272 research outputs found

    From Euclidean Geometry to Knots and Nets

    Get PDF
    This document is the Accepted Manuscript of an article accepted for publication in Synthese. Under embargo until 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s11229-017-1558-x.This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or imaginative manipulation of mental models of mathematical phenomena. Proofs relying on diagrams can be rigorous if (a) it is easy to draw a diagram that shares or otherwise indicates the structure of the mathematical object, (b) the information thus displayed is not metrical and (c) it is possible to put the inferences into systematic mathematical relation with other mathematical inferential practices. Proofs that appeal to mental models can be rigorous if the mental models can be externalised as diagrammatic practice that satisfies these three conditions.Peer reviewe

    COINVENT: Towards a Computational Concept Invention Theory

    Get PDF
    We aim to develop a computationally feasible, cognitively-inspired, formal model of concept invention, drawing on Fauconnier and Turner’s theory of conceptual blending, and grounding it on a sound mathematical theory of concepts. Conceptual blending, although successfully applied to describing combinational creativity in a varied number of fields, has barely been used at all for implementing creative computational systems, mainly due to the lack of sufficiently precise mathematical characterisations thereof. The model we will define will be based on Goguen’s proposal of a Unified Concept Theory, and will draw from interdisciplinary research results from cognitive science, artificial intelligence, formal methods and computational creativity. To validate our model, we will implement a proof of concept of an autonomous computational creative system that will be evaluated in two testbed scenarios: mathematical reasoning and melodic harmonisation. We envisage that the results of this project will be significant for gaining a deeper scientific understanding of creativity, for fostering the synergy between understanding and enhancing human creativity, and for developing new technologies for autonomous creative systems.The project COINVENT acknowledges the nancial support of the Future and Emerging Tech- nologies (FET) programme within the Seventh Framework Programme for Research of the Eu- ropean Commission, under FET-Open Grant number: 611553Peer Reviewe

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201

    A Computational Model of Lakatos-style Reasoning

    Get PDF
    Institute for Computing Systems ArchitectureLakatos outlined a theory of mathematical discovery and justification, which suggests ways in which concepts, conjectures and proofs gradually evolve via interaction between mathematicians. Different mathematicians may have different interpretations of a conjecture, examples or counterexamples of it, and beliefs regarding its value or theoremhood. Through discussion, concepts are refined and conjectures and proofs modified. We hypothesise that: (i) it is possible to computationally represent Lakatos's theory, and (ii) it is useful to do so. In order to test our hypotheses we have developed a computational model of his theory. Our model is a multiagent dialogue system. Each agent has a copy of a pre-existing theory formation system, which can form concepts and make conjectures which empirically hold for the objects of interest supplied. Distributing the objects of interest between agents means that they form different theories, which they communicate to each other. Agents then find counterexamples and use methods identified by Lakatos to suggest modifications to conjectures, concept definitions and proofs. Our main aim is to provide a computational reading of Lakatos's theory, by interpreting it as a series of algorithms and implementing these algorithms as a computer program. This is the first systematic automated realisation of Lakatos's theory. We contribute to the computational philosophy of science by interpreting, clarifying and extending his theory. We also contribute by evaluating his theory, using our model to test hypotheses about it, and evaluating our extended computational theory on the basis of criteria proposed by several theorists. A further contribution is to automated theory formation and automated theorem proving. The process of refining conjectures, proofs and concept definitions requires a flexibility which is inherently useful in fields which handle ill-specified problems, such as theory formation. Similarly, the ability to automatically modify an open conjecture into one which can be proved, is a valuable contribution to automated theorem proving

    Reasoned modelling critics: turning failed proofs into modelling guidance

    No full text
    The activities of formal modelling and reasoning are closely related. But while the rigour of building formal models brings significant benefits, formal reasoning remains a major barrier to the wider acceptance of formalism within design. Here we propose reasoned modelling critics — an approach which aims to abstract away from the complexities of low-level proof obligations, and provide high-level modelling guidance to designers when proofs fail. Inspired by proof planning critics, the technique combines proof-failure analysis with modelling heuristics. Here, we present the details of our proposal, implement them in a prototype and outline future plans

    Who Gave you the Cauchy-Weierstrass Tale? The Dual History of Rigorous Calculus

    Full text link
    Cauchy's contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, the seeds of the theory of rates of growth of functions as developed by Paul du Bois-Reymond. One sees, with E. G. Bjorling, an infinitesimal definition of the criterion of uniform convergence. Cauchy's foundational stance is hereby reconsidered.Comment: 47 pages, 3 figures; Foundations of Science 17 (2012), no. 3, 245-27

    Five theories of reasoning: Interconnections and applications to mathematics

    Get PDF
    The last century has seen many disciplines place a greater priority on understanding how people reason in a particular domain, and several illuminating theories of informal logic and argumentation have been developed. Perhaps owing to their diverse backgrounds, there are several connections and overlapping ideas between the theories, which appear to have been overlooked. We focus on Peirce’s development of abductive reasoning [39], Toulmin’s argumentation layout [52], Lakatos’s theory of reasoning in mathematics [23], Pollock’s notions of counterexample [44], and argumentation schemes constructed by Walton et al. [54], and explore some connections between, as well as within, the theories. For instance, we investigate Peirce’s abduction to deal with surprising situations in mathematics, represent Pollock’s examples in terms of Toulmin’s layout, discuss connections between Toulmin’s layout and Walton’s argumentation schemes, and suggest new argumentation schemes to cover the sort of reasoning that Lakatos describes, in which arguments may be accepted as faulty, but revised, rather than being accepted or rejected. We also consider how such theories may apply to reasoning in mathematics: in particular, we aim to build on ideas such as Dove’s [13], which help to show ways in which the work of Lakatos fits into the informal reasoning community

    Trial and error mathematics: Dialectical systems and completions of theories

    Get PDF
    This paper is part of a project that is based on the notion of a dialectical system, introduced by Magari as a way of capturing trial and error mathematics. In Amidei et al. (2016, Rev. Symb. Logic, 9, 1–26) and Amidei et al. (2016, Rev. Symb. Logic, 9, 299–324), we investigated the expressive and computational power of dialectical systems, and we compared them to a new class of systems, that of quasi-dialectical systems, that enrich Magari’s systems with a natural mechanism of revision. In the present paper we consider a third class of systems, that of p-dialectical systems, that naturally combine features coming from the two other cases. We prove several results about p-dialectical systems and the sets that they represent. Then we focus on the completions of first order theories. In doing so, we consider systems with connectives, i.e. systems that encode the rules of classical logic. We show that any consistent system with connectives represents the completion of a given theory. We prove that dialectical and q-dialectical systems coincide with respect to the completions that they can represent. Yet, p-dialectical systems are more powerful; we exhibit a p-dialectical system representing a completion of Peano Arithmetic that is neither dialectical nor q-dialectical
    corecore