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Abstract

We propose mixed integer programming (MIP) methods to construct a portfolio that is "close"
(in terms of sector and security exposure) to a target portfolio, has the same liquidity, turnover
and expected return with the target portfolio, controls frictional costs, and does so with fewer
distinct stocks and requires fewer transactions. We also apply MIP methods to a portfolio con-
sisting of several sub-portfolios. The algorithm has been implemented at Grantham, Mayo and
van Otterloo & Co. LLC., (GMO) a leading investment management firm currently employing
170 people worldwide and managing over $26 billion. The MIP approach is currently being used
in the construction of 11 quantitatively managed portfolios representing over $8 billion in assets
since October, 1996. The benefits from the implementation of the project include: (a) Keeping
the existing client business. As an example, GMO kept one $400 million separate account because
the MIP algorithm reduced the number of positions from 1300 to 400-500 with careful control of
turnover and transaction costs. (b) Making possible important new growth opportunities. Two
U.S. small-market capitalization funds were successfully launched at year-end 1996 using the MIP
portfolio construction process. (c) The number of names has been reduced by an average 40%-60%
with only a marginal decrease in liquidity, while maintaining the turnover, performance, and sector
exposures of the target portfolio. (d) The annual cost of trading the portfolios has decreased by
at least $4 million due to a 75%-85% reduction in the number of trading tickets written to trade
the portfolios. Additional savings of the same order of magnitude will be achieved when the MIP
methods are applied to the large stock U.S. funds. (e) Significant improvement of the trading
process was achieved. (f) A dramatic improvement in performance in simulation in a U.S. fund
consisting of growth stocks with small market capitalization. If this result continues to hold for
other funds, and we expect that it will, the use of the technology will have a dramatic impact on
the future investment returns and success of the entire quantitative group at GMO.
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1 Introduction

After the seminal work of Markowitz (1959), portfolio managers routinely use quadratic program-

ming methods to construct large scale portfolios. In the classical theory of portfolio optimization,

portfolio managers select the fraction of wealth w(i) invested in stock i in order to minimize the

risk of the portfolio, measured by the variability of the return, which is a quadratic function of the

decision variables, subject to linear constraints (one of the constraints is typically the requirement

that the expected return of the portfolio is at least a certain target). This approach takes into

account nicely the tradeoff between risk and return.

In the practice of portfolio construction, however, there are complications that the classical

theory does not address. In particular, it is quite common for the number of different stocks

(names) in the portfolio to be very large. Moreover, in the process of rebalancing the portfolio,

the number of transactions (trading tickets) can also be large. The combination of a large number

of names and a large number of tickets increases the costs of trading as both custodial fees and

transaction costs increase. It is therefore desirable to construct portfolios that minimize the number

of names in the portfolio as well as the number of tickets.

This paper summarizes a project that has been developed and implemented in the investment

firm Grantham, Mayo and van Otterloo & Co LLC. (GMO) that uses mixed integer programming

methods to construct a portfolio that is "close" (in terms of sector and security exposure) to

a target portfolio, has the same liquidity, turnover and expected return as the target portfolio,

controls frictional costs, and does so with fewer names and requires fewer tickets. Although the

use of quadratic programming methods in the construction of portfolios is well documented in the

academic literature and is widely used in practice, we are not aware of any use of mixed integer

programming methods in the construction of portfolios in practice. Moreover, to the best of our

knowledge, the problem we report here has not been addressed in the academic literature.

The rest of the paper is structured as follows. Section 2 gives background about the firm and

the project. Section 3 describes the mixed integer programming approach that we used in the

construction of portfolios. Section 4 describes the implementation of the algorithm. Section 5

reports simulation and actual results from the implementation of the project. Section 6 discusses

the project's impact on the operations at GMO.
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2 Background Information

Grantham, Mayo and van Otterloo & Co. LLC. (GMO), founded in 1977, is an investment man-

agement firm that has over $26 billion in assets under management and has over 170 employees

worldwide. Its clients consist of pension funds, educational endowments, foundations, and a few

large international organizations. The firm offers a wide range of mutual funds (both equity and

fixed income funds) in the US and international markets.

