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Abstract

Lakatos outlined a theory of mathematical discovery and justification, which suggests ways in

which concepts, conjectures and proofs gradually evolve via interaction between mathemati-

cians. Different mathematicians may have different interpretations of a conjecture, examples

or counterexamples of it, and beliefs regarding its value ortheoremhood. Through discussion,

concepts are refined and conjectures and proofs modified. We hypothesise that(i) it is possible

to computationally represent Lakatos’s theory, and(ii) it is useful to do so. In order to test our

hypotheses we have developed a computational model of his theory.

Our model is a multiagent dialogue system. Each agent has a copy of a pre-existing theory for-

mation system, which can form concepts and make conjectureswhich empirically hold for the

objects of interest supplied. Distributing the objects of interest between agents means that they

form different theories, which they communicate to each other. Agents then find counterex-

amples and use methods identified by Lakatos to suggest modifications to conjectures, concept

definitions and proofs.

Our main aim is to provide a computational reading of Lakatos’s theory, by interpreting it as a

series of algorithms and implementing these algorithms as acomputer program.

This is the first systematic automated realisation of Lakatos’s theory. We contribute to the com-

putational philosophy of science by interpreting, clarifying and extending his theory. We also

contribute by evaluating his theory, using our model to testhypotheses about it, and evaluat-

ing our extended computational theory on the basis of criteria proposed by several theorists.

A further contribution is to automated theory formation andautomated theorem proving. The

process of refining conjectures, proofs and concept definitions requires a flexibility which is

inherently useful in fields which handle ill-specified problems, such as theory formation. Sim-

ilarly, the ability to automatically modify an open conjecture into one which can be proved, is

a valuable contribution to automated theorem proving.

iii



Acknowledgements

Thank you to my supervisors Alan Smaill, John Lee and Simon Colton, who have constantly

inspired and helped me. In particular, thanks to Alan, who isthe cleverest and kindest man

that I know, to John for all his patience and encouragement, and to Simon for his endless

enthusiasm, energy and ideas. I’ve really enjoyed working with you.

I am hugely indebted to Simon for his HR program. This has formed the backbone of the

project and Simon has untiringly answered questions and supported me in learning about the

program. I think it is unusual to get this level of support, and Simon has been fantastic.

I would also like to thank my examiners Aaron Sloman and Paul Schweizer, who made my

viva an enjoyable, stimulating and challenging afternoon.They have made many valuable

contributions to the thesis and have been particularly inspiring as to future directions that this

project may now take.

Thanks also to all of the DReaMers, especially Fiona McNeill, Laura Meikle, Alex Heneveld,

Lucas Dixon, Graham Steel, Ewen Maclean and Manuel Contreras Maya. Thanks to all the

boys – Colin Fraser, Seb Mhatre, Dan Winterstein, Joe Halliwell and Paul Crook. Paul de-

serves special thanks; we have worked together from the veryfirst to the very last day, and

this has made these last few years really enjoyable. Thanks to everyone in my family for their

encouragement. Lastly, I’d like to thank Marcus Pearce for all his love and support.

This work has been supported by EPSRC grant GR/M45030, for which I am very grateful.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except asspecified.

(Alison Pease)

v





Publications

Parts of chapter 2 and 11 have appeared in the Journal of Computing and Philosophy (ECAP)

[Pease et al., 2004].

Parts of chapter 6 have appeared in the Proceedings of Edilog2002, the 6th Workshop on the

Semantics and Pragmatics of Dialogue, Pease et al. [2002].

Parts of chapter 12 have appeared in the Proceedings of the Automated Reasoning Work-

shop, 2004 [Pease and Colton, 2004], and Workshop on Disproving, Proceedings of IJCAR’04,

[Colton and Pease, 2004].

vii





Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aims of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

1.4 Organisation of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 6

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Computational Philosophy of Science 9

2.1 Computational Philosophy of Science . . . . . . . . . . . . . . . .. . . . . . 9

2.2 Lakatos’s logic of discovery and justification in mathematics . . . . . . . . . . 11

2.3 Lakatos’s three main methods . . . . . . . . . . . . . . . . . . . . . . .. . . 13

2.3.1 The method of monster-barring . . . . . . . . . . . . . . . . . . . .. 13

2.3.2 The method of exception-barring . . . . . . . . . . . . . . . . . .. . . 13

2.3.3 The method of proofs and refutations . . . . . . . . . . . . . . .. . . 14

2.4 Reaction to Lakatos’s theory . . . . . . . . . . . . . . . . . . . . . . .. . . . 15

2.5 A computational reading of Lakatos’s theory . . . . . . . . . .. . . . . . . . . 16

2.6 Possible objections to a model of Lakatos’s ideas . . . . . .. . . . . . . . . . 16

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



3 Background 19

3.1 Automated theory formation and HR . . . . . . . . . . . . . . . . . . .. . . . 19

3.1.1 Representation of objects of interest and concepts inHR . . . . . . . . 20

3.1.2 Generation of concepts and conjectures in HR . . . . . . . .. . . . . . 24

3.1.3 Evaluation of concepts and conjectures in HR . . . . . . . .. . . . . . 29

3.1.4 Representing a theory in HR . . . . . . . . . . . . . . . . . . . . . . .32

3.1.5 Using HR in a multiagent system . . . . . . . . . . . . . . . . . . . .33

3.2 Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

3.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Agent design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Society design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Argumentation-based negotiation . . . . . . . . . . . . . . . .. . . . 37

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Evaluating theories within the philosophy of science. . . . . . . . . . 39

3.3.2 Thagard’s criteria for evaluating theories . . . . . . . .. . . . . . . . 39

3.3.3 Sloman’s criteria for evaluating theories . . . . . . . . .. . . . . . . . 40

3.3.4 Popper’s criteria for evaluating theories . . . . . . . . .. . . . . . . . 41

3.3.5 Lakatos’s criteria for evaluating theories . . . . . . . .. . . . . . . . . 42

3.3.6 Summary of criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



4 Overview of HRL 45

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Agent design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Society design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.4 Extensions to HR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Parameter values and their selection . . . . . . . . . . . . . . . .. . . . . . . 51

4.6 Further details of HRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

4.7 HRL and machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 The method of surrender 55

5.1 Lakatos’s method of surrender . . . . . . . . . . . . . . . . . . . . . .. . . . 55

5.1.1 Two types of surrender . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 When should we give up on a conjecture? . . . . . . . . . . . . . .. . 56

5.2 Algorithm for the method of surrender . . . . . . . . . . . . . . . .. . . . . . 57

5.3 Illustrative sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57

5.3.1 Session one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Session two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Session three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



6 The method of monster-barring 63

6.1 Lakatos’s method of monster-barring . . . . . . . . . . . . . . . .. . . . . . . 64

6.2 Monster-barring in other mathematical domains . . . . . . .. . . . . . . . . . 67

6.3 Key points in monster-barring . . . . . . . . . . . . . . . . . . . . . .. . . . 71

6.4 Implementing monster-barring . . . . . . . . . . . . . . . . . . . . .. . . . . 71

6.4.1 Lakatos’s distinction between concepts and definitions . . . . . . . . . 72

6.4.2 Making a concept less ambiguous . . . . . . . . . . . . . . . . . . .. 72

6.4.3 Concept stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.4 When to perform monster-barring . . . . . . . . . . . . . . . . . .. . 73

6.4.5 Two decision points . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.6 Social dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.7 Further design considerations . . . . . . . . . . . . . . . . . . .. . . 76

6.5 The monster-barring algorithms . . . . . . . . . . . . . . . . . . . .. . . . . 77

6.6 Illustrative sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 81

6.6.1 Session one: barring the number one . . . . . . . . . . . . . . . .. . . 81

6.6.2 Session two: adding the number one . . . . . . . . . . . . . . . . .. . 82

6.6.3 Session three: barring the number zero . . . . . . . . . . . . .. . . . 82

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.8.1 Work on ambiguity and argumentation . . . . . . . . . . . . . . .. . . 86

6.8.2 Different interpretations of terms . . . . . . . . . . . . . . .. . . . . . 88

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



7 The method of exception-barring 91

7.1 Exceptions in Mathematics . . . . . . . . . . . . . . . . . . . . . . . . .. . . 91

7.2 Using exceptions to further knowledge: their uses and limits . . . . . . . . . . 92

7.3 Lakatos’s two methods of exception-barring . . . . . . . . . .. . . . . . . . . 93

7.4 Exception-barring in Number Theory . . . . . . . . . . . . . . . . .. . . . . 94

7.5 Exception-barring and other types of conjecture . . . . . .. . . . . . . . . . . 95

7.6 Piecemeal Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98

7.6.1 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99

7.7 Counterexample barring . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 100

7.7.1 The counterexample-barring algorithm . . . . . . . . . . . .. . . . . 102

7.7.2 Illustrative sessions . . . . . . . . . . . . . . . . . . . . . . . . . .. . 102

7.8 Strategic Withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 103

7.8.1 Illustrative sessions . . . . . . . . . . . . . . . . . . . . . . . . . .. . 104

7.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.9.1 The boosting technique . . . . . . . . . . . . . . . . . . . . . . . . . .105

7.9.2 Work in diagrammatic reasoning . . . . . . . . . . . . . . . . . . .. . 106

7.9.3 Hayes-Roth’s heuristics for repairing flawed plans . .. . . . . . . . . 106

7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 A computational representation of Cauchy’s proof 111

8.1 Cauchy’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Using counterexamples to improve a faulty conjecture and a faulty proof . . . . 114

8.3 Representing Cauchy’s proof in HRL . . . . . . . . . . . . . . . . . .. . . . . 115

8.3.1 Using Haggith’s argument structures to represent Cauchy’s proof . . . 115

xiii



8.3.2 Writing the proof as a series of Java methods . . . . . . . . .. . . . . 117

8.3.3 Using HR’s production rules and conjecture making mechanisms to

represent Cauchy’s proof . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.4 A hybrid representation of Cauchy’s proof . . . . . . . . . . . .. . . . . . . . 120

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 The method of lemma-incorporation 123

9.1 Three types of counterexample . . . . . . . . . . . . . . . . . . . . . .. . . . 124

9.1.1 Local, but not global counterexamples . . . . . . . . . . . . .. . . . . 124

9.1.2 Global and local counterexamples . . . . . . . . . . . . . . . . .. . . 125

9.1.3 Global, but not local counterexamples . . . . . . . . . . . . .. . . . . 125

9.2 Discussion of the method of lemma-incorporation . . . . . .. . . . . . . . . . 126

9.2.1 Combining the methods . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.2.2 Identifying a problem lemma in hidden lemma-incorporation . . . . . . 127

9.2.3 Controversy over whether a global counterexample is local or not . . . 128

9.2.4 Thetypeof counterexamples in hidden lemma-incorporation . . . . . . 129

9.2.5 The number of applications of lemma-incorporation . .. . . . . . . . 130

9.3 Lemma-incorporation applied to other examples . . . . . . .. . . . . . . . . . 130

9.3.1 Cauchy’s Principle of Continuity . . . . . . . . . . . . . . . . .. . . . 130

9.3.2 Hilbert’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3.3 An example in group theory . . . . . . . . . . . . . . . . . . . . . . . 134

9.4 Determining which type of lemma-incorporation to perform . . . . . . . . . . 136

9.5 Given a counterexample which is local but not global . . . .. . . . . . . . . . 138

9.5.1 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 139

xiv



9.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.6 Given a counterexample which is both global and local . . .. . . . . . . . . . 141

9.6.1 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141

9.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.6.3 An example in groupoid theory . . . . . . . . . . . . . . . . . . . . .143

9.6.4 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144

9.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.7 Given a global but not local counterexample . . . . . . . . . . .. . . . . . . . 145

9.7.1 Modelling surprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.7.2 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 148

9.7.3 Algorithm for hidden lemma-incorporation . . . . . . . . .. . . . . . 151

9.7.4 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151

9.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.8 The method of proofs and refutations . . . . . . . . . . . . . . . . .. . . . . . 154

9.8.1 Illustrative session . . . . . . . . . . . . . . . . . . . . . . . . . . .. 154

9.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10 Testing hypotheses in HRL 157

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157

10.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 158

10.2.1 Variables in HRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.2.2 Variables at the student level . . . . . . . . . . . . . . . . . . .. . . . 158

10.2.3 Variables at the agency level . . . . . . . . . . . . . . . . . . . .. . . 160

xv



10.2.4 Variable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

10.2.5 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.3 It is possible to fine-tune the method of surrender . . . . .. . . . . . . . . . . 163

10.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

10.3.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . .. 164

10.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.4 It is possible to fine-tune the method of monster-barring . . . . . . . . . . . . . 168

10.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

10.4.2 When to propose to bar an object . . . . . . . . . . . . . . . . . . .. 169

10.4.3 How to perform monster-barring . . . . . . . . . . . . . . . . . .. . . 169

10.4.4 How to evaluate a proposal to bar an object . . . . . . . . . .. . . . . 170

10.4.5 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172

10.4.6 When to propose to bar an object: results and discussion . . . . . . . . 174

10.4.7 How to perform monster-barring: results and discussion . . . . . . . . 175

10.4.8 How to evaluate a proposal to bar an object: results and discussion . . . 178

10.5 It is possible to fine-tune the method of exception-barring . . . . . . . . . . . . 181

10.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

10.5.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . .. 184

10.5.3 Communal piecemeal exclusion results . . . . . . . . . . . .. . . . . 184

10.5.4 Piecemeal exclusion and counterexample-barring results . . . . . . . . 185

10.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.5.6 Strategic withdrawal results . . . . . . . . . . . . . . . . . . .. . . . 188

10.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

xvi



11 Philosophical evaluation 191

11.1 Recap of criteria of a good theory . . . . . . . . . . . . . . . . . . .. . . . . 192

11.2 The criteria in terms of sets . . . . . . . . . . . . . . . . . . . . . . .. . . . . 192

11.3 Evaluating the method of surrender . . . . . . . . . . . . . . . . .. . . . . . . 194

11.4 Evaluating the method of monster-barring . . . . . . . . . . .. . . . . . . . . 196

11.4.1 Ambiguity in theory formation . . . . . . . . . . . . . . . . . . .. . . 196

11.4.2 When to perform monster-barring . . . . . . . . . . . . . . . . .. . . 196

11.4.3 Proposing a new definition . . . . . . . . . . . . . . . . . . . . . . .. 199

11.5 Evaluating the method of exception-barring . . . . . . . . .. . . . . . . . . . 200

11.6 Evaluating the method of lemma-incorporation . . . . . . .. . . . . . . . . . 201

11.7 Further criteria of a good theory . . . . . . . . . . . . . . . . . . .. . . . . . 202

11.7.1 A theory should explain a range of possibilities . . . .. . . . . . . . . 202

11.7.2 A good theory should be definite . . . . . . . . . . . . . . . . . . .. . 202

11.7.3 A good theory should be rigorous . . . . . . . . . . . . . . . . . .. . 203

11.7.4 A good theory should be economical . . . . . . . . . . . . . . . .. . . 203

11.7.5 A good theory should be extendable . . . . . . . . . . . . . . . .. . . 204

11.8 Answers suggested by the computational approach . . . . .. . . . . . . . . . 204

11.8.1 The scope of the methods . . . . . . . . . . . . . . . . . . . . . . . . 204

11.8.2 Applying Lakatos’s methods to other types of conjecture . . . . . . . . 206

11.8.3 Comparing the methods . . . . . . . . . . . . . . . . . . . . . . . . . 207

11.9 Applying Lakatos’s MSRP to this project . . . . . . . . . . . . .. . . . . . . 207

11.9.1 Falsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xvii



12 Application to automated theorem proving 213

12.1 The Theorem Modifier System . . . . . . . . . . . . . . . . . . . . . . . .. . 213

12.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 215

12.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

13 Further work 217

13.1 Improving our implementation of Lakatos’s methods . . .. . . . . . . . . . . 217

13.1.1 Extending the method of surrender . . . . . . . . . . . . . . . .. . . . 217

13.1.2 Extending the method of monster-barring . . . . . . . . . .. . . . . . 218

13.1.3 Implementing the method of monster-adjusting . . . . .. . . . . . . . 219

13.2 Generating an initial problem and an initial proof scheme . . . . . . . . . . . . 220

13.2.1 Generating an initial problem . . . . . . . . . . . . . . . . . . .. . . 220

13.2.2 Generating an initial proof scheme . . . . . . . . . . . . . . .. . . . . 223

13.3 A more sophisticated agency . . . . . . . . . . . . . . . . . . . . . . .. . . . 224

13.4 Flexible parameter settings . . . . . . . . . . . . . . . . . . . . . .. . . . . . 226

13.5 A cognitively plausible notion of mathematical concepts . . . . . . . . . . . . 227

13.6 Applications of our system . . . . . . . . . . . . . . . . . . . . . . . .. . . . 229

13.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

14 Conclusions 233

14.1 Have we achieved our aims? . . . . . . . . . . . . . . . . . . . . . . . . .. . 233

14.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 235

14.2.1 Computational philosophy of science . . . . . . . . . . . . .. . . . . 235

14.2.2 Automated theory formation . . . . . . . . . . . . . . . . . . . . .. . 235

14.2.3 Automated theorem proving . . . . . . . . . . . . . . . . . . . . . .. 235

14.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

xviii



A Polyhedra and their Euler characteristic 237

B Mathematical proofs 239

B.1 Proof of Euler’s conjecture . . . . . . . . . . . . . . . . . . . . . . . .. . . . 239

B.2 The Diagonalisation proof . . . . . . . . . . . . . . . . . . . . . . . . .. . . 240

B.3 Hilbert’s proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 240

C Output from HRL 243

C.1 Lemma-incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 243

D Further details of HR 245

D.1 Production rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 245

Glossary of Philosophical terms 251

Glossary of Mathematical terms 253

Bibliography 255

xix





List of Figures

3.1 The construction path of the concepts in the conjectureall primes are non-

square, whereb|a means thatb divides a, a∗b meansa multiplied by b, “&” is

the logical connectiveand, and|{b : b|a}| meansthe size of the set of elements

b such that b divides a. The arrows between nodes represent the derivation

which takes place when the given production rule and parameterisations are

applied to an “old” concept, to get a new concept, with the direction of the

arrow denoting going from old to new. . . . . . . . . . . . . . . . . . . . .. . 33

4.1 The interaction protocol of HRL . . . . . . . . . . . . . . . . . . . . .. . . . 49

4.2 A Venn Diagram representation of the conjecture that forall x, prime(x)!

odd(x), where x is an integer between 1 and 10 . . . . . . . . . . . . . . . . . 50

7.1 Counterexamples to Euler’s conjecture - for all polyhedra, V-E+F = 2 . . . . . 92

7.2 Supporting examples for Euler’s conjecture; these are all convex . . . . . . . . 93

7.3 A Venn-diagram representation of the conjecture: for all polyhedra, V-E+F = 2 97

7.4 primes! odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1 Given the cube, after removing a face and stretching it flat, we are left with

the network in part 1. After triangulating, we get part 2. When removing a

triangle, we either remove one edge and one face, or two edges, one vertex and

a face – shown in parts 3(a) and (b) respectively. . . . . . . . . . .. . . . . . . 113

8.2 The picture frame, for whichV −E+F = 16−32+16= 0 . . . . . . . . . . 114

8.3 The original proof of Euler’s conjecture, represented in Haggith’s terms. The

arrows represent the justification relation. . . . . . . . . . . . .. . . . . . . . 117

xxi



8.4 The first counter-argument, represented in Haggith’s terms. Unmarked arrows

represent the justification relation. . . . . . . . . . . . . . . . . . .. . . . . . 118

9.1 Given the network which results from taking the cube, removing a face and

stretching it flat, and triangulating, we can remove a triangle which results in

removing one face, no edges and no vertices. . . . . . . . . . . . . . .. . . . 125

9.2 If we remove a face from the cylinder and stretch it flat, then we either get case

1, if we remove an end face, or case 2, if we remove the jacket. Either way, we

have satisfied the first lemma. . . . . . . . . . . . . . . . . . . . . . . . . . .. 127

9.3 Diagram of Hilbert’s proof of the theorem that for two points A and C, there

always exists at least one point D on the line AC that lies between A and C. In

the first figure, A and C are different points, and in the second, they are the same.132

9.4 Given this graph, the concept ‘remove triangle from graph’ returns graphs re-

sulting from removing trianglee f g, or from removing triangleab f. . . . . . . 139

9.5 The ancestor tree for the right hand concept in lemma (1) .. . . . . . . . . . . 150

10.1 Results from testing the surrender variables. The numbers denote the sessions,

and student one is represented as S1, etc.. The bottom right quadrant contains

true positives; the top right quadrant contains false positives; the bottom left

quadrant contains false negatives; and the top left quadrant contains true nega-

tives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2 The number of conjectures for which each of the five surrender variables give

us desirable (above thex-axis) or undesirable (below thex-axis) results . . . . . 167

10.3 The percentage of correct classifications, given a proposed monster, for each

domain: sessions 49 - 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.4 The average percentage of correct classifications, given a proposed monster,

over the three domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.5 The exception-barring results for sessions 2 - 16. In those sessions which do

not appear, no modifications were performed. Session numbers appear in the

figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xxii



11.1 A simplified Venn diagram representation of Lakatos’s inspiring set (I ), the

mathematical conjectures which his theory explains (E), our inspiring set (I1),

and the mathematical conjectures which our theory explains(E1) . . . . . . . . 194

13.1 The star polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 220

13.2 Building an interface between a HRL, a schematic proof generator and a model

generator would make a more complete cycle of mathematical discovery and

justification. Automating step two would be a further project. . . . . . . . . . . 224

A.1 Regular polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237

A.2 The hollow cube: V - E + F = 16 - 24 + 12 = 4 . . . . . . . . . . . . . . . . . .237

A.3 The twin tetrahedra: V - E + F = 6 - 11 + 8 = 3 . . . . . . . . . . . . . . . .. 238

A.4 The picture frame: V - E + F = 16 - 32 + 16 = 0 . . . . . . . . . . . . . . . .. 238

A.5 The cylinder: V - E + F = 0 - 2 + 3 = 1 . . . . . . . . . . . . . . . . . . . . . . 238

A.6 The star polyhedron: V - E + F = 12 - 30 + 12 = -6 (if each face isa pentagon);

or 32 - 90 + 60 = 2 (if each face is a triangle) . . . . . . . . . . . . . . . .. . 238

B.1 The two possible connected plane graphs consisting of one edge, and their

associated Euler characteristics . . . . . . . . . . . . . . . . . . . . .. . . . . 239

B.2 Hilbert’s proof of the theorem that for two points A and C there always exists

at least one point D on the line AC that lies between A and C. . . .. . . . . . . 241

xxiii





Chapter 1

Introduction

Historically there are strong relationships between mathematics, the philosophy of mathemat-

ics, artificial intelligence, logic and computer science. In many ways these relationships are

symbiotic. For instance, Frege developed predicate calculus as part of his program to reduce

arithmetic to logic [Frege, 1879]. Robinson later developed the clausal form of predicate cal-

culus, which is used in logic programming languages, such asPROLOG, and, along with his

resolution principle, in automated theorem proving systems. Similarly, Russell and White-

head’s attempts to reduce mathematics to logic [Whitehead and Russell, 1913], in which they

developed type theory, had important, albeit unintended, implications for computer science.

