp , leads to a weighted 
goal program version of a negative semi-MAD model, such as employed by Speranza 
(1996).  
 

2.5   The Minimax model (MM) 
 
The principle underlying this model (Young (1988)) can be described as choosing a 
portfolio based directly on how it would have performed in the past, over the 
historical observations t=1,…,T. The minimum return that could have occurred in the 
past is employed as the measure of risk. The model seeks to maximise this value 
while achieving a specified level of expected return. An alternative, and perhaps more 
appropriate statement of the minimax portfolio selection rule is the minimisation of 
the maximum loss that would have occurred over the observation period. The 
minimax model uses the ∞L  norm to measure risk which implies a strong absolute 



 15

aversion to downside risk (Gonin and Money ((1989)). The solution can be strongly 
affected by only one outlying value in the data.  
 
We introduce a variable PM  which represents the minimum return achieved by the 

portfolio over all observation periods. That is,  it

N

i
itP rxM �

=
=

1
min .  

 
The Minimax model (MM) is then stated as 

MM:  
 
                         Max    PMM MZ =                                                             (46) 
 
 
  subject to   
 

                         it

N
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                                             PMl ≤  PM PMu≤                                          (50) 
 
 
 
It is easily seen that finite upper bound ( )PMu  and finite lower bound ( )PMl  apply to 
the variable PM . Young (1998) also suggests an alternative formulation of the model 
that maximises the expected portfolio return subject to a given lower bound on the 
portfolio return for every observation period. 
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3. Symmetric and asymmetric measures of risk 

3.1   Sources of risk and choice of appropriate measures: risk 
dilemmas  
 
The introduction of Markowitz’s M-V framework provided financial institutions and 
portfolio managers a powerful tool that allowed them, for the first time, to utilise the 
concepts of risk and return in a combined paradigm. Despite the progressive 
acceptance and wide-spread use of the M-V framework, and its numerous extensions, 
in practice there has been a considerable debate among academics and practitioners on 
the validity of variance as a representative measure of risk. The notion of risk has 
found practical application within the science of Risk Management, also known as 
Risk Control. Risk Control deals with limiting or eliminating specific types of risk, in 
as much as this is possible by taking an active position in one or more types of risk. 
Deciding which types of risk to mitigate is the first dilemma of a financial institution 
and demands considerable attention, since focusing on one particular risk category 
may lead to a hedged portfolio for a particular  source of risk but may result in 
exposure to other sources of risk. This issue becomes more challenging when 
optimisation models are used (see Zenios and Georgiadou (2000)). For instance, 
optimisation may result in minimisation of the risk (measure) included in the model, 
but the solution may be sensitive to other sources of risks that were not considered 
and better measured by another metric. 
 
In general, risk measures can be divided into two groups depending on the perception 
of risk. The first group contains the so-called dispersion risk measures that quantify 
risk in terms of probability-weighted dispersion of results around a specific reference 
point, usually the expected value, and are otherwise classified as symmetric measures 
of risk. Measures in this category penalize negative as well as positive deviations from 
a pre-specified target. Two of the most well-known and widely applied risk measures, 
in this group, are Markowitz’s (1952, 1959) variance or standard deviation and the 
expected or mean absolute deviation (MAD) of Atkison (1970) and Konno and 
Yamasaki (1991). The second group comprises measures which quantify risk 
according to results and probabilities below reference points, selected either 
subjectively or objectively, and are otherwise classified as asymmetric measures of 
risk. Such risk measures include the Expected Value of Loss from Domar and 
Musgrave (1944), Roy’s (1952) Safety First, the Semi-Variance proposed by 
Markowitz (1959), Value at Risk � VaR – ( JP Morgan, 1993) and its extension 
Conditional VaR � CVaR �  (Uryasev (1999)), and Fishburn’s α-t criterion (1977). 
The latter not only constitutes the generalized case for the above ‘below-target’ risk 
measures, but it is also capable of representing the symmetric risk measures. Set 
against this background, a financial institution faces a second dilemma of deciding 
which of the two main risk metric categories - symmetric or asymmetric measures of 
risk – represent its attitude towards risk and, therefore, should be utilised. 
 
The incorporation of risk in the investment decision process should also reflect the 
benchmark relative to which a financial institution or an individual assesses its 
portfolio performance. The simplest approach is that of comparing the performance 
relative to the portfolio’s past history. This is achieved by computing the risk measure 
as a function of the portfolio composition and the random returns of the assets. 
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Typically, the standard deviation would then reflect the deviation of the asset returns 
from the expected portfolio return. On the other hand, the portfolio performance can 
be measured relative to a benchmark index or an alternative investment opportunity. 
In this case, the risk measure is also a function of a target level of return. The standard 
deviation in this case would then reflect the deviation of the asset returns from the 
expected target return (eg. FTSE100). Utilising the two alternative approaches – 
portfolio return and target return – implies tackling different planning problems. In 
particular, the portfolio return approach is mostly suitable for maximum return 
strategies, whereas the target return framework is suitable for ‘index tracking’ or ‘goal 
achievement’ strategies. Further, the two approaches lead to different portfolio asset 
mix decisions and, therefore, for financial institutions choosing the appropriate 
framework becomes the third dilemma.  
 

3.2   A generic approach to risk representation and quantification 
Bawa (1975) and Fishburn (1977) consolidated the existing research on risk measures 
up to that time, and developed the α-t model, and introduced a general definition of 
‘below target’ risk in the form of lower partial moments (LPM).  
 