Over the last decade, the most rapidly growing area of the firm has been the quantitative

investment group. This group uses computer systems to design, implement and trade stock and

bond portfolios for large institutional clients. The quantitative effort has begun in 1984 to provide

investment services to clients in addition to that which could be provided by the traditional in-

vestment areas of the firm. The successful traditional investment groups, which depend on a small

group of professionals to research investment ideas, quickly reached capacity limits for assets under

management and have had little or no ability to accept new client funds since 1984. A quantitative

investment process, with its ability to analyze thousands of securities using a variety of investment

techniques and to rigorously control trading costs, can have a much larger capacity ceiling. The

quantitative investment process at GMO makes extensive use of statistical, simulation, and opti-

mization methodologies to meet return targets of clients with controlled risk in a large capacity

format.

By 1996, the quantitative group had $15 billion in assets, with a sophisticated institutional

client base that included leading investment institutions such as the World Bank, the International

Monetary Fund, GTE, IBM, Harvard, Yale, and Princeton. The group had offices in Boston, San

Francisco, London, and Sydney, managing money in every stock and bond market in the world.

A record of above average and consistent investment returns had earned the confidence of a large

number of institutions despite widespread discomfort with quantitative investment techniques in

general. In 1996, GMO received the Most Innovative Award from Global Investor, an organization

that ranks investment managers, for the most innovative investment manager of the year.

It was also clear in 1996, however, that a number of serious threats were developing to the

continued success of the largest part of the quantitative group, the division managing stocks. The

principle investment strategy of the quantitative stock division is a style known as value investing,

which compares the prices of individual securities, of groups of securities like industries, and of

entire country stock markets to theoretical values derived from economic and statistical models.
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Value investing was performing below expectations in many markets around the world, and as a

consequence the investment returns of the some of the largest and most important quantitative

funds were trending down.

The response in the quantitative research group was to develop a technology that could improve

the firm's capabilities in two critical areas: diversification of investment styles and control of the

portfolio and trade construction process. An investment style represents a particular investment

philosophy; for example a value investment style attempts to predict security returns using value

related characteristics, like price to book or price to earnings ratios. In order to implement a par-

ticular investment style to forecast security returns, multivariate linear and non-linear regression

models, called multifactor models, are used that have the characteristics of the particular invest-

ment style as independent variables. Diversification of investment style had been an ongoing effort

at GMO, but now there was a need for a technology that could support a large-scale and compre-

hensive multiple investment style process. Multiple investment styles have been discussed in 'the

financial literature and implemented at some other quantitative investment firms. While general

multifactor models do provide diversification compared to a single factor model, there typically

is no clear relationship between the performance of the individual factors in a multifactor model

and the performance of a composite portfolio constructed using the model. In the worst case, for

example, it is possible for the return of the composite portfolio to be lower than the return of

the worst performing portfolio constructed using a single factor. This is certainly not the type of

diversification that a client would find acceptable.

Large clients, in fact, typically divide their funds within a given asset class, like U.S. stocks,

among at least several investment managers who have distinct investment styles. This insures that

the composite investment result will be a linear combination of the underlying investment styles.

In this framework the ex-ante and ex-post composite mean return is a simple weighted average of

the ex-ante and ex-post composite mean returns of the individual managers. The ex-ante risk of

the composite fund, as represented by the ex-ante variance of the composite return, is always less

than the risk of the average manager.

Clients have widespread acceptance of this linear diversification framework, and the GMO

quantitative group uses this framework to provide this style of diversification within individual

funds. This is accomplished by partitioning portfolios into distinct "sub-portfolios," each with

a distinct investment style. As an example, the U.S. Core Fund, a large companies U.S. stock
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fund, uses four sub-portfolios: a value, momentum, neglect and a cash flow sub-portfolio. As

another example, in the International Core Fund, a large foreign countries fund, each country uses

2-5 investment styles that work best in that country, based on simulation and actual investment

results. Each combination of a country and investment style gives fifty distinct sub-portfolios,

each of which represents an average of only 2% of the total. The whole process leads to vast

diversification as well as decreased transaction costs from the ability of sub-portfolios to cross with

each other before trading in the market. This benefit is not present in the traditional investment

framework, in which a client uses distinct external managers.