Church developed another theory of types, and inventedλ-calculus, intending it to provide a

new foundation for logic in the style of Russell and Whitehead [Church, 1932]. This calculus,

which focused on functions rather than classes, became the basis ofLISP and other functional

programming languages, and is strongly typed. Thus, philosophically and mathematically mo-

tivated work turned out to have important implications for computer science (these connections

are shown in [Gillies, 2002]). Conversely, Gillies argues,ideas developed in computer science,

such as non-monotonic logic, and more specifically the programming languagePROLOG, have

filtered back into logical theory.Negation as failure, in which ¬p is derived from failure to

derive p, is one example of a new non-monotonic inference rule which was developed in a

computer science context.

Gillies [1996] examines the interaction between theories of scientific method and develop-

ments in AI. He outlines the philosophical debate between inductivists, such as Bacon, and

anti-inductivists, such as Popper. Bacon argued that his definition of induction, generalis-

ing from a large number of independently observed patterns to a universal law, is the proper

methodology of science. Additionally, he thought that it isa mechanical procedure which is not

dependent on the intelligence or imagination of a scientist. Popper argued that it is impossible

1
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to observe without a pre-existing theory which enables selection of observation, a language and

a context. He also attempted to avoid using induction in science, developing his falsification

methodology, whereby a scientist starts with a conjecture (which may require great leaps of

intuition and imagination to devise), rather than an observation, and then attempts to refute it.

Gillies claims that machine-learning algorithms have brought into existence inductive rules of

inference, which is a mechanical method for generating hypotheses from a data set. He argues

that machine learning systems such asID3 [Quinlan, 1979, 1986] andGOLAM [Muggleton and

Feng, 1992] which make inductive inferences based on many observations, can be seen as new

tools for human scientists to use. Thus, many of Bacon’s ideas about how induction has been

carried out have been incorporated into successful machine-learning programs. This provides

new support for Bacon’s position in philosophy of science. However, there is also support for

Popper’s position, in that the rules used in machine learning do use background knowledge.

Additionally, falsification plays a role in the process of testing hypotheses which have been

induced (iterating a basic inductive rule of inference to produce a final rule). Therefore work

in machine learning has affected the inductivist/anti-inductivist debate in the philosophy of

science.

More generally, since Turing [1950] famously devised his computational experiment in order

to answer the question “can machines think?”, barriers between philosophy and AI have begun

to blur. Sloman [1978] argues that philosophers of the future will learn via computational mod-

elling about possible mechanisms which underlie the processes of inference and discovery and

will therefore be in a better position to discuss the nature of mathematical discovery and other

forms of a priori learning. He focuses on the power of computers and programmes to help

us to develop new concepts and metaphors for thinking about complex systems. Seeing com-

plex processes as computational processes, where information flows between sub-processes

and construction and manipulation of symbolic structures is a new paradigm which can trans-

form subjects including psychology, social and natural sciences. Philosophical questions about

processes such as “How can concepts be acquired through experience, and what other meth-

ods of concept formation are there?”, “Are there rational procedures for generating theories or

hypotheses?” and “How can non-empirical knowledge, such aslogical or mathematical knowl-

edge, be acquired?” can be discussed in a new way using computational models, thus opening

up avenues of enquiry. Just as AI can provide tools to clarify, reformulate, re-evaluate and

give new answers to old philosophical problems, it will alsogenerate new problems. Sloman

argues that the importance of AI for philosophy is so great that: “within a few years, if there

remain any philosophers who are not familiar with some of themain developments in artifi-

cial intelligence, it will be fair to accuse them of professional incompetence, and that to teach

courses in philosophy of mind, epistemology, aesthetics, philosophy of science, philosophy

of language, ethics, metaphysics, and other main areas of philosophy, without discussing the
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relevant aspects of artificial intelligence will be as irresponsible as giving a degree course in

physics which includes no quantum theory”[Sloman, 1978, chapter 1].

In this thesis we aim to extend the relationship between philosophy of mathematics and arti-

ficial intelligence, in particular automated theory formation and automated theorem proving.

Lakatos [1976] was a philosopher of mathematics who argued against the deductivist style of

mathematics, in which axioms, lemmas and concepts are first developed, then theorems, and

finally proofs of the theorems are produced. Instead, he argued that these stages are interdepen-

dent and concepts, theorem and proofs evolve gradually together via contact with counterex-

amples. Additionally, Lakatos stressed the dialectical aspect of mathematics – experts have

different beliefs and it is through the interaction of thesebeliefs that mathematics progresses.

Lakatos characterises this interaction via methods, or heuristics. Our central thesis is that it is

possible to give a computational reading of these methods. Our secondary thesis is that it is

useful to do so, both from the philosophy of mathematics perspective, and the AI perspective.

We have constructed an agent architecture which enables dialogue, where the problem of

the agency is to model the social process of concept and conjecture refinement described by

Lakatos, with the task being to develop interesting concepts and conjectures to add to a math-

ematical theory. The knowledge the agency starts with consists of objects of interest, such as

integers, and concepts such as multiplication and addition, which is provided at the start of a

session. A general motivation is to develop an interesting theory about mathematical entities

and concepts, to find patterns in the data and to invent and explore properties within the theory.

Specifically, agents use Lakatos’s methods to accept, modify, or reject conjectures. Agents

communicate by sending conjectures, concepts, counterexamples, and requests, and discussion

is directed by a coordinator agent. In order to build such a model we use an automated the-

ory formation program HR [Colton, 2002]. This provides us with a context within which to

develop ideas about communication between mathematicians, as identified by Lakatos.

Although aspects of the methods which Lakatos identifies in [Lakatos, 1976] have been ex-

plicitly modelled, such as [Hayes-Roth, 1983], or implicitly modelled, such as [Skalak and

Rissland, 1991] (which are both described in §7.9), this is the first attempt at a systematic

implementation and subsequent evaluation of the methods.

1.1 Motivation

Our motivation for implementing Lakatos’s methods is twofold:

• to clarify, extend and evaluate the methods (philosophy of mathematics);
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• to develop new and useful techniques in artificial intelligence: in particular in the fields of

automated theory formation and automated theorem proving.

These twin motivations overlap to a certain extent, in particular in the area of testing the meth-

ods. However we state them separately as each discipline hasits own methodology and evalu-

ation criteria.

Clarify, extend and evaluate Lakatos’s theory

Lakatos’s work has been praised as a “masterpiece” [Kadvany, 2001, p.1]; “the first major

bridge between historical philosophy and serious mathematics” [Kadvany, 2001, p.14]; a “bril-

liantly sustained tour de force” [Feferman, 1978, p.311]; and “a philosophical and literary

achievement of the stature of Hume on natural religion or Berkeley’s Hylas and Philonous”

[Hacking, 1981, p.135]. However, it has also been widely criticised. For instance, although

Lakatos claimed that his methods applied to many areas of mathematics, as well as empirical

sciences, Lakatos only considered two case studies, in geometry and real analysis. Feferman

[Feferman, 1978] argues that these case studies are not sufficient to claim that these methods

have a general application. Implementing a model allows us to test the scope of Lakatos’s

methods in terms of what domains they can usefully be appliedto. Additionally, Feferman

points out that the conjecture in both case studies is an implication conjecture, i.e. of the form

∀x[A(x) → B(x)]. In our implementation we have extended the methods to applyto two fur-

ther types of conjecture: equivalence conjectures and non-existence conjectures, of the form

∀x[A(x) ↔ B(x)] and¬∃x[A(x)].

We believe that since Lakatos’s work [Lakatos, 1976] was thefirst attempt to characterise

informal mathematics (see [Corfield, 1997] and [Feferman, 1978]), it is likely to be incomplete,

and hence be open to criticism and extension. Lakatos himself neither considered the methods

complete nor definitive, arguing only that they provide a more realistic and helpful portrayal

of mathematical discovery than the Euclidean methodology.We argue that, in accordance with

the computational philosophy paradigm, implementing Lakatos’s theory provides a new way

of understanding the methods.

The dialogue format of Lakatos’s methods enables us to modelsocial processes, and this inter-

action between agents constitutes an important part of our work. Our implementation contrasts

programs such as BACON [Langley et al., 1987] and PI [Thagard, 1993] which are more con-

cerned with the thought processes of an individual.
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New techniques in automated theory formation and automated theorem proving

Automated theory formation is the field in which the processes of inventing new concepts,

finding examples, and making new conjectures are automated and interlinked. We extend the

capabilities of an automated theory formation program HR [Colton, 2002], and argue that our

extensions improve its theory formation abilities. In particular it can now generate interesting

conjectures and concepts which it was previously unable to,discuss and reject objects which

are controversial, and represent and improve proof plans.

A final motivation is in the field of automated theorem proving. Current automated theorem

provers are inflexible in that if they are passed a conjecturewhich is either false or too difficult

to prove within the allocated time, they simply fail. Using Lakatos’s methods, Colton and Pease

have jointly implemented a system which is able to take in a conjecture, try to prove it and, if

unsuccessful, produce modified versions of the conjecture which it canprove.

1.2 Aims of project

We aim to:

• provide a computational reading of Lakatos’s theory, by interpreting his methods as algo-

rithms and implementing these algorithms as a computer program;

• clarify and extend the methods, by providing various interpretations and further divisions of

the methods, and extending them to apply to equivalence and non-existence conjectures;

• test the domains to which the methods apply, both further mathematical domains which were

not looked at by Lakatos, namely number theory and group theory, and non-mathematical

domains, for instance to theories about animal taxonomies;

• evaluate the methods, by testing two hypotheses:(i) the techniques are of general use (rather

than working only in a contrived domain), and(ii) the techniques can be applied to other types

of conjecture ; and

• evaluate our implementation, in particular testing our hypothesis that it is possible tofine-

tune the methods.



6 Chapter 1. Introduction

1.3 Contributions

This is the first systematic automated realisation of Lakatos’s methods. We contribute to the

philosophy of mathematics and computational philosophy ofscience by providing a clarifi-

cation of the methods. We also contribute to automated theory formation by developing and

exploring the methods and demonstrating their usefulness.A further contribution is demon-

strating the usefulness of the methods within the field of automated theorem proving. This

thesis also provides a new evaluation of the work of Lakatos on the basis of criteria proposed

by several theorists, including Lakatos himself in his other well known work on evaluating

scientific research programmes [Lakatos, 1970].

1.4 Organisation of thesis

We organise the rest of the thesis as follows:

In chapter 2 we introduce the field of computational philosophy of science. We also briefly

outline the background to Lakatos’s work, describe his methods of mathematical discovery and

justification, and discuss various reactions to his work. This chapter provides the motivation to

model Lakatos’s methods, and places them within a philosophical context.

In chapter 3 we describe HR, the automated theory formation system which we build upon.

This system is able to automatically generate and evaluate conjectures and concepts in a variety

of domains (where concepts are defined largely extensionally), using only a few heuristics and

basic background knowledge. We also outline work in agent architectures and argumentation

which we later draw upon. This chapter provides the technical details which are necessary in

order to understand our system. Finally, we introduce our methodology.

In chapter 4 we describe the design specification of our system and give an overview of the

system. This includes the agent architecture which we have developed, and details of the

language which the agents use to communicate.

The next five chapters, 5, 6, 7, 8 and 9, contain the main body ofwork, and discuss our

work with Lakatos’s methods of surrender, monster-barring, exception-barring and lemma-

incorporation. Each chapter, except chapter 8, considers one method and our implementation

of it. Firstly we describe the method and discuss how it may beapplied to other domains. We

use a simplified representation of a subset of number theory as a running domain within which

to develop our ideas (this simplification already existed inColton’s work [Colton, 2002]). Since
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the methods differ quite widely from each other, it is sometimes necessary to introduce further

background material which is relevant to the particular method at this stage. We then describe

our implementation of the method and the algorithms which wehave devised. We demonstrate

our system working by giving several illustrative examples, and then discuss our implementa-

tion. Again, because of the differences in the methods, there is work which is related only to a

particular method, and so we outline relevant related work at the end of each of these chapters.

Chapter 8 is a prelude to chapter 9, in which we discuss our computational representation of

Cauchy’s proof, which is necessary for the following chapter.

Chapters 10, 11 and 12 contain the evaluation of our project.In chapter 10 we outline our three

main hypotheses: that it is possible to fine-tune the methodsof surrender, monster-barring and

exception-barring, and we present and discuss our experiments and results. In chapter 11 we

evaluate our extended theory of mathematical discovery andjustification and consider whether

the computational approach has enabled us to improve upon Lakatos’s theory. Where appro-

priate, we refer to illustrative sessions as evidence for our claims. In chapter 12 we evaluate

our claim that Lakatos’s methods can be applied to automatedtheorem proving, by presenting

a spin-off system, TM, developed by Colton and Pease, and demonstrating its application to

this field.

Chapter 13 contains ideas for further ways to develop and apply Lakatos’s work. We conclude

in chapter 14.

Appendix A contains figures of polyhedra and their Euler characteristic. Appendix B contains

a proof of Euler’s conjecture, the diagonalisation proof ofthe theorem that the set of real

numbers is uncountable, and Hilbert’s proof of the theorem that for two pointsA andC there

always exists at least one pointD on the lineAC that lies betweenA andC. In appendix C

we present further output from our system, in addition to that which can be found in the main

text. In appendix D we present additional details of HR. We include these for completeness

sake; they may be omitted without loss. Finally, we provide aglossary of philosophical and

mathematical terms.

1.5 Summary

Lakatos outlined various methods by which mathematical discovery and justification can occur.

These methods suggest ways in which concepts, conjectures and proofs gradually evolve via

interaction between mathematicians. We hold that(i) it is possible to provide a computational

reading of these methods, and(ii) it is useful to do so. To evaluate our hypotheses we develop
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a system within which we implement Lakatos’s theory. We showthat we improve upon the

state of the art in both automated theory formation and automated theorem proving, and that

we have provided a computational model of Lakatos’s theory which both extends and clarifies

his thoughts on the philosophy of mathematics.



Chapter 2

Computational Philosophy of Science

In this chapter, we motivate the project by introducing the field of computational philosophy of

science, and outlining Lakatos’s theory of discovery and justification in mathematics. In §2.1,

we define computational philosophy of science, briefly describe two models of discovery, and

outline three open problems in the field, identified by Thagard [1998]. In §2.2, we outline the

background to Lakatos’s work; in §2.3, we describe his methods of mathematical discovery

and justification; and in §2.4, we discuss reaction to his work. We then consider why a com-

putational reading of Lakatos’s ideas is a worthwhile endeavour, in §2.5, and consider possible

objections to such a reading in §2.6. We conclude the chapterin §2.7.

2.1 Computational Philosophy of Science

Computational philosophy of science uses computational modelling to understand the growth

and structure of scientific knowledge, in particular how hypotheses are constructed and evalu-

ated. This complements and extends philosophy of science, in which logical analysis and his-

torical case studies are used. Sloman [1978] argues that thecomputational paradigm provides

new tools for understanding the processes which philosophers study, including the philoso-

phy of mathematics. Thagard [1993] also emphasises that philosophy of science and artificial

intelligence have much to learn from each other. Computational data structures are seen as

analogous to human mental representations, and algorithmsanalogous to mental procedures.

Artificial intelligence brings new conceptual resources tophilosophy of science, as well as a

new methodology, which involves constructing and testing computer models, to the philoso-

phy of science. Implementing a theory as a computer program requires precision, provides a

test of its assumptions (both implicit and explicit) about the structure and processes of scien-

tific development, and enables us to test the underlying theory by investigating how well the

9
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program works on examples of different kinds. Ways of evaluating computational models of

scientific discovery and evaluation include examining whether the model is a genuine instanti-

ation of the theoretical ideas, and the program a genuine implementation of the model; testing

to see whether the model applies to examples other than thosewhich were used in the model’s

development; whether the model scales up to examples which are larger and more complex

than the ones to which it has been applied; its qualitative fit– whether it performs similar tasks

to humans in similar ways; its quantitative fit – whether it simulates quantitative aspects of

psychological experiments; and whether it is compatible with representations and processes

found in theoretical accounts. The goal of the computational modelling might be to model hu-

man performance (the cognitive modelling approach), or to develop machine intelligence (the

engineering approach).

Simon [1997] points out that the question of whether philosophy of science should be con-

cerned with how scientists discover hypotheses has in part been answered by researchers in

computational philosophy of science, who have developed models of scientific discovery based

on heuristic search. Programs which employ heuristic search and show that it is much more

efficient than random search suggest that discovery can be explained by laws, although these

laws may well not be unique or complete. For instance, Langley et al. [1987] developed BA-

CON, which takes empirical data and conducts a heuristic search over the instance space and

the hypothesis space, for a law that fits the data. Using this limited data, and with no theo-

retical knowledge, BACON has rediscovered many of the most important laws of physics and

chemistry that were discovered in the 18th and 19th centuries, including Kepler’s third law of

planetary motion. Other models, such as PI [Thagard, 1993],are able to generate and combine

new theoretical concepts, and perform abduction, inventing new hypotheses to explain puzzling

phenomena. Another idea, which Simon [1997] argues supports the view that there can be a

theory of scientific discovery, is the rejection of the view that discovery and verification are

disjoint processes. If instead, they are seen as closely intermingled, then theories about how to

evaluate a hypothesis should also account for its generation. Lakatos held and expanded this

view, as described below.

Thagard [1998] highlights three open problems which he considers to be amenable to compu-

tational, or philosophical, investigation. The first concerns how new questions, such as “how

might species evolve?”, are generated. The second concernsthe role of visual imagery in the

structure and growth of scientific knowledge. The third concerns social processes such as how

consensus is formed in science. Computational models of scientific discovery and evaluation,

such as BACON [Langley et al., 1987] and PI [Thagard, 1993] usually concern the thought

processes of individual scientists. However, Thagard [1998] argues that ...“it might be possible

to develop models of social processes such as consensus formation along the lines of the field
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known as distributed artificial intelligence which considers the potential interactions of multi-

ple intelligent agents” [Thagard, 1998, p. 7]. Simon [1997]also stresses that science is a social

enterprise.

2.2 Lakatos’s logic of discovery and justification in mathem atics

Lakatos attacked the view that mathematical knowledge is timeless, certain anda priori [Lakatos,

1976]. Lakatos’s work in the philosophy of mathematics is a controversial mathematical anal-

ogy of Hume’s problem of induction combined with Popper’s theory of falsification. That is,

Lakatos both identified the problem of the impossibility of mathematical knowledge, and sug-

gested a solution. His solution consisted of heuristic methods which guide the development

of mathematical conjectures, concepts and proofs. These evolve through dialectic and analysis

triggered by counterexamples. Counterexamples, therefore, play a vital role in [Lakatos, 1976],

though they are a starting, rather than finishing point: criticism has to be constructive if it is to

be valuable.

Lakatos’s work on philosophy of mathematics had three majorinfluences. Firstly, Hegel’s

dialectic, in which thethesiscorresponds to a naı̈ve mathematical conjecture and proof;the

antithesisto a mathematical counterexample; and thesynthesisto a refined theorem and proof

(described in these terms in [Lakatos, 1976, pp.144-145]).Lakatos emphasises the dialectical

aspect in the style of his book, which takes the form of a dialogue in a classroom. Thus he

is able to represent different mathematical and philosophical positions by using the voices of

different students. The role of the teacher in the book is to ensure that the discussion keeps

moving and they do not get caught up in petty asides or dead endavenues. Secondly, Lakatos

used Popper’s ideas on the impossibility of certainty in science and the importance of finding

anomalies. Lakatos argued that Hegel and Popper “representthe only fallibilist traditions in

modern philosophy, but even they both made the mistake of preserving a privileged infallible

status for mathematics” [Lakatos, 1976, p.139]. Thirdly, Polya [1954] and his work on math-

ematical heuristic, the study of the methods and rules of discovery and invention, was also a

major influence; in particular his work on defining an initialproblem and finding a conjecture

to develop. Lakatos claims that his own work starts where Polya’s leaves off.

Rather than being concerned with whether mathematical knowledge is possible (the argument

between dogmatists, who claim that we can know, and sceptics, who claim that we cannot

know, or at least that we cannot know that we know), or what type of knowledge it might be,

Lakatos emphasised the importance of guessing. In [Lakatos, 1978a], he argued that the im-

portant question is nothow do we know?, but ratherhow can we improve our guesses?He
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presented a fallibilist approach to mathematics, in which proofs, conjectures and concepts are

fluid and open to negotiation. Lakatos strongly criticised the deductivist approach in mathe-

matics, in which definitions, axioms and theorem statementsare presented with no explanation

about their development, and considered to be eternal, immutable truths, and he also rejected

the Hilbertian notion of proof. Instead, Lakatos saw mathematics as an adventure in which, via

patterns of analysis, conjectures and proofs are graduallyrefined but never certain. He warned

that hiding this process makes the subject impenetrable to students and prevents experts from

developing concepts or conjectures which may arise out of earlier versions of a theorem state-

ment. Lakatos demonstrated his argument by presenting casestudies of the development of

Euler’s conjecture that for any polyhedron, the number of vertices (V) minus the number of

edges (E) plus the number of faces (F) is equal to two; and Cauchy’s proof of the conjecture that

the limit of any convergent series of continuous functions is itself continuous. [Lakatos, 1976]

is a rational reconstruction of the history of philosophy ofmathematics as well as these two

mathematical conjectures, which traces psychologism, intuitionism, rationalism, historicism,

pragmatism, dogmatism, Kant’s idea of infallible mathematics, refutationism, inductivism and

deductivism. As one of the characters puts it [Lakatos, 1976, p.55], they discuss the packaging

– the philosophical framework, as well as what is in the packet – the mathematical content.

