
Commentationes Mathematicae Universitatis Carolinae

Volker Sorge; Simon Colton; Roy McCasland; Andreas Meier
Classification results in quasigroup and loop theory via a combination of
automated reasoning tools

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 2, 319--339

Persistent URL: http://dml.cz/dmlcz/119726

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119726
http://project.dml.cz

Comment.Math.Univ.Carolin. 49,2 (2008)319–339 319

Classification results in quasigroup and loop theory

via a combination of automated reasoning tools

Volker Sorge, Simon Colton, Roy McCasland, Andreas Meier

Abstract. We present some novel classification results in quasigroup and loop theory.
For quasigroups up to size 5 and loops up to size 7, we describe a unique property
which determines the isomorphism (and in the case of loops, the isotopism) class for
any example. These invariant properties were generated using a variety of automated
techniques — including machine learning and computer algebra — which we present
here. Moreover, each result has been automatically verified, again using a variety of
techniques — including automated theorem proving, computer algebra and satisfiability
solving — and we describe our bootstrapping approach to the generation and verification
of these classification results.

Keywords: quasigroups, loops, classification, automated reasoning

Classification: 20N05

1. Introduction

Given an equivalence class such as isomorphism or isotopism, in the process of
deriving a classification of an algebraic domain such as loops and quasigroups, a
natural first step is to count the number of equivalence classes for a given size.
A natural next step is to describe the equivalence classes of a given size in terms
of a property shared by all members of a class and by no members of another
class. A (possibly infinite) full set of such invariant properties and a mapping
from each size onto a subset of these properties constitutes a classification theo-
rem, e.g., in Kronecker’s classification of Abelian groups [10] the invariant prop-
erties are described in terms of the cross-product decomposition of the group.
Automated techniques have been used to good effect for the counting step, and
numerous existence problems have been solved in this way, e.g., [19]. We present
here an approach to automating the second step, namely to generate classifica-
tion theorems for particular sizes of quasigroups and loops, which describe the
isomorphism/isotopism class structure for each size.
There are two important aspects to this approach. Firstly, the generation of

invariant properties is key to the production of the classification theorems. Note
that we use the phrase discriminating properties interchangeably with invariant
properties, depending on the context. We have used four different methods to
produce these invariants: each method is given a pair of non-equivalent algebraic

320 V. Sorge, S.Colton, R.McCasland, A.Meier

structures and is asked to determine a property that only one of them has. This
is a description of a machine learning problem [14]. Hence, our first approach
— as described in Section 3 — used a machine learning system, and derived
first-order properties involving only the multiplication symbol and equality. This
method was sufficient to produce isomorphism results for loops up to size 6 and
quasigroups up to size 5. Looking towards eventually determining classifying
properties shared by classes of different sizes (which usually describe families of
algebraic structures, such as dihedral groups in group theory, etc.), we enhanced
the approach to be able to count elements of a particular type. We found that
this approach produced simpler classification theorems with more homogeneity
across different orders, as described in Section 4.
Turning to isotopism as the equivalence relation for loops, we found that the

machine learning approach did not produce isotopic invariants. Instead, we used
results from [7] to derive a method for generating equational invariants for loops,
as described in Section 5. This too had limitations, so we introduced new methods
for using sub-blocks of loops to produce invariants, as described in Section 6.
Using a combination of equational and sub-block invariants, we were able to
produce isotopism classification results for loops up to size 7. For each of the four
invariant-generating methods described below, we give an overview of the method
and present some example invariants that the method produced.
The second major aspect to our approach is the automated verification of the

results produced. This is important, because the theorems produced are too
large to be checked by hand (given the number of the equivalence classes being
considered). There are numerous lemmas which have to be proved in order to
check an overall classification theorem, including: (a) checking that a property is
invariant (b) checking that a particular algebraic structure satisfies the definition
of a property (c) checking that a theorem covers all the equivalence classes for
a particular size, etc. While some of these theorems pose little difficulty for
automated theorem provers, we have found that other theorems are beyond the
capabilities of state of the art provers. For this reason, we have experimented
with numerous theorem proving systems and in some cases we have resorted to
specifying the theorem as a satisfiability problem and using a SAT-solver. We have
also used computer algebra techniques to simplify the problems being solved. In
Section 2, we describe how we combine these various reasoning systems with the
invariant generation methods to derive and verify classification results for a given
size of a given algebraic domain over a given equivalence relation. We conclude by
presenting three of the classification theorems in full, and describing some future
directions for our work.

2. System overview

In [5], we have presented a bootstrapping procedure that constructs fully ver-
ified classification theorems for algebraic structures of fixed, finite order with

Classification results via automated reasoning 321

respect to a given equivalence relation. In this section, we briefly outline the
technique. The algorithm starts with only the basic axioms of a particular al-
gebraic structure, successively computes properties to separate non-equivalent
structures, and returns a set of unique distinguishing properties for all equivalent
classes together with representant structures.
Schematically, the bootstrapping procedure works as in Figure 1. We see that

the procedure takes a set of properties, P , a cardinality, n, and an equivalence
relation, ∼, as input. It returns a set, I, consisting of algebraic structures together
with sets of properties that uniquely define equivalence classes with respect to ∼.
Thus, the set I represents the desired classification theorem. I is constructed
iteratively, by first generating an algebraic structure Q of order n satisfying the
initial properties P (step 1 in Figure 1). If we can show that Q together with
P already forms an equivalent class then we are done (steps 5& 6). If the proof
of this fails, we generate a structure Q′ which satisfies the same properties as
Q but that is not equivalent to Q. For the two structures we then compute
a discriminant, i.e. a property invariant under ∼ such that it holds for Q but
not for Q′. We then repeat the process for Q with properties P ∪ {P} and Q′

with P ∪ {¬P}. The bootstrapping procedure successively generates structures
and refines discriminating properties until the full set of equivalence classes is
computed.

Bootstrapping (n, P, ∼)
1: Generate structure Q of cardinality n satisfying P .
2: Let S = {(Q,P)}, I = {}.
3: Repeat
4: Pick (Q,P) ∈ S
5: If (Q,P) represents an equivalence class for order n under ∼ then
6: I = {(Q,P)} ∪ I
7: Else
8: Generate Q′ satisfying P , such that Q 6∼ Q′

9: Find property P discriminating Q and Q′ under ∼
10: S = S ∪ {(Q,P ∪ {P}), (Q′,P ∪ {¬P})}
11: Until S 6= ∅
12: Return I.

Figure 1: Schematic overview of the bootstrapping algorithm

Technically, the bootstrapping procedure generates a binary decision tree,
where leaf nodes correspond to the equivalence classes and each inner node rep-
resents branching with respect to a discriminating property. As an example, we
discuss the isomorphism classification theorem for quasigroups of order 3. The
decision tree as well as the five isomorphism class representants are given in Fi-
gure 2. The leaves 2, 4, 7, 8, and 9 of the tree are the isomorphism classes with

322 V. Sorge, S.Colton, R.McCasland, A.Meier

respective representants Q2, Q4, Q7, Q8 and Q9, respectively. The properties la-
belling the edges of the tree correspond to the discriminating properties. Thus the
properties uniquely determining the isomorphism class represented by a leaf node
correspond to the conjunction of the properties given on the path from the leaf
to the root. The overall classification theorem then corresponds to a disjunction
of conjunctions of discriminating properties.