The GMO quantitative group follows the industry practice of constructing portfolios using

quadratic optimization. Optimizing multiple sub-portfolios simultaneously is not a problem that has

been addressed by others. This type of optimization presents the technical challenge of increasing

the dimension of the problem by a factor roughly equal to the number of sub-portfolios, since, in

general, each sub-portfolio can own any of the securities that the total portfolio can own. In the

International Core portfolio, for example, there are fifty distinct sub-portfolios, which increases the

dimension of the problem substantially.

The most difficult technical requirement we faced was a practical limit on the number of secu-

rities a composite portfolio could hold. The problem was most acute for GMO's large international

equity portfolios. Increasing diversification into non-value based sub-portfolios was producing com-

posite portfolios that had 1000-1500 different securities. Industry norms for comparable interna-

tional portfolios are closer to 200 securities. This was producing problems in three critical areas:

1. Client confidence was eroding. The confluence of disappointing returns along with an

apparently never ending increase in the number of securities in GMO's portfolios was leading

clients to believe that the quantitative group was gradually losing control of the investment

process. Several key clients were threatening to leave the firm.

2. Operational complexity was straining the capacities of the trading, settlements,

and accounting groups. Portfolios with thousands of securities produced trade lists with

many thousands of trading tickets to be executed, settled, and accounted for in markets

around the world.

3. There was widespread concern regarding high operational costs. Ever increasing

operational costs like ticket charges and custodial costs were of increasing concern to both
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GMO top management and to many clients, since the costs are shared by both groups.

A simple way to reduce the number of names in a portfolio is to add a post-processing step to

the quadratic portfolio optimization. A post-processing procedure that eliminates both security

positions and security trades smaller than some threshold can reduce the number of positions and

trade tickets to any desired level. There are two reasons why this approach was and continues to

be infeasible at GMO.

The first is that small positions in a portfolio tend to be positions in securities with small market

capitalization. Accompanying the underperformance of value investing was the underperformance of

small market capitalization stocks around the world. Statistical research at GMO has demonstrated

that small market capitalization stocks have underperformed. Their resulting undervaluation, has

led GMO to the strategic forecast that small stocks will outperform over the next several years. A

procedure that tends to eliminate small market capitalization stocks is clearly unacceptable in this

environment.

The other serious drawback of this post-processing approach is a problem in all market environ-

ments: decreased control over the portfolio construction and trade creation process. Post-processing

that eliminates hundreds of positions will interfere substantially with optimization objectives and

constraints on key variables like expected returns, risk, sub-portfolio allocations, and transaction

costs. Although clients might not care about globally optimal versus multiple-step portfolio con-

struction, they do demand complete control and accountability from GMO.

In addition to these serious issues for existing portfolios, in 1996 GMO wanted to prepare to

take advantage of the growing opportunity in small market capitalization stocks by developing and

simulating a portfolio construction process for a series of small market capitalization stock funds.

Preliminary results for even a single country (U.S.) small market capitalization stock fund showed

that GMO's existing multiple-sub-portfolio process was going to produce composite portfolios with

more than 1500 securities. In light of the above discussion, this was not going to be acceptable.

It was clear that GMO had to develop a global optimization method that could jointly optimize

multiple sub-portfolios and control the number of positions and trades in the composite portfolio.

Since the number of positions and trades in the composite portfolio is an inherently integer quantity,

we decided that we would use mixed integer programming methods to globally optimizing the

portfolio.
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3 The mixed integer programming approach

In this section, we describe the methodology we followed first for a single portfolio and then for a

portfolio that involves several sub-portfolios.

3.1 The single portfolio problem

We consider in this section a single portfolio, which is rebalanced monthly. Let wo = (w0(1),

wo(2),..., wo(N)) be the current portfolio, where wo(i) is the fraction of the portfolio invested in

stock i = 1,...,N. Let wt = (wt(1), wt(2),...,wt(N)) be the target portfolio, i.e., the portfolio

that it is desirable to own after rebalancing. In some funds, in which we applied the mixed integer

programming methods, this target portfolio is constructed using quadratic optimization techniques.

In some other funds the weight wt (i) for stock i in the target portfolio is a closed form expression

of the predicted return a(i) and the market capitalization of stock i.