Let α be a parameter specifying the moment of the return distribution. In some cases 
α may be taken as indicating different attitudes towards risk. Let τ be a predefined 
target level of the investment return, and F(x) the cumulative probability distribution 
function of the investment with return x. The LPM of order α for a given τ defines the 
α-t model and has the following form: 

[ ]( ) 0,},0max{)()();()( >−=−=≡ � ∞−
αττττ ατ α

αα xEdxxfxxLPMF        (51) 

The introduction of the LPM is a major advance in the field of risk, as it provides the 
most generic representation of risk. Within this framework both symmetric and 
asymmetric measures of risk are encapsulated. Alternative formulations of well-
known symmetric and asymmetric risk measures are shown below as special cases of 
the generic approach of LPM. 
 

Symmetric Measures of Risk 

The main difference of the symmetric measures of risk, when compared with the 
asymmetric, is that returns above the pre-specified target are also included. In that 
case, the returns used to calculate the risk measures can take values between [-∞, +∞]. 
The two symmetric risk metrics we consider are the Variance and MAD. 
(S.1) Variance: the classical representation of variance deals with measuring the 
spread of the expected returns relative to the average expected portfolio return. 
Therefore, x=τ  and α=2. 

( ) }{)()();( 22
2

2 xxEdxxfxxxxLPM −=−=≡ �
+∞

∞−
σ                                      (52) 

In the case that the target level of return is not equal to the average expected portfolio 
return, the representation of the variance from target τ is given by: 
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 18

(S.2) Mean Absolute Deviation: by setting α=1, the MAD measure of risk can be 
represented as: 

( ) }{)();( 11
1 xxEdxxfxxxxLPMMAD −=−=≡ �

+∞

∞−
                                      (54) 

 

Asymmetric Measures of Risk 

It is easily seen that all asymmetric risk measures for different levels of τ and α are 
special cases of the a-t risk. Adopting the general a-t risk measure, we provide the 
formulations of a set of (interesting) below-target risk measures. 
(A.1) Safety First: The �Safety First Criterion� is a special case of the α-t risk when 
α � 0. 
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(A.2) Expected Downside Risk: When α=1 the a-t model equals the expected 
downside risk. 

[ ]( ) },0max{)()()();( 11
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                    (56) 

If the target is set equal to the expected portfolio return then the measure can be 
viewed as a special case of the MAD risk measure where only the negative deviations 
from the target are considered, thus leading to the Semi-MAD measure: 

[ ]( ) },0max{)()()();( 11
11 xxEdxxfxxxFxxLPMMAD

x
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−            (57) 

(A.3) Semi-Variance: as shown by Fishburn in his seminal paper, the semi-variance 
is a special case of the a-t model, for α=2. 
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               (58) 

(A.4) Worst Case Scenario: For α�+∞ the a-t model defines the worst-case 
scenario as considered by Boudoukh, Matthew & Richardson (1995). 
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(A.5) Value-at-Risk (VaR): the VaR of a portfolio at the β probability level is the left 
quantile of the losses of the portfolio, i.e, the lowest possible value such that the 
probability of losses less than VaR exceeds β × 100%. The VaR is given as  
  
                        θβ =),(xVaR                                                                                  (60)  

where the corresponding LPM is 

                 βθθθ
θ
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4.   Computational models in practice 
 
The M-V model as described in section 2.1 and the alternative models described in 
the rest of section 2 provide adequate mathematical description of the investment 
decision problem in its general form. In real life situations, to apply such models it is 
necessary to consider the trading requirements and other aspects of portfolio 
performance. For instance, it is meaningful: (a) not to have very small holdings, (b) to 
restrict the total number of holdings and (c) to take into consideration the roundlot of 
assets that can be bought or sold in a bunch. These requirements can be modelled as 
threshold constraints (section 4.1), cardinality constraints (section 4.2) and roundlot 
constraints (section 4.3); in general they all lead to sets of discrete variables and 
constraints. 
 
The original perspective (which is also a restrictive and narrow view) of portfolio 
planning is that of asset management namely buying, selling and rebalancing of 
assets. In this approach no explicit attention is paid to the investor’s liabilities. Yet if 
the assets are bonds/ fixed income securities then coupon payments, reinvestment of 
cash and the fund’s liabilities immediately call for cash flow matching. This is 
formally known as portfolio dedication and is discussed in section 4.4. The prices of 
fixed income securities are dependent on the term structure of interest rates and hence 
exposed to interest rate risk. Thus, measurement and modelling of such risks using 
duration and convexity and the corresponding restrictions also known as 
immunization are described in section 4.5.  
 

4.1 Buy-in thresholds for assets 
Buy-in thresholds and cardinality constraints are formulated using a discrete 
programming modelling structure which is well known as variable upper and lower 
bounds or semi-continuous variables (Beale and Forrest (1976)). For discrete 
programming solution systems which do not support ‘semi-continuous’ variables, 
such threshold restrictions may be specified using a binary variable and a pair of 
bounding restrictions. Using finite upper and lower bounds il , iu  for the stock weight 

ix  and the binary variable iδ , the corresponding threshold restriction is represented by 
the constraint pair  
 

iiiii uxl δδ ≤≤          and          1,0=iδ            I = 1,…,N. 
 
The introduction of the binary variables transforms the QP to a quadratic mixed-
integer program (QMIP) which becomes larger in size and computationally more 
complex. These constraints and the binary variables iδ  are also used to represent 
cardinality constraints which specify the number of stocks in a given portfolio. 
Imposing constraints that restrict stock holdings to be integer multiples of specified 
roundlots increases the complexity of the model yet further. 
 
The reformulation of model QP1 with buy-in thresholds is set out below. 
 