1

2 3

4 5

6 9

7 8

¬P1 P1

P2
¬P2

P3 ¬P3

P4 ¬P4

P1 ≡ ∃b b ◦ b = b
P2 ≡ ∀b b ◦ b = b
P3 ≡ ∃b ∀c b ◦ c 6= c
P4 ≡ ∃b ∀c c ◦ b 6= c

Q2 a b c
a b a c
b a c b
c c b a

Q4 a b c
a a c b
b c b a
c b a c

Q7 a b c
a a b c
b b c a
c c a b

Q8 a b c
a a b c
b c a b
c b c a

Q9 a b c
a a c b
b b a c
c c b a

Figure 2: Decision tree for the classification problem of order 3 quasigroups

The bootstrapping procedure is a framework that combines a host of reasoning
techniques which play their part in achieving the overall goal. While the general
framework is implemented in a Lisp environment, it relies on third party systems
to generate algebraic structures and discriminants, and to verify the construction
of the decision tree at each step. We give a brief overview on the methodologies
used in the different steps of the algorithm. For a more detailed description of
the techniques and problem formalisations, we refer the reader to [5], [13], [20].

Generating algebraic structures. We use model generation to construct alge-
braic structures. Model generation systems take as input a set of axioms, within
which various variables are universally or existentially quantified in first order
logic. The aim of model generation systems is to find a complete set of instantia-
tions of the variables so that the axioms are satisfied. In step 1, the algorithm calls
a model generator with the input axioms to obtain a structure that satisfies them.
In step 8, a model generator is not only supplied with the properties the desired
structure should satisfy, but also with an explicit formalisation of the structure
it should not be equivalent to. We currently use the Sem [22], Finder [18] and
Mace [11] systems for model generation.

Classification results via automated reasoning 323

Generating discriminants. The approach to constructing discriminating prop-
erties, necessary in step 9 of the bootstrapping procedure, varies from equivalence
relation to equivalence relation. When dealing with the isomorphism relation, we
treated the generation of a discriminant for a pair of algebras as a machine learning
problem, and successfully applied automated theory formation [3] and inductive
logic programming [6] with the HR system to solve such problems by finding
first order invariants, as described in Sections 3 and 4. While these first order
properties worked well as isomorphism invariants, we found that they did not
discriminate between non-isotopic pairs of algebraic structures. In light of this,
we developed bespoke methods for generating isotopy invariants, as described in
Sections 5 and 6.

Verifying properties. Throughout the bootstrapping procedure, all the results
from third party systems are independently verified by first order automated
theorem provers. Thus, for a given discriminant P and two algebras Q and Q′,
we show that (1) P is a proper discriminant for the equivalence relation E [which
means that if Q and Q′ differ with respect to the property, then they cannot be
members of the same equivalence class], (2) P holds for Q, and (3) P does not
hold for Q′. Proving these properties explicitly guarantees the overall correctness
of the constructed decision tree. The proofs themselves are generally not very
challenging, and we have experimented with several provers. We generally employ
the Spass [21], Vampire [16], and E [17] automated theorem provers for these tasks.

Verifying equivalence classes. The most difficult verification problems which
occur during the classification process involve showing that a given node of the
classification tree forms an equivalence class with respect to the equivalence rela-
tion under consideration. In other words, we need to verify that the tree cannot
be expanded any further and that we do indeed have a leaf node. More for-
mally, we need to prove that, for a particular set of properties P , all algebraic
structures of cardinality n which satisfy P , are equivalent, and every member
of the equivalence class satisfies P . These types of proofs are necessary to fully
verify the completeness of the classification tree. Although the theorems are es-
sentially second order, because we work in a finite domain, they can be expressed
as propositional logic problems by enumerating all possible equivalence mappings
for structures of cardinality n and thus can be made accessible to automated the-
orem proving systems. We have been particularly successful using satisfiability
solvers, which are akin to model generators, but have more restricted represen-
tation requirements for the axioms to satisfy. In particular, each axiom must
be a disjunction of Boolean variables, and so the axiom set is expressed in con-
junctive normal form. Given this restriction, more powerful solving techniques
are available to SAT-solvers. In addition, we have employed some so-called SMT
solvers, which extend satisfiability solving by enabling the usage of additional
decision procedures for particular theories. We have used the zChaff solver [15],
DPLLT [8], and CVC-3 [2] satisfiability solvers.

324 V. Sorge, S.Colton, R.McCasland, A.Meier

While using SAT solvers increases the power of our algorithm, if translated
naively, many of the proof problems would still be beyond the capabilities of state
of the art systems. To enable us to solve these problems, we implemented some
computer algebra algorithms in GAP [9] to reduce their complexity. For example,
when showing that a particular set of properties constitutes an isomorphism class
for structures of order n, the formulation of the theorem in propositional logic
essentially amounts to enumerating and checking all possible bijective mappings
between two structures of size n. Thus the number of mappings to consider grows
quickly and to reduce it we use GAP to compute a generating system for the
representant of the isomorphism class in question, thereby enabling us to reduce
the number of bijective mappings to consider those on the generators alone. For
the related isotopy problem, i.e., proving that all loops with a particular property
are isotopic to each other, we have developed a similar technique. However, since
generating systems are not invariant under isotopy, we instead generate all fg-
isotopes of the given equivalence class representant and then show that every
loop in the isotopy class has to be isomorphic to one of the fg-isotopes, which
enables us to again reduce the number of mappings to consider to only those on
the respective generating systems. For more details of these techniques see [20].

3. First-order isomorphism invariants

As we saw in Section 2, our automated approach to generating classification
theorems relies heavily on a method to generate a discriminating property when
given two example structures. That is, for instance, given two examples of non-
equivalent loops, we need a method to determine a property which not only
discriminates between the two loops but is sufficiently general enough that we
can prove that two structures which differ according to this discriminant cannot
be equivalent. Stated in this fashion, this is an instance of a machine learning
problem, and hence our first approach to generating invariants used our machine
learning system, HR, which is described in detail in [3].
In the application described here, HR starts with the two example algebraic

structures and some background concepts describing them: the multiplication
table (loops, quasigroups and groups), plus the concept of the identity element
(loops and groups) and the concept of inverse elements (groups). HR then invents
new concepts from old ones using a number of production rules. For instance,
HR might use the match production rule to invent the concept of idempotent
elements in loops (x s.t. x = x ◦ x). It then might use the exists production
rule to invent the concept of loops where there is such an idempotent element,
followed by the negate production rule to invent the concept of loops with no
idempotent elements. In this way, HR is able to produce a theory containing such
concepts, and if the production rules are restricted, then the concept definitions
will be expressed in first order logic (in the syntax of the Otter theorem prover
[12]). Given the definitions of identity and inverse elements, each invariant is

Classification results via automated reasoning 325

therefore simply an expression of a sequence of multiplication terms which only
one structure has.
While HR has the ability to tailor its search to find discriminating concepts

(as described in [4]), for the experiments described here, we simply ran HR with
an exhaustive search until it found a single discriminating property, at which
stage it outputs this result and terminates. The reason for this style of search
is that it means that HR will consider simpler concepts for discriminants before
more complex ones, which is important, as the concepts will be used later in
numerous proofs. One such proof is to show that the property HR finds is indeed
an invariant, which can be expressed in first order logic and hence first order
resolution theorem provers can be used to prove these results by refutation. As an
example, consider the proof that the property of all elements in a quasigroup being
idempotent is invariant under isomorphism. Paraphrasing from the refutation
proof of this found by a prover, let (G, ◦), (H, ⋆) be quasigroups with isomorphism
ϕ : G → H . If ∀ g ∈ G(g ◦ g = g) then we also have for every h ∈ H : h ⋆ h = h.
This is shown by first assuming that there is a h ∈ H such that h ⋆ h 6= h. Since
G and H are isomorphic, there exists a unique g ∈ G with ϕ(g) = h. Then we
have h⋆h = ϕ(g) ⋆ϕ(g) = ϕ(g ◦ g) = ϕ(g) = h, which contradicts the assumption
that h ⋆ h 6= h, hence proving the invariant nature of the property.