The objective is to decide the final portfolio wf = (wf (1), wf (2),..., wf(N)) that satisfies the

following characteristics:

1. Closeness of the final and the target portfolios.

Given that the target portfolio wt was selected taking into account several factors (tradeoffs

in risk, return and liquidity), it is desirable for the portfolio wf to be as close as possible to

wt. This requirement is captured by a term

N

E IWf(i) - Wt(i)I
i=l

in the objective function.

2. Sector exposure.

It is desirable that the exposure to different sectors in the economy between the target and

final portfolios are as close as possible. Examples of sectors include utilities, financial firms,

etc. This requirement is captured by a term

K N

EAsec(S) Z s(i)(Wf (i) - wt(i))|
s~l i~l
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in the objective, where Ms(i) is a 0/1 index denoting membership of stock i in sector s, and

Asec (s) is a user specified penalty for sector s that captures the importance of the requirement

that the difference in sector exposure between the final and the target portfolios is small.

3. Number of names.

It is desirable to have a portfolio with a small number of names. For this reason we define

Ynamesi = 1, if f(i) > 0,Ynames() = { , i: 
0, if Wf (i)=0.

This requirement is captured by a term

N

Anamnes E Ynames(i)
i=l

in the objective, where naXnes is a user specified penalty that captures the importance of the

requirement that the number of names in the portfolio is small.

4. Number of tickets.

It is desirable to have a portfolio with a small number of transactions. For this reason we

define

ticket(i) = { 1, if Iwf(i) - wo(i) > 0,
0, if Iwf(i) - wo(i) = 0.

Note that a transaction is made, and therefore a trading ticket is written, if there is a difference

between the current and the final portfolio. This requirement is captured by a term

N

Atickets Ytickets (i )
i=l

in the objective, where Atickets is a user specified penalty that captures the importance of the

requirement that the number of tickets written is small.

5. Return of the portfolio.
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It is desirable to have a final portfolio with high return. This is captured by a term

N

-A E (i)wf (i),
i=l

where a(i) is the expected return of stock i, and Aa is a user specified penalty that captures

the importance of the requirement that the return of the portfolio is high. The reason of the

negative sign is that the overall objective is minimization.

6. Liquidity of the portfolio.

It is desirable to have a portfolio with high liquidity or equivalently with low illiquidity. In

particular, as the position in a stock increases, it is harder, and thus more expensive, to

trade it. Thus, the illiquidity of stock i is captured by a piecewise linear convex function

flq(i, wf(i)) depicted in Figure 1.

lq(i) 2 lq(i) 4 lq(i) wf (i)

Figure 1: The illiquidity function.

For every stock i there is an illiquidity index lq(i), such that the illiquidity function is modeled

as

ls(l, i)x,

ls(2, i)(x - lq(i)) + Is(1, i) l q(i) ,

Is(3, i) (x - 2 - lq(i)) + ls(2, i)2 - lq(i),

0 < x < lq(i),

lq(i) < x < 2 -lq(i),

2. lq(i) < :Z < 4 lq(i).
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The liquidity consideration is captured by a term

N

Aiiquidty Z fiq(i, wf(i)),
i-l

where Ailliquidity is a user specified penalty that captures the importance of the requirement

that the illiquidity of the portfolio is low.

7. Transaction costs.

It is desirable to minimize total transaction costs. In particular, as the trading position

increases relative to the daily volume of a stock, transaction costs are higher as there is an

impact in the market. Clearly, as the traded amount increases, the price impact is greater,

and thus the effect increases. The transaction cost from trading stock i is captured by a

piecewise linear convex function ftc(i, Iwf (i) - wo(i)l) depicted in Figure 2.

ftc(i,iwf(i)-wo(i)D

O.lvol (i) 0.3vol (i) O.5vol (i) Iwf (i)-w0 (i)l

Figure 2: The transaction cost function.

For every stock

modeled as

i there is a volume index vol(i), such that the transaction cost function is

cs(l, i)x,

cs(2, i)(x - 0.1 vol(i)) + cs(l, i)0.1 vol(i),

cs(3, i)(x - 0.3 vol(i)) + cs(3, i)0.3 · vol(i),

O < < 0.1 vol(i),

0.1 vol(i) < x < 0.3 - vol(i),

0.3 vol(i) < x < 0.5 vol(i).
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The transaction cost consideration is captured by a term

N

At j ftC(i, IWfl() - Wo(i)),
i=l

where At, is a user specified penalty that captures the importance of the requirement that

the transaction cost is small.