 
 



 20

BUY-IN: 
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                                   iiiii uxl δδ ≤≤               i = 1,…,N                  (64) 
 
                                0=iδ or 1          i = 1,…,N                                 (65) 
                                      
                                        x i   ≥ 0       i=1,…,N                                     (66) 
 
Constraints (64) and (65) ensure that if 1=iδ , then iii uxl ≤≤  otherwise 0=iδ  
which imposes ix =0. 
 

4.2   Cardinality constraints 
 
In order to control transaction costs or for other monitoring and control issues, some 
investors may wish to limit the number of assets held in their portfolios. By counting 
the binary variables introduced in model BUY-IN we can construct the cardinality 
constraint which limits the portfolio to a fixed number of assets k. Thus, by adding the 
restriction    
 

                                       ,
1

k
N

i
i =�

=
δ                                                (67) 

 
to the model BUY-IN above we extend it to model CARD.  
 
It may be worthwhile to point out that buy-in thresholds and cardinality constraints 
are implicitly linked. For example, a buy-in threshold of 10% of the value of a 
portfolio implies that up to 10 stocks can be bought. 

4.3   Roundlot transactions 
 
In the transaction roundlot model, we introduce the requirement that we can purchase 
stocks in set ‘blocks’. Each block, or roundlot, can be described as a cash value or a 
number of stocks. For each asset i, a block is defined as a fraction if  of the total 
portfolio wealth. Introducing integer number of blocks iy , we re-express ix  as         
 
                                    ,iii fyx =                       i = 1,…,N  
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which is the fraction of portfolio wealth to be invested in stock i. The roundlot model 
can be stated as follows. 

LOT: 
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                         iiii ufyl ≤≤                                     i =1,…,N               (71) 
 
                             iy  integer                                      i = 1,…,N              (72) 
 
                       0, ≥+− εε                                                                          (73)                                                 
 
 
Using discrete lot sizes of share purchases, it may not be possible to satisfy exactly 

the requirement 1
1

=�
=

N

i
ix . Hence, this restriction is made ‘elastic’ as in goal 

programming. Thus (70) includes undershoot and overshoot variables +− εε ,  
respectively which are in turn penalised in the objective function with a high cost γ . 
As a consequence in an optimum solution +− εε ,  are made as small as possible and 
the fractional stock holdings ix  sum to a value ‘ as close as possible’ to 1. 

4.4   Portfolio dedication 
 
Given that the investment process is in general dynamic and that there are liabilities or 
obligations to be taken into account, the fund managers need to: 
 

i) match cash flows for known obligations arising out of, say, general investment 
contracts (GICs), and, 

 
ii) plan borrowing of shortfall and reinvestment of surplus,  

 
both considered over future time periods. 
 
Let 
 

itF        denote the positive cash flows from asset i in time period t, 
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tL             …    liability in time period t, 
 

tρ             …      a reinvestment rate, 
  

∆+tρ      …    the borrowing rate with ∆  as the difference between this rate and the 
reinvestment rate. 
 
 
We introduce two variables, −+

tt vv ,  as cash surplus and shortfall respectively in time 
period t. 
 
Then the restrictions set out below 
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capture portfolio dedication as cashflows matching with borrowing and reinvestment. 
For a detailed discussion of this and related topics, see Zenios (2002).   
 

4.5   Portfolio Immunization  
 
Bond prices are affected by yields which in turn depend on market interest rates; also 
short bonds and long bonds are affected non-uniformly by the interest rate movement. 
The interest rate sensitivity or risk is traditionally measured by “bond duration”. 
Duration of a bond is generally defined as the weighted average of the present values 
of the cash flows  (the coupon payments). There are alternative definitions of duration 
(see Douglas (1990) and Luenberger (1998) but in general duration is a first order 
condition and provides a measure of the interest rate sensitivity or risk of a given 
fixed income security. A portfolio which is made up of only bonds can also have a 
duration measure. 
 
Let iD  denote the duration of the thi bond 
 
Then the duration of the portfolio is computed as  
 
                        NNP DxDxDxD +++= ....2211  
 
If we also compute the duration of all the liabilities, then by balancing the portfolio 
duration and liability duration 
 
                             NNiP DxDxD ++= ....1 LD=  
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we immunize the portfolio against interest rate risk. 
 
Convexity restrictions 
 
The price-yield relationship of a fixed-income security is a non-linear function for 
which the second-order condition (differential) is called convexity. Whereas duration 
matching ensures that for small changes in term structure of interest rates, asset and 
liabilities move together, it is necessary to also put a restriction on convexity in order 
to have comparable shape for larger changes. 
 
Let 
 

iQ  denote the first derivative of duration (with respect to the interest rate) for the 
asset i, i=1,…,N; then iQ  is defined as the convexity of asset i; and let, 
 

LQ  denote the convexity of the liabilities. 
 
Then  
               LNN QxQxQxQ ≥+++ ...2211 , 
 
is a constraint which in some sense restricts the sensitivity to the shape of the term 
structure or the ‘shape risk’ of the portfolio. 
 
Factor immunization 
 
Factor models are well established in most modern portfolio systems since they play 
an important role: 
 

i) in analysing and discovering information within the market data, and, 
ii) in defining the quadratic objective function of the risk. 

 
By using a linear factor model (typically principal component analysis) one may 
choose to include k factors to represent return variability. The first order and second 
order measures can be now redefined in this light as: 
 

a) factor modified duration, and, 
b) factor modified convexity. 