4. Isomorphism invariants from counting sets of elements

Drawing on existing mathematical results, we note that there are 14 groups
of size 8 or smaller up to isomorphism. Moreover, they are usually classified
either in terms of a parameterisation consisting of a family that they belong to
and their size, e.g., the cyclic group of order 5 (C5), the dihedral group of order
8 (D4), etc., or in terms of a cross product of such parameterised groups, e.g.,
C2 × C4. In order to extend our classification approach, we have looked at the
automatic generation of parameterisations of finite algebraic structures. This is
motivated by a desire to produce classification theorems which apply not only to
single orders of algebraic structures, but to be homogeneous across orders.
Our first approach has been to look at parameterisations of algebraic structures

in terms of a list of set sizes, where each set contains elements of the structures
with particular properties. For instance, groups up to size 6 can be classified up to
isomorphism by using a parameterisation in terms of two coefficients: the number
of elements and the number of self-inverse elements (x s.t. x = x−1). Counting
set sizes is an important tool in producing classification results. Moreover, there
is a standard — if cumbersome — way of formalising such set-size results in
first order logic, which enables us to get proofs of our results from automated
theorem provers. We present here the results of some initial experimentation
with this approach, which has yet to be fully implemented into the bootstrapping
algorithm.
Suppose we start with a set of algebraic structures A = {A1, . . . , An} and

326 V. Sorge, S.Colton, R.McCasland, A.Meier

a list of element-type concepts C = {c1, . . . , ck}. An element-type concept is a
Boolean test on an element in an algebraic structure, for instance whether the
element is idempotent (x ∗ x = x). We then define the profile of a given a ∈ A
with respect to C as: P (a) = 〈|{x ∈ a : c1(x)}|, . . . , |{x ∈ a : ck(x)}|〉. We
further say that C represents an element-type parameterisation of A if no pair of
algebraic structures in A have the same profile. If A contains representatives of
each isomorphism class up to a certain size n for a specific algebraic structure,
then the parameterisation can be used to classify that structure up to size n, and
this classification can be proved (as described below).

We constructed such classifying parameterisations for loops up to size 5, groups
up to size 8 and quasigroups up to size 4 as follows (for clarity, we will use the
groups up to size 8 as an illustrative example). We started with a set of groups,
A, with each member being a representative of a different isomorphism class, and
all the isomorphism classes covered. We used A in the background knowledge for
the HR automated theory formation system. Details of how HR works have been
given in Section 3, but for our purposes here, HR is a concept generator, i.e.,
given some background concepts such as the multiplication operator in groups,
HR will invent concepts such as commutativity, etc. In particular, HR is able to
generate hundreds of element-type concepts.

We ran HR for 1000 theory formation steps. From the resulting theory, we ex-
tracted the set, C, of element-type concepts and we used these to automatically
construct a parameterisation P as follows: The first concept in the parameterisa-
tion list is chosen as the overall size of the algebraic structure, largely for reasons
of comprehensibility. We then check the parameterisation against A, and remove
from A any structures a for which the profile of a is different from all the others.
We then iteratively add to P the concept c ∈ C which differentiates the largest
number of pairs of structures from A. Note that we say c differentiates a1 and a2
iff |{x ∈ a1 : c(x)}| 6= |{x ∈ a2 : c(x)}|. Each time a new concept is added, P is
checked against A, and — as before — any structure which has a unique profile
is removed. This iteration continues until either A is empty (in which case a full
parameterisation has been constructed), or there are no concepts left to try. In
the output, each structure a is presented with only the concepts needed to distin-
guish it from the others. The conjunction of this set of concepts is a classifying
concept for the isomorphism class represented by a.

We ran the same experiment for loops up to size 5. For quasigroups up to size
4, we increased the number of theory formation steps to 10000, and for loops up
to size 6, we increased it to 40000. The results are presented in Table 1. We
see that the method was able to produce full parameterisations in a reasonable
time (on a 2.1GHz machine) for the groups, quasigroups and loops to size 5
datasets. However, it only achieved a partial classification of 86 of the 120 loop
classes up to size 6. Note that the Element-types column above describes the
total number of element-types produced by HR, while the Classifiers columns

Classification results via automated reasoning 327

describe the number of those which were used in the parameterisation. The
group theory parameterisation was particularly simple, in terms of counting 3
elements types, namely (i) elements themselves (ii) self-inverse elements and (iii)
elements which appear on the diagonal of the multiplication table. The orders
1 to 5 loop theory parameterisation also required counting only 3 element types:
(a) elements themselves (b) elements on the diagonal of the multiplication table
and (c) elements, x, such that ∃ y (y ∗ x = id∧y ∗ y = x). We consider it an
achievement to be able to classify all 42 quasigroups up to size 4 by counting only
5 element types, and to classify 86 of the 120 loops up to size 6 by counting 11
element types. We present the full classification theorem achieved for quasigroups
of size 4 in Section 7.

Domain and Classes Achieved Steps Element Classifiers Time
(Orders) Types (s)
Groups (1-8) 14 14 1000 32 3 28
Loops (1-5) 11 11 1000 32 3 10
Loops (1-6) 120 86 40000 736 11 2903

Quasigroups (1-4) 42 42 10000 523 5 215

Table 1: Parameterisation details in loop, group and quasigroup theory

To prove that the conjunctions of set sizes represent classifying concepts, we
first translate the set-size properties into full first order logic by expressing the
counting argument in a formal way. For instance, we define the property of having
two self-inverse elements (in group theory) as:

∃x, y x 6= y ∧ x−1 = x ∧ y−1 = y ∧ (∀z z−1 = z =⇒ (z = x ∨ z = y)).

We then need to solve two types of problems: (1) proving that the given conjunc-
tion of set-size properties is an invariant under isomorphism for a particular type
of algebraic structure, regardless of the size of the structures, and therefore serves
as a discriminant, and (2) that the discriminant uniquely defines an isomorphism
class for algebraic structures of a given size.
Problems of type (1) are easy to formalise as

∀A1, A2 P(A1) ∧ P(A2) ∧ P (A1) ∧ ¬P (A2) =⇒ A1 6∼= A2,

where P describes the axiomatic properties of the algebraic structures and P is
the discriminant under examination. They can be expressed in first order logic
by considering the sets A1 and A2 as arbitrary but different constants and formu-
lating their axiomatisations with disparate operations. Proving these theorems is
relatively easy and we used the first order prover Spass [21]. Problems of type
(2) are less trivial since they are essentially second order theorems: we have to

328 V. Sorge, S.Colton, R.McCasland, A.Meier

show that all algebraic structures that have property P are also isomorphic to the
representant (which we call AR), i.e.:

∀A [P(A) ∧ P (A)] =⇒ [∃φ bijective(φ) ∧ homomorphic(φ) ∧ φ(A) = AR].

However, since we are in a finite domain, we can explicitly formulate the prob-
lem in propositional logic: We give AR in terms of its elements and multiplica-
tion table and then formulate all possible bijective mappings from an arbitrary
structure A onto the elements of AR. However, since the number of mappings
to consider is n!, where n is the size of the structures A and AR, the technique
quickly becomes infeasible, even for small n. We therefore use a computer algebra
device by restricting the mappings to consider a generating system of AR, i.e., a
set of elements that can generate all other elements of the structure together with
all generating equations. While the problem formulation can still be relatively
lengthy, we found that we could solve problems up to size 8 using the CVC-3 sys-
tem [2]. In our experiments, we were successful in fully automatically generating
and proving the necessary theorems for quasigroups of up to size 4, loops up to
size 5, as well as the majority of the 86 loops 6 problems. For groups up to size
8, however, our system failed to produce three problem formulations due to their
size. On a positive note, all problems for which a formulation could be produced
were shown to be correct by CVC-3 in less than 1 minute. We are currently op-
timising our routines to more efficiently produce larger problem formalisations,
and we expect to solve the size 8 problems in due course.