The complete formulation is presented in Appendix A. The model uses various penalties, denoted

by A, that capture the relative importance of the various objectives. The penalties are chosen

heuristically after extensive experimentation. We run the algorithm for a given set of penalties,

and observe the performance of the portfolio in historical simulations over approximately twenty

years, re-optimizing monthly. If a characteristic of the portfolio is not considered satisfactory

its corresponding penalty is increased. Thousands of runs are performed in order to determine

satisfactory penalties.

3.2 The multiple portfolio problem

We have also applied the mixed integer programming methods to a portfolio that consists of several

sub-portfolios indexed by j, j = 1,..., S. Let w 0(i,j), wt(i,j) be the current and target position

respectively of stock i in sub-portfolio j, i = 1, ... , N, j = 1, ... , S. The objective is to decide the

final position wf(i, j) of stock i in sub-portfolio j. Clearly, the current, target, and final position

of stock i in the portfolio is

S So()(ij), S

W0(i)= Zwo(iIj) ,wt(i)=ZWt(iJ)'= Wf(i)=5ZWf(iJ).
j=1 j=1 j=1

As before the objective is to decide the final weights Wf (i, j) so that the final and target portfolios

are close, the total sector exposure is similar, the number of names in each sub-portfolio, as well as

the total portfolio, is small, the total number of trading tickets written is small, the total return of

the portfolio and its liquidity are high, and the total transaction costs are small.

Using similar methodology, as in the single portfolio problem, we formulated a mixed integer

programming model. One of the significant advantages of constructing a portfolio that consists of

several sub-portfolios that represent different investment philosophies is that when the portfolio is

optimized, the transaction costs can be significantly reduced as the sub-portfolios trade among each
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other without the fund incurring transaction costs. This is one of the major attractions for clients

who in this way have the benefit of diversification among different investment philosophies, while

having global control of transaction costs. This point is further amplified in Section 5.1, where

a historical simulation during 1982-1997 of a U.S. small growth optimized portfolio consisting of

three sub-portfolios demonstrates that the optimized portfolio outperforms significantly the target

portfolio.

4 Implementation

The mixed integer programming model was implemented in FORTRAN using CPLEX 4.0 as the

underlying mixed integer programming solver. The model runs on a Digital Equipment Corp.

(DEC) Alpha cluster running OPENVMS and Dell PentiumPRO PC systems running Microsoft

WindowsNT 4.0 with an x-windows, telnet, nfs, and ftp connection to the local office Alpha cluster.

The Alpha cluster component used for optimization is an AlphaServer 4100 5/466 including four

466 MHz CPUs (acting independently, not in parallel) and two GB of main memory. External

storage is well over 150 GB.

As we have already mentioned, the software optimization engine is CPLEX 4.0, a product

available through the CPLEX division of ILOG. In particular, CPLEX provides a callable library

of routines. The callable library is at the heart of an application we call TRGTOPT (target

optimization) which consists of approximately 10,000 lines of Fortran90 code written at GMO.

TRGTOPT is command line driven accepting as input a text file that describes the specifics of

the problem to be solved. Once the input file is parsed into a dynamic data structure, TRGTOPT

queries the database for target portfolio and sub-portfolio information and sets up the problem to

be solved by CPLEX.

Improvements to the implementation and problem formulation have been considerable since

the initial implementation in October 1996. At that time, when we were trying to solve the single

portfolio problem (without any sub-portfolios) with approximately 1500 securities (the number of

variables is typically 8-10 times the number of securities), it could take as long as 15 hours of

CPU time to solve a single problem. This was considered unsatisfactory, as GMO's desire was

to solve many problems for simulation purposes. Typically, before introducing a new method in

the portfolio construction process, the quantitative group attempts to simulate this new method

historically. During the fall and winter months of 1996, we tried to decrease these running times
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substantially so that a simulation over twenty years that rebalances the portfolio monthly (240

problems need to be solved) was feasible.