 
Further immunization restrictions can be written in terms of these parameters and the 
corresponding model then includes factor immunization conditions. For a fuller 
treatment of this topic the readers are referred to Zenios (2002). 
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5.   Preparation of data: financial data marts 
  
Deciding on the portfolio asset mix for a given planning horizon is a core task in the 
operations of a financial institution. The adoption of portfolio models underpins such 
a task, and in particular these models are used to make robust hedged decisions. Yet 
the effective use of the portfolio planning models, described above, in practice 
requires their inclusion in an integrated decision support framework. In this 
framework it is necessary to consider the roles of data, information and decision 
models (see Figure 1). This integrated framework is also underpinned by the concept 
of translating transactional data into analytical data and the integration of information 
analysis models together with portfolio optimisation models through the combined 
use of a common data mart.  
Within information systems methodology, there is a clear awareness in respect of data 
stored in transactional/production databases and information stored in analytical 
databases. Transactional data refer to historical market data and internal (institution 
specific) data; existing portfolio positions, client orders, cash flows.  Information 
analysis models filter transactional data and synthesise them into information that is 
then stored into the analytical database. The information is subsequently used to 
instantiate decision models and in turn the optimal solutions are stored in the decision 
database. The integration of the analytical database and the decision database is better 
known as data mart (Koutsoukis et al. (1999)). For industry standard portfolio 
analysis systems such as Northfield Systems and UBS Warburg PAS (2001, 2002), 
the use of analytical databases is pivotal, and the underlying information model is 
illustrated in Figure 1.  
 
 
 

Transactional 
Database 

Information 
Analysis Models 

Data Mart 

Decision 
Database 

Analytical 
Database 

Portfolio Models 

 
 
Figure 1: Data information and decision models 
 
 
In respect of our portfolio applications, the information analysis models themselves 
can be broken down further into sub-categories taking into consideration the analysis 
stage in which they are utilised (see Table 1). 
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Information Analysis Models 

Pre-analysis Model Data 
Parameters Solution Analysis Post-analysis 

Performance Indicators 
Style Analysis 

Financial Ratios 
CAPM 
APT 

Simulation Models 
Internal Company 

Models 

Historical data 
Weighted Moving 

Average 
Factor Models 

Time Series Models 
ARCH, GARCH,… 

Neural Networks 
Genetic Algorithms 

Kalman Filters 
Chaos 

Internal Company 
Models 

What if Analysis 
Scenario Analysis 

Simulation 
Backtesting 

Internal Company 
Models 

Performance Indicators 
Risk Statistics and 

Indices 
Financial Ratios 

CAPM 
APT 

Simulation Models 
Risk Metrics 

Internal Company 
Models 

 
Table 1: A Breakdown of Information Analysis Models 
 
Our overall view of the transactional data, information models, analytic database and 
decision models is set out in Figure 2. This view can be explained in the following 
way. 
 
The transactional data are collected on a day-to-day basis and stored in the production 
database which the information analysis models filter into information and generate 
an analytical database. We refer to this as the pre-analytical database because the 
information is generated before any optimisation takes place. The pre-analytical 
database comprises: 
 

i) Pre-analysis data: information that provides insight on the portfolio 
performance to date and assist the decision maker to identify market trends to 
select an appropriate investment style and asset universe. The pre-analysis 
data includes styles, financial ratios, asset and portfolio statistics, and 
performance comparisons. 

 
ii) Model data parameters: the data input for the portfolio planning model. The 

model data parameters typically include the asset universe, the expected return 
of the assets over the given planning horizon, and the expected risk of the 
assets (variance covariance matrix). The remaining data parameters are 
application specific and depend on the constraints that the organisation wishes 
to satisfy.  The quality of the data parameters is essential for the quality of the 
solution that the optimisation model provides and therefore information 
models for generation of the model parameters can be highly sophisticated (for 
a review see Grinold and Kahn (1995)) . 

 
The optimisation decision engine processes the portfolio optimisation model which is 
instantiated by data/information taken from the pre-analytical database. Subsequently 
the optimisation results (optimum solution) are stored in the decision database. The 
output is model specific and mainly comprises the optimum asset mix, the expected 
portfolio return(s), and the expected portfolio risk(s). The information within the 
decision database can be further filtered to obtain additional information utilising 
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once again the information analysis models. The contents and the processing leading 
to the post-analytical database is described below: 
 

i) Results analysis data: information on the efficacy and the robustness of the 
optimal solution. The analyst may carry out �what-if� analyses, where the 
decision-maker changes the input values, that is, using different model data 
instances. This technique examines the changes of the optimal solution and the 
optimal objective value with respect to variations of some parameters that are 
considered to be important.  It is usually done by varying one parameter at a 
time.  Another technique that varies uncertain parameters is scenario analysis.  
In this approach different scenarios, that is certain combination of possible 
values of the uncertain parameters, are considered.  Thereafter, the problem is 
solved for each of these scenarios.  Thus, by solving the problem repeatedly 
for different scenarios and studying the solutions obtained, the decision-maker 
observes the sensitivities and decides on an appropriate solution by following 
a heuristic approach. 

ii) Post-analysis data: information that provides insight on the expected 
performance of the optimum portfolios. The decision maker can calculate the 
risk exposure in the form of VaR or expected shortfall of the portfolio and 
compare its expected return with that of a benchmark index or a chosen 
portfolio.  

 

Data Mart 
Pre-Analyt ical Database 

Pre  Analytics : 
Styles, Risk Statistics, 

Financial Ratios ... 

Opt imisation Engine  Production 
Database 

Internal Data:
Portfolios, Cashf low s... 