5. Equational isotopy invariants

Our first method to obtain isotopy invariants for loops works by adapting
Falconer’s concepts of derived and universal identities presented in [7] to our
needs. So far, it was sufficient to regard quasigroups and loops respectively as
sets with a single operation. However, in order to follow Falconer’s construction
we will now define the two additional operations \ and /.
Let (Q, ◦) be a quasigroup, then we define two operations \ and / on Q such

that:

(1) x · (x\y) = y and x\(x · y) = y;
(2) (y/x) · x = y and (y · x)/x = y.

Given a word w in Q, define its isotopically related word w by recursively
applying the following transformations:

(1) if w = x, then w = x;
(2) if w = u · v, then w = (u/y) · (z\v)

where y, z ∈ Q do not occur in w. For a given identity w1 = w2, where w1, w2 are
words in Q we call the w1 = w2 equality a derived identity. A derived identity
that is invariant under isotopy is called a universal identity.

Classification results via automated reasoning 329

From a logical point of view, an identity w1 = w2 is an equality where all vari-
ables occurring in the two words w1 and w2 are universally quantified. Moreover,
the derived identity w1 = w2 is constructed by introducing two new, universally
quantified variables y and z. As an example of a universal identity, we consider
the two following loops:

L4 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 5 3 4
2 2 0 1 4 5 3
3 3 5 4 1 0 2
4 4 3 5 0 2 1
5 5 4 3 2 1 0

L8 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 1 0 2
4 4 3 5 0 2 1
5 5 4 3 2 1 0

The following universal identity holds for L4 but does not hold for L8:

∀x ∀y1 ∀y2 (x/y1) · (((x/y1) · (y2\x)) · (y2\x))

= ((x/y1) · (y2\x)) · ((x/y1) · (y2\x)).

This universal identity was derived from the following loop identity:

∀x x · ((x · x) · x) = (x · x) · (x · x).

Falconer’s concept of universal identity depends on deriving universal identities
from loop identities that hold for the free loop. However, in our adaptation, we
work in a strictly finite setting in order to derive universal identities that can
be used as isotopy invariants to discriminate between loops. We have therefore
devised the following algorithmic approach to constructing universal identities:

(1) In a first step, our algorithm systematically generates simple identities,
i.e. universally quantified equations of the form w1 = w2.

(2) It then checks whether a non-trivial loop of size 4 to 8 exists satisfying
the identity. This is achieved with a finite model generator.

(3) If such a loop exists, the algorithm rewrites w1 = w2 to its corresponding
derived identity w1 = w2.

(4) The derived identity is then passed to a first order theorem prover to show
that it is invariant under isotopy. If the theorem prover succeeds, then
w1 = w2 is indeed a universal identity.

The presented algorithm is very effective and to date we have generated 8,530
universal identities. Moreover, despite starting in a very small finite setting, the
resulting universal identities are shown to be isotopy invariants independent of
the order of the loops or whether they are finite. Nevertheless, using universal
identities only to find discriminating properties is not necessarily sufficient as

330 V. Sorge, S.Colton, R.McCasland, A.Meier

there is no theoretical result guaranteeing that for two given non-isotopic quasi-
groups there is always a discriminating universal identity. Moreover, finding a
suitable identity amounts to a considerable search task. Thus we have developed
a more goal-directed approach to constructing isotopy invariants using exhaustive
counting arguments, as described in the next section.

6. Sub-block isotopy invariants

As a more reliable method to obtain isotopy invariants, we developed the nec-
essary theoretical tools to generate invariants based on exhaustive counting argu-
ments which examine properties of sub-blocks of loops.

Let (G, ·) be a quasigroup, and let A and B be non-empty subsets of G. We
adopt the usual notation for the set A ·B, namely, A ·B = {a · b : a ∈ A∧ b ∈ B}.

Lemma 1. Let (G, ·) be a quasigroup and let (H, ∗) be a quasigroup that is
isotopic to (G, ·) under the bijections (α, β, γ). Then, for any non-empty subsets
A and B of G, we have |A · B| = |α(A) ∗ β(B)|.

Proof: Observe that since γ is a bijection, then |γ(A · B)| = |A · B|. It suffices
then to show that γ(A ·B) = α(A) ∗β(B). But this follows immediately from the
fact that for all a ∈ A and b ∈ B, we have γ(a · b) = α(a) ∗ β(b). �

When G is finite, one can interpret the elements of A (resp., B) as designating
a subset of rows (resp., columns) in the multiplication table of G. The set A · B
then consists of the elements where these rows and columns meet. The above
result thus suggests the following notation:

Notation 2. Let (G, ·) be a quasigroup of order n, and let i, j, k each be integers
such that 1 ≤ i, j, k ≤ n. Let G(i, j, k) denote the set:

G(i, j, k) = {(A, B) : A, B ⊆ G, |A| = i, |B| = j, |A · B| = k}.

Theorem 3. Let (G, ·) and (H, ∗) be isotopic quasigroups of order n, and let
i, j, k each be integers such that 1 ≤ i, j, k ≤ n. Then |G(i, j, k)| = |H(i, j, k)|.

Proof: Note that the one-to-one correspondence between the collection of or-
dered pairs (A, B) such that A, B ⊆ G, |A| = i, |B| = j, and the corresponding
collection of ordered pairs of subsets of H , is preserved under isotopy. The result
now follows from Lemma 1. �

Example 4. As an example for sub-block invariants, consider the following two
loops:

Classification results via automated reasoning 331

L38 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 5 0 3 4
2 2 5 0 4 1 3
3 3 4 1 5 2 0
4 4 0 3 1 5 2
5 5 3 4 2 0 1

L20 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 5 3 4
2 2 0 1 4 5 3
3 3 4 5 1 2 0
4 4 5 3 0 1 2
5 5 3 4 2 0 1

Loop L38 contains 4 different 2 × 2 sub-blocks that contain exactly 2 distinct
elements, i.e., we have |L38(2, 2, 2)| = 4. In detail, the single sub-blocks are the
following:

0 2
0 0 2
2 2 0

2 4
1 5 3
4 3 5

1 3
2 5 4
3 4 5

3 5
4 1 2
5 2 1 7

For loop L20 on the other hand, we have |L20(2, 2, 2)| = 0 since it does not contain
a single 2× 2 sub-block with two distinct elements.

The above results form the basis for two more isotopy-invariants, which we
now present: frequency tuples and patterns.

6.1 Frequency Tuples. Continuing with the notation above, fix an element
(A, B) ∈ G(i, j, k), and for each gh ∈ A · B, with 1 ≤ h ≤ k, let

f(gh) = |{(a, b) ∈ A × B : a · b = gh}| .

In other words, f(gh) is the number of times that gh appears in the block formed
by A and B, henceforth referred to as the A · B block. We let F (A, B) =
(f(g1), . . . , f(gk)), and call this the (un-ordered) frequency-tuple of (A, B). If
two such frequency-tuples F and F ′ are the same (up to order), then we write
F ≈ F ′.

Lemma 5. Let (G, ·) and (H, ∗) be isotopic quasigroups (under the bijections
(α, β, γ)) of order n, and let i, j, k each be integers such that 1 ≤ i, j, k ≤ n. If
(A, B) ∈ G(i, j, k), then F (A, B) ≈ F (α(A), β(B)).