Lakatos held an essentially optimistic view of mathematics. He saw the process of mathemat-

ical discovery, traditionally thought of as impenetrable and inexplicable by rational laws, and

considered to be lucky guess work or intuition, in a rationalist light – thereby opening up new

arenas of rational thought. He challenged Popper’s view [Popper, 1972] that philosophers can

form theories about how to evaluate conjectures, but not howto generate them, which should be

left to psychologists and sociologists. Rather, Lakatos believed that philosophers could theorise

about both of these aspects of the scientific and mathematical process. He challenged Popper’s

view in two ways - arguing that(i) thereis a logic of discovery, the process of generating con-

jectures and proof ideas or sketchesis subject to rational laws; and(ii) the distinction between

discovery and justification is misleading as each affects the other; i.e., the way in which we

discover a conjecture affects our proof (justification) of it, and proof ideas affect what it is that

we are trying to prove (see [Larvor, 1998]). This happens to such an extent that the boundaries

of each are blurred.

The first chapter of [Lakatos, 1976] was originally published as [Lakatos, 1963a], [Lakatos,

1963b], [Lakatos, 1963c] and [Lakatos, 1964]. The second chapter and the appendices of

[Lakatos, 1976], however, were not published during Lakatos’s lifetime, as he saw this work

as an unfinished project (perhaps analogous to his view of mathematics). One drawback of this

failure to publish is that he could not answer criticisms of the book. The fact that Lakatos never

pronounced himself completely happy with his theory does, however, strengthen our argument
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that this work is worth implementing, as it implies that there may be gaps in the theory which

we can hopefully identify and fill.

2.3 Lakatos’s three main methods

Lakatos [1976] explicitly outlines six methods for modifying mathematical ideas and guid-

ing communication: surrender, monster-barring, exception-barring, monster-adjusting, lemma-

incorporation, and proofs and refutations. Of these, the three main methods of theorem forma-

tion are monster-barring, exception-barring, and the method of proofs and refutations [Lakatos,

1976, p.83]. Crudely speaking, monster-barring is concerned with concept development, excep

tion-barring with conjecture development, and the method of proofs and refutations with proof

development. However, these are not independent processes; much of Lakatos’s work stressed

the interdependence of these three aspects of theory formation. In the following sections we

give a brief outline of the main methods, which are discussedin more detail in chapters 6, 7,

and 9.

2.3.1 The method of monster-barring

Monster-barringis a way of excluding an unwanted counterexample. This method starts with

the argument that a ‘counterexample’ can be ignored becauseit is not a counterexample, as

it is not within the claimed concept definition. Rather, the object is seen as a monster which

should not be allowed to disrupt a harmonious theorem. For instance, one of the students

suggests that the hollow cube (a cube with a cube-shaped holein it) is a counterexample to

Euler’s conjecture, sinceV −E + F = 16− 24+ 12 = 4 (see appendix A). Another student

uses monster-barring to argue that the hollow cube does not threaten the conjecture as it is

not in fact a polyhedron. The concept polyhedron then becomes the focus of the discussion,

with the definition being formulated explicitly for the firsttime; as ‘a solid whose surface

consists of polygonal faces’ (according to which, the hollow cube is a polyhedron), and ‘a

surface consisting of a system of polygons’ (according to which, the hollow cube isnot a

polyhedron) [Lakatos, 1976, p.14]. Using this method, the original conjecture is unchanged,

but the meaning of the terms in it may change.

2.3.2 The method of exception-barring

Lakatos’s treatment of exceptions is noteworthy for two reasons. Firstly, he highlights their

role in mathematics — traditionally thought of as an exact subject in which the occurrence of
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exceptions would force a mathematician to abandon a conjecture. Secondly, Lakatos showed

how exceptions, rather than simply being annoying problem cases, which we may be able

to dismiss as monsters, can be used to further knowledge. Lakatos discusses two forms of

exception-barring:piecemeal exclusionandstrategic withdrawal. Piecemeal exclusiondeals

with exceptions by excluding a whole class of counterexamples. This is done by generalis-

ing from a counterexample to a class of counterexamples which have certain properties. For

instance, the students generalise from the hollow cube topolyhedra with cavities, and then

modify Euler’s conjecture to ‘for any polyhedra without cavities,V −E+F = 2’. Thus excep-

tions are seen as objects which are valid (in this case, as polyhedra), as opposed to monsters,

and force us to modify a faulty conjecture by changing the domain to which it refers.Strategic

withdrawal is the only one of the methods which does not directly use counterexamples. In-

stead, it uses positive examples of a conjecture and generalises from these to a class of object,

and then limits the domain of the conjecture to this class. For instance, the students generalise

from the regular polyhedra toconvex polyhedra, and then modify Euler’s conjecture to ‘for any

convex polyhedra,V −E+F = 2’.

2.3.3 The method of proofs and refutations

As the title of his book suggests, this is considered by Lakatos to be the most important method.

Commentators and critics, for instance [Feferman, 1978], usually share this view, often seeing

the rest of the book as a prelude to this method. It starts off as the method oflemma incorpora-

tion, and is developed via the dialectic into the method ofproofs and refutations. This method

works on a putative proof of a conjecture.

Lemma incorporation works by distinguishing global and local counterexamples. The former

is one which is a counterexample to the main conjecture, and the latter is a counterexample

to one of the proof steps (or lemmas). A counterexample may beboth global and local, or

one and not the other. When faced with a counterexample, the first step is to determine which

type it is. If it is both global and local, i.e., there is a problem both with the argument and

the conclusion, then one should modify the conjecture by incorporating the problematic proof

step as a condition. If it is local but not global, i.e., the conclusion may still be correct but

the reasons for believing it are flawed, then one should modify the problematic proof step but

leave the conjecture unchanged. If it is global but not local, i.e., there is a problem with the

conclusion but no obvious flaw in the reasoning which led to the conclusion, then one should

look for a hidden assumption in the proof step, then modify the proof and the conjecture by

making the assumption an explicit condition.

Proofs and refutations consists of using the proof steps to suggest counterexamples (by look-
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ing for objects which would violate them). For any counterexamples found, it is determined

whether they are local or global counterexamples, and then lemma incorporation is performed.

2.4 Reaction to Lakatos’s theory

Since [Lakatos, 1976] was the first attempt to characterise informal mathematics (see [Corfield,

1997] and [Feferman, 1978]), it is likely to be incomplete, and hence be open to criticism and

extension. For instance, [Feferman, 1978, pp. 316-320] hasidentified ten criticisms of Lakatos

[1976], consisting mainly of highlighting gaps in his theory. We list them below.

(i) What happened before 1847?1

(ii) Is the method most appropriate to describe transitional foundational periods?

(iii) How does this “logic of mathematical discovery” relate to working experience?

(iv) Is there no end to guessing?

(v) What constitutes improvement in a proof?

(vi) What constitutes an initial proof? Where does it come from?

(vii) What is the form of the conjectures?

(viii) Can ordinary logical analysis account for the same examples as the method of proofs and

refutations?

(ix) Are there no crystal-clear concepts?

(x) What is distinctive about mathematics?

We argue that the process of providing a computational representation enables us to answer

some of these questions and also raises more questions whichare then answered. We examine

this claim in chapter 11.

Despite any potential gaps in Lakatos’s theory, his work is still relevant today. This is evi-

denced by its inclusion in a recent work on new directions in the philosophy of mathematics

[Tymoczko, 1998], in which [Lakatos, 1978b] attacks foundationalism and argues for a re-

naissance of empiricism in mathematics. Tymoczko includesLakatos as a representative of a

“major perspective on the philosophy of mathematics” [Tymoczko, 1998, p. 1].

1Feferman [1978] points out that Lakatos claimed that the method of proofs and refutations was discovered in
1847 by Seidel. Clearly mathematical progress was made prior to this date and yet, Feferman states, Lakatos offers
no ideas as to how.
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2.5 A computational reading of Lakatos’s theory

We hold that Lakatos’s theory of discovery and justificationin mathematics is an important

theory to model within the computational philosophy paradigm. This is because it is open to

improvement, it is relevant today, and furthermore its emphasis on dialogue enables us to model

social processes – thus our work addresses the third open problem in computational philosophy

of science identified by Thagard [1998].

In accordance with the computational philosophy paradigm,implementing Lakatos’s theory

should enable us to improve upon it. Modelling Lakatos’s theory has two main benefits:

• the process of having to write an algorithm for the methods forces us to identify areas in

which Lakatos was vague, and aspects he omitted;

• running the model allows us to test hypotheses about the methods, for instance that they gen-

eralise to scientific thinking, or that one method is more useful than another. These hypotheses

may be claims that Lakatos or other commentators have made, or new ones.

A further benefit of implementing Lakatos’s ideas is that they suggest ways of improving the

fields of automated theory formation and theorem proving (see chapters 10 and 12).

2.6 Possible objections to a model of Lakatos’s ideas

Larvor [1998] refers to Lakatos as “the most celebrated critic of formalism in the philosophy of

mathematics”, and Lakatos certainly emphasised the informal nature of mathematics. There-

fore, our attempt to implement and thus formalise it could beseen as being as objectionable

as the editors’ controversial addition of the ‘final’ chapter (chapter 2) in the history of Euler’s

conjecture, which presented Lakatos’s work as a finished philosophy rather than a step on the

path of Hegel’s dialectic. In this chapter, Poincaré’s vector-algebraic proof of Euler’s conjec-

ture is presented, as an example of a proof which satisfies Euclidean standards, and can be

known beyond any possibility of doubt. This contrasts sharply with Lakatos’s expansion in

the remainder of [Lakatos, 1976]. Our justification for our approach is threefold. Firstly, we

by no means finalise the work, nor even aim to. We investigate which parts can be formalised

and whether and how that adds to Lakatos’s work. We do not see modelling informal mathe-

matics as paradoxical, but rather as a contribution both to philosophy in terms in investigating

what can be formalised and how that affects a theory, and to automated theory formation and

mathematical reasoning by modelling mathematics as it is actually done by humans.
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Secondly, even if it were the case that Lakatos would disapprove of an implementation of his

work as a computer program, it may still prove profitable to develop his ideas in this new

direction. It often happens that a person’s work is developed in a direction which they did not

foresee and may not have approved of. This does not necessarily detract from the value of the

new work, which should be judged solely on its own merit.

Our third justification lies in questioning whether Lakatoswould actually object to a formal

representation of his work. It may be that what Lakatos objected to were the current rules of

formalism, not the doctrine itself. In fact, the heuristicswhich he set out in [Lakatos, 1976]

can be seen as new rules within game formalism (where we use the term “game formalism”

in the way defined in philosophy of mathematics, rather than game theory: see glossary for

details). We have seen (§2.2) that Lakatosdid believe that there was a rationality of discovery.

Therefore, we can see him as a game formalist who suggested different rules to the game.

Clearly, as with many games, there is no claim that a given setof rules is complete or unique,

rather that they make the game better in some way.

2.7 Conclusion

As Simon [1997] argues, computer modelling, performed in conjunction with historical studies

and laboratory experiments, has proved to be a powerful toolfor building a computational

theory of the processes of scientific discovery and evaluation. The resulting theory is then

useful for understanding processes which human scientistsemploy, as well being a valuable

discovery aid to scientists, either in interactive or fullyautomated mode.

We hold that it is possible to implement Lakatos’s theory, inwhich different agents discuss and

modify conjectures, concepts and proofs via the methods described above. Additionally, we

hold that it is useful to do so.





Chapter 3

Background

This chapter provides the technical details which are necessary in order to understand our

system, and the methodological details necessary to understand our evaluation of the project.

Firstly, in §3.1 we describe HR [Colton, 2002], the automated theory formation system which

we build upon. HR is able to automatically generate and evaluate conjectures and concepts in

a variety of domains, using only a few heuristics and basic background knowledge, where the

concepts are largely defined in an extensional way. Since oursystem uses and extends HR, it is

necessary to understand how it represents, generates and evaluates concepts and conjectures, in

order to understand the theory formation aspect of our system. Then, in §3.2, we outline work

in agent architectures and argumentation, which we draw upon for the dialogue aspect of our

system. Finally, in §3.3, we introduce our methodology and evaluation criteria.

3.1 Automated theory formation and HR

Automated theory formation, as advocated by Colton [2002],aims to combine various rea-

soning techniques (inductive, deductive, and abductive) in order to build theories containing

concepts, hypotheses, examples, proofs, etc. In [Colton, 2002] the theories were constructed in

mathematical domains, and built from first principles. Constructing a theory includes finding

examples of objects of interest, inventing new concepts, making plausible statements relating

those concepts, and proving and disproving conjectures.

Below we discuss some technical details of HR, with reference to a running example.

19
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3.1.1 Representation of objects of interest and concepts in HR

Objects of interest are the entities which a theory discusses. For instance, in number theory the

objects of interest are integers, in group theory they are groups, etc. These are represented by

unary predicates, where the argument is the object of interest, for instance,integer(1). We use

the terms entities and objects of interest interchangeably.

In mathematics, the word ‘concept’ has many interpretations. These include:

• a description of a set of objects of interest. For instance, the concept of a natural number, or

a prime number;

• a relation between two or more objects. For instance, the relation larger than, equals, and

divides, shown in the examples 5> 2, 4= 2+2, and 3 divides 6;

• a function, which is a mapping from one set of objects (the domain) to another set of objects

(the co-domain), associating a unique output in the co-domain for each input in the domain. For

instance, the number of divisors of a number (thetau function) maps from the natural numbers

to the natural numbers.

The representation of concepts in HR comes from an analysis of the different interpretation of

the word ‘concept’, and the way in which new mathematical concepts are presented in text-

books. Colton [2002] references [Kerber, 1992] as arguing that mathematical concepts are

introduced with a definition, examples, and often lemmas about some property of the con-

cept. For instance, in [Barnard and Neill, 1996], the concept of a mathematical group is first

introduced with two examples of groups (and some of their characteristics highlighted); the

definition of a group is then given in terms of the group axioms(see D.1); and this is followed

by theorems about groups, the first being that the identity element of a group is unique. Colton

tries to capture these aspects of a concept with a tripartiterepresentation of concept: adefi-

nition, a data table(or table of examples), and acategorisation. The data table is a function

from an object of interest, such as the number 1, or the prime 3, to a truth value or a set of

objects. Any objects of interest with a the same value under this mapping are grouped together

in a categorisation. Other concepts may have resulted in the same grouping, or categorisation

of the entities, in which case the concepts are said to share acategorisation. Conversely, a

particular categorisation may be a new grouping of the objects within a theory. Categorisations

are used by HR in a part of its judgement as to whether a new concept is interesting, where it

considered to be more surprising if it results in a new categorisation. For instance, the concept

tau function, in a theory where the objects of interest are the integers 1−10, is represented as

shown below. Note that in the definition we show,S= {x : P(x)} denotes the set of all elements
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x such that some propertyP(x) holds,|S| denotes the size (number of members) of the setS,

x|y denotesx divides y), and∧ denotes the logical connectiveand. The tau function then, maps

an integera to the number of divisors ofa.

definition: [a, b] : a is an integer∧ b is an integer &b = |{c: c is an integer∧ c|a}|
data table: f (1) = [[1]]

f (2) = [[2]]

f (3) = [[2]]

f (4) = [[3]]

f (5) = [[2]]

f (6) = [[4]]

f (7) = [[2]]

f (8) = [[4]]

f (9) = [[3]]

f (10) = [[4]]

categorisation: [[1], [2,3,5,7], [4,9], [6,8,10]]

Another example is the conceptprime number. This is defined in terms of the tau function,

i.e., a is a prime if and only if the size of the set of integers which divide the integera is

equal to 2, ora is a prime if and only ifa is an integer with exactly two divisors. We show its

representation in HR, in a theory where the objects of interest are the integers 1−10, below.

definition: a is an integer∧ |{b : b is an integer∧ b|a}|= 2

data table: f (1) = f alse

f (2) = true

f (3) = true

f (4) = f alse

f (5) = true

f (6) = f alse

f (7) = true

f (8) = f alse

f (9) = f alse

f (10) = f alse

categorisation: [[2,3,5,7], [1,4,6,8,9,10]]

All concepts in HR are represented by some or all of these aspects. There are three different

types of concept in HR, which we present in order of increasing sophistication.

1) The simplest type of concept is given solely in terms of an enumerative definition. That is,

at the beginning of a session, the user gives an explicit listof all objects which fall under the

definition. This list is considered to be exhaustive, and no other definition is given. Other ob-

jects in the theory, or new objects which may arise during theory formation are not considered
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to be examples of the concept. An example might be the conceptanimal, about which the only

information given is a finite list of animals, for example{dog, dolphin, platypus, bat, trout,

herring, shark, eel, lizard, crocodile, t-rex, turtle, snake, eagle, ostrich, penguin, cat, dragon}.

Thus,animal is represented purely as the predicates: animal(dog), animal(dolphin), etc, with

no other meaning of the concept animal provided either as hard code or in a way that the system

can generate. Another concept in this domain ishomeothermic. In the input domain file, the

user might specify that if an object of interest is homeothermic then it is an animal, and then

give the extension of homeothermic in terms of the objects ofinterest in the theory, for exam-

ple,{dog, dolphin, platypus, bat, eagle, ostrich, penguin, cat}. Again, these would be listed as

predicates; homeothermic(dog), homeothermic(dolphin),homeothermic(platypus), etc. Given

a new object, for instance, hippopotamus, HR would have no principled way of determining

whether it was homeothermic, and therefore would treat it asnot.

Another example is the conceptinteger, which is hard-coded as a finite list of integers, for

instance, integer(1), integer(2), integer(3), etc., where “1”, “2”, “3” are the objects of interest.

Given a new object, for instance, “40”, or “cat”, HR has no wayto determine whether it is

an integer or not, other than its closed world assumption, which would mean that it would

evaluate the new object as a non-integer. Concepts of this type are represented in HR by a

data table, which is a function from object to truth value forevery object of interest in the

theory. This is the extension of the concept; for instance, the conceptinteger would have

the data table: 1= true; 2 = true; 3 = true; 4 = true; 5 = true for entities 1 - 5, and the

concepthomeothermicwould have the data table:dog= true, dolphin= true, platypus=

true, bat = true, trout = f alse, herring= f alse, shark= f alse, eel= f alse, lizard = f alse,

crocodile= f alse,t− rex= f alse, turtle= f alse, snake= f alse, eagle= true, ostrich= true,

penguin= true,cat = true, dragon= f alsefor the entities listed above. Note that part of the

representation of the concepthomeothermicis thathomeothermic(A) → animal(A), and so HR

would not evaluate integers with respect to this concept, and the data table would not contain

1 = f alse, etc.

In terms of categorisation, the conceptintegerwould have a single categorisation [[1,2,3,4,5]],

whereas the concepthomeothermicwould have the categorisation [[dog, dolphin, platypus, bat,

eagle, ostrich, penguin, cat], [trout, herring, shark, eel, lizard, crocodile, t-rex, turtle, snake,

dragon]].

2) A concept might also be given to the system in terms of both its extension and intension.

That is, a concept is given in a domain file at the start of a session and HR has the functionality

to enable it to generate examples of the concept for its objects of interest. An example of this

is the concept of addition. This is represented as a tuple[x,y,z] wherex = y+ z. The code

for calculating the extension of the concept of addition, for a given, finite set of integers, is
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in a class file of HR calledUserFunctions, which contains code for generating data tables for

concepts in number, graph and group theory (we have also extended this functionality). In this

example, given a new entityx, the algorithm for the concept addition would convert it to an

example of the Java class Integer, get its “int” value (whichis a basic type in Java), and then

cycle through the integers, with an integeri which takes each integer value from 0 tox, each

time adding the current value ofi andx− i to the tuple. For instance, given the entity 4, the code

for addition would return the following tuples:[4,0,4]; [4,1,3]; [4,2,2]; [4,3,1]; [4,4,0]. This

set of tuples comprises the extensional definition of addition, and the code in UserFunctions

provides an intensional definition. Given this code, HR could calculate a table of addition for

any new positive integer. Another example of this type of definition is in group theory, where,

given a group1, the concept of the inverse function is intensional as it cycles through members

of the group and calculates the inverse for each. Concepts ofthis type are represented by a data

table and categorisation, as above, as well as the intensional definition inUserFunctions. We

call concepts of type (1) or type (2)core-concepts. These are user-given concepts which are

used to generate new concepts.

3) The third type of concept in HR is that which HR generates automatically using its pro-

duction rules and the user-input concepts (see §3.1.2.1). These concepts are represented both

intensionally and extensionally, where the extension is considered to be complete if the con-

cept is derived from a concept of the first type, and only relatively complete for a given set

of objects of interest if it is derived from concepts of the second type. In the latter case, HR

can calculate whether a new entity should be included in the extension of the concept, and, if

relevant, calculate the tuple for the new entity. For instance, given conceptsinteger anddi-

visor, HR can use its production rules to generate the new concept of prime number, where

this generated concept is defined intensionally, as the rule: a is a prime if and only ifa is an

integer with exactly two divisors (shown above). Thus, HR explicitly gives the necessary and

sufficient conditions for an integer to be considered prime (in order to generate the concept,

HR removes any repeated divisors, and so the number of divisors is calculated as the exact

number). HR would also define the concept extensionally by producing a data table for the

integers in its theory. Given a new entityx, and told explicitly that it was an integer (which HR

would not be able to determine), it could calculate the divisors of the new entity and then the

numberof divisors, and add the entryx= true to the data table for the concept “prime” ifx had

exactly two divisors, andx = f alseotherwise. Concepts of this type are represented by a data

table, categorisation and definition. We call concepts of this typedeveloped concepts, which

contrasts the core concepts above.