M arket Data: 
Historical Prices 

Analytical 
M ode ls 

Solver 

Modelling 
System 

Portfolio Optimisation 
M ode l 

Continuous or Discrete 

User Input: 
Risk Aversion, 

Target Portfolio Return .. 

Decision Database 

Post-Ana lyt ical Database 

M ode l Data Parameters : 
Average Return 

Var/Cov Matrix ... 

Results  Analytics : 
What if , Different 

objectives... 

Optimisation Results : 
Portfolio Returns, Potfolio 
Risk, Optimum Asset Mix 

Post Analytics : 
Backtesting, Risk 

Analysis... 

Analytical 
M ode ls 

 
Figure 2: Integrated Decision Support Framework 
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6.   Solution methods   
 
Whereas quadratic programs (QPs) can be solved rapidly using solution algorithms 
with a low order polynomial complexity, the solution of quadratic mixed integer 
programs are difficult (NP-hard) and challenging. For instance consider the problem 
of accurately computing the DCEF. Each point of the DCEF curve represents the 
global optimum solution of a ‘discrete non-convex’ optimisation problem. Given that 
the quadratic form for the minimization problem is positive semidefinite, relaxing the 
discreteness restriction on the variables leads to a convex programming problem. This 
continuous variable QP relaxation of the problem provides a lower bound and is 
easily embedded (see Mitra (1976) and Lawler and Wood (1966)) in a branch-and-
bound tree search paradigm. 
 
The FortQP system implemented within the FortMP solver (Ellison et al 1999) has 
both interior point method (IPM) and sparse simplex (SSX) solution capabilities. The 
system is extensively tested using QLIB test data (Maros and Meszaros 1997) and 
models from the Finance industry. For the given family of QMIP problems at hand 
the branch-and-bound algorithm has been specially constructed taking into 
consideration the following design issues: 
 
SSX versus IPM. In medium-to-large test problems IPM performs better than SSX. 
Yet as an embedded solver of subproblems within branch-and-bound, IPM is not well 
suited since the ‘warm start’ property is relatively poor. We have therefore chosen 
SSX as our embedded ‘optimization engine’ for solving subproblems. The dual 
algorithm is used to solve these subproblems efficiently. 
 
Information sharing and algorithm choice. In solving the subproblems in the child 
node we share (reuse) the optimum basis information (basis list and the basis factors) 
of the parent node. We also apply the dual algorithm which reduces the total number 
of pivotal steps for reoptimization. These features also justify our choice of algorithm 
and vindicate the useful ‘warm start’ properties of the SSX. 
 
Integer restart heuristic. In the construction of the DCEF involving, say, 500 points 
we are unlikely to solve all these models to QMIP optimality. As a consequence, we 
are likely to lose the ‘pareto efficient’ property of the frontier and our experiments 
confirm this. We do, however, adopt a scheme of computing the DCEF from the 
highest return, and its corresponding risk, to lower return and reduced risk. We use 
the previous integer solution in this sequence as the ‘first feasible and upper bounding 
QP value’ for the next point (problem). Given the previous solution is feasible (or 
optimal), this solution is automatically a feasible solution for the current optimisation 
problem, as we decrease the desired level of return from its highest value to the 
smallest and hence relax the constraint. This has the effect that we obtain an 
‘efficient’ DCEF which is optimal (if all problems are solved to optimality) or sub-
optimal (if the algorithm is terminated at a feasible solution). However, the frontier 
we generate cannot contain inefficient points as we either stay at the previous solution 
or we improve on it. We believe, and our experimental results vindicate that this 
approach is preferable to applying modern heuristics to this discrete non-convex 
programming problem.      
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7.   Computational experience  
 
In this section, we first describe the software system architecture and the 
computational platform that we use for the investigation of this class of portfolio 
problems. We also describe our computational experience in respect of the discrete 
constraint efficient frontier (DCEF) model with threshold (BUY-IN) and cardinality 
(CARD) constraints using five data sets drawn from the Hang Seng, DAX, FTSE, 
S&P and Nikkei indices with 31, 85, 89, 98 and 225 stocks respectively (see Beasley 
1999). Recently we have further enhanced our discrete QMIP solver to process a 
range of models supplied by the UBS Warburg PAS system; these computational 
results are also discussed in this section. 

7.1   Modelling and the solution tools  
 
We have adopted a modular component based approach whereby we are able to mix 
and match modelling and solver tools to process different portfolio problems. The 
overall computational platform is shown in Figure 3. Data from the datamart (see 
section 5) is stored and transmitted through EXCEL datasheets. Using the MPL or 
AMPL algebraic modelling systems (see MAXIMAL, LUCENT), the QP or QMIP as 
appropriate is generated. The model is then processed by FortMP (QP) or FortMP 
(QMIP) and the results/ solution files are again stored in the decision database. The 
system runs under Windows NT and Windows 2000. In the experiments reported in 
7.2 and 7.3, we have used a Pentium III, 500 MHZ processor with 128 MB of RAM. 
This system is also available as a web application; see (OSP-CARFT, 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Data, modelling and solver architecture 
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7.2   DCEF study for five stock indices  
 