Proof: In light of Theorem 3, it suffices to prove that, for every g ∈ A · B,
f(g) = f(γ(g)). But this equality follows immediately from the fact that if a·b = g,
then α(a) ∗ β(b) = γ(g). �

Given this latest result, we adopt the following notation:

Notation 6. Let (G, ·) be a quasigroup of order n, let i, j, k be integers such that
1 ≤ i, j, k ≤ n, and let F be a frequency-tuple for some (C, D) ∈ G(i, j, k). Then,
let G(i, j, k, F) denote the set:

G(i, j, k, F) = {(A, B) ∈ G(i, j, k) : F (A, B) ≈ F}.

332 V. Sorge, S.Colton, R.McCasland, A.Meier

Theorem 7. Let (G, ·) be a quasigroup of order n, let i, j, k be integers such
that 1 ≤ i, j, k ≤ n, and let F be a frequency-tuple for some (C, D) ∈ G(i, j, k).
Furthermore, let (H, ∗) be a quasigroup isotopic to (G, ·). Then |G(i, j, k, F)| =
|H(i, j, k, F)|.

Proof: This is an immediate consequence of Lemma 5 and Theorem 3. �

Example 8. To illustrate the idea of frequencies, consider again the loop L38
together with the two 3× 3 sub-blocks S1 and S2 given on the right:

L38 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 5 0 3 4
2 2 5 0 4 1 3
3 3 4 1 5 2 0
4 4 0 3 1 5 2
5 5 3 4 2 0 1

S1 3 4 5
0 3 4 5
1 0 3 4
2 4 1 3

S2 0 4 5
1 1 3 4
2 2 1 3
3 3 2 0

Both sub-blocks contain the same number of distinct elements, namely 5. How-
ever, S1 contains three elements (0, 1, 5) once and two elements (3, 4) three times,
whereas S2 contains two elements (0, 4) once, two elements (1, 2) twice, and
one element (3) three times. Thus S1 has the frequency tuple (1, 1, 1, 3, 3) and
S2 has the frequency tuple (1, 1, 2, 2, 3). Overall for L38 we have invariants
|L38(2, 2, 2, (1, 1, 1, 3, 3))| = 4 and |L38(2, 2, 2, (1, 1, 2, 2, 3))|= 52.

6.2 Patterns. Given non-empty subsets A and B of a quasigroup (G, ·), we
look for patterns amongst the numbers of distinct elements within the respective
sub-blocks. By this, we mean the following: Let |A| = i, |B| = j, and choose
i′, j′ such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. Now for each k, 1 ≤ k ≤ n, we let
AB(i′, j′, k) = {(A′, B′) : A′ ⊆ A, B′ ⊆ B,

∣

∣A′
∣

∣ = i′,
∣

∣B′
∣

∣ = j′,
∣

∣A′ · B′
∣

∣ = k}.

Furthermore, let pk =
∣

∣AB(i′, j′, k)
∣

∣. In other words, pk is the number of i
′ × j′

sub-blocks of the A · B block, that have precisely k distinct entries. We now
let Pi′,j′(A, B) = (p1, . . . , pn), and we call Pi′,j′(A, B) the i′ × j′ pattern-tuple
of (A, B).

Lemma 9. Let (G, ·), (H, ∗), (α, β, γ), i, j, k, n be as in Lemma 5, and let i′, j′

be integers such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. If A, B ⊆ G such that |A| = i
and |B| = j, then Pi′,j′(A, B) = Pi′,j′(α(A), β(B)).

Proof: Note that for each k, 1 ≤ k ≤ n, and for each (A′, B′) ∈ AB(i′, j′, k), we
have

∣

∣A′ · B′
∣

∣ =
∣

∣α(A′) ∗ β(B′)
∣

∣, by Lemma 1. Now since α and β are bijections,

(A′, B′) ∈ AB(i′, j′, k) if and only if (α(A′), β(B′)) ∈ α(A)β(B)(i′, j′, k). The
result follows. �

Following similar lines as previously, we introduce the following notation:

Classification results via automated reasoning 333

Notation 10. Let (G, ·) be a quasigroup of order n, and let Pi′,j′ be an i′ × j′

pattern-tuple of (C, D) for some C, D ⊆ G such that |C| = i and |D| = j (1 ≤
i, j ≤ n), where integers i′, j′ are such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. We let
G(i, j, Pi′,j′) denote the set:

G(i, j, Pi′,j′) = {(A, B) : A, B ⊆ G, |A| = i, |B| = j, Pi′,j′(A, B) = Pi′,j′}.

Theorem 11. Let (G, ·) be a quasigroup of order n, and let Pi′,j′ be an i′ ×
j′ pattern-tuple of (C, D) for some C, D ⊆ G such that |C| = i and |D| = j
(1 ≤ i, j ≤ n), where integers i′, j′ are such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.
Furthermore, let (H, ∗) be a quasigroup isotopic to (G, ·). Then

∣

∣G(i, j, Pi′,j′)
∣

∣ =
∣

∣H(i, j, Pi′,j′)
∣

∣.

Proof: This follows immediately from Lemma 9. �

Example 12. We illustrate patterns with the example of loop L25 below in which
we are interested in 2× 2 pattern tuples within 4× 4 sub-blocks. The particular
sub-block S below contains exactly one 2× 2 sub-block with exactly two distinct
elements.

L25 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 1 0 2
4 4 3 5 0 2 1
5 5 4 3 2 1 0

S 1 2 3 4
2 0 1 5 3
3 5 4 1 0
4 3 5 0 2
5 4 3 2 1

S′ 2 4
2 1 3
5 3 1

The overall pattern tuple for S′ is P2,2 = (0, 1, 12, 23, 0, 0). The invariant for L25
counting the number of 4×4 sub-blocks with a pattern-tupleP2,2=(0,1,12,23,0,0)
is |L25(4, 4, P2,2)| = 18.

Observe that, rather than considering the entire i′× j′ pattern-tuple of (A, B),
we could instead, for instance, focus on only one component at a time, which sim-
plifies the resulting invariant properties. With this in mind, we let Pi′,j′(A, B)(k)
denote the k-th component of the ordered n-tuple Pi′,j′(A, B). It is obvious then
that, in the context of Lemma 9, we have Pi′,j′(A, B)(k) = Pi′,j′(α(A), β(B))(k).
This leads to some further notation:

Notation 13. Let (G, ·) be a quasigroup of order n, and let i, j, i′, j′, k, pk be
integers such that 1 ≤ i, j, k ≤ n, 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j and pk ≥ 0. We let
(G, i, j, i′, j′, k, pk) denote the set:

(G, i, j, i′, j′, k, pk)

= {(A, B) : A, B ⊆ G, |A| = i, |B| = j and Pi′,j′(A, B)(k) = pk}.

Note that we have effectively proved the following corollary:

334 V. Sorge, S.Colton, R.McCasland, A.Meier

Corollary 14. Let (G, ·), (H, ∗), i, j, i′, j′, k, n be as in Lemma 9, and let pk be a

non-negative integer. Then

∣

∣(G, i, j, i′, j′, k, pk)
∣

∣ =
∣

∣(H, i, j, i′, j′, k, pk)
∣

∣ .