We adopt this tripartite representation of concepts as it isintegral to HR and provides us with

1A set which is closed under an associative binary operation with respect to which there exists a unique identity
element within the set and every element has an inverse within the set.
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a concept generation tool which is adequate for our purposesof modelling Lakatos-style rea-

soning. However, this leaves us open to the objection that these representations of concept,

especially the first case which is purely extensional, are cognitively implausible. If we were to

attribute any kind of understanding of the concept “integer” to a human mathematician, or even

to a child, then given that they knew the integers 1−20, if they were then given the entity 21,

they would have some intuition that it was also an integer. Tothis objection we answer that it

is not our intention in this project to produce a convincing model of an individual human math-

ematician, but to model the style of cooperative reasoning that Lakatos described. In chapter

13 we discuss how our model could be improved in this regard.

Concepts such as that of being a prime number, which is eitherpositive or negative for each

entity, have arity one. Note that in this thesis we denote thesituation where an entity exhibits

the characteristics specified by a concept of arity one, by the term ‘covered by’. For instance,

we would say that the number 3 iscovered bythe concept of a prime number. We may also

consider these concepts as sets, and say that the number 3 isin the set of primes.

3.1.2 Generation of concepts and conjectures in HR

3.1.2.1 Using production rules to develop concepts

The methodology of using production rules to build up a series of ever more complex concepts

comes from Colton’s observation that it is possible to gain an understanding of a complex con-

cepts by decomposing it via small steps into simpler concepts. For instance, Colton notes that

ring theory is the study of rings, which are themselves groups with an addition operation, and

groups are themselves sets, and so on. Colton reverses this idea and has constructed fourteen

production rules, which take in one or two concepts and output a new (developed) concept.

Concepts which the production rules take in are representedas any of the three types we de-

scribed in section 3.1.1, and so are defined in terms of a finitedata table and categorisation,

and possibly also by a definition. Initially, the concepts used will be core concepts, and so

the sorts of concepts developed via the production rules will depend on which core concepts

have been input at the start of the session. Starting from different initial concepts and objects

of interest, such as the integers 1−20, or the integers 20−40, will lead to different concepts

and conjectures. This is contrast to standard number theory, which always deals with the same

infinite set of natural numbers.

Each production rule works by taking one or two input data tables, and a set of parameterisa-

tions, and performs operations on their contents to producea new output data table. HR then
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generates a new definition and categorisation to go with the new data table, thus forming a new

concept. The production rules are applied repeatedly, thusthe restriction of taking in only one

or two old concepts is not limiting, as, for example, the compose production rule could be ap-

plied once to two concepts, and then again on the result of this application and a third concept,

and so on. The set of concepts, production rules and parameters which have been used in the

generation of each concept is recorded as its construction history. The idea behind recording

this information is not motivated by human understanding ofmathematical concepts, rather is

a computational consideration. The information in the construction history of a concept is used

to construct different definitions which are readable by a user, the theorem prover Otter, and

the model finder MACE.

The production rules areArithmeticb, Compose, Disjunct, EmbedAlgebra, EmbedGraph, Equal,

Examples, Exists, Forall, Match, Negate, Record, Size, andSplit. These are described fully in

[Colton, 2002, Chapter 6]. Of these, we only useExists, Match, Negate, Size, Split andCom-

pose. In this chapter we motivate and explain theExistsproduction rule. In appendix D we

also motivate and explain the other production rules to which we refer in this thesis.

TheExistsproduction rule is motivated by concepts with existential quantifiers. For instance, a

cyclic group is a group for whichthere existsan element of order equal to the size of the group.

Another example might be the concept of a continuous function, which is a functionf (x) such

that for everyε > 0 there existsaδ > 0 such that| f (x)− f (a)|< ε for all x such that|x−a|< δ.

The rule produces a summary of the concept it takes in, changing a statement about a property

to a statement that such a property exists. For instance, suppose that the old concept isintegers,

a, b, c where a = b+c and b and c are both prime. Note thatb andc may not be unique, in

which case there will be more than one tuple in the set of examples. Conversely, there may not

be two primes which sum to a given integer, in which case the set of examples would be empty.

For integers 30−35, the examples for this concept are all of the tuples where 30≤ a≤ 35 and

a = b+ c andb andc are both prime. So (omitting repetitions) the examples for 30 would be

b= 7, c= 23, alsob= 11,c= 19, andb= 13,c= 17. Examples for 31 would beb= 2,c= 29.

There are no primes which sum to 35, and so the example set for this number would be empty.

Applying theexistsproduction rule to this concept would result in the concept of integers for

which there exist (at least) two primes which sum to the integer. This would result in a list of

positives, i.e., integers such as 30 and 31, for which there are examples, and negatives, such

as 35 whose example sets are empty. In HR representation, thedefinition for the old concept

would look like:

• [a,b,c]: c+b= a∧b+c= a∧2 = |{d : d|b}|∧2 = |{e : e|c}|,

and the definition for the new concept would be:



26 Chapter 3. Background

• [a]: ∃bc(c+b = a∧b+c = a∧2 = |{d : d|b}|∧2 = |{e : e|c}|)

We show the examples for these two concepts, and an intermediate table, for the integers 1−10,

in table 3.1.

The existsproduction rule is parameterised by a set of column numbers,which denote those

columns which are to be kept in the output data table. All other columns are removed. It then

also removes any repetitions in the rows. Note that in HR terminology, the set of parameters is

represented by angle brackets<>. For instance, theexistsrule might have parameters< 1 >,

which would mean that the first column only is to be kept (inPROLOGnotation this would be

[X]); < 2 > would mean that the second column only is to be kept;< 3,4 > would mean that

the third and fourth columns only are to be kept, etc. Angle brackets are used for computational

purposes and denote a list (this is not a set since the order ofthe parameters is important). This

list may contain only numbers, as in the example of the existsproduction rule, or values such

as< 2 = 1 >, as in thesplit production rule, which means that HR extracts rows from a data

table where the second column has the value 1 (inPROLOGnotation this would be[X,1,Y, ..]).

Further details, andPROLOGnotation are given in appendix D.

The production rules and parameterisations are usually applied automatically according to a

search strategy which has been entered by the user. However,it is also possible for the user

to force the application of a production rule at any given time, in order to produce a desired

concept. This is done by selecting one (or two) concepts in the theory, the production rule and

the parameters which determine how the rule applies, and putting this step to be carried out at

the top of the agenda. Forcing is a way of fast tracking: finding concepts which may eventually

have been found automatically, to be found sooner. This can be done interactively (on-screen)

or via a file of instructions. If the guidance is undertaken atthe very start of a theory formation

session, we can see forcing steps simply as a different way ofproviding background informa-

tion to the system. This is because forcing concepts guarantees their existence at the start of

the theory in the same way as explicitly providing the concepts guarantees their existence in

the theory. We use this functionality in our illustrative examples in later chapters.

An example of using production rules to develop a concept

Starting with the core concept ‘divisors of an integer’, we apply the production rulesizeand

parameterisation< 1 >, which refers to a column for which we should count the numberof

rows. For instance, the parameterisation< 1 > means that the number of tuples for each

entry in the first column are counted, and this number is then recorded for each entry. This

would result in theτ function ‘number of divisors of an integer’. We could then apply thesplit

production rule and parameterisation< 2 = 2 >. In this context the parameterisation means
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input

a b, c

1 []

2 []

3 []

4 [2, 2]

5 [2, 3]

5 [3, 2]

6 [3, 3]

7 [2, 5]

7 [5, 2]

8 [3, 5]

8 [5, 3]

9 [2, 7]

9 [7, 2]

10 [3, 7]

10 [5, 5]

10 [7, 3]

→

intermediate

integer

4

5

5

6

7

7

8

8

9

9

10

10

10

→

output

integer

4

5

6

7

8

9

10

Table 3.1: In this example, we start with the concept of integers a, b, c where a = b+c and b and

c are prime, and apply the exists production rule to it with the parameter < 1 >. This means

that only the first column (of the two columns) is kept, and only the rows with a positive entry.

The intermediate table shows the same table as the input column, with only the first column and

relevant rows. The output table is the intermediate table with the repetitions omitted, and shows

example from 1 - 10 for the concept integers which can be written as the sum of two primes.

that we record all rows whose entry in thesecondcolumn is2. This would result in the concept

‘number of divisors of an integer = 2’, i.e., the concept of a prime number. The data tables

which correspond to these three concepts are shown in table 3.2. The construction history of

the conceptprimesis {[divisors, size< 1>], [τ function, split < 2= 2>]}. Note that the labels

divisors, τ functionandprimesare given by us, to explain the concepts in familiar terms, rather

than by HR. HR would label each concept uniquely, in order to store and retrieve it, but this

label would have no meaning for a mathematician, reflecting only the order in which it was

found.

3.1.2.2 Further parameterisations

We have explained above the parameterisations for theexists, sizeandsplit production rules.

We further explain the parameterisation for thematchandnegateproduction rules, in order to

be able to understand examples to which we refer throughout the thesis. Further details and
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divisors

integer divisor

1 1

2 1

2 2

3 1

3 3

. .

. .

. .

10 1

10 2

10 5

10 10

size< 1 > →

τ function

integer number

1 1

2 2

3 2

4 3

5 2

6 4

7 2

8 4

9 3

10 4

split < 2 = 2 > →

primes

integer

2

3

5

7

Table 3.2: In order to generate the concept of a prime number, HR would take in the concept

of divisors, represented by a data table for a subset of integers (partially shown here for 1−10.

It would apply the size production rule with the parameterisation < 1 > which means that the

number of tuples for each entry in the first column are counted, and this number is then recorded

for each entry. For instance, 1 appears only once in the first column of this data table, 2 and

3 appear twice each, and 10 appears four times. This number is recorded next to the entries

in a new data table (the table for the concept τ function). HR then takes in this new concept τ

function and applies the split production rule with the parameterisation < 2= 2>, which means

that it produces a new data table consisting of those entries in the previous data table whose

value in the second column was 2. This is the concept of a prime number.

example applications of these production rules are given inappendix D. Thematchproduction

rule takes parameters< c1,c2, ...cn > wheren is the arity of the input concept, and where the

nth entry takes the value of the specified columnci . For instance the parameters< 1,2,2 >

would take a data table with arity three (i.e. there are threecolumns in the data table) and

keep those rows of the data table where the entry in the first column is equal to itself, the

entry in the second column is equal to itself, and the entry inthe third column is equal to the

entry in the second column. Thus this production rule extracts those rows from the data table

where the entries in given columns are equal. Thenegateproduction rule does not require a

parameterisation. We denote this by<>. Negatefinds the complement of a concept, i.e. those

entities with a certain property, such asinteger, which do not satisfy the predicate of an input

concept, such assquare(which would result in the new conceptnon-square).
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3.1.2.3 HR’s conjecture making mechanism

Each time a new concept is generated, HR checks to see whetherit can make a conjecture

with it. This could be anequivalenceconjecture, if the new concept has the same data table

as a previous concept; animplication conjecture, if the data table of the new concept either

subsumes or is subsumed by that of another concept, or anon-existenceconjecture, if the data

table for the new concept is empty.

An example of HR’s conjecture making mechanism

We show how HR would make the concepts non-square and prime number, and the conjecture

that all prime numbers are non-square. Note that some of the steps are shown in more detail in

appendix D).

1. supply HR with conceptsCi = [a]: a is an integer andCii = [a, b, c] : a is an integer &b

is an integer &b|a & c is an integer &c|a & c∗b = a & b∗c = a (i.e. the concepts of

integers and multiplication);

2. apply the production rulematch< 0,1,1 > to Cii , to getC1 = [a, b]: a is an integer &b

is an integer &b|a & b∗b = a;

3. apply the production ruleexists< 1 > to C1, to getC2 = [a]: a is an integer & existsb

(b is an integer &b|a & b∗b = a) (i.e. the concept of a square number);

4. apply the production rulenegate<> to C2 andCi to getC3 = [a]: a is an integer &

-(existsb (b is an integer &b|a & b∗b = a)) (i.e. the concept of a non-square);

5. generate the concept of prime numbers (shown in table 3.2). As part of the theory for-

mation step, HR will check to see whether the data table is equivalent to, subsumed by,

or subsumes another data table, or whether it is empty. In this case, it will see that all of

its prime numbers are also non-squares, and so conjecture that this is true for all prime

numbers. That is, it will make the implication conjecture (2= |{b : b|a}|) → (-(existsb

(b|a & b∗b = a))).

We show the construction history of this conjecture in table3.1.

3.1.3 Evaluation of concepts and conjectures in HR

HR evaluates its conjectures and concepts using various ways of measuring interestingness

[Colton et al., 2000b], and this drives the heuristic search.
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3.1.3.1 Evaluating concepts

[Colton, 2002] suggests that desirable properties of a single concept include being novel, or

surprising, having a simple definition (overly complex definitions are difficult to understand),

and applying to many entities.

These are formalised as follows:

• Theapplicability of a concept is the number of entities the concept covers divided by number

of entities in the theory. This lies between 0 and 1.

• Thecomplexityof a concept is the number of concepts in its construction path (including the

concept itself).

• Thenoveltyof a concept is one divided by the number of concepts (including the concept)

which share its categorisation.

• Thecomprehensibilityof a concept is one divided by its complexity.

• Theparsimonyof a concept is one divided by the size of its data table, wherethe size of data

table is rows * columns.

Colton argues that a desirable property of the set of concepts in a theory is that between them

they develop all of the user-given concepts, in order to avoid redundancy, and that they achieve

a high number of categorisations, in order to generate a diverse theory which describes differ-

ent ways of grouping the objects of interest.

Example of evaluating a concept

Given objects of interest 1−10, HR would evaluate the concept of prime where the derivation

is shown above, as follows:

• applicability = 4/10

• complexity= 3

• comprehensibility= 1/3

• Theparsimony= 4∗1 = 1

Thenoveltywould depend on the rest of the theory.
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Note that the motivation behind these criteria is to captureaspects of mathematical concepts

which human mathematician would find interesting. For instance, Colton argues that a concept

which is very specialised and hence describes a small set of entities is less interesting than

one which describes a larger, possibly infinite set. For example, Colton argues, the concept of

groups of order 3is not very interesting, partly because there is only one such group. Con-

versely, the concept ofAbelian groups, for which there are infinitely many, is very interesting.

Examples like these inspired theapplicability measure. However, this is clearly a simplifica-

tion and in particular, would fail to capture the differencebetween agroup of order 3and an

Abelian groupin an infinite domain of groups, as the relevant calculation would be 1
∞ , which is

undefined. Many mathematical domains do describe an infinitenumber of entities, and there-

fore this measure would not be one used by human mathematicians. However, the criterion is

useful for the purposes of evaluating how interesting a concept is, in a finite domain. A mea-

sure which were applicable to infinite domains such as real numbers, might simply measure

the size of the set which a concept describes, which would be asubset of the real numbers,

rather than being a ratio. The larger the set, the more interesting the concept. Clearly this value

could itself be infinite, for instance working within the domain of real numbers, the concept of

a natural number(describing an infinite set) is highly interesting. The applicability measure

is only one measure of interestingness. Likewise, theparsimonymeasure of a concept is mo-

tivated by mathematical examples. Colton argues that more parsimonious concepts give more

succinct descriptions of a set of entities. To describe the number 10 with the concept of prime

numbers, the description is “false”, whereas to describe itin terms of its divisors, requires the

list [1,2,5,10]. The parsimony measure therefore was introduced to estimate how succinct de-

scriptions would be if that concept is used to describe the entities in a theory. Again, this would

not be a measure that a human mathematician would use, since ahuman mathematician would

not represent examples in a data table. However the measure goes some way towards capturing

the value of succinctness. Finding measures of interestingness which could apply to infinite

domains, measured cognitively plausible representationsof mathematical concepts and could

be calculated by human mathematics, would be a different, and challenging project.

3.1.3.2 Evaluating conjectures

Desirable properties of a conjecture include involving concepts with (a) high applicability and

(b) high comprehensibility, and that it be surprising. These are formalised as follows:

• The applicability of a conjecture is the proportion of entities that the conjecture discusses,

where a conjecture “discusses” an entity if the left hand concept of an implication or equiva-

lence conjecture covers the entity. For instance, an equivalence or implication conjecture about
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primes “discusses” the number 7, but not the number 4, and a non-existence conjecture does

not discuss any entity. The applicability of an equivalenceconjecture is the applicability of

the concepts which are hypothesised to be equivalent. The applicability of an implication con-

jecture is the applicability of the antecedent concept). The applicability of a non-existence

conjecture is zero.

• The comprehensibilityof a conjecture is the reciprocal of the number of distinct concepts

which appear in the construction path of the concepts discussed in the conjecture. Comprehen-

sibility is not defined for non-existence conjectures.

• Thesurprisingnessof an equivalence or an implication conjecture is the numberof concepts

which appear in the construction path of one concept, but notboth. The surprisingness of a

non-existence conjecture is measured by the applicabilityof its parent concept.

An example of evaluating a conjecture

We show the construction history of the conjecture ‘all primes are non-square’ in figure 3.1,

which we described above in §3.1.2.3. HR would evaluate thisconjecture as follows.

• applicability = 4/10

• comprehensibility= 1/8

• surprisingness= 8

Note that all measures are normalised in HR.

HR also uses third party automated reasoning software in order to prove or disprove its conjec-

tures. We currently make no use of this.

3.1.4 Representing a theory in HR

Theories are represented in HR by a Java class containing fields which are initialised at the start

of a session, such as whether to extract implication conjectures from equivalence conjectures,

and which productions rules to use. The theory class also contains lists of concepts, categorisa-

tions, conjectures and entities, which is added to during the theory formation. It also includes

methods for measuring the interestingness of a concept, andthe method for performing a the-

ory formation step. When we refer to “theory” throughout this thesis, we refer to this class; in

particular to the set of concepts, conjectures and entities.
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Construction path for

C  . [a, b, c]: b | a & a | a & c * b = a & b * c = ai C   . [a, b]: b | aiii

Construction path for
the concept of non−squares

C1. [a, b]: b | a & b * b = a C4.  [a, b]: b = |{c: c | a}|

C5. [a]: 2 = |{b: b | a}|

C3. [a]: −(exists b (b | a & b * b = a))

C2. [a]: exists b (b | a & b * b = a)

C  . [a]: a is an integerii

match < 0, 1  >

exists < 1 >

negate < >

size < 1 >

split < 2 = 2 >

the concept of primes

Figure 3.1: The construction path of the concepts in the conjecture all primes are non-square,

where b|a means that b divides a, a∗b means a multiplied by b, “&” is the logical connective

and, and |{b : b|a}| means the size of the set of elements b such that b divides a. The arrows

between nodes represent the derivation which takes place when the given production rule and

parameterisations are applied to an “old” concept, to get a new concept, with the direction of the

arrow denoting going from old to new.

3.1.5 Using HR in a multiagent system

In Colton et al. [2000a] Colton describes a multiagent approach to concept formation in pure

mathematics, using the HR program. Four copies of HR were employed as agents in an archi-

tecture where they communicated the most interesting concepts they invented.

3.2 Multiagent Systems

Since Lakatos presented his work as a dialogue where different students had different beliefs

and motivations, and mathematical theories were formed viadisagreement and negotiation,

agents are an obvious metaphor for a computational representation of his theory. Additionally,
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the dynamic nature of the environment of conjectures and entities which is open and continually

changing, suggests that an agent-based solution is appropriate. In this section we consider

characteristics of multiagent systems.

3.2.1 Environment

Russell and Norvig [1995] provide the following classification of environments, which are

discussed in [Wooldridge, 2002]:

• accessible versus inaccessible – the extent to which it is possible to gain complete, accurate,

up to date information about the environment;

• deterministic versus non-deterministic – the extent to which any action has a single guaran-

teed effect;

• static versus dynamic – the extent to which an environment changes in ways which are beyond

an agent’s control; and

• discrete versus continuous – whether there are a fixed, finitenumber of actions and percepts

in an environment or not.

Environments may be a hybrid of these, for instance, an environment might consist of a finite

number of discrete actions and percepts, and an infinite number of continuous actions. One

example of this would be a human environment, in which positions, temperature, distances etc.

vary continuously, while topological relations, such as whether objects are convex or not, con-

nected or not, touching or not, etc., vary discretely. A further difference concerns whether ob-

jects in an environment can be described by vectors or lists of uniform complexity, or whether

structural descriptions are necessary, as would be the casefor representing sentences, town

maps, family trees, etc..

3.2.2 Agent design

Wooldridge [2002] makes the micro/macro distinction, which distinguishes the design of the

agents from that of the society. He addresses two problems:

(i) building an agent which is capable of independent, autonomous action, in order to carry out

tasks which we assign to it, and
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(ii) building agents which are capable of interacting with otheragents, who may not share the

same goals, in order to carry out tasks which we assign to them.

These problems are known respectively as agent design, which we discuss in this section, and

society design, which we discuss in the following section.

There is some controversy over what constitutes an agent, but a widely accepted criterion is

that it be autonomous. Wooldridge defines an agent as “a computer system that issituated

in someenvironment, and [that] is capable ofautonomous actionin this environment in order

to meet its design objectives” [Wooldridge, 2002, p. 15]. This is a very general definition,

which, as Wooldridge points out, includes control systems,such as thermostats, and software

demons, such as background processes in the Unix operating system. He goes on to highlight

capabilities that we might expect anintelligent agent to have: reactive, proactive and social

capabilities. That is, the ability to perceive and react to one’s environment, exhibit goal-directed

behaviour, and interact with other agents or humans, in order to satisfy its design objectives.

Wooldridge suggests that the ability to influence and be influenced by one’s environment is

also important. Further attributes which agents may have include learning, and an ability to

deliberate between different courses of action.