We have developed an integer restart heuristic which allows us to rapidly compute 
points on the DCEF. We investigate our heuristic approach using model CARD for 
the 5 data sets drawn from the Hang Seng, DAX, FTSE, S&P and Nikkei indices. We 
set 01.0=il , i= 1,…, N and use the cardinality constraint k=10. To analyse the 
experimental results we follow the metric used in Chang et al (1999). The deviations 
of the points on the heuristically obtained DCEF are measured as the minimum 
absolute distance ( vertical or horizontal) from the MEF. Since they do not calculate 
the exact DCEF but need to measure the usefulness of the heuristically computed 
frontier points, this deviation measure which they call ‘error’ provides a reasonable 
metric for comparison. These reported ‘errors’ mainly reflect the systematic 
deviations due to the discrete constraints. Using the same metric allows a comparison 
with the modern heuristic results of Chang et al (1999). For each data set and solution 
method, we generate the frontiers by solving 500 optimization problems. This number 
is chosen arbitrarily and the points are equally spaced with respect to the decrease in 
the desired level of return, ρ . 
The QMIP problems are solved to the second, improving, feasible integer solution 
subject to a limit of 500 nodes in the branch-and-bound algorithm. Table 2 presents 
the results for the integer restart method applied to the five data sets. The table 
includes the mean and median percentage errors, the total number of DCEF points 
computed, the number of integer optimal points and the total solution time in seconds. 
The number of optimal points obtained does not appear to influence the size of the 
errors observed, suggesting that when optimality is not reached, the second integer 
solution is a good approximation of the optimal solution.  
 
For each data set the mean error is below 0.02% with the median error below 0.015%. 
In all instances, the mean is greater than the median indicating positively skewed error 
distributions. The size of the errors reported indicate that the DCEFs obtained are very 
close to the corresponding MEFs. This is borne out by a mean error of 0.008% 
(median error 0.006%) for the DCEF solved to optimality (3000) points for the Hang 
Seng. 
 
 

Index Number of 
stocks 

Total number of 
DCEF points 

Number of 
integer optimal 
points 

Solution time Mean 
error 

Median 
error 

Hang Seng 31 500 492        57.55 0.014 15 0.009 97 
DAX 85 500 228   8 405.33 0.013 99 0.011 59 
FTSE 89 500 244 10 978.12 0.011 41 0.008 60 
S & P 98 500 192 15 831.97 0.015 86 0.013 25 
Nikkei 225 500 486 18 345.56 0.006 18 0.002 52 
Hang Seng 31 3000 3000      382.21 0.008 26 0.006 28 

 
Table 2: Results for the integer restart heuristic 
 
In order to establish the computational advantage of the integer restart heuristic, we 
also calculate the DCEF without starting with the previous solution vector. The 
integer restart heuristic finds more non-dominated points and more optimal points 
with a smaller mean deviation in less time. To achieve similar error and optimality 
results, the number of nodes to be searched in the B&B algorithm needs to be 



 30

increased. For example, for the S & P data set, the number of nodes has to be 
increased from 500 to 2500 but the solution time also increases five fold. 

Comparison with modern heuristic methods  
The integer restart and reoptimization heuristics outperform the modern heuristic 
methods of Chang et al (1999) who report average mean and median deviations in 
excess of 1% (see table 3). Clearly this makes both of our heuristic schemes very 
attractive, from the point of view of the quality of the discrete solution. The 
computational times are difficult to compare. Unfortunately, it is not possible to 
further compare the results since their full DCEFs are not available (Beasley 2000).     
 
      

 
Index Number of 

stocks 
Solution method Number of 

efficient points 
Mean error Median 

error 
Hang 
seng 

31 Integer restart heuristic   500 
3000 

0.014 15 
0.008 26 

0.009 97 
0.006 28 

 
 

 GA heuristic 
TS heuristic 
SA heuristic 
Pooled (GA, TS, SA) 

1317 
1268 
1003 
2491 

0.945 70 
0.990 80 
0.989 20 
0.933 20 

1.181 90 
1.199 20 
1.208 20 
1.189 90 

DAX 85 Integer restart heuristic 
GA heuristic 
TS heuristic 
SA heuristic 
Pooled (GA, TS, SA) 

  500 
1270 
1467 
1135 
2703 

0.013 99 
1.951 50 
3.063 50 
2.429 90 
2.192 70 

0.011 59 
2.126 20 
2.538 30 
2.467 50 
2.462 60 

FTSE 89 Integer restart heuristic 
GA heuristic 
TS heuristic 
SA heuristic 
Pooled (GA, TS, SA) 

  500 
1482 
1301 
1183 
2538 

0.011 41 
0.878 40 
1.390 80 
1.134 10 
0.779 00 

0.008 60 
0.596 00 
0.713 70 
0.636 10 
0.593 80 

S & P 98 Integer restart heuristic 
GA heuristic 
TS heuristic 
SA heuristic 
Pooled (GA, TS,  SA) 

  500 
1560 
1587 
1284 
2759 

0.015 86 
1.715 70 
3.167 89 
2.697 00 
1.310 60 

0.013 25 
1.144 70 
1.148 70 
1.128 80 
1.068 60 

Nikkei 225 Integer restart heuristic 
GA heuristic 
TS heuristic 
SA heuristic 
Pooled (GA, TS, SA) 

  500 
1823 
1701 
1655 
3648 

0.006 18 
0.643 1 
0.989 1 
0.637 
0.569 

0.002 52 
0.606 2 
0.591 4 
0.629 2 
0.584 4 

 
Table 3: Comparison with modern heuristic approaches 
 
[GA: Genetic Algorithm; SA: Simulated Annealing; TS: Tabu Search]  
 

7.3   Experience with UBSW-PAS models  
 
The ‘optimisation’ requirements of the UBSW-PAS system in respect of the average 
as well as the largest instance of their application pose even greater challenge in 
respect of processing such portfolio planning applications. Typically the total universe 
of assets can be as large as 8000 and cardinality constraints (CARD) may have values  
k=100; we have tested the system for cardinality of k=500 to k=800. Since the solver 
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must be part of a portfolio analytics and solution tool, a good discrete feasible 
solution must be obtained within a ‘reasonable’ time frame.  
 