We now combine the notions of patterns and frequencies, by first expanding
the notation AB(i′, j′, k), described at the beginning of this section. The idea
is that, for a given (A, B) ∈ G(i, j, Pi′,j′), we want to see how the frequency-

tuples F (A′, B′) are distributed, for each (A′, B′) ∈ AB(i′, j′, k) (1 ≤ k ≤ n). To
this end, for a frequency-tuple F of size k, we let AB(i′, j′, k, F) = {(A′, B′) ∈
AB(i′, j′, k) : F (A′, B′) ≈ F}. This effectively partitions the collection of i′ × j′

sub-blocks of the A ·B block, according to both their number of distinct elements
and their frequency-tuples. We refer to this partition as the i′ × j′ frequency
distribution Fi′,j′(A, B) of the A · B block.
Now since each of these properties — number of distinct elements, frequency-

tuples, and pattern-tuples — is preserved under isotopism, then it follows that
the number of i × j blocks with both a given pattern-tuple Pi′,j′ and a given
frequency distribution Fi′,j′, is likewise preserved under isotopism. We could, of
course, extend these properties recursively, by looking at sub-blocks of sub-blocks,
and so on. It is an interesting question whether such a recursive extension would
suffice to completely classify all (finite) loops.

All of the invariants in this section can be computed straightforwardly by
appropriate recursive algorithms, which we have implemented in the Lisp envi-
ronment of the overall bootstrapping algorithm. The general idea is to recursively
inspect two loops by exhaustively computing sub-block, frequency, and pattern
invariants, and combinations thereof, until a discriminating property has been
found.

7. Classification theorems

In total, we have produced 7 full and 2 partial isomorphism classifications, and
two full isotopism classifications, as follows:

Isomorphism results:

• Quasigroups of order 3, 4 and 5
• Idempotent quasigroups of order 6
• Quasigroups of order 6 with the extra property ∃x ∀y (y ◦x) ◦ (x ◦ y) = x,
which is a generalised form of the QG3 property: ∀x ∀y (y◦x)◦(x◦y) = x

• Quasigroups of order 7 with the QG9 property: ∀x ∀y (((y◦x)◦x)◦x) = y
(Partial)

• Loops of order 5 and 6
• Idempotent loops of order 7 (Partial)

Classification results via automated reasoning 335

Isotopism results:

• Loops of order 6 and 7.

Below, we present the full classification theorem for quasigroups of order 4 ob-
tained using first order invariants discussed in Section 3; the full isotopy theorem
for loops of order 6, using both the equational and sub-block invariants discussed
in Sections 5 and 6 respectively; and the full classification theorem for quasigroups
of order 1 to 4 using the counting invariants discussed in Section 4.

Isomorphism classification theorem for quasigroups of order 4

We are given the following properties of quasigroups:

P1:∀b ∀c (b ◦ (b ◦ c)) = c P2:∀b ∃c (c ◦ c) = b
P3:∀b ((b ◦ b) ◦ (b ◦ b)) = (b ◦ b) P4:∀b ∀c (c ◦ b) = (b ◦ c)
P5:∃b (b ◦ b) = b P6:∀b ∀c (c ◦ b) = (b ◦ c)
P7:∀b ∀c (c ◦ b) = (b ◦ c) P8:∀b ((b ◦ b) ◦ (b ◦ b)) = (b ◦ b)
P9:∀b ∃c ((c ◦ b) ◦ c) = b P10:∀b ∃c (c ◦ b) = c
P11:∀b ∃c (b ◦ c) = c P12:∀b ∃c ((c ◦ b) ◦ (c ◦ b)) = c
P13:∃b (b ◦ b) = b P14:∀b ∃c (c ◦ b) = c
P15:∃b (b ◦ b) = b P16:∀b ∃c (c ◦ (b ◦ c)) = b
P17:∀b ((b ◦ b) ◦ b) = b P18:∀b (b ◦ b) = b
P19:∀b ∃c (c ◦ c) = b P20:∀b ∃c ∃d ((c ◦ d) = b ∧ (¬(d ◦ d) = b))
P21:∀b ∀c ((¬(b ◦ c) = b) ∨ (c ◦ c) = c) P22:∀b ∃c (c ◦ b) = c
P23:∃b (b ◦ b) = b P24:∀b ((b ◦ b) ◦ (b ◦ b)) = (b ◦ b)
P25:∃b (b ◦ b) = b
P26:∃b ∃c ((b ◦ c) = b ∧ ((¬(b ◦ b) = c) ∧ (c ◦ b) = b))
P27:∀b ((¬(b ◦ (b ◦ b)) = b) ∨ ((b ◦ b) ◦ b) = b)
P28:∀b ∀c ((¬(b ◦ c) = b) ∨ ((b ◦ b) = c ∨ (¬(c ◦ b) = b)))
P29:∀b ∃c ((c ◦ (c ◦ b)) = b ∧ (¬(b ◦ c) = (c ◦ b)))
P30:∀b ∃c ((¬(c ◦ (c ◦ b)) = b) ∧ (b ◦ c) = (c ◦ b))
P31:∀b ∃c ((b ◦ c) ◦ (b ◦ c)) = c
P32:∀b ∃c (c ◦ b) = c
P33:∀b ((b ◦ b) ◦ (b ◦ b)) = (b ◦ b)
P34:∃b (b ◦ b) = b
P35:∃b ∃c ((b ◦ c) = c ∧ (¬(b ◦ b) = b))
P36:∃b ((b ◦ (b ◦ b)) = b ∧ (¬((b ◦ b) ◦ b) = b))

Then quasigroups of order 4 are characterised up to isomorphism by one of the
following conjunction of properties (and their negations):

(P1 ∧ P3 ∧ P6) (P1 ∧ P3 ∧ ¬P6)
(P1 ∧ ¬P3 ∧ P7) (P1 ∧ ¬P3 ∧ ¬P7 ∧ P12)
(P1 ∧ ¬P3 ∧ ¬P7 ∧ ¬P12 ∧ ¬P19 ∧ P25) (P1 ∧ ¬P3 ∧ ¬P7 ∧ ¬P12 ∧ ¬P19 ∧ ¬P25)
(P1 ∧ ¬P3 ∧ ¬P7 ∧ ¬P12 ∧ P19) (¬P1 ∧ P2 ∧ ¬P5 ∧ P10)
(¬P1 ∧ P2 ∧ ¬P5 ∧ ¬P10) (¬P1 ∧ P2 ∧ P5 ∧ ¬P11)
(¬P1 ∧ P2 ∧ P5 ∧ P11 ∧ ¬P18) (¬P1 ∧ P2 ∧ P5 ∧ P11 ∧ P18)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ P16 ∧ ¬P17) (¬P1 ∧ ¬P2 ∧ P4 ∧ ¬P8 ∧ P13)
(¬P1 ∧ ¬P2 ∧ P4 ∧ ¬P8 ∧ ¬P13) (¬P1 ∧ ¬P2 ∧ P4 ∧ P8 ∧ ¬P14 ∧ ¬P20)
(¬P1 ∧ ¬P2 ∧ P4 ∧ P8 ∧ ¬P14 ∧ P20) (¬P1 ∧ ¬P2 ∧ P4 ∧ P8 ∧ P14)

336 V. Sorge, S.Colton, R.McCasland, A.Meier

(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ ¬P26 ∧ ¬P32 ∧ ¬P35)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ ¬P26 ∧ ¬P32 ∧ P35)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ ¬P26 ∧ P32)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ P26 ∧ ¬P33)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ P26 ∧ P33 ∧ ¬P36)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ ¬P21 ∧ P26 ∧ P33 ∧ P36)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ P21 ∧ ¬P27 ∧ P28)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ P15 ∧ P21 ∧ P27 ∧ ¬P28)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ ¬P15 ∧ P22)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ ¬P15 ∧ ¬P22 ∧ ¬P29 ∧ P30)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ ¬P9 ∧ ¬P15 ∧ ¬P22 ∧ P29 ∧ ¬P30)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ ¬P17 ∧ ¬P23)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ ¬P17 ∧ P23)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ P17 ∧ P24)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ P17 ∧ ¬P24 ∧ P31)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ P17 ∧ ¬P24 ∧ ¬P31 ∧ P34)
(¬P1 ∧ ¬P2 ∧ ¬P4 ∧ P9 ∧ ¬P16 ∧ P17 ∧ ¬P24 ∧ ¬P31 ∧ ¬P34)