Dennett [1971] examines the concept of a system whose behaviour can be explained and pre-

dicted by ascribing to the system mentalistic concepts suchas belief, desire, intention and

expectation. He develops the intentional stance, which is used to predict behaviour by ascrib-

ing to a system the possession of certain information (sometimes called beliefs), and supposing

it to be directed by certain goals (sometimes called desires), and then working out the most rea-

sonable course of action. This stance is contrasted with thedesign stance, where one predicts

the behaviour of a system, based on the purpose it is intendedto fulfil, assuming that every-

thing functions as it was intended to. The intentional stance also contrasts with thephysical

stance, where behaviour is predicted based on knowledge of the lawsof nature and the orig-

inal configuration of a system. Dennett argues that some systems, for instance chess-playing

computers, are inaccessible to prediction from the design stance or the physical stance. He

takes the pragmatic approach that if it is useful to endow agents with mental states, in terms of

predicting and explaining, then we should do so.

Wooldridge [2001] discusses belief-desire-intention architectures. These are rooted in the field

of practical reasoning, which involves the processes of deciding what to achieve and how to

achieve it. Deciding what to achieve involves generating the options available, choosing be-

tween them and committing to one. The chosen course of actionthen becomes anintention.

Characteristics of intentions include believing that there is a good chance of achieving them

(we do not intend to do something which we know that we cannot do), acting upon them (mak-
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ing a reasonable attempt to achieve them), and the intentions persisting (rather than giving up

at the first hurdle). This latter characteristic, however, is to be balanced with dropping an in-

tention if it becomes unfeasible. Achieving the right balance between reconsidering intentions

sufficiently often to drop them when necessary, and not wasting resources on constantly recon-

sidering, rather than achieving intentions, is called the problem of balancing pro-active, goal

directed against reactive, event driven behaviour.

Beaudoin [1995] elucidates goal processing in autonomous agents from a design stance, and

identifies this type of problem asmeta-management. He refers to Hayes-Roth [1985] who

worked on the “control problem”, i.e., how a system decides which of a set of currently possible

computational actions it should perform next. Beaudoin suggests a system he calls “heuristic

meta-management”, where an agent which is capable of meta-management engages its meta

capabilities at timely junctures where a shift in processing is required. Such timely junctures

include: oscillation between decisions (when one keeps changing one’s mind); ongoing dis-

ruption (where an insistent goal has been postponed or rejected but nevertheless keeps reap-

pearing); high busyness (in which case it is necessary to prioritise goals); digressions (when

a goal has been scheduled for deliberation, but while deliberating, the agent loses sight of the

original goal), and maundering (managing a goal for some length of time without ever having

made the meta-management decision to do so). Beaudoin goes on to ask empirical questions

such as “What species are capable of managing their own management processes?”, “What

are the mechanisms that a given class of organisms has for meta-management?”, and “What

formalisms best match their language?”[Beaudoin, 1995, p 72].

3.2.3 Society design

Wooldridge [2002] argues that in multiagent systems we are interested in how cooperation can

emerge within societies of agents which are self-interested; what sorts of common languages

agents can use to communicate to each other and to humans; howself-interested agents can

recognise when their interests conflict, and how they can resolve this, and how agents can

coordinate their activities so as to cooperatively achievetheir goals.

Huhns and Stephens [2001] describe environments in which agents interact productively. They

discuss communication protocols which enable agents to exchange and understand messages.

For instance, an agent may propose a course of action, accepta course of action, reject a course

of action, retract a course of action, disagree with a proposed course of action, or counter

propose a course of action.

Huhns and Stephens [2001] also discuss interaction protocols, which enable agents to have

conversations. For instance, one agent may propose a courseof action to a second agent. The
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second one then might evaluate the proposal and either send acceptance of it, rejection of it,

disagreement with it, or a counterproposal to it. The first then evaluates what it receives and

reacts accordingly, and so on.

Further work which is relevant to communication and interaction protocols, on ambiguity, ar-

gumentation and negotiation is outlined in §6.8.

3.2.4 Argumentation-based negotiation

Jennings et al. [1998] emphasise the importance of negotiation in multiagent research, and

outline an informal framework describing its key features.They divide negotiation issues into

protocols(rules which govern interaction),objects(the range of issues over which agreement

must be reached) andAgents’ Decision Making Models(the way in which an agent follows the

protocol to achieve its objectives).

Agents move through the space of possible agreements (in ourcase all the candidate definitions

for a concept), defining their own spaces of acceptable points. Negotiation works by agents

suggesting points in the space which are acceptable, and evaluating each point suggested. This

ranking may change during negotiation, as agents are persuaded that a point is valid. The

way in which they rate points may also change. A minimal requirement is that agents be able

to propose some part of the agreement space as acceptable, and can respond to other agents’

suggestions. A more efficient model would give agents the capability to explainwhy they

are rejecting/proposing a certain point. This might include rejecting a proposal but stating

which aspects were considered good, acritique, or making acounter-proposalin response to

a proposal. Such a model might includejustifications– in which the agent states its reasons

for making a proposal, orpersuasion– in which an agent tries to change another’s agreement

space or rating over the space. These arguments help to support an agent’s stance.

Jennings et al. [1998] state that an agent capable of argumentation-based negotiation must have

a mechanism for:

• communicating proposals and supporting arguments;

• generating proposals;

• assessing proposals and arguments; and

• responding to proposals.
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Kind of AI Main Activity Result

Applied AI Apply AI techniques Product

to real life problems

Cognitive Science Formulate theories Theory of intelligence supported

Build models by a computational model

Basic AI Explore AI techniques New/improved techniques

More knowledge of techniques

Table 3.3: The three kinds of AI, outlined in Bundy [1990]

3.3 Methodology

Our task is to provide a computational representation of Lakatos’s methods and then use our

representation to evaluate the methods, as well as evaluating our representation itself. This

evaluation has two main forms, which correspond to our two motivations. Our first motivation

is the cognitive science motivation of modelling, evaluating and improving Lakatos’s theory of

discovery and justification. Our secondary motivation can be seen in terms of Bundy’s ‘basic

AI’ [Bundy, 1990]. The aim of basic AI is to develop, explore or improve useful AI tech-

niques, where ‘technique’ includes algorithms, ways of representing knowledge, architectures

and methods of eliciting knowledge. The process of exploring AI techniques may lead us to

discover new techniques, and their properties and interrelations. Our two motivations can be

seen as the second and third kinds of AI shown in table 3.3.

In order to evaluate our work from the cognitive science perspective, we use criteria suggested

by Thagard, Sloman, and Popper, described below. These consist of consilience, simplicity and

analogy (§3.3.2); being definite, general (but not too general), able to explain fine structure,

non-circular, rigorous, plausible, economical, rich in heuristic power, and extendable (§3.3.3);

not beingad hoc, and being rich in content (§3.3.4). These criteria overlapto a certain ex-

tent, and are used by humans. We furthermore evaluate our work using Lakatos’s criteria for

evaluating scientific research programmes (§3.3.5).

In order to evaluate our work from the basic AI perspective, we use the criteria for automatic

evaluation from [Colton, 2002]. These consist of applicability, complexity, novelty, compre-

hensibility, and parsimony for concepts, and applicability, comprehensibility, and surprising-

ness for conjectures (§3.1.3). We furthermore test the application of Lakatos’s methods to

automated theorem proving by testing to see if they can be used to find meaningful modifica-

tions to non-theorems, where ‘meaningful’ is defined as a theorem for which a proof can be

found in the required time.
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3.3.1 Evaluating theories within the philosophy of science

The method of evaluating models in computational philosophy of science is not well estab-

lished. In the philosophy of science, ideas on evaluating a theory or hypothesis came before

ideas on how the hypothesis is discovered. In computationalphilosophy of science it appears to

be the other way around. That is, ideas on how to generate, or discover programs which model

scientific progress have come before ideas on how we should evaluate these programs. Clearly

much work in the philosophy of science examines what makes a scientific theory good, for

example [Popper, 1972]. Yet, although much of philosophy concerns evaluating different argu-

ments, there seems to have been little explicitly written about how to evaluate meta-theories,

i.e., philosophical theories about scientific theories. Ifthe field of computational philosophy

of science is to progress, there has to be discussion and agreement on the criteria by which we

judge computational theories (philosophical theories which are at least partially derived using

computational techniques). Additionally, these criteriamust be formal enough that compara-

tive claims can be supported and progress measured. Unsurprisingly, this mirrors the situation

in the machine creativity field, in which attempts are being made to find a framework which

is both practically useful and theoretically feasible, i.e., formal but not oversimplified (for ex-

ample [Pease et al., 2001], [Ritchie, 2001], [Ritchie, 2005]). Given this situation, we have

followed [Colton, 2002] and adopted a shotgun approach, using criteria from different sources

to evaluate our computational interpretation of Lakatos’stheory. These criteria are taken from

computational philosophy of science (§’s 3.3.2 and 3.3.3) as well as traditional philosophy of

science (§3.3.4).

Part of our motivation behind implementing Lakatos’s theory is to provide a way of evaluating,

as well as improving upon it. In chapter 11 we discuss how our model helps us to evaluate

Lakatos’s theory according to criteria suggested by Thagard, Sloman Popper, and Lakatos (§’s

3.3.2, 3.3.3, 3.3.4 and 3.3.5 respectively) and argue that by the same criteria we have improved

Lakatos’s theory.

3.3.2 Thagard’s criteria for evaluating theories

Thagard [1993] suggests criteria for evaluating explanatory theories. These are intended for

evaluating scientific, rather than philosophical theories, and have been extracted from study-

ing examples of scientific theories. However, Thagard also claims that they can be used to

determine the best explanation in metaphysical theories [Thagard, 1993, p.99]. The criteria

are consilience, simplicity and analogy. Consilience is a measure of how many observables a

theory explains, and the variety and importance of the factsexplained. The notion of simplicity
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is a way of constraining consilience by ensuring that the theory is notad hoc. This means that

the theory explains more than just the data which it was introduced to explain, i.e., it is not

fine-tuned. Hence the first and second criteria need to be taken in conjunction with each other.

3.3.3 Sloman’s criteria for evaluating theories

Sloman [Sloman, 1978, p. 50 - 53] sets out criteria which he claims can be used to judge

‘theories which purport to explain possibilities’, including scientific possibilities as well as

theories in human sciences. We set out his criteria below. They are divided into a necessary

criterion for something to be considered a theory at all, anda much longer set of criteria for

something to be considered agoodtheory.

T is a theory if:

1. it explains a range of possibilities, i.e., the possibilities are validly derivable fromT, ac-

cording to criteria for validity generated by the semanticsof the language used forT.

T is agoodtheory if (1) is satisfied, and:

2. it is definite (there is a clear demarcation between what itdoes and what it does not

explain);

3. it is general (it should explain many significantly different possibilities, preferably some

which were not known about before the theory was invented. However it should not

explain too many possibilities which have not been shown to exist, i.e., it should not be

too general);

4. it accounts for fine structure (the descriptions or representations of possibilities generated

by T should be rich and detailed);

5. it is non-circular (it should not assume that which it purports to explain);

6. derivations from it are rigorous (it should be clear how the possibilities whichT can

generate are generated, or derived, fromT);

7. it is plausible (the assumptions made inT should not contradict knownfacts– although

they may contradict widely heldbeliefs);

8. it is economical (it does not include assumptions or concepts which are not necessary to

explain the possibilities which it explains);
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9. it is rich in heuristic power (the components of the theory, i.e., the assumptions, concepts,

representation language and way in which possibilities aregenerated, should be such

that the detection of errors and gaps, design of problem solving strategies etc. is easily

manageable); or

10. it is extendable (it should be possible to embed the theory in an improved enlarged theory

which explains further possibilities or has a higher degreeof fine structure).

These criteria provide us with ways by which we can compare two philosophical theories. Slo-

man also considers the further criteria that a theory enables us to control or predict phenomena.

He argues that these criteria are often over-emphasised, for instance the theory of evolution is

arguably one of the most important scientific theories, but its power lies mainly in explaining

possibilities, rather than controlling or predicting biological developments.

3.3.4 Popper’s criteria for evaluating theories

Following Tarski, Popper [1972] suggests that we divide theuniversal class of all statements

into true and false,T andF . He claims that the aim of science is to discover theories (expla-

nations) whose content covers as much ofT and as little ofF as possible, where the content of

a theory is the set of all statements logically entailed by it. This set may also be divided into

true and false statements (the theory’s truth and falsity content). A good theory should suggest

where to look, i.e., new observations which we had not thought of making before.

This is comparable to the situation described in [Ritchie, 2001], in which we divide the univer-

sal class of all basic items in a domain into good and bad,V andV ′. If we describe the content

of a program as its output setO which may be divided into good and bad artefacts, then we can

claim that one aim within AI is for a program to generate as much of V (and as little ofV ′) as

possible. A good system should suggest new areas of the search space, i.e., find artefacts which

we had not thought of generating before. If we accept this analogy then Popper’s criteria for

evaluating theories sheds light on our criteria for evaluating programs.

Popper sets out two criteria for a satisfactory theory (in addition to it logically entailing what it

explains). Firstly it must not bead hoc. By this is meant that the theory (explicans) cannot itself

be evidence for the phenomena to be explained (explicandum), or vice versa. For example if

the explicandum is ‘this rat is dead’, then it is not enough tosuggest that ‘this rat ate poison’ if

the evidence for it having done so is that it is now dead. Theremust be independent evidence,

such as ‘the rat’s stomach contains rat poison’. The opposite of anad hocexplanation then, is

one which is independently testable. Secondly, a theory must be rich in content. For example a
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theory which explains phenomena other than the specific phenomena it was designed to explain

has a much richer content, and is therefore of greater value,than one which is less general (the

principle of universality).

Applying these criteria to our programs, if we see a program (K) as the theory and the set of

artefacts we wish to generate (I ) as the phenomena to be explained, then we are interested in

the independent testability ofK and the richness of its content. A program which has been

carefully tailored in order to produce very specific artefacts cannot be claimed to be a good

program on the grounds that it produces those artefacts. There must be independent grounds

for its value, such as also generating other valuable artefacts. Within the programming analogy,

this is clearly connected to the richness of content criterion; the more valuable artefacts outside

of I and fewer worthless artefacts a program generates, the better that program is.

3.3.5 Lakatos’s criteria for evaluating theories

Lakatos [1970] attempted to salvage some of Popper’s falsification methodology, which had

suffered in the light of Kuhn’s analysis of paradigm change.However, he thought that Pop-

per’s focus on the relationship between theory and observation in his falsification methodology

was too simplistic, arguing instead that a methodology musttake into account thestructureof

a theory. In his account he developed the notion of a scientific research programme, which

comprises ahard coreand aprotective belt. The hard core consists of the defining charac-

teristics of a programme: these are very general theoretical hypotheses which form the basis

of the programme. If a scientist were to reject or modify these hypotheses, then essentially

he or she would be abandoning the research programme (this issimilar to Kuhn’s notion of a

paradigm shift). The protective belt consists of explicit auxiliary hypotheses and assumptions

which are less central to a research programme; these could be rejected or modified without

serious repercussions to the research programme. If a hypothesis from the hard core appears

to have been falsified, then in order to remain in the same research programme, appropriate

changes or additions would be made to the protective belt, rather than to the hypothesis di-

rectly. Thepositive heuristicof a research programme indicateshow the protective belt can be

altered in order to protect and extend the predictive and explanatory power of the hard core.

Thenegative heuristicstates that the hard core must remain unchanged. Another constraint is

that modifications made to hypotheses in the protective beltmust be independently testable.

Lakatos uses these ideas to show how we can evaluate work donewithin a research programme,

and to evaluate competing research programmes. He also usedthem as demarcation criteria

between science and non-science. Research programmes can be evaluated according to whether

they areprogressiveor degenerative. A programme is progressive if it satisfies two criteria:
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firstly if it comprises a coherent hardcore which involves a definite mapping out of predictions

and future research, and secondly if it, at least occasionally, leads to the discovery of novel

phenomena. These also serve as demarcation criteria. A programme is degenerative if it is

gradually coming undone, and there are no recent novel predictions to its name. It is difficult

to evaluate a research programme except in retrospect, as wecan never be sure that a new

discovery is not just around the corner.

One way of evaluating two rival theories is to look at Lakatos’s falsification criteria, outlined

in [Lakatos, 1970, p. 116]. A theoryT is falsified if and only if another theoryT ′ has been

proposed with the following three criteria:

i) T ′ predicts novel facts, i.e., phenomena which was not predicted byT (this is a sign of a

theoretically progressive research programme);

ii) T ′ explains all of the confirming instances theT explained; and

iii) some of the excess content ofT ′ is corroborated (this is a sign of an empirically progressive

research programme).

Note thatT andT ′ may share the same hard core.

Lakatos differed from Sloman, Popper and Thagard in that thecriteria he identified as a good

scientific theory were intended to be used for demarcation criteria, i.e., they could help to

distinguish science from non-science. Conversely, while Sloman, Popper and Thagard set out

criteria of a good scientific theory, they also commented that the same criteria could be used to

evaluate non-scientific theories.

3.3.6 Summary of criteria

We have considered criteria suggested by Thagard [1993], Sloman [1978], Popper [1972] and

Lakatos [1970]. The first three consist of Thagard’s notionsof consilience, simplicity and

analogy (§3.3.2); Sloman’s criteria that a theory(i) explain a range of possibilities, and a good

theory is(ii) definite,(iii) general,(iv) able to explain fine structure,(v) non-circular,(vi) rigor-

ous,(vii) plausible,(viii) economical,(ix) rich in heuristic power, and(x) extendable (§3.3.3);

and Popper’s criteria of being independently testable, andrich in content (§3.3.4). These three

sets of criteria overlap in the criteria shown below. A good theory should:

• be as general as possible (Thagard’s notion of consilience,and Sloman’s third generality

criterion);
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• explain more than it set out to explain (Thagard’s notion of simplicity, and Popper’s

richness in content criterion);

• not assume what it sets out to explain (Sloman’s fifth non-circularity criterion, and Pop-

per’s independently testable criterion).

Since there is no ready made integrated, coherent, well-motivated and widely accepted set

of criteria relevant to evaluating our work, we focus on these criteria in our philosophical

evaluation of our project, in chapter 11. In particular, we focus on the first and second of these

criteria. In a different section of the philosophical evaluation chapter, section 11.9, we discuss

our project with reference to Lakatos’s philosophy of science.

3.4 Summary

In this chapter we have introduced the HR system [Colton, 2002], and described how it repre-

sents, generates and evaluates objects of interest, concepts and conjectures. This is necessary

in order to understand the theory formation aspect of HRL. Weare aiming to work within the

context of multiagent systems, and have discussed when an agent-based solution is appropri-

ate, environment, agent design and society design in this context. Finally, we have outlined our

methodology and described the criteria which we use to evaluate our project.
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Overview of HRL

In this chapter we outline our system, HRL, drawing on the background material given in

chapter 3. The HRL system incorporates HR, which is named after mathematicians Godfrey

Harold Hardy (1877 - 1947) and Srinivasa Aiyangar Ramanujan(1887 - 1920), and extends it

by modelling Lakatos’s methods and enabling dialogue between multiple copies of HR. Thus,

the name HRL reflects our debt to HR, and highlights the importance of the philosopher Imre

Lakatos (1922-1974) and the deep influence of his work on our system.

HRL has two main strands: the methods that we have implemented, and the agent architecture

which enables dialogue. Chapters 5 to 9 contain details of the former, and in this chapter we

discuss the latter. We also detail some extensions to HR which we have made.

Following the discussion in [Lakatos, 1976], HRL models a number of student agents and a

teacher agent, where each agent has a suitably configured copy of HR, and starts with a different

database of objects of interest to work with, and different interestingness measures. Our system

is written in Java, which was a natural language to use since HR is in Java, and object oriented

languages are an obvious metaphor for agent architectures.The agents in HRL use sockets to

communicate. The number of agents is flexible, determined bythe user, but in each case, one

agent is meant to represent a teacher, with the other agents being students.

4.1 Environment

There are two stages in HRL: an independent work phase in which students form theories

without interacting, and a discussion phase in which they discuss and refine their most interest-

ing conjectures. The independent work phase gives the students time to generate conjectures

45
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and concepts, as described in §3.1, which are then communicated and used during the discus-

sion phase. Each agent, therefore, has its own individual theory. In addition there is the group’s

theory, which is generated from the interaction of the students and the teacher, consisting of ev-

ery message which has been sent, including conjectures, concepts, proof schemes, entities, and

proposed modifications. Each agent records the group’s theory in a list calledgroup discussion.

The combination of all of the individual theories and the group’s theory is the environment of

the agency, where byagencywe mean the collection of students and the teacher which have

been set to run at the start of a session.

The agents only have direct access to their own individual theories and the group theory. There-

fore each agent has partial access to the environment, with the other students’ theories hidden.

It is a non-deterministic environment since the order of theagents’ messages cannot be pre-

dicted and the order in which they are received influences thediscussion. However, in all other

aspects it is a deterministic environment. A single agent has full control over its own theory.

At the end of each discussion phase, a student will look through what has been said and take

what it considers to be interesting into its own theory to further develop. Clearly, one student

has no control over another student’s theory, although it can influence the theory by making a

contribution to the group theory which the second student evaluates as interesting enough to

develop further (i.e. the interestingness evaluation is over a user given threshold). The agents

therefore are able both to influence and be influenced by theirenvironment.

4.2 Agent design

Each agent has a copy of HR, and starts with a different database of objects of interest and dif-

ferent interestingness measures. Making the evaluation subjective agrees with Larvor’s point1

that Lakatos considered mathematics to be a matter of taste:“Why not have mathematical crit-

ics just as you have literary critics, to develop mathematical taste by public criticism?”Gamma

— [Lakatos, 1976, p. 98]. Each agent, therefore, is capable of independent, autonomous action,

in order to carry out the task which we assign to it, which is toform an interesting theory about

the data with which we provide it. Agents are reactive in the sense that they can react to their

environment, since they can perceive the group theory and react to it. For instance, an agent

might react by modifying a faulty conjecture or agreeing to reject a certain entity as a monster.