To process these models we have introduced an “enhanced” depth first tree search 
heuristic to include multiple variable fixing. The heuristic operates in two stages. In 
the first stage multiple number of discrete variables are fixed in one step; some 
‘down’ ( 0=iδ ) and others ‘up’ ( 1=iδ ) fixes are carried out (the number is 
controlled by a parameter). As a result 

i) a number of assets are excluded  completely (‘down’ fixes) , and,                  
ii) a number of assets are brought into the portfolio (‘up’ fixes).  

This sequence is followed through a number of depths in the tree search until the 
criteria for invoking stage 2 is realised. In stage 2 only ‘up’ fixes are undertaken one 
by one until a full discrete optimum solution is reached. Sub-problems in stage 1 and 
stage 2 are always solved using the dual algorithm. 
 
Computational results for a set of five models (see Table 4) are summarised in Table 
5. These were portfolio rebalancing problems in which portfolios with a given 
cardinality of holdings were moved to that with an improved new maximum number 
of holdings. 
 
 
 
 
 

 
Model 1 
 

 
Model 2 
 

 
Model 3 
 

 
Model 4 
 

 
Model 5 
 

 
Stock Universe 

 
757 

 
1,304 

 
1,305 

 
1,305 

 
1,305 

 
Initial Portfolio Size 

 
332 

 
251 

 
251 

 
251 

 
251 

 
Target for Maximum Assets  

 
400 

 
250 

 
250 

 
250 

 
250 

 
Risk Acceptance Parameter 

 
0.6 

 
0.6 

 
0.6 

 
0.6 

 
0.6 

 
Table 4: Parameter of a typical UBSW-PAS example 
 
 
The processing of these models using the built-in QMIP search and the enhanced two-
stage heuristic is shown in Table 5 which also includes the objective value of the 
quadratic function indicating the quality of these discrete solutions. Since this two-
stage heuristic is parameter-dependent, we have supplied the average values in respect 
of nine runs carried out for each model. 
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Model 1 
Objective Value 0.18882922E-13 Relaxed QP 
Time to optimum (secs) 32.42 

FortMP (QMIP) IP Nodes 400 
IP processing time 1,903.94  
IP Objective 0.28018533E-07 
IP Nodes 129 
Time (secs) 121.48 

Two-stage Heuristics 

Objective function 0.28437663E-07 
Model 2 

Objective Value 0.41097040E-01 Relaxed QP 
Time to optimum (secs) 10.92 

FortMP (QMIP) IP Nodes 250 
IP processing time 163.98  
IP Objective 0.41098065E-01 
IP Nodes 84 
Time (secs) 62.86 

Two-stage Heuristics 

Objective function 0.41098065E-01 
Model 3 

Objective Value 0.32291911E-15 Relaxed QP 
Time to optimum (secs) 172.32 

FortMP (QMIP) IP Nodes 250 
IP processing time 2,943.12  
IP Objective 0.17839276E-05 
IP Nodes 84 
Time (secs) 235.45 

Two-stage Heuristics 

Objective function 0.15851747E-05 
Model 4 

Objective Value 0.24351583E-16 Relaxed QP 
Time to optimum (secs) 130.89 

FortMP (QMIP) IP Nodes 250 
IP processing time 2,992.06  
IP Objective 0.17895076E-5 
IP Nodes 85 
Time (secs) 228.00 

Two-stage Heuristics 

Objective function 0.159762557E-5 
Model 5 

Objective Value 0.24748111E-17 Relaxed QP 
Time to optimum (secs) 121.89 

FortMP (QMIP) IP Nodes 250 
IP processing time 2,936.82  
IP Objective 0.17780700E-5 
IP Nodes 85 
Time (secs) 235.05 

Two-stage Heuristics 

Objective function 0.15851747E-05 
Table 5: Test results for a typical UBSW-PAS example 
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It is easily seen that the ‘two-stage heuristic’ performs extremely well and reduces the 
processing time substantially; the quality of the solution is sometimes marginally 
worse but more often it is better than the straight branch and bound approach labelled 
as FortMP (QMIP). 
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8.   Discussions and conclusions 
 
Over the last twenty years there have been considerable acceptance and deployment 
of analytical/ quantitative models for portfolio planning, asset management and asset 
and liability management. The evolving Basle accord (BIS 1988, 2000) and its impact 
on the finance industry with respect to measurement and control of risk is already 
considerable. These regulatory requirements of risk also continue to determine the 
finance industry’s need for models and software systems. Set against this growing 
recognition and requirements of such tools, we have reviewed and presented in a 
consolidated form major developments in this field. In conclusion we would like to 
observe how development of portfolio planning and asset/ liability management 
systems require a convergence of different skill sets. Thus in addition to: 
 

i) financial engineering and quantitative modelling, 
 
 it is necessary to introduce, 
 

ii) information engineering to create analytical databases.  
 
Finally these models must be processed efficiently which require, 
 
iii) algorithmic and software engineering skills; 

 
Only by bringing together all these skill sets, it is possible to create a new generation 
of financial planning systems.  
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Appendix 1: Piecewise linear approximation of the quadratic form 
 
The advantage of transforming the original quadratic form into a diagonal form which 
is a variable separable function is that the quadratic objective function can be 
approximated by a piecewise linear function of line segments. In practice, the choice 
of the number of line segments is critical if accurate function values are to be 
computed. Increasing the discrete points by which the function is approximated not 
only increases the accuracy of the approximation but also increases the model size. 
An alternative way of increasing the quality of the approximation is to apply standard 
bound analysis to the linear forms in order to derive a lower and upper bound on each 
variable appearing in the quadratic function and discretise the function only within 
this range. Hence, for a given number P, the density of discretising points might now 
be increased as only the area of interest is taken into consideration. More details about 
piecewise linear polynomial approximations can be found in Darby-Dowman et al. 
(1988). 
 