Isotopism classification theorem for loops of order 6

We are given the following properties of loops:

P1: ∀x, y1, y2 (x/y1)·(((x/y1)·(y2\x))·(y2\x)) = ((x/y1)·(y2\x))·((x/y1)·(y2\x))
P2: ∀x, y1, y2 (x/y1)·(((x/y1)·(y2\y1))·(y2\y1)) = ((x/y1)·((x/y1)·(y2\x)))·(y2\x)
P3: ∀x, y1, y2 (x/y1) = ((x/y1)·(y2\x))·(y2\x)
P4: |G(3, 3, 4)| = 0 P5: |G(3, 3, 3)| = 0 P6: |G(2, 3, 3)| = 0
P7: |G(2, 2, 2)| = 7 P8: |G(2, 3, 3)| = 8 P9: |G(2, 2, 2)| = 0
P10: |G(2, 2, 2)| = 9
P11: |G(4, 4, P2,2)| = 0 ∧ P2,2 = (0, 1, 12, 23, 0, 0)
P12: |G(3, 3, 3)| = 8 P13: |G(2, 2, 2)| = 5 P14: |G(2, 3, 3)| = 4
P15: |G(3, 2, 3)| = 4 P16: |G(2, 2, 2)| = 4 P17: |G(2, 2, 2)| = 11

Then loops of order 6 are characterised up to isotopism by one of the following
conjunctions of properties:

(¬P1 ∧ ¬P2) (¬P1 ∧ P2 ∧ P3)
(¬P1 ∧ P2 ∧ ¬P3) (P1 ∧ P4 ∧ P5 ∧ ¬P6 ∧ P7)
(P1 ∧ P4 ∧ P5 ∧ ¬P6 ∧ ¬P7) (P1 ∧ P4 ∧ P5 ∧ P6 ∧ P7)
(P1 ∧ P4 ∧ P5 ∧ P6 ∧ ¬P7 ∧ P8) (P1 ∧ P4 ∧ P5 ∧ P6 ∧ ¬P7 ∧ ¬P8)
(P1 ∧ P4 ∧ ¬P5 ∧ P9) (P1 ∧ P4 ∧ ¬P5 ∧ ¬P9 ∧ ¬P10)

(P1 ∧ P4 ∧ ¬P5 ∧ ¬P9 ∧ P10 ∧ P11) (P1 ∧ P4 ∧ ¬P5 ∧ ¬P9 ∧ P10 ∧ ¬P11)
(P1 ∧ ¬P4 ∧ P6 ∧ P7) (P1 ∧ ¬P4 ∧ P6 ∧ ¬P7 ∧ P12)
(P1 ∧ ¬P4 ∧ P6 ∧ ¬P7 ∧ ¬P12) (P1 ∧ ¬P4 ∧ ¬P6 ∧ ¬P13 ∧ P14 ∧ P15)
(P1 ∧ ¬P4 ∧ ¬P6 ∧ ¬P13 ∧ P14 ∧ ¬P15) (P1 ∧ ¬P4 ∧ ¬P6 ∧ ¬P13 ∧ ¬P14)
(P1 ∧ ¬P4 ∧ ¬P6 ∧ P13 ∧ P16) (P1 ∧ ¬P4 ∧ ¬P6 ∧ P13 ∧ ¬P16 ∧ ¬P14)
(P1 ∧ ¬P4 ∧ ¬P6 ∧ P13 ∧ ¬P16 ∧ P14 ∧ P17) (P1 ∧ ¬P4 ∧ ¬P6 ∧ P13 ∧ ¬P16 ∧ P14 ∧ ¬P17)

Isomorphism classification theorem for quasigroups up to order 4

We are given the following five functions which return coefficients of element types
for quasigroups, Q:

Classification results via automated reasoning 337

f1(Q) = |{b : b ∈ Q}|
f2(Q) = 0 if 6 ∃x x ∗ x = x or f2(Q) = |{b : ∃d (d ∗ d = b)}| otherwise
f3(Q) = |{b : ∃c ∃d (c ∗ b = b ∗ c = d ∧ c ∗ d 6= b ∧ b ∗ d 6= c)}|
f4(Q) = |{b : ∃c ∃d (c ∗ d = d ∗ c = b ∧ b ∗ c 6= d)}|
f5(Q) = |{b : (b ∗ b) ∗ b = b}|

Then, quasigroups up to and including size 4 are characterised up to isomorphism
by the following parameterisations:

1.1) f1 = 1 2.1) f1 = 2
3.1) f1 = 3 ∧ f2 = 0 3.2) f1 = 3 ∧ f2 = 3 ∧ f3 = 2
3.3) f1 = 3 ∧ f2 = 3 ∧ f3 = 0 3.4) f1 = 3 ∧ f2 = 1 ∧ f3 = 2
3.5) f1 = 3 ∧ f2 = 1 ∧ f3 = 0 4.1) f1 = 4 ∧ f2 = 1 ∧ f3 = 4
4.2) f1 = 4 ∧ f2 = 4 ∧ f3 = 2 4.3) f1 = 4 ∧ f2 = 4 ∧ f3 = 3
4.4) f1 = 4 ∧ f2 = 2 ∧ f3 = 4 4.5) f1 = 4 ∧ f2 = 0 ∧ f3 = 0
4.6) f1 = 4 ∧ f2 = 3 ∧ f3 = 0 4.7) f1 = 4 ∧ f2 = 2 ∧ f3 = 3
4.8) f1 = 4 ∧ f2 = 3 ∧ f3 = 1 4.9) f1 = 4 ∧ f2 = 1 ∧ f3 = 0 ∧ f4 = 0
4.10) f1 = 4 ∧ f2 = 1 ∧ f3 = 2 ∧ f4 = 4 4.11) f1 = 4 ∧ f2 = 2 ∧ f3 = 0 ∧ f4 = 2
4.12) f1 = 4 ∧ f2 = 2 ∧ f3 = 2 ∧ f4 = 0 4.13) f1 = 4 ∧ f2 = 0 ∧ f3 = 4 ∧ f4 = 2
4.14) f1 = 4 ∧ f2 = 4 ∧ f3 = 0 ∧ f4 = 3 4.15) f1 = 4 ∧ f2 = 4 ∧ f3 = 0 ∧ f4 = 0
4.16) f1 = 4 ∧ f2 = 0 ∧ f3 = 4 ∧ f4 = 4 4.17) f1 = 4 ∧ f2 = 2 ∧ f3 = 2 ∧ f4 = 2
4.18) f1 = 4 ∧ f2 = 2 ∧ f3 = 2 ∧ f4 = 4 4.19) f1 = 4 ∧ f2 = 2 ∧ f3 = 0 ∧ f4 = 0
4.20) f1 = 4 ∧ f2 = 1 ∧ f3 = 2 ∧ f4 = 0 4.21) f1 = 4 ∧ f2 = 1 ∧ f3 = 0 ∧ f4 = 2
4.22) f1 = 4 ∧ f2 = 0 ∧ f3 = 3 ∧ f4 = 4 4.23) f1 = 4 ∧ f2 = 0 ∧ f3 = 3 ∧ f4 = 0
4.24) f1 = 4 ∧ f2 = 0 ∧ f3 = 3 ∧ f4 = 3 4.25) f1 = 4 ∧ f2 = 0 ∧ f3 = 3 ∧ f4 = 2
4.26) f1 = 4 ∧ f2 = 3 ∧ f3 = 3 ∧ f4 = 0 4.27) f1 = 4 ∧ f2 = 3 ∧ f3 = 3 ∧ f4 = 2
4.28) f1 = 4 ∧ f2 = 3 ∧ f3 = 2 ∧ f4 = 3 4.29) f1 = 4 ∧ f2 = 3 ∧ f3 = 3 ∧ f4 = 3
4.30) f1 = 4 ∧ f2 = 0 ∧ f3 = 2 ∧ f4 = 2 ∧ f5 = 0
4.31) f1 = 4 ∧ f2 = 0 ∧ f3 = 2 ∧ f4 = 2 ∧ f5 = 2
4.32) f1 = 4 ∧ f2 = 3 ∧ f3 = 2 ∧ f4 = 2 ∧ f5 = 1
4.33) f1 = 4 ∧ f2 = 3 ∧ f3 = 2 ∧ f4 = 2 ∧ f5 = 2
4.34) f1 = 4 ∧ f2 = 1 ∧ f3 = 3 ∧ f4 = 2 ∧ f5 = 2
4.35) f1 = 4 ∧ f2 = 1 ∧ f3 = 3 ∧ f4 = 2 ∧ f5 = 1