They exhibit goal-directed behaviour by achieving sub-goals of modifying faulty conjectures

or proof schemes in order to form an interesting theory, and are therefore proactive. They

also interact with other students in the agency and the teacher, again, with the aim of forming

1Personal communication.
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an interesting theory. Therefore the agents in HRL are intelligent according to Wooldridge’s

account (§3.2.2).

Agents in HRL are currently unable to deliberate between different courses of action (see §13.3

for ideas on how the latter attribute may be implemented).

The task of the agents in our architecture is to develop interesting concepts, conjectures and

examples, and to react accordingly to the introduction of counterexamples to a false conjecture.

In terms of the beliefs, desires and intentions approach outlined in § 3.2.2, the agents’beliefs

consist of the data input to their copy of HR. Theirdesiresinclude building an interesting

theory, accepting, modifying or rejecting concept definitions, conjectures and proof schemes

(depending on the proportion of their examples they hold for, and how interesting they are

according to the interestingness measures of the agent). The intentionsof the agents are to

perform specific Lakatos methods or parts of the methods, e.g., to find a concept which covers

specific examples in order to perform piecemeal exclusion.

4.3 Society design

HRL is an architecture of a group of equal-status agents called students. The architecture also

contains a teacher agent, which has special status. The problem, or design objective, is to

model the social process of concept, conjecture and proof refinement in the face of conjectured

general properties and counterexamples to them, as expounded by Lakatos [1976]. The role

of the teacher is to evaluate the messages it receives in the discussion and to set an agenda

for discussion. Thus if one conjecture modification is becoming uninteresting (according to

the interestingness criteria of the teacher), the teacher can tell the students to focus on another

conjecture. Note that it would be possible to use Lakatos’s methods in a different context, for

instance by changing the flow of control. We describe one way in which we do this, in chapter

12.1.

Communication protocol:

The agents communicate by sending concepts, counterexamples and conjectures when the

teacher requests them, and negotiating about concept definitions. Specifically, agents com-

municate by sending a request or a response.

Requests can be requests to do something, such as “work independently for twenty theory

formation steps”, or “modify faulty conjectureC”; requests to send something, such as “send

counterexamples to conjectureC”, or “send a concept to cover counterexamples[x,y,z]”; or
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requests to negotiate a concept definition, such as “entityx should not be considered an example

of conceptC”. Responses include conjectures, concepts, counterexamples, proof schemes,

modifications and negotiations.

Interaction protocol:

Interaction usually works alternately between the teachersending a request and the students

all sending a response to the request. The exception to this is if a student responds to another

student’s response. For instance, one student may send an entity as a counterexample to a con-

jecture, and another student may respond by requesting thatthe entity be barred as a monster.

The teacher will then make a further request, and the cycle continues. An example interaction

is below.

1. The teacher requests that the students work independently for twenty theory formation steps

and then send an interesting conjecture.

2. The students comply and all send a conjecture.

3. The teacher sorts the conjectures into an agenda for discussion. It sends a request for

modifications to the first conjecture on the agenda.

4. Each agent looks at the examples and counterexamples it has for the conjecture. If it has any

counterexamples then it attempts to modify the conjecture and sends its modification.

5. The teacher sorts the modified conjectures into the agendaand sends a request for modifica-

tions to the next conjecture on the agenda.

The cycle of interaction is shown in figure 4.1.

4.4 Extensions to HR

Two new types of conjecture

Every Lakatos method except strategic withdrawal requirescounterexamples to a conjecture.

In order to get these, HR has to be able to make conjectures which are known to be false.

We have addressed this in two ways. Firstly, since we distribute the data amongst multiple

agents, each agent is more likely to make a false conjecture than if we ran the system with a

single agent, as each conjecture is based on a smaller subsetof the data available. Secondly,

we have enabled HR to generatenear-equivalenceandnear-implicationconjectures. These are

equivalence and implication conjectures which hold forx% of its entities, wherex is less than

100%, and is specified by the user.
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Figure 4.1: The interaction protocol of HRL

Implementing near-conjectures raises the question of whether negative examples should be

considered supporting examples for a near-conjecture. That is, should the numbers 4, 6, 8

and 10 in figure 4.2 be considered supporting examples of the conjecture that almost all prime

numbers are odd, or should they be considered irrelevant? Hempel’s paradox in [Hempel,

1945], in which he showed how the principle of scientific induction can be counter-intuitive,

is relevant here. Hempel demonstrated his point with the example hypothesis that “all ravens

are black”. According to scientific induction, the likelihood of this being true rises slightly

with every new black raven that we see. However, the statement “all non-black-things are non-

ravens” is logically equivalent. The likelihood of this being true rises slightly with every new

non-black-thing which is not a raven. This suggests that if we see, for instance, a red apple,

then this is evidence for the hypothesis that all ravens are black.

In our implementation, the calculation for near-equivalence conjectures between conceptP and

conceptQ includes entities which are not positive for either concept(but are not counterexam-

ples to the conjecture). Therefore, supposing that HR is given the integers 1−10 as its objects

of interest, then, in the example in figure 4.2,prime↔ odd, the near-equivalence conjecture

would score 70%, as there are three counterexamples to this conjecture; 1, 2 and 9, and ten

entities in total. This is in the spirit of machine learning algorithms, which consider the neg-

atives as well as positives, as a measure of confidence in the conjecture. However, this could

include the case of two conceptsP(x) andQ(x), each with very few examples, none of which

are shared and the conjectureP(x) Q(x), if there are sufficient examples in the theory, which

is clearly undesirable.

For near-implication conjectures therefore, we do not consider negative examples, i.e., entities

in neitherP(x) nor Q(x)). That is, the conjectureprime→ odd would not score 90% (which
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we might expect as there is only one counterexample out of tenentities: 2). Similarly, the

near-implication conjectureodd→ prime, with counterexamples 1 and 9, would not score

80%. This is because when calculating the proportion of entities for which a near-implication

conjecture holds, we consider only entities which are positive for the left hand concept, so the

near-implication scores would be 3/4 and 3/5, i.e., 75% and 60% respectively.

2 3

5
7

1

9

4

6
8

10

      prime           odd

Figure 4.2: A Venn Diagram representation of the conjecture that for all x, prime(x)! odd(x),

where x is an integer between 1 and 10

A new production rule

As part of our implementation of the method of exception-barring, we have implemented a

new production rule,entity-disjunct. This takes in an object of interest concept, for instance,

number, and a set of entities as a parameter list, where the entitiesare all the same type as the

object of interest concept, for instance,[1,2]. It returns a concept which is a disjunction of the

entities, for instance, the concept of beingeither the number 1 or the number 2. We describe it

in more detail, and give our motivation behind it, in §7.7.

A new measure of interestingness

Since some conjectures are false, we have reflected this in a new interestingness measure. This

is intended to capture degree of belief, or confidence in a conjecture, and is measured by com-

paring the number of supporting examples of conjecture withthe number of counterexamples.

Theplausibility of a conjecture is:

(e−c)/e, wheree is the number of entities the conjecture discusses, from a database, andc is

the number of counterexamples, in a database, to the conjecture.

For instance, the plausibility of the conjecture that all prime numbers are odd, given a database

of numbers 1−20, is(8−1)/8 = 0.875.

A new type of theory constituent

In HR, elements of a theory are represented astheory constituents, which is a Java class. Sub-

classes of theory constituent are concept, conjecture and entity. We have extended this by
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adding another subclass:proof scheme. We need this class for our implementation of the

method of lemma-incorporation, which modifies a faulty proof. Although HR was already in-

terfaced with the theorem prover Otter [McCune, 1990], we could not use output from Otter,

as we needed HR to work with informal, flawed proofs. Each proof scheme has a global con-

jecture (the conjecture which is ‘proved’), a vector of conjectures in the proof, and a proof tree

which specifies how the conjectures fit together to prove the global conjecture. Details of the

proof scheme class are given in §8.3.

Pseudo theory-constituents

As a conjecture is surrendered or refined, the question arises as to whether to continue to

store the previous versions. Likewise, when an entity is rejected as an example of a concept,

via the method of monster-barring, the question arises as towhether to continue to store this

entity. We have resolved this issue by creatingpseudo-conjecturesandpseudo-entities. These

are identical to conjectures and entities in every way, except that they are stored in separate

lists of pseudo-conjecturesandpseudo-entitiesin the theory, rather than in the usual lists of

conjectures and entities. Thus, they remain in the theory but cannot influence it in any way.

Removing an entity from the list of entities, for instance, ensures that it will no longer count

as a positive or negative example of conjectures. This affects the search space as well as the

interestingness evaluation of new conjectures.

Our justification is that theory-constituents are not forgotten if consensus is arrived at within the

agency that they do not count in some way. These pseudo theory-constituents do not currently

affect a theory once they have been allocated “pseudo” status. In future versions, however,

we may use elements in a pseudo theory-constituents list. For instance, a student agent could

re-evaluate a pseudo-conjecture if it was later agreed thatsome, or all, of the counterexamples

to it did not count. Likewise, a student agent might re-evaluate a pseudo-entity which had been

considered to be a monster, but which is found to be useful once the theory is more developed.

4.5 Parameter values and their selection

Within HRL we have continued Colton’s methodology of allowing for empirical experimenta-

tion rather than making design decisions, wherever possible. This allows us to test hypotheses

and explore the model by differing the variables. In the illustrative sessions described in chap-

ters 5, 6, 7, and 9 we have hand picked parameter values in order to demonstrate the methods

at work. Selection of parameter values in this case was mainly by trial and error, or by working

out in theory which parameters would illustrate our ideas. Below we list the settings which

we have varied in the illustrative sessions and give common values that they take. Before each
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illustrative session we detail relevant parameters. Unless otherwise specified, parameters in

HR take default values. In chapter 10 we present results froma more systematic selection of

parameter values.

• The domain varies, and is usually number theory. The core concepts given vary slightly,

and are usually integer, addition, and multiplication. In some cases we forced concepts

at the start of a run. These are concepts which are in an agent’s search space: the forcing

process simply ensures that the concepts are formed straightaway. The objects of interest

given also vary, and usually comprise some subset of numbers{0, 1, 2, ..., 59, 60} for

each student.

• The number of students varies between one, two and three.

• The distribution of entities between students in the same agency varies. For example,

some students might have the number 0 while others do not, or sometimes the numbers

1 - 60 are divided into consecutive sets.

• Which of Lakatos’s methods a student uses, and the way in which to use it varies, accord-

ing to parameters specified in the relevant chapters. For instance, to demonstrate how

piecemeal-exclusion works, we would set students in the agency to perform piecemeal-

exclusion.

• The evaluation of interestingness varies. For instance, wemay set a student to prefer

conjectures which are plausible, surprising, etc.

• The type of conjectures which a student makes, for instance implication or equivalence

conjectures varies. In the case of near-conjectures we alsovary the percentage of entities

for which the conjecture should hold.

• The type of conjectures that the teacher requests varies; for instance it might request a

near-implication conjecture.

• The number of theory formation steps that the students work for in the individual work

phase varies. This is usually set to 10 or 20 steps.

The inflexibility of our parameters is a limitation of our system and we consider future, more

flexible ways of parameter selection in 13.4.
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4.6 Further details of HRL

Further details about the HRL system, including how to download HRL, how to generate a

run of the program, and how to read the results can be found at the two addresses below. We

describe what it is like to use the HRL system and how one mightcreate new agents. Example

domain files can also be downloaded.

• http://homepages.inf.ed.ac.uk/s9904767/hrl/

• ttp://dream.inf.ed.ac.uk/projects/hrl/

4.7 HRL and machine learning

Mitchell [1997] states that the field of machine learning is concerned with the question of

how to construct computer programs that automatically improve with experience. He gives a

specific definition below:

A computer program is said tolearn from experienceE with respect to some
class of tasksT and performance measureP, if its performance at tasks inT, as
measured byP, improves with experienceE [Mitchell, 1997, p. 2].

HRL is not a typical machine learning program in that its taskis to output a theory, as opposed

to well known machine learning problems such as finding a classification, or navigating through

a space. However, if we define the class of tasksT as: finding examples of objects of interest,

inventing new concepts, making plausible statements relating those concepts, and proving and

disproving conjectures, as we did in §3.1, and the performance measureP as the interestingness

measures in HRL, then we can argue that it learns according toMitchell’s definition. Assuming

that a modified conjecture is more interesting than the initial flawed conjecture, then the per-

formance of HRL at making plausible statements relating concepts, has improved as a result of

the discussion. Given that it is also possible for an individual agent to generate and then modify

near-equivalence or near-implication conjectures (see §4.4), we can similarly argue that agents,

as well as the system, may learn.

4.8 Summary

We have outlined our system, and in particular described theagent architecture which enables

dialogue. We have related these aspects to the concepts of environment, agent design and soci-

ety design. Theproblemof the agency is to model the social process of concept and conjecture
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refinement described by Lakatos, with thetaskbeing to develop interesting concepts and con-

jectures to add to the theory. Theknowledgethe agency starts with is the input to each copy of

HR, which consists of objects of interest, core concepts andpossibly concepts which have been

forced by the user. Themotivationof the students is to accept, modify, or reject a conjecture,

and this is done byactionswhich are Lakatos’s methods. The studentscommunicateby send-

ing conjectures, concepts, and counterexamples, and the teacher by sending requests such as:

work independently; send a concept to cover counterexamples [x,y,z]; or send a modification to

faulty conjectureC. Discussionis directed by the teacher who keeps a group agenda and adds

responses to it, either depth, breadth or best-first according to user given commands and the

teacher’s interestingness criteria. Items which have beendiscussed are recorded in a discussion

vector.



Chapter 5

The method of surrender

“Sir, your composure baffles me. A single counterexample refutes a conjecture as
effectively as ten. The conjecture and its proof have completely misfired. Hands
up! You have to surrender.”Gamma, student in [Lakatos, 1976, p.13].

5.1 Lakatos’s method of surrender

The method of surrender is the first method in [Lakatos, 1976], and Lakatos devotes the least

amount of space to it. It consists of using a counterexample to refute a conjecture. When this

happens, the conjecture is surrendered. There is only one example in [Lakatos, 1976]; when

the hollow cube is found,gammarejects the conjecture and suggests trying a ‘radically new

approach’. What this approach might be is not investigated at this stage.

In this chapter we describe Lakatos’s method of surrender and distinguish between two types.

We consider the question of when we should give up on a conjecture, and suggest five ways:

when it has been already been modified, when it is not interesting, when it is less interesting

than the average conjecture in the theory, when it is not plausible, and when its domain of

application, relative to the number of entities in the database, is very small. We give our

algorithm for when to perform the method of surrender, and give three illustrative sessions. We

conclude by discussing the method.

It is difficult to find historical examples of this method, as conjectures which have been sur-

rendered do not appear in text books. However, in history of mathematics books we see some

examples. For instance, Burton [1985] discusses the history of perfect numbers – a number

whose divisors sum to itself. The first four perfect numbers,6, 28, 496 and 8128 were known

to the ancient Greeks, and later writers conjectured that the nth perfect numberPn contains
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exactlyn digits. This conjecture is wrong; the fifth perfect number is33,550,336. Given this

(and other) counterexamples, the conjecture was later surrendered.

5.1.1 Two types of surrender

Although surrender is presented as the first and least constructive reaction to a criticism of, or

counterexample to, a conjecture, the characters in [Lakatos, 1976] do later on come back to it

and perform it in a more sophisticated way. The simpler way iscallednaive surrender, and this

is strongly criticised by Lakatos as an unproductive method. The latter way is not referred to as

the method of surrender, but consists of distinguishing between an initial problem and an initial

conjecture. In the Euler case study, the initial problem is to find out if there is a relationship

between the number of edges, vertices and faces on a polyhedron, analogous to the relation

which holds for polygons, that the number of vertices is equal to the number of edges. The

initial conjecture isV−E+F = 2. The two questions concerned with the method of surrender

are:

1) whenshould we give up on a conjecture?, and

2) what should we do next?

Lakatos did not explicitly answer the first question, but criteria implicit in [Lakatos, 1976]

include: (i) if we believe the counterexample(s) to be valid (we have no reason to monster-bar

it); and (ii) if the conjecture is too specialised, i.e. we have performedother methods on it to

such an extent that its domain of application is now severelyreduced. The answer to the second

question concerns this latter point(ii) , and is referred to in [Lakatos, 1976] as the problem of

content.

In this chapter we focus on the first of these questions.

5.1.2 When should we give up on a conjecture?

In the HRL system, the first criterion mentioned above, of believing the counterexamples to

be valid, is satisfied when the monster-barring flag is set to false, or when the number of

examples which the counterexample breaks is below a user-set threshold (the optimal value for

this threshold is explored in chapter 10).

Clearly, conjectures which have been over-modified will become dull or too specific (for in-

stance after repeated application of piecemeal exclusion). This would also prevent the system
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from investigating more interesting paths. The question ofwhat exactly over-modified means

now arises. We have implemented and extended the second criterion in §5.1.1, which suggests

that a conjecture should be surrendered if it is too specialised, or overly modified, in the ways

listed below.

• We record the number of times each conjecture has been modified. If this number is over

a user-set threshold then a student will surrender it ratherthan further modify it.

If the student finds the conjecture uninteresting then it will surrender it rather than further

modify it. Uninteresting is defined in the following ways:

• the user-set weighting of measures of interestingness which the agent uses to evaluate

conjectures is below a user-set threshold;

• compared to its other conjectures, the conjecture under discussion is uninteresting (cal-

culate the average interestingness value of its own conjectures and if the interestingness

of the conjecture under discussion is lower than the averagethen surrender, otherwise try

to modify);

• the conjecture is considered implausible by the agent, i.e.it fails to hold for the user-set

x% of its examples;

• the domain of application of the conjecture divided by the number of entities in the

student’s database, is below a user-set threshold.

5.2 Algorithm for the method of surrender

We describe our algorithm for the method of surrender in algorithm 1. When surrender is

performed, this consists of removing the conjecture from the list of conjectures in the theory

and adding it to a list of pseudo-conjectures. Thus, the conjecture remains in the theory but

cannot influence it in any way (we justify this in §4.4).

5.3 Illustrative sessions

In the following sessions we present selected interactions, which are of particular interest in

that they show the method of surrender at work. Parameter values such as number of students,
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Algorithm 1 Algorithm for when to perform the method of surrender
Require: The parameter “use surrender” is set to true, and given a conjecture and a counterex-

ample to it, and asked for modifications, then:

1: if (“test modifications” is trueand the conjecture has been modified more thant1 times),

or

(“test interestingness” is trueand the interestingness of the conjecture is belowt2),

or

(“test average interestingness” is trueand the interestingness of the conjecture is below the

average interestingness of all of the conjectures in the theory),

or

(“test plausibility” is trueand the conjecture holds for less thant3% of the objects of

interest),

or

(“test domain application” is trueand the domain of application of the conjecture is less

thant4% of the objects of interest)

then

2: perform method of surrender

3: end if

distribution of the objects of interest, core concepts, andthe way in which to apply a given

method are specified at the start of a session (see §4.5 for further details). In this, and the

following illustrative sessions we have hand picked parameter values in order to demonstrate

particular aspects of Lakatos’s methods in our model.

5.3.1 Session one

Initial information

We ran the agency with two students. Student 1 started with integers 1− 10, and core con-

cepts integer, divisor, addition and multiplication. It was set to use surrender if the number of

modifications of the conjecture was higher than 3, the interestingness of the conjecture under

discussion lower than the average interestingness of conjectures in the theory, the interesting-

ness less than 0.5, the plausibility less than 0.7 or the domain of application less than 0.5. It

was also set to make near equivalences which hold for 60% or more of its entities.

Student 2 started with integers 11− 20 and the same core concepts as student 1. It was set

to use surrender if the interestingness of the conjecture was less than 0.6, the plausibility less

than 0.8 or the domain of application less than 0.6. It was not set to consider the number of

modifications or to compare the average interestingness.
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The teacher requested the students to work independently for 10 theory formation steps and

then send their best near equivalence conjecture for discussion.

Session details

Student 1 made and sent the conjecture that for every integerc, there exist two other integers

a andb such thata+ b = b+ a = c. This has counterexample 1, since 0 was not given as an

integer. The teacher then asked for modifications to this conjecture. Student 1 calculated that

the interestingness of the conjecture was both less than 0.5, its interestingness threshold, and

less than the average interestingness of the conjectures inits theory. Therefore it surrendered

the conjecture. Student 2 however, reconstructed the conjecture as an equivalence, since it did

not find the counterexample 1. Since it had no counterexamples, it did not perform surrender.

5.3.2 Session two

Initial information

We ran the agency again with two students. We gave the students the same input as above,

except that they were not set to make near equivalences. The teacher requested that the stu-

dents work independently for 10 theory formation steps and then to send their best equivalence

conjecture for discussion.

Session details

Student 2 (with integers 11− 20) made the equivalence conjecture shown above. Student 1

found the counterexample 1, and since the interestingness of the conjecture was lower than the

interestingness threshold set, the student surrendered the conjecture. Student 2 however, again

found no counterexamples and so neither surrendered nor modified the conjecture.

5.3.3 Session three

Initial information

We ran the agency again with two students. Both students started with integers 1-10 and core

concepts integer, divisor and multiplication. Student 1 was set to perform surrender when the

number of modifications is higher than 3, the interestingness of the conjecture under discussion

is lower than the average interestingness of conjectures inthe theory, the interestingness is less

than 0.5, the plausibility is less than 0.7 or the domain of application is less than 0.5. Student

2 was only set to perform surrender when the number of modifications is higher than 3 or the

plausibility less than 0.3. Both students were set to make near equivalences which hold for

60% or more of their entities.
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The teacher requested the students to work independently for 10 theory formation steps and

then to send their best near equivalence conjecture for discussion.

Session details

Both students formed the conjecture that integera is equal to the number of its divisors if and

only if a|a∧a∗a = a. This has counterexample 2, which both students found. Student 1 found

that the interestingness was lower than 0.5, the plausibility lower than 0.7 and the domain

of application was only 0.2 which was lower than 0.5. Therefore it rejected the conjecture.

Student 2 however, calculated that the number of modifications so far was 0, which was not

higher than 3, and the plausibility was 0.5, which was not less than 0.3. Therefore student 2

attempted to modify the conjecture.