After extensive experimentation with parameters associated with CPLEX like node and variable

selection strategies, setting branching priorities, and adjusting the stopping criteria we were able

to improve the solution times considerably. Further improvements were realized by strengthening

the formulation, and thus improving the linear programming relaxation bounds. In summary, the

most important factors that contributed in the improvement of the running times are:

1. Strengthening the formulation to improve the relaxation bounds.

We describe some of the improvements in Appendix B.

2. Using the structure of the problem to set node selection and branching priorities.

Given the target vector, it is unlikely that the largest positions in the target portfolio will

be eliminated, while it is more likely that the smallest positions will be eliminated. So, we

first select to branch on the variables that correspond to the largest positions in the target

portfolio. Regarding branching priorities, for the largest positions we branch first on the

option to keep the position, while for the smallest positions, we branch first on the option to

eliminate the position.

3. Experimentation with the various parameters of CPLEX.

The stopping criterion, and the sub-optimality allowed had an effect on the running time.

We now routinely solve a 1500 security problem in a few minutes which enables us to set

up simulations that run overnight solving hundreds of problems. Table 1 shows the sizes of four

problems and the CPU times needed to solve each problem.

5 Results

In this section, we first describe simulation results that were performed prior to the implementation

of the mixed integer programming approach, and were used to convince top management at GMO

of the effectiveness of the method. We then present results of actual implementations in eleven

portfolios of total market value $ 8.158 billion.
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Table 1: Examples of portfolios run using the mixed integer programming model. The results for

the first two portfolios SMALG (small growth) and SMALV (small value) are from an actual run

of the mixed integer programming model. The results for the UK portfolio and the small growth

portfolio represent historical simulations over 241 and 181 months respectively. A smmary of the

results for these simulation experiments are shown in Figures 3 and 5 respectively.

5.1 Simulation Results

Prior to the implementation of the mixed integer programming approach extensive historical sim-

ulations were performed. In this section, we present two examples of such simulations that were

performed recently that illustrate that our methods can solve truly large problems, and can lead

to significant improvements in performance. These two examples also show that the mixed integer

programming algorithm can be used in either "tracking mode" or "performance enhancing mode."

Historical simulation of the UK portfolio

The first example is of a United Kingdom (UK) portfolio that is the weighted sum of three sub-

portfolios. The three sub-portfolios reflect independent models for adding value to the UK market.

In this example, the penalties were chosen so that the optimized portfolio tracks the performance

of the target portfolio as well as the performance of the target sub-portfolios but does it with many

fewer securities. We refer to this mode of running the algorithm as "tracking mode." Referring to

Figures 3, 4, the relative strength shows the performance of the target portfolio and the optimized

portfolio relative to the benchmark (in this case, the MSCIP UK index). The scale reflects a

cumulative benchmark multiple, so that a value of 1.7 (the approximate value in 1997) means that

cumulative portfolio performance is 1.7 times that of the benchmark. Since the benchmark returned

2000% (in round numbers) cumulatively (16.4% annually) over the 20 year period, the implication

13

Average size max size CPU/problem

Portfolio rows/columns rows/columns problems (minutes)

SMALG 1084/8884 NA 1 1.4

SMALV 1592/11153 NA 1 1.8

UK 598/4982 864/7411 241 0.4

small growth 5434/41969 6546/51532 181 4.0



is that the portfolio returned 3400% cumulatively (19.5% annually). We can observe that the

optimized portfolio tracks the target portfolio very closely. The average number of securities in the

optimized portfolio is approximately 55% (80/146) that of the target portfolio, while the average

number of tickets was reduced by 60% in the optimized portfolio. Note that the average monthly

turnover is virtually identical (the turnover spikes are due to a sub-portfolio that is traded only

once per year). Figure 4 shows that the optimized three sub-portfolios track very closely the target

sub-portfolios as well.

Historical simulation of the small growth US portfolio

The second example is of a US portfolio consisting of growth stocks with small market capitalization.

It shows that the optimized portfolio actually outperforms the target portfolio significantly.