For a set of P points on the function f( 2) ii yy = , express these as 

.,...,1,, 2 Ppbyay ipiipi ===  It is easily seen that .,1
y

iiP
y
ii haga ==  

 
Model LA, the linear approximation to QP1, based on the diagonalisation DIAG1 is 
now presented. 
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This linear programming problem is easier to solve than the associated quadratic 
program. As a result, additional discrete constraints (such as described in the 
introduction) can be imposed on the model more easily. For LA to be a valid 
approximation of DIAG1, it is necessary that either only adjacent λ ip ’s for a given i 
are positive or any one  λ ip  is positive or taking the value unity. These restrictions are 
known as special ordered set of type 2 (SOS2) restrictions and they are automatically 
satisfied in a convex programming problem. Hence LA is a valid approximation of 
DIAG1. 
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Appendix 2: Comparative computational views of the alternative 
models 
 
In this appendix we consider a few alternative models; mean absolute deviation 
(MAD), minimax (MM) and the discrete constraint efficient frontier (DCEF) and 
study their computational results after applying them to a small illustrative dataset of 
stocks (equity assets). The respective efficient frontiers of these models are 
juxtaposed with the M-V model and its frontier; the role of the latter is that of a 
benchmark (taking standard deviation as the accepted risk measure) against which the 
performance of the other models are evaluated. 
 
 
Dataset: 
 
The historical prices of a set of thirty (30) stocks chosen out of the FTSE 100 shares 
are considered. The four-year price history of these 30 stocks are first downloaded 
from the DATASTREAM’s feed as a table of 208 weekly prices. In order to create the 
financial datamart for this small universe of 30 stocks the returns are first analysed 
and filtered against historical facts (typically no extraordinary events, new issues, or 
administration have occurred). The return on stocks are computed on a logarithmic 
scale and the 208 price values per stock are used as historical observations (these 
make up columns of the observation matrix) and are used in turn to calculate: 
 

i) the estimate (average) and, 
 

ii) the variance and covariance, 
 
 of return. 
 
All these calculations are carried out in EXCEL. 

The Model Results  
 
We first compute for the model QP1, that is the M-V model, the entire risk-return 
frontier without imposing any other restrictions. The software system outlined in 
section 7 is used and by varying the return ρ discretely over a range of minρ  return 
corresponding to min value of risk (variance of the portfolio) and maxρ  the max value 
of return (solved as an LP). In this range, Pj ,...,1= ; 100=P  points were used 
corresponding to returns. max1 ρρ = , min10012 ,....... ρρρρ =∆−= . It is easily seen that 

1
minmax

−
−

=∆
P

ρρ
. 

 
QP1 and QP2: 
 
We first use the model QP2 equations (9) and (10) and solve it (a) for 1=λ  which 
gives us minρ  and then solve (b) for 0=λ  which gives us maxρ . We then compute the 
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M-V efficient frontier for a discretization of P=100 points. The frontier is illustrated 
in Figure 4.  

 

MAD:  
 
In this model we vary the rhs ρ  of equation (33) over the same range of values and 
points {( maxρ , minρ ), P=100}. For each of these expected returns, the standard 
deviations of the portfolios (of assets) are computed. The corresponding frontier with 
the same range of return minρ maxρρ ≤≤  but the risk recomputed as standard 
deviation is illustrated in Figure 5. 
 
According to Konno and Yamazaki (1991), the fact that the standard deviation 
efficient frontier of the MAD model does not coincide with the MEF is largely 
attributable to the non-normality of the returns data.   

 

MM: 
 
The results of the minimax model are obtained and the corresponding risk figures are 
recomputed as standard deviation; in this we follow a procedure which is analogous to 
MAD procedure discussed above. The corresponding efficient frontier is displayed in 
Figure 6. 
 
The comparison of the MM frontier with the MEF (Figure 5) is not especially 
meaningful since the minimax rule is not directly related to the quadratic risk term. 
 

 
Figure 4: Quadratic Programming model 
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Figure 5: Quadratic Programming and MAD model  
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Figure 6: Quadratic Programming and MM model 
 
 

Discrete constraints efficient frontier (DCEF)  
 
Discrete constraints (see sections 4.1, 4.2) represent practical trading requirements 
and introduce discontinuities in the otherwise continuous efficient frontier. To 
illustrate the relationship of the DCEF in respect of the original efficient frontier, we  
consider the given dataset of the same 30 stocks and introduce a threshold of 0.1 and a 
cardinality constraint of k=2 and k=4 (thus only 2 and 4 stocks at a level of 0.1 or 
more may be included in the portfolio). Figure 7 displays the discrete efficient 
frontiers for model CARD. The two discrete frontiers were constructed by solving 
100 optimisation problems with varying levels of return ρ  and in each instance the 
optimal solution was found. Each of the two DCEFs contain discontinuities; also 
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these discrete frontiers are completely dominated by the continuous M-V efficient 
frontier. 
 

 
Figure 7: Quadratic Programming model and DCEF 
 
 
In Jobst et al (2001), we also discuss the missing portion of the DCEF and provide a 
fuller discussion of these and related issues. 
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