5.4 Discussion

The first and second sessions show that students have no loyalty to the conjectures which they

have themselves proposed. Each conjecture is evaluated in ways which are specified in the input

file, regardless of who proposed the conjecture. Thus, we sawthat the student who proposed the

conjecture in example one later surrendered it on the grounds that it was not interesting enough

to attempt to modify it, while the student who had not proposed it evaluated it as acceptable

in the state suggested. It may be worth modelling loyalty to one’s own conjecture in further

versions of the system.

The sessions described above include cases where the conjecture was surrendered and where

a modified version was attempted. We do not present sessions for all of the conditions of

application here: in chapter 10 we present experiments in which further settings are used.

5.5 Summary

In this chapter we have introduced Lakatos’s first method, the method of surrender. This con-

sists of rejecting a conjecture once a counterexample to it has been found, and is given only

very brief attention by Lakatos. Although most of our work inimplementing Lakatos’s meth-

ods focuses onhowthe methods should be performed, we have focused instead on the question

of whenthe method of surrender should be performed, since it is straightforward to implement.

The question ofwhenconsists of considering how much a conjecture has already been mod-

ified, if it is uninteresting with respect to a given threshold, if it is uninteresting with respect

to the other conjectures in an agent’s theory, if it is considered implausible, i.e. if there are too
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many counterexamples to it, or if it applies to too few entities, i.e. is too specialised. We have

described our algorithm for determining these aspects, andgiven three illustrative examples.

Finally, we have discussed our implementation. In section 5.1.1 we introduced the further ques-

tion of what we should do after having surrendered a conjecture. This concerns the question of

specialisation, and is called theproblem of contentby Lakatos. It concerns the situation where

a conjecture has been specialised to such an extent that its domain of application is severely

reduced. In §13.1.1 we consider how this might be implemented.





Chapter 6

The method of monster-barring

“But why accept the counterexample? ... Why should the theorem give way...? It
is the ‘criticism’ that should retreat.... It is amonster, a pathological case, not a
counterexample.”Delta, student in [Lakatos, 1976, p.14].

One reaction to an unwanted counterexample to a conjecture is to claim that the counterexample

is not valid. The person making that claim then needs to arguewhy it is not valid, for example

it is not the sort of thing that the conjecture covers. Plato [1993] provides a famous example of

this type of reasoning. Simonides proposes that “it is rightto give back what is owed” [Plato,

1993, pp. 8-9]. This initial statement is questioned by Socrates with the counterexample of

someone borrowing weapons from a friend who subsequently goes insane, in which case it

would not be right to return the weapons. The discussion in [Plato, 1993] then turns to what it

means to give back what is owed, with Polemarchus suggestingthat people owe their friends

good deeds, and their enemies bad ones. The dialogue later turns to what the concept ofdoing

right means, and leads into Plato’s treatment of justice. This is an example of monster-barring.

Once the validity of a counterexample has been questioned, the focus of the argument switches

from thetruth of the conjecture to themeaningof its terms.

In this chapter we firstly describe Lakatos’s method of monster-barring (§6.1), and then look

at how it is relevant to other mathematical domains (§6.2). In this section we also introduce

monster-accepting, and describe some historical examplesin which a field has progressed by

accepting, rather than barring a monster. From the discussion we then identify six key points in

monster-barring (§6.3), and in §6.4 we describe how we have modelled these points, as well as

discussing further design considerations. In §6.5 we outline our algorithms for performing the

method of monster-barring, and in §6.6 we present three illustrative sessions. We discuss our

approach in §6.7, and in §6.8 we outline related work in the fields of ambiguity, argumentation,

and law, and state how our work differs. In §6.9 we summarise the chapter.
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6.1 Lakatos’s method of monster-barring

Lakatos’s method of monster-barring is a way of excluding anunwanted counterexample to a

conjecture by claiming that the object in question isnot a counterexample as it is not within

the intended concept definition in the conjecture. In this context, problematic objects are seen

as monsters advocated by anarchists, who should not be allowed to upstage a theorem which

brings order and harmony to a field. The concept definition in question is then modified to

explicitly exclude the unwanted object or counterexample.

The example in [Lakatos, 1976] concerns the concept of polyhedron. Although regular polyhe-

dra are known, this concept initially has no explicit definition (which raises the question of how

a theorem about polyhedra could have any meaning: see §13.5 for a discussion of this ques-

tion). It is only when the hollow cube is proposed as a counterexample to Euler’s conjecture

that debate over the meaning of the terms in the conjecture breaks out. In an effort to justify

calling the hollow cube a polyhedron, the studentGammain [Lakatos, 1976] defines a polyhe-

dron asa solid whose surface consists of polygonal faces. In table 6.1 we show the evolving

definition, as described by Lakatos [1976], and subsequent counterexamples, with their Euler

characteristic shown in brackets, where italics are used tohighlight the part of the definition

which is changed in the next step. Diagrams of each shape are provided in appendix A.

This method exploits any ambiguity in concepts, in order to defend a conjecture. In the first

statement of Euler’s conjecture, that for all polyhedra,V −E + F = 2, it is assumed that the

extension of polyhedron is known, i.e., we can distinguish between objects which are and are

not polyhedra, even if the definition is not explicitly agreed. Once an object of ambiguous

status arises, students do explicitly define polyhedra, i.e., they start with a vague definition and

make it more specific; although the new definition may includeambiguous sub-concepts such

aspolygon, area, andedge, whose definitions are also open to debate. The only criterion for

a candidate definition is that it distinguish the agreed polyhedra from agreed non-polyhedra.

Some characteristics, such as being a solid whose surface consists of polygonal faces, are seen

assufficientby one student (for instanceAlpha who then suggests the twin polyhedra: two

tetrahedra with either an edge or a vertex in common), andnecessaryby others (such asDelta,

who, after admiringAlpha’s “perverted imagination”, adds the condition that the system of

polygons must be arranged in a particular way). With each definition there is some discussion

as to how to resolve the ambiguity, and arguments for competing definitions are made. These

centre around whether the problematic object should be considered a polyhedron or a monster.

The arguments include being able to calculate the same properties for it as can be calculated for

other polyhedra (such as area), and drawing an analogy between two universes and objects in

them in which the object in the analogue domain which corresponds to the problematic object
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Definition → Counterexample/Monster

1) initially undefined→ hollow cube (16-24+12=4)

2) a polyhedron is a surface consisting of asystemof polygons [Lakatos, 1976, p. 14]→ twin

tetrahedra with(i) an edge in common,(ii) a vertex in common (for which the Euler characteristic

is (i) 6-11+8=3,(ii) 7-12+8=3 respectively)

3) a polyhedron is a system ofpolygonsarranged in such a way that (1) exactly two polygons

meet at every edge and (2) it is possible to get from the insideof any polygon to the inside of any

other polygon by a route which never crosses any edge at a vertex [Lakatos, 1976, p. 15]→ star

polyhedron (12-30+12=-6)

4) a polygon is a system of edges arranged in such a way that (1)exactly two edges meet at every

vertex, and (2) the edges have no points in common except the vertices [Lakatos, 1976, p. 17]→
picture frame (16-32+16=0)

5) a necessary characteristic of a polyhedron is that through any arbitrary point in space there will

be at least one plane whose cross-section with the polyhedron will consist of one single polygon

[Lakatos, 1976, p. 21]→ cylinder (0-2+3=1)

6) a necessary characteristic of an edge is that it has two vertices (therefore a cylinder does not have

any edges) [Lakatos, 1976, p. 22]

Table 6.1: The evolving definition of polyhedron, described by Lakatos [1976], and subsequent

counterexamples to Euler’s Conjecture

in the target domainis considered valid. The idea is that if a good argument can be made for

accepting or rejecting the object as a polyhedron, then the wider or more restrictive definition

will be agreed. In the end, temporary resolution is insistedon by the teacher, whose strategy is

to take the strictest definition in each case: “can anybody offer something which even the most

restrictive definition would allow as a counterexample?” [Lakatos, 1976, p. 16] (this strategy

excludes the definitiona polyhedron is a system of polygons for which the equation V-E+F=2

holds).

The section on monster-barring in [Lakatos, 1976] is interspersed with heated debate on method-

ology: whether mathematicians should study typical, ordinary examples and generate interest-

ing and useful theorems about these, or focus on boundary cases, studying mathematics in its

“critical state, in fever, in passion” [Lakatos, 1976, p. 23]. The teacher concludes that monster-

barring isnot a valid method; indeed, it is presented as the least sophisticated method after

the method of surrender. The main criticisms are that monster-barrers are anti-falsificationists
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who defend a conjecture at any cost, which makes the conjecture deteriorate into meaningless

dogma, and that the method isad hoc, since the border between monsters and counterexamples

is done in fits and starts. “Using this method one can eliminate any counterexample to the

original conjecture by a sometimes deft but alwaysad hocredefinition of the polyhedron, of

its defining terms, or the defining terms of its defining terms.We should somehow treat coun-

terexamples with more respect, and not stubbornly exorcisethem by dubbing them monsters”

(Teacher, in [Lakatos, 1976, p. 23]). The Duhem-Quine thesis, described by Bird [1998], that

a scientific theory cannot be tested in isolation, since a test of one theory always depends on

other assumption or hypotheses, is also relevant to this discussion. We cannot falsify a con-

jecture, rather we can show that a collection of assumptions, concepts, counterexample and

conjecture is internally inconsistent. The choice then arises as to which of the collection we

reject. Monster-barrers would argue that we should reject the counterexample and certain con-

cept definitions, and retain the conjecture, whereas critics of monster-barring might argue that

we should reject the conjecture under discussion.

Criticism of monster-barring is later questioned byPi [Lakatos, 1976, p. 83], who claims that

those who defend a conjecture by barring counterexamples asmonsters are not guilty ofcon-

tracting concepts, of changing the definition of key terms in anad hocmanner in order to

preserve the truth of the conjecture. Rather, refutationists who think up counterexamples are

guilty of conceptstretching: it is they who keep changing the definition of polyhedron. The

original definition may be ill-formulated but was never intended to include monsters such as

the hollow cube and twin tetrahedra; that it included these was “unrealised and unintended”

[Lakatos, 1976, p. 85].Pi distinguishes between concepts and definitions; where a concept is

an intuitive, informal idea, a collection of objects, and a definition is a formal list of charac-

teristics which may include/exclude objects originally intended to be covered by the concept.

Therefore a definition may be expressed which includes a monster, but it is the definition, rather

than the conjecture or methodology which is at fault: it has failed to express what was meant

by the concept, it is sloppy terminology. If the definition isadequately stated then monsters,

and new definitions which include them, reveal “the falsehood of anewconjecture which no-

body had stated or thought of before” (ibid., p. 85). It is the refutationists, rather than the

monster-barrers, who have shifted their position. According to this view, all six definitions in

table 6.1 are formalisations of the same concept. The students also distinguish between logical

and heuristic counterexamples: a logical counterexample is one which is inconsistent with a

conjecturein its intended interpretation, and a heuristic counterexample is one which spurs

the growth of knowledge. The hollow cube was therefore a heuristic rather than logical coun-

terexample, as it expanded the concept of polyhedron in a newand imaginative way. While in

[Lakatos, 1976] it is not clear whether Lakatos agreed with the teacher or withPi, in [Lakatos,

1981, p. 117] he strongly criticises monster-barring as anad hocmethod as opposed to a “co-
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herent, pre-planned positive heuristic”. Rather than excluding counterexamples as monsters,

Lakatos argues, we should perform lemma-incorporation, which is a more productive method

(see chapter 9).

6.2 Monster-barring in other mathematical domains

Further examples of Lakatos’s method of monster-barring are useful as they(i) motivate the

method by showing its generality, and(ii) aid implementation by adding detail and suggesting

extensions to the method, as well as providing further inspiring examples, which were not

considered by Lakatos himself. In this section we also see the importance of the converse of

monster-barring, monster-accepting.

The concept ‘number’

The process of suggesting that a new sort of objectis a number, initial denial and later accep-

tance when it proves its worth can be seen repeatedly in number theory. For instance, Burton

[1985] asserts that the number zero was not held to be a valid counting number for centuries,

only being commonly used in practical calculations in the sixteenth century1. This was par-

tially due to the Greek reluctance to accept it - they brandedit a monster for various reasons,

including its violation of the conjecture that if you add a number and a second number, then

the result is always larger than the second number. (When zero was eventually accepted as a

number this conjecture was modified to exclude zero, i.e., ifyou add anon-zeronumber and a

second number, then the result is always larger than the second number.) Even today, it is still

ambiguous as to what type of number zero is. It is usually considered that the set of natural

numbers,N, is the set ofpositiveintegers,Z+ , i.e., {1,2,3, ...}, but it can also mean anon-

negativeinteger, i.e., the set{0,1,2,3, ...}. The Collins Dictionary of Mathematics [Borowski

and Borwein, 1989], defines anatural numberas follows:

“One of the counting numbers; a number that can represent thecardinality of a
finite set of objects, usually identified with the positive integers 1,2,3,4, .... There
is some discretion about whether 0 is included, as is usual for whole numbers.”
[Borowski and Borwein, 1989, p.397].

Other examples of ambiguity in the concept of number includeinitial barring of 1 (barred by

the Pythagoreans as it challenged their belief that all numbers increase other numbers by mul-

tiplication);
√

2 (it violated the Greek belief that all numbers could be written as a fraction);

1Despite the fact that the number zero, oromicron(o was the first letter of the Greek word for “nothing”) first
appeared as a place holder in about 150A.D. (in Babylonian positional notation the number 1, for instance, would
have been ambiguous as it could equally represent 10, 100, etc.).
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andx =
√
−1 (violating the law of trichotomy, for any numbersx, y, eitherx = y or x < y or

x > y). Now of course 0, 1, irrational and imaginary numbers are accepted without question,

and the concept of number has been generalised to complex numbers and beyond (for exam-

ple, quarternions). Clearly number theory (and other areasof mathematics) have been greatly

enhanced by these additions.

Another example can be seen in the late 19th century, when Cantor’s research into trigonomet-

ric series led him to develop a theory of infinity based on set theory, in which a set is infinite

if it can be put into a one-to-one onto correspondence with a proper subset of itself. Trans-

finite cardinals denote the size of an infinite set, with two sets having the same cardinality if

there exists a bijective mapping between them. This led to the claim that there are different

sizes of infinity, since there does not exist such a mapping between, for example, the set of

real numbers and the set of natural numbers. This claim arosefrom Cantor’s diagonalisation

argument (see appendix B) in which he proved that the size of the set of natural numbers is

different to the size of the set of reals. An order was defined on the cardinals, and the question

of whether there were any cardinals in between those denoting the size of the naturals and the

reals was labelled the continuum hypothesis. Proving or disproving the continuum hypothesis

was a major focus in mathematics until Godel, in 1938 showed that it is consistent with ZF set

theory plus the axiom of choice (ZFC)2 (so cannot be disproved within the ZFC formalisation),

and Cohen showed, in 1963, that it is independent of ZFC (so cannot be proved within ZFC).

Additionally, Cantor proved that not only are there at leasttwo sizes of infinity; there are an

infinite number of transfinite cardinal numbers since no set can be put into a one-to-one onto

correspondence with its power set.

Transfinite numbers were considered by many mathematiciansat the time to all be monsters.

For instance, the ‘number’ℵ0, which is the size of the set of all integers (the first transfinite

number) is a counterexample to the conjecture above, that ifyou add anon-zeronumber and a

second number, then the result is always larger than the second number, sinceℵ0 + ℵ0 = ℵ0.

Similarly it violates the conjecture that any positive number multiplied by integern > 1 is

bigger than the number, asℵ0.n = ℵ0. The law of monotonicity, that for all numbersa, b and

c, if b< c, thena+b< a+c fails if a= ℵ0 (for any finite b and c). For these and other reasons,

initial reaction to Cantor’s work was hostile, andℵ0 was branded a monster and barred from

the concept of number3. However Cantor was developing a whole area of mathematics which

2Zermelo-Fraenkel set theory, with the axiom of choice, commonly abbreviated to ZFC, is the standard form of
axiomatic set theory.

3These reasons include the belief that infinity belonged to the domains of philosophy and theology rather than
mathematics. Aristotle, Galileo and Bolzano considered itmathematically, but mainly in the context of a series
of puzzling ‘paradoxes’ such as the idea that the set of naturals is the same size as the set of squares - which
tended to confirm the idea that infinity and mathematics should not mix. Another reason was that Cantor’s methods
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he considered to be interesting and worthwhile, which included the numberℵ0. Therefore

he continued his research and tried to convince the mathematical community (eventually with

success) that transfinite numbersarea kind of number and a valid area of mathematics.

As Kadvany [2001] points out, however, it is unlikely that Cantor included an implicit notion

of transfinite number in his concept of number before his development of them. Cantor had to

refine the notions of finite and infinite set, defining them in a precise, mathematical way. One

of the first attempt to describe cardinal numbers was: “two sets have the same cardinal number

or have the same power if they are equivalent” [Burton, 1985,p. 593]. Cantor later tried to

give a more specific definition by abstracting away the elements in the set: “if we abstract both

from the nature of the elements and from the order in which they are given, we get the cardinal

number or power of the set” [Burton, 1985, p. 593]. Frege and Russell then independently tried

to formalise this concept as: “the cardinal number of a setA is the set of all sets equivalent to

A” [Burton, 1985, p. 593].

Note that the definitions for cardinal number change, but notdefinitions for number itself,

although the inclusion of transfinite numbers sparked a row about the nature of number and

even mathematics. Ultimately, a more general definition of number was given, as a cardinal

number, and this was split into finite and transfinite cardinals. This is an example where it

was eventually considered to be more productive to accept, rather than bar the monster under

discussion.

All of these examples are examples of conceptstretching, where a concept definition is widened

to include an object which was previously excluded. In this example concept stretching has

aided the development of the theory. The example also shows how an object which is contro-

versial is judged on whether it breaks many conjectures, or theorems which are held. Addi-

tionally, it shows how it is possible for an object to force other objects, which were previously

positive examples of a conjecture, to become counterexamples to conjectures in a theory.

We can also see monster-barring, where a concept definition isnarrowedto exclude a problem

depended on non-constructivist reasoning - asserting the existence of something without providing a method for
its construction. (Kroenecker, Cantor’s former professor, in particular objected to this, considering it completely
illegitimate. Partly as a result of this, Cantor was never offered a professorship in any of the important German
universities, living instead at Halle university.) This led to strange results such as the size of the set of transcendental
numbers,T, is bigger than that of the integers,Z. This is because the cardinality of the set of real numbers,R, is
bigger than that ofZ (i.e., there does not exist a one-to-one function fromR into Z) - which means thatR is
uncountable (cannot be put into a one-to-one onto relationship with Z); R is the union of the set of algebraic (A)
and transcendental numbers (T); andA is countable which means thatT must be uncountable. However, at the
time of proving this result only one member ofT, e, was known (the theorem was proved in 1874, ande was
established as a transcendental number in 1873 by Charles Hermite, with the second transcendental number,π
established in 1882 by Ferdinand Lindemann [Burton, 1985]). The idea that a set containing only one known
member is significantly larger than a set in which any number of members are known (Z) and is clearly infinite, was
disconcerting and for mathematicians who consider maths tobe clear and definite, the assertion of the existence of
a number which is not actually known is very unsatisfactory.
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entity, on the concept of a set, ormenge(which is also related to Cantor’s work). Cantor

originally defined a set as follows:

“By a set we are to understand any collection into a wholeM of definite and
distinguishable objects of our intuition or our thought. These objects are called
the elements ofM.” [Burton, 1985, p. 591]

However, this definition was not precise enough to prevent the problem setsthe set of all sets,

and the set of sets which are not members of themselves. This lead to paradoxes including

Russell’s paradox:if S is the set of all those sets that are not members of themselves, then S

is a member of itself, and it is not a member of itself, which necessitated the refinement of his

concept of set. But this was unsuccessful, meaning that today the concepts set and element are

undefined, primitive terms4.

The concept ‘prime’

Dunmore [1992] considers the relationship between conceptand conjecture (a conjecture is

clearly dependent on the concepts within it, but the relationship also works the other way

around). She cites an example in number theory, of the definition of prime number. A prime

was initially defined to be ‘a natural number which is only divisible by itself and 1’. However

this definition includes the number 1, which was found to be a counterexample to many the-

orems and conjectures about primes. In particular, the Fundamental Theorem of Arithmetic

(FTA) states that every natural number is either prime or canbe expressed uniquely as a prod-

uct of primes. If 1 is also considered prime, then this violates the uniqueness claim, since, for

example, 6= 2∗ 3 = 2∗ 3∗ 1 = 2∗ 3∗ 1∗ 1 = 2∗ 3∗ 1∗ 1∗ 1 = etc.. Rather than explicitly

exclude the prime 1 from this (and other) theorems, it might be preferable to exclude it from

the concept definition. Today it is often defined as ‘a naturalnumber with exactly two divisors’,

thus enabling many theorems about primes, including the FTA, to be neatly stated. This is an

example where monster-barring has been beneficial.

4In this example it was axioms, rather than a concept definition, which were modified. [Frege, 1903] suggested
a definition of number based on set theory, in his attempt to derive arithmetic from logic. This work contained
the comprehension principle, which is the axiom thatgiven any condition expressible by a formula f(x), it is
possible to form the set of all sets x meeting that condition,denoted{x : f (x)}. The comprehension principle was
modified in order to prevent paradoxes such as Russell’s paradox from occurring. This was done by limiting the
type of sets which it is possible to build. The axiom became known as theaxiom of subsets, or separationand was
stated as axiom 3 in Zermelo-Fraenkel Set Theory asfor any property P(x) of objects and any set A, there is a set
{x ∈ A : P(x)} which contains all the elements of A with the property P. This states that given the setS, and any
meaningful (definite) propertyP there exists a subset consisting of just those members ofSwhich satisfyP. That
is, in order to construct a new set, an existing set as well as aproperty is necessary. This prevents the construction
of the set of all sets.
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6.3 Key points in monster-barring

In summary, we have seen in sections 6.1 and 6.2 that the main points about monster-barring

are:

1. it raises the distinction between concepts (ill-defined,intuitive, possibly with unex-

pressed meaning) and definitions (specific interpretationsof a concept);

2. the process starts with an ambiguous concept, and makes itless ambiguous (although

there may still be some grey areas);

3. monster-barring involves taking the narrow definition and excluding a monster. However,

in contrast, concept stretching can also aid development ofa theory;

4. arguments are made for rival definitions based on the desirability of admitting a certain

problem object into a concept domain. This desirability mayconsist of wanting to:

(a) exclude the object, in order to defend a certain conjecture;

(b) include the object, in order to attack a certain conjecture;

(c) exclude the object, since it breaks many conjectures in the theory;

(d) exclude the object, since it forces other objects in the theory to become counterex-

amples to conjectures in the theory;

5. there are two decision points during the process of monster-barring; deciding whether to

suggest that an object be barred, and deciding how to react tosuch a suggestion;

6. the dialogical aspect of Lakatos’s work is clearly seen inthis method, where different

definitions are negotiated and debated.