Figure 5 shows that the optimized portfolio over the period 1982-1997 has cumulative performance

2 times that of the benchmark, while the target portfolio has 1.6 times that of the benchmark. Note

that the other characteristics are similar to the previous example: a 55% reduction in the number

of names, an 80% reduction in the number of tickets, and virtually identical turnover. We have

achieved this significant improvement in performance by adjusting the various penalties A that are

present in the objective function. We refer to this mode of running the algorithm as "performance

enhancing mode." While these results on performance have only been seen in simulation, they

have been instrumental in convincing top management in GMO (a) to apply this methodology

extensively throughout the firm and (b) to launch new funds using mixed integer programming

methods.

5.2 Implemented Results

The mixed integer programming methodology has been applied to eleven portfolios of total market

value $ 8.158 billion. Table 2 shows the names of these portfolios, the corresponding market value,

the number of names before and after running the mixed integer programming model, and the

number of tickets before and after running the model. The mixed integer programming method has

been applied to these eleven portfolios in the period October, 1996-January, 1997. Table 2 shows

an average reduction of 48.7% in the number of names and an average reduction of 79.3% in the

number of trading tickets.
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Table 2: Quantitative portfolios constructed using the mixed integer programming approach.

6 Impact

The impact on GMO's quantitative group of the mixed integer programming development has

been significant in many areas. In general, this technology has made a significant contribution

both to keeping GMO's existing client business and to making possible important new growth

opportunities. In GMO's international portfolios, the number of positions has decreased by 40-65%,

and the number of trades requiring processing decreased by 75-85%. GMO's clients understand

this has been accomplished without compromising GMO's multiple investment goals. In one $400

million international separate account, reducing the number of positions from 1300 to 400-500 was

a condition for keeping the account. Our mixed integer programming process achieved this goal,

and accomplished the reduction with careful control of turnover and transaction costs according to

a timetable specified by the client.

Two U.S. small-market capitalization funds were successfully launched at year-end 1996 using

the mixed integer programming portfolio construction process. The investment returns of the funds

and the control over the portfolio and trading process have met or exceeded our expectations. A
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Portfolio Mkt Value # Names # Names % Names # Tickets # Tickets % Tickets

Name ($ billion) Before After Reduction Before After Reduction

ISF 4308 1285 772 39.9 764 186 75.7

CHIC 651 1172 699 40.4 613 134 78.1

GTEI 369 1061 626 41.0 552 123 77.7

IMFQ 387 1003 606 39.6 576 127 78.0

IQNT 475 1066 467 56.2 652 140 78.5

SCAP 251 893 516 42.2 571 137 76.0

AMER 288 1188 417 64.9 553 102 81.6

JSF 212 373 222 40.5 231 49 78.8

SMALG 386 986 394 60.0 917 156 83.0

SMALV 743 1451 579 60.1 1298 206 84.1

QVF 88 866 424 51.0 671 129 80.8



year after launch the funds have a value of $1.1 billion, a clear success for the quantitative group

and the mixed integer programming technology.

Reductions in operational and trading costs have also met our expectations. Annual savings

of about $4 million have been realized from the sharp drop in trading tickets in the international

and small stock U.S. funds. Additional savings of the same order of magnitude will be achieved

when the mixed integer methods are applied to the large stock U.S. funds. Although there are no

variable cost savings from the large reduction in number of positions in the international and small

stock U.S. funds, GMO's fixed price custodial contracts have avoided potentially large increases in

annual rates.

Internal efficiencies are reflected in the firm's not having to add new trading operations personnel

in the last two years, in the decline in trade instruction and settlement errors in the international

area, and in a marked reduction in stress in trading and trading-related areas within the firm. The

ability to optimize the large international trades has given us the ability to better control frictional

transaction costs. These are the costs incurred by large investors as security prices "move away"

from buy and sell orders. When these costs are poorly controlled and therefore large, they can have

a serious negative impact on total investment returns. While difficult to quantify, the international

trading group has reported a significant decrease in the difficulty and cost of executing international

trades.

Since its development in 1996, we have used the mixed integer technology in "tracking mode,"

with the goal of tracking as closely as possible target portfolios and sub-portfolios subject to control

over number of positions, number of trades, and transaction costs. Substantial improvements in

processing times for the mixed integer programming algorithm have enabled the exploration of

goals more complex than simple tracking. One very significant result has come from simulations

that relax the tracking objective to improve the ex ante portfolio return. As discussed in Section

5, this approach has been examined in detail for the U.S. small stock growth fund simulation, and

has significantly enhanced simulated returns of the fund without violating other constraints.