8. Conclusions

We have presented the methods behind and results from a series of applications
of automated reasoning techniques to the classification of loops and quasigroups.
In particular, we have used machine learning techniques to find isomorphic invari-
ants both as first order properties and as a numerical parameterisations over set
sizes. Moreover, we have introduced novel methods for producing isotopic invari-
ants, based on equational methods and the analysis of sub-blocks within algebraic
structures. In addition, we have described the usage of numerous reasoning tech-
niques, including first order resolution theorem proving, model generation, satis-
fiability solving and computer algebra methods in the automated verification of
the classification theorems produced. These techniques have been combined into
a bootstrapping approach which has been successfully used to produce novel full
classification theorems for loops and quasigroups up to isomorphism and isotopy.
In addition to increasing somewhat our understanding of these algebraic domains,

338 V. Sorge, S.Colton, R.McCasland, A.Meier

this application has pushed the boundaries of what is achievable in automated
mathematics.

In future work, we intend to address some bottlenecks in the bootstrapping pro-
cess, in order to progress to classifying higher orders. In particular, we intend to
explore the usage of more powerful theorem proving methods, and to re-introduce
the machine learning method — with improvements — to the problem of find-
ing isotopic invariants. Our ultimate aim is to add to the general classification of
loops and quasigroups. To do this, we intend to automatically find families of such
algebraic structures, where a family is parameterised by a pair 〈S, b(n)〉, where S
is a set of properties that all members of the family have and which characterises
them with respect to the isomorphism/isotopism equivalence relation, and b(n)
is a Boolean test on integers which, if positive for a particular n prescribes that
the family will have a member of order n. This will be a significant challenge to
automate, as it amounts to a second-order problem, and hence we will need to
employ higher-order theorem provers.

References

[1] Alur R., Peled D., Eds., Computer Aided Verification, 16th International Conference, CAV
2004, vol. 3114 of LNCS, Springer, Boston, MA, 2004.

[2] Barrett C., Berezin S., CVC Lite: A new implementation of the cooperating validity checker,
in Alur and Peled [1], pp. 515–518.

[3] Colton S., Automated Theory Formation in Pure Mathematics, Springer, 2002.

[4] Colton S., Bundy A., Walsh T., Automatic identification of mathematical concepts, in
Machine Learning: Proceedings of the 17th International Conference, 2000, pp. 183–190.

[5] Colton S., Meier A., Sorge V., McCasland R., Automatic Generation of classification the-
orems for finite algebras, in David Basin and Michael Rusinowitch, Eds., Automated Rea-
soning — 2nd International Joint Conference, IJCAR 2004, vol. 3097 of LNAI , Springer,
Cork, Ireland, 2004, pp. 400–414,.

[6] Colton S., Muggleton S., Mathematical applications of inductive logic programming, Ma-
chine Learning 64 (2006), 25–64.

[7] Falconer E., Isotopy invariants in quasigroups, Trans. Amer. Math. Society 151 (1970),
511–526.

[8] Ganzinger H., Hagen G., Nieuwenhuis R., Oliveras A., Tinelli C., DPLL(T): Fast decision
procedures, in Alur and Peled [1], pp. 175–188.

[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.3, 2002,
http://www.gap-system.org.

[10] Kronecker L., Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer kom-
plexer Zahlen, Monatsbericht der Berliner Akademie, pp. 881–889, 1870.

[11] McCune W., Mace4 Reference Manual and Guide, Argonne National Laboratory, 2003.
ANL/MCS-TM-264.

[12] McCune W., Otter 3.3 Reference Manual, Technical Report ANL/MCS-TM-263, Argonne
National Laboratory, 2003.

[13] Meier A., Sorge V., Applying SAT solving in classification of finite algebras, J. Automat.
Reason. 35 (2005), no. 1–3, 201–235.

[14] Mitchell T., Machine Learning, McGraw Hill, New York, 1997.

Classification results via automated reasoning 339

[15] Moskewicz M., Madigan C., Zhao Y., Zhang L., Malik S., Chaff: Engineering an efficient
SAT solver, in Proc. of the 39th Design Automation Conference (DAC 2001), Las Vegas,
2001, pp. 530–535.

[16] Riazanov A., Voronkov A., Vampire 1.1, in Rejeev Goré, Alexander Leitsch, and Tobias
Nipkow, Eds., Automated Reasoning — 1st International Joint Conference, IJCAR 2001,
vol. 2083 of LNAI, Springer, Siena, Italy, 2001, pp. 376–380.

[17] Schulz S., E: A Brainiac theorem prover, Journal of AI Communication 15 (2002), no. 2–3,
111–126.

[18] Slaney J., FINDER, Notes and Guide, Center for Information Science Research, Australian
National University, 1995.

[19] Slaney J., Fujita M., Stickel M., Automated reasoning and exhaustive search: Quasigroup
existence problems, Comput. Math. Appl. 29 (1995), 115–132.

[20] Sorge V., Meier A., McCasland R., Colton S., The automatic construction of isotopy invari-
ants, in Third International Joint Conference on Automated Reasoning, 2006, pp. 36–51.

[21] Weidenbach C., Brahm U., Hillenbrand T., Keen E., Theobald C., Topic D., SPASS Ver-
sion 2.0, in A. Voronkov, Ed., Proc. of the 18th International Conference on Automated
Deduction (CADE–18), vol. 2392 of LNAI, Springer, Berlin, 2002, pp. 275–279.

[22] Zhang J., Zhang H., SEM User’s Guide, Department of Computer Science, University of
Iowa, 2001.

School of Computer Science, University of Birmingham, UK

E-mail : V.Sorge@cs.bham.ac.uk
URL : http://www.cs.bham.ac.uk/∼vxs

Department of Computing, Imperial College London, UK

E-mail : sgc@doc.ic.ac.uk
URL : http://www.doc.ic.ac.uk/∼sgc

School of Informatics, University of Edinburgh, UK

E-mail : rmccasla@inf.ed.ac.uk
URL : http://www.inf.ed.ac.uk/∼rmccasla

DFKI GmbH, Saarbrücken, Germany

E-mail : ameier72@web.de
URL : http://www.ags.uni-sb.de/∼ameier

(Received October 16, 2007, revised November 24, 2007)

		webmaster@dml.cz
	2013-09-22T09:38:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