This "free lunch" comes from the remarkable ability of the global optimization of multiple sub-

portfolios to sharply increase turnover at the sub-portfolio level without increasing total portfolio

turnover. With sub-portfolio turnover increased from 90% per year to 200% per year, sub-portfolio

returns are significantly enhanced. Total portfolio returns are guaranteed to be enhanced propor-

tionately because of GMO's linear framework, and with the global optimization effectively arranging
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crossing trades between the sub-portfolios, total portfolio turnover is held to target levels. If this

result continues to hold for funds other than the small stock growth fund, and we expect that it

will, this use of the technology will have a dramatic impact on the future investment returns and

success of the entire quantitative group at GMO.

Appendix A: A Complete Formulation of a Single Portfolio Problem

The complete formulation of the single portfolio problem is presented below. In addition to the

variables wo (i), Ynames(i), Ytickets(i) already defined in Section 3, the formulation uses auxiliary
N

variables y(i), f(i), x(s), to model Iwf(i) - wt(i)l, Jwf(i) - wo(i), and Mis(i)(Wf(i) - wt(i))

respectively. It also uses the auxiliary variables xl (i), x2(i), x3(i), to model the different pieces of

the piecewise linear, and convex illiquidity function, and the auxiliary variables Zl(i), Z2(i), Z3(i)

to model the different pieces of the piecewise linear, and convex transaction cost function.
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N K N

minimize E y(i) + E Asec(s)x(s) + Anames E Ynames(i)
i=1 s= i=l

N N

+ticket Ytickets (i) - A E o(i)wf (i)
i=1 i=l

N

+Ailliquidity (s(l, i)+1 (i) + s(2, i)2(i) + s(3, i)x3(i))
i=1

N

+AtC (cs(l, i)zl(i) + cs(2, i)z2(i) + cs(3, i)z3(i))
i=1

N

subject to Z wf(i) = 1,
i=1

Wf(i) - Wt(i) < y(i),

-(wf(i) - wt(i)) < y(i),

Wf(i) - wo(i) < f(i),

-(Wf (i) - o(i)) < f(i),
N

x(s) > M 8Ms(i)(wf(i) - Wt(i)),
i=l

N

x(s) > - E Ms(i)(wf(i) - wt(i)),
i=l

Wf(i) < Ynames(i),

f(i) < Ytickets(i),

Wf(i) = X1 (i) + x 2 (i) + x 3 (i),

f (i) = Z1 (i) + Z2(i) + z3(i),
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0 < xi (i) < lq(i), Vi

0 < x2(i) < lq(i), Vi

O < 3(i) < 2 lq(i), Vi

0 < z (i) < O. 1 vol(i), Vi

0 < z2 (i) < 0.2 vol(i), Vi

0 < z3 (i) < 0.2 vol(i), Vi

y(i), Wf(i), f (i) 0, Vi

x(S) O0, Vs

Ynames(i),ytickets(i) E {0,1}, Vi.

Appendix B: Formulation Enhancements

The constraint wf (i) < Ynames(i) has been used in the formulation presented in Appendix A to

relate the continuous and the discrete variables. In practice, however, no final weight is expected

to be larger than a threshold, say 5%. Moreover, as the market capitalization of a stock decreases,

this threshold will be smaller. For this reason, we strengthen the constraint wf(i) < yname(i) by

replacing it by the constraint:

Wf(i) < ai Wmax Ynames(i),

where wmax is the maximum weight of a stock in the portfolio, and ai are constants that depend on

the market capitalization of the stock. The resulting relaxation is stronger than the one outlined

in Appendix A.
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Target vs Optimized United Kingdom Portfolio
Relative Strength

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Portfolio Size

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Securities Traded

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Monthly Turnover

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Figure 3: Simulated performance of the UK portfolio (1977-1997)
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Target vs Optimized Small Growth Sub-portfolios

Earnings Surprise Model

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Earnings Momentum Model

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Price Momentum Model

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Figure 6: Simulated performance of the three small growth sub-portfolios (1982-1997)
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