6.4 Implementing monster-barring

In this section we describe our implementation of monster-barring, in terms of the six points

made above. As with all methods, it is implemented within thearchitecture described in chap-

ter 4 and each agent uses a copy of HR [Colton, 2002] (see chapter 3) to generate concepts

and the initial conjectures. To recap, all communication isvia the teacher who decides on a

group agenda and sends requests to the students (who respondor send requests of their own).

Students work in two phases: independently, in which they develop their own theories, and

a discussion phase in which they communicate and discuss their conjectures, concepts and
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counterexamples. The teacher initially asks each student for their most interesting conjecture

where the interestingness function is a weighted sum of measures (see §3.1.3) which is input

by the user. The user can also set the teacher to specify a certain type of conjecture, e.g., an

implication.

6.4.1 Lakatos’s distinction between concepts and definitio ns

We have seen that Lakatos distinguished in monster-barringbetween concepts, which are ill-

defined, and definitions, which are specific interpretationsof a concept. In order to implement

this aspect, we exploit the distinction in HR between core concepts and developed concepts,

described in §3.1. To recap, a core concept is one which is input by the user, and consists of a

list of objects and possibly a way of generating them, but no specific definition. A developed

concept, on the other hand, has been generated from other concepts using production rules, and

does have a specific definition. This is analogous to Lakatos’s distinction between concepts

and definitions, although clearly, the concepts are generated in a very different way.

6.4.2 Making a concept less ambiguous

In order to find a specific definition for a core concept, i.e., to start with an ambiguous concept,

and make it less ambiguous, we have implemented a type of monster-barring which we call

“vague-to-specific”. Given an undefined, core concept, a conjecture, and an entity which may

be a ‘monster’ or may be a valid counterexample to the conjecture, if a student is set to perform

“vague-to-specific” monster-barring, it will firstly generate a listL of developed concepts in

its theory which are conjectured to be equivalent to the coreconcept. If the student wants to

exclude the entity as a monster, it will remove fromL any concept which includes the entity in

question, and if it wants to include the entity as a valid counterexample, it will remove from

L any concept which excludes the entity in question. The student then removes fromL any

concept which is in the conjecture under discussion, and then, if L is not empty, it will find the

most interesting conceptX in L, according to the weighted interestingness criteria. The student

then proposesX as an alternative concept definition.

We have also implemented a type of monster-barring which we call “vague-to-vague”, in which

case the concept definition is left unchanged, and the debateis over whether the concept should

cover a given entity or not.
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6.4.3 Concept stretching

We have seen (§6.2) that concept-stretching – where a concept definition is widened to include

an object which was previously excluded – can aid the development of a theory. Therefore

we have implemented what we callmonster-accepting. Given a conjecture, and a proposal

to bar a potential counterexample from a concept in the conjecture, a student will perform

monster-accepting if the entity does not break the conjecture under discussion, or if it breaks

less than a user-defined proportion of conjectures in the student’s theory. If this is the case,

then the student will reject the proposal, and, if the flag “vague-to-specific” is set, the student

will find a wider concept definition which does cover the entity definition and communicate

this alternative definition to the teacher. The inconsistency in the conjecture under discussion

is then dealt with by other methods.

6.4.4 When to perform monster-barring

Given an entity which is new to a student, and has been suggested as a counterexample to a

conjecture, the student will propose to monster-bar the entity in the following cases:

• if the conjecture under discussion has no counterexamples in the student’s theory; or

• if the number of conjectures which are broken by the entity isover a user-set monster-

barring minimum; or

• if the number of counterexamples to the conjecture is more than half the total number

of entities, and either the entity is responsible for all of the entities in the theory being

counterexamples to the conjecture, or the entity in question forces other entities into

being counterexamples for a higher number of conjectures than the proportion specified.

Flags are set at the start of each session to determine which of these cases is followed.

6.4.5 Two decision points

We have implemented two decision points during the process of monster-barring. The first

occurs when a student receives an entity which is new to it, and the student decides whether to

propose to monster-bar the entity. The second decision point occurs when a student receives

such a proposal. The student then evaluates the proposal andvotes on whether to accept or

reject it.
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6.4.6 Social dialogue

Recall that in §3.2.4 we described work by Jennings et al. [1998], who argue that an agent

capable of argumentation-based negotiation must have a mechanism for communicating pro-

posals and supporting arguments, generating proposals, assessing proposals and arguments,

and responding to proposals. Agents move through the space of possible agreements, and ne-

gotiate points in the space which are acceptable. Negotiation may include agents explaining

why they are rejecting/proposing a certain point. Jenningset al. [1998] do not suggest that the

meaning of a concept could be a possible object over which agents negotiate (other people in

the research community, however, have investigated this; see §6.8.2 for an outline). Instead

they give examples of issues relating to negotiation over services or products. However, their

framework is general enough to include this type of negotiation. In this section we describe

our implementation in terms of their work.

Generating a proposal

The teacher prioritises the conjectures it receives and then, if the flag “communal piecemeal

exclusion” is set, asks the students for counterexamples tothe first conjecture on the agenda.

(If this flag is not set then the teacher asks for modificationsto the first conjecture in the group

agenda.) If the teacher asks for counterexamples, the students look in their theories and send

back any counterexamples they find. Before adding these to the agenda, the teacher sends them

to the students, to check that they consider the counterexamples to be valid, or whether they

want to monster-bar any. If all of the students accept the counterexamples as valid, then they

will add any new entities to their theories. The teacher thenrequests a concept which covers

all of the counterexamples, selects one concept from those concepts which are suggested, and

modifies the conjecture by excepting that concept (see piecemeal exclusion in §7.6). Students

can only decide to monster-bar counterexamples if they are set to do so by the user. If so, and a

student is sent an entity which is new to it, then the student will propose to monster-bar in the

following cases:

(i) if the object breaks the conjecture under discussion, whichotherwise has no counterexam-

ples in the student’s theory (this captures4a and4b, in §6.3);

(ii) if the object breaks more than a user-set proportion of conjectures in the student’s theory

(this captures4c, in § 6.3);

(iii) if the object forces other objects to break the conjecture under discussion, or further con-

jectures in the student’s theory. That is, if the student includes the object in its theory further

objects become counterexamples to a conjecture, and if it does not, then these other objects are

not counterexamples (this captures4d, in § 6.3).



6.4. Implementing monster-barring 75

See algorithm 2 on page 78 for the algorithm for the student todeterminewhento propose to

bar an entity.

Communicating proposals and supporting arguments

If a student has generated a proposal in the previous stage, then it sends the proposal to the

teacher, who puts the proposal into the group agenda. When itreaches the top of the agenda,

the teacher sends the proposal to all of the students.

Assessing proposals and arguments

If a student receives a proposal to bar an object, then it willevaluate the proposal. The student

will vote to accept the proposal if:(i) the object breaks the conjecture under discussion, which

otherwise has no counterexamples in the student’s theory;(ii) the student is set to accept the

strictest definition, or(iii) the entity breaks more than a user-defined proportion of the student’s

conjectures. The student will vote to reject the proposal if: (i) it already has counterexamples

to the conjecture under discussion in its theory, or(ii) the entity does not break more than a

user-defined proportion of its conjectures.

Note that if the object is not new to a student, i.e., is already in their theory, then they can only

vote to accept a proposal to bar the object, rather than suggesting the initial proposal that it be

barred. This reflects a loyalty to one’s own data set, although in future versions of the system, it

might be worthwhile investigating whether allowing agentsto propose to bar their own objects

would result in more interesting theories (this would also depend on the distribution of the

objects of interest at the start of a session). A student may wish to bar one of its own entities if

the entity is a counterexample to many of the conjectures in its theory.

See algorithm 3 for the algorithm for the student toevaluate a proposalto bar an entity.

Responding to proposals

The students respond to a proposal to bar an object by sendingthe teacher their vote on whether

to bar the object or not. The teacher counts the votes and makes a democratic decision. If the

votes to bar the object outweigh those to accept it, then the teacher tells the students with the

monster in their theories to remove it. Alternatively, if the votes to accept the object outweigh

those to bar it, or if there is an equal number of votes for eachposition, then the teacher will tell

the students who do not yet have the object (which is now agreed as a valid counterexample)

to add it to their theories.

Jennings et al. [1998] definesnegotiationas the problem of reaching mutually acceptable agree-

ments. We definesemantic negotiation– the problem of reaching mutually acceptable defini-

tions – as a specialised type of negotiation. This is a part ofthe method of monster-barring. In

Pease et al. [2002], we argue that semantic negotiation is animportant part of human reasoning.
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6.4.7 Further design considerations

Simplifying assumptions

Discussion of the validity of monster-barring concerns concepts which are difficult to simulate,

such asintendeddefinitions, as seen in § 6.1. In our implementation, we have ignored such

subtleties and simplified the method. The question of whether a new definition was previously

intended or not is beyond the scope of this thesis. Instead, we bypass the issue of whether a

concept is being narrowed to exclude a monster, or stretchedto include a counterexample, by

implementing both monster-barring and monster-accepting.

Removing input entities from the database

In order to simulate examples such as the ambiguity of the number 1, we needed to set some

agents running without the entity 1 in their list of numbers.When removing integers from the

database, we had to consider the way in which the core concepts are generated. For instance,

it seems odd for an agent not to have the entity 1 in its core concept of integer, yet still have it

in the table of divisors, multiplication, etc. If a student had the integers 2−5 and the concepts

divisor and multiplication, then its data table would be be as shown in table 6.4.7.

integer divisor multiplication

2 f(2) = [[1],[2]] f(2) = [[1,2],[2,1]]

3 f(3) = [[1],[3]] f(3) = [[1,3],[3,1]]

4 f(4) = [[1],[2],[4]] f(4) = [[1,4],[2,2],[4,1]]

5 f(5) = [[1],[5]] f(5) = [[1,5],[5,1]]

This seemed counterintuitive, and we initially resolved itby adding new ways of forming the

concepts divisor and multiplication (for instance, starting to calculate the divisors from 2 rather

than 1), which excluded the number 1 from anywhere in the table. However, this also has

disadvantages, since it means that the entity 1 is not known in any capacity, which was not

the case in the historical example in which the status of the entity 1 was controversial (§6.2).

The attitude of the Greeks, where the example came from, is that while it is possible to divide

a number by itself and get 1, and multiply a number by 1 to get the same number, the entity

1 is not itself a number (but is rather the generatrix for all numbers). Euclid believed that a

number is an aggregate composed of units - and 1 is not an aggregate of itself [Wells, 1997, p.

13]. Therefore, for the sessions we describe in §6.6, we do not use the new ways, but leave the

tables as they are above, on the grounds that there is no reason why all of the entities in all of

the tables be considered integers.

Removing entities from the database during the discussion

When a group has decided to monster-bar an object, it would betime consuming to go through
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its theory and change all of the data tables of concepts involving the entity, and all those data

tables of concepts deriving from these concepts, and all conjectures involving these concepts.

This is also unrealistic conceptually: experts in a community would not immediately entirely

clear their mind or theory of a problem entity once they have agreed not to use it. This would

also mean much more work if it is ever decided, either communally or individually, to re-

introduce the problem entity. Therefore we remove the entity from the list of entities (not the

data tables), and put it into a list calledpseudoentities. Anything in this list does not count as

a counterexample when generating or evaluating conjectures.

6.5 The monster-barring algorithms

Whenever a student sends any entities to the teacher for discussion, the teacher sends these

to all other students and awaits their responses. The students then cycle through the received

list of entities, and for each entity, if their monster-barring field is set (by the user) to “true”,

performs the tests below to determine whether to vote to monster-bar the entity, or to add the

entity to their theory. If monster-barring is set to “false”then the receiving student checks to

see whether it already knows the entity. If it does, then the student does nothing, and if not

the student adds the entity to its theory. In algorithm 2 we describe how a student determines

when to propose to monster-bar an entity, given an entity which isnew to the student, and

has been suggested as a counterexample to a conjecture. In algorithm 3 we describe how a

student evaluates a proposal to monster-bar an entity, given a request from a student to bar the

entity. Finally, in algorithm 4 we describe how a student performs monster-barring or monster-

accepting, given that either the student is proposing to monster-bar an entity, or is voting on

whether to accept or reject a proposal to monster-bar an entity.

If the teacher receives a request to monster-bar an entity, then it sends a request for all students

to evaluate the proposal. Each student then sends a vote, to either accept the proposal (monster-

bar the entity) or reject the proposal (monster-accept the entity). The teacher then counts the

votes in the agenda which are for or against monster-barring, calculates the overall consensus

(if there are an equal number of votes then the teacher takes the narrowest definition, which

excludes the entity as a monster). The teacher then sends theappropriate request to the students

to either downgrade the entity to a pseudo-entity, if the consensus is to monster-bar the entity,

or to add the entity to their theories, if the consensus is to monster-accept the entity.
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Algorithm 2 Algorithm for the student to determinewhento propose to bar an entity
Require: An entity which is new to the student, and has been suggested as a counterexample

to a conjecture.

1: if the monster-barring flag is setthen

2: if the flag “use breaks conj under discussion” is set, and the conjecture under discussion

has no counterexamples in the student’s theorythen

3: propose to bar the entity

4: else ifthe flag “use percentage conjectures broken” is set, and the number of conjectures

which are broken by the entity is over the monster-barring minimum then

5: propose to bar the entity

6: else if the flag “use culprit breaker” is set and the number of counterexamples to the

conjecture is more than half the total number of entitiesthen

7: if the flag “use culprit breaker on this conjecture” is setthen

8: if a single entity is responsible for all of the entities in the theory being counterex-

amples to a given conjecturethen

9: propose to bar the culprit entity

10: else

11: add the entity to the list of entities

12: end if

13: else ifthe flag “use culprit breaker on all conjectures” is setthen

14: if the entity in question forces other entities into being counterexamples for a higher

number of conjectures than the proportion specifiedthen

15: propose to bar the culprit entity

16: else

17: add the entity to the list of entities

18: end if

19: end if

20: end if

21: else

22: add the entity to the list of entities

23: end if
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Algorithm 3 Monster-barring algorithm for the student toevaluate a proposalto bar an entity
Require: receive a request from a student to bar an entity

1: if the flag “use breaks conj under discussion” is setthen

2: if the conjecture under discussion has no counterexamples already in the theorythen

3: vote to accept the proposal to bar the entity, and send the vote to the teacher

4: else

5: vote to reject the proposal to bar the entity, and send the vote to the teacher (monster-

accepting)

6: end if

7: else

8: if “accept strictest definition” flag is setthen

9: vote to accept the proposal to bar the entity, and send the vote to the teacher

10: else

11: calculate the percentagex of conjectures in the theory which are broken by the entity

12: if x >the monster barring minimumthen

13: vote to accept the proposal to bar entity, and send the vote toteacher

14: else

15: vote to reject the proposal to bar the entity (monster-accepting)

16: end if

17: end if

18: end if



80 Chapter 6. The method of monster-barring

Algorithm 4 Monster-barring algorithm for the student to decidehow to perform monster-

barring or monster-accepting
Require: the student is either proposing to monster-bar an entity, oris voting on whether to

accept or reject a proposal to monster-bar an entity

1: if the flag “monster-barring-type” is set to “vague-to-specific” then

2: generate a listL of concepts in the theory which are conjectured to be equivalent to the

undefined concept

3: if the student is either proposing to bar the entity, or voting to accept the proposal to bar

the entitythen

4: remove fromL any concept which includes the entity in question

5: else

6: if the student is voting to reject the proposal to bar the entitythen

7: remove fromL any concept which excludes the entity in question

8: end if

9: end if

10: remove fromL any concept which is one of the concepts in the conjecture under discus-

sion

11: if L is not emptythen

12: find the most interesting conceptX in L, according to the weighted interestingness

criteria. Vote to accept/reject the proposal to bar the entity, as appropriate, and suggest

X as an alternative concept definition. Send the vote to the teacher

13: end if

14: else

15: if the flag “monster-barring-type” is set to “vague-to-vague”then

16: vote to reject the proposal to bar the entity, leave the definition as it is, and send the

vote to teacher

17: end if

18: end if
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6.6 Illustrative sessions

In the following sessions, we present selected interactions, which show the method of monster-

barring at work.

6.6.1 Session one: barring the number one

Input information:

We ran the agency with three students and a teacher. The first student started with the in-

tegers 1− 30 and background concepts of integers, divisors, and multiplication. It was set

to propose or agree to monster-barring if the entity in question broke more than 10% of its

conjectures. The second student started with the integers 2−30 and background concepts of

integers, divisors, addition and multiplication. It was set to propose monster-barring if the en-

tity in question forced all of the other entities in its theory to become counterexamples, and to

agree to monster-barring if the entity in question broke more than 20% of its conjectures. The

third student started with the integers 2−30 and background concepts of integers, divisors, and

multiplication. It was set to propose or agree to monster-barring if the entity in question broke

more than 10% of its conjectures. All three students were setto make near-equivalence con-

jectures which held for 80% of their entities. The teacher requested non-existence conjectures,

i.e., conjectures stating that a particular definition has no examples.

Session details:

The third student made the conjecture that there does not exist a number such that when mul-

tiplied by itself gives the same number, i.e., not existsn such thatn∗n = n), and sent it to the

teacher, who put it on the agenda for discussion. The teacherthen asked for counterexamples

to the conjecture, and the first student sent back the number 1. The teacher sent this to all the

students to see if they were happy for it to be added to the group discussion agenda. The third

student found that 1 was a counterexample to 30% of its conjectures, and proposed to bar it.

All students then evaluated the proposal. The first student found that 1 was a counterexample

to 11% of its conjectures, and the second student found that it broke 44% of its conjectures.

Therefore all students agreed that it should be barred, and the teacher requested them to down-

grade 1 to a pseudo entity.
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6.6.2 Session two: adding the number one

Input information:

We ran the agency again with three students and a teacher, where each student had the same

background information as in the example above (§6.6.1), but different monster-barring set-

tings. The first student was set to propose or agree to monster-barring if the entity in question

broke more than 20% of its conjectures. The second student was set to propose monster-barring

if the entity in question forced all of the other entities in its theory to become counterexamples,

and to agree to monster-barring if the entity in question broke more than 50% of its conjec-

tures. The third student was set to propose or agree to monster-barring if the entity in question

broke more than 20% of its conjectures. The students were notset to make near-equivalence

conjectures. As in §6.6.1, the teacher requested non-existence conjectures.

Results of session:

The third student made the conjecture that there does not exist a number such that when mul-

tiplied by itself gives the same number, i.e., not existsn such thatn∗n = n), and sent it to the

teacher, who put it in the agenda for discussion. The teacherthen asked for counterexamples

to the conjecture, and the first student sent back the number 1. The teacher sent this to all the

students to see if they were happy for it to be added to the group discussion agenda. The third

student found that 1 was a counterexample to 30% of its conjectures, and proposed to bar it.

All students then evaluated the proposal. The first student found that 1 was a counterexample

to 12% of its conjectures, and the second student found that it broke 40% of its conjectures, and

both students voted to reject the proposal to bar the entity.As the votes to reject the proposal

outnumbered those to accept the proposal, the teacher requested all students to add the number

1 to their theories.

6.6.3 Session three: barring the number zero

Input information:

We ran the agency with two students and a teacher. The first student started with the integers

0−10 and the second student started with the integers 1−10 (i.e., did not know the number 0).

Both students started with the background concepts of integers, divisors, and multiplication.

The teacher requested non-existence conjectures, i.e., conjectures about a concept which has

no known examples. The students were set to work individually for 20 steps and then enter

into discussion. The students were both set to use monster-barring, and specifically to test
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whether an entity was a culprit breaker when deciding whether to propose monster-barring or

not. The monster-barring minimum was set to 15%, i.e., if a proposal to monster-bar an entity

was made, both students would evaluate the proposal by testing to see whether the entity was a

counterexample to more than 15% of its conjectures (in whichcase the student would agree to

bar it).

Session details:

The second student made the conjecture that there do not exist integersa, b such thatb+a= a

anda+b= a, and sent it to the teacher, who put it in the agenda for discussion. The teacher then

asked for counterexamples to the conjecture, and the first student sent back all its integers, since

having 0 in its theory meant thateverynumber appears in a counterexample (which consists of

a pair of numbers). For instance, 1 appears in a counterexample since 1+ 0 = 1, similarly 2

also appears in a counterexample since 2+0 = 2, etc.. The teacher then asked for responses to

the counterexamples, and the student with 0 tested to see whether there was a single ‘culprit’

entity which was forcing all of its entities to be counterexamples, and concluded that 0 was a

culprit entity. As a consequence it then sent the request to the teacher to monster-bar 0. The

teacher put this request into the agenda, and sent it to the second student, who tested to see

how many of its conjectures the number 0 broke. It found that 0broke 63% of its conjectures,

and as that was more than 15%, voted to monster-bar 0. The teacher counted the votes and told

both of the students to down-grade 0 to a pseudo-entity. Bothstudents then added 0 to their

pseudo-entities list, which meant that it was now in both of their theories but did not count as a

valid integer.

6.7 Discussion

The illustrative results above are the beginning of an attempt to simulate the discovery and

resolution of ambiguity in mathematics. For instance, the session described in §6.6.1, is a very

simple model of the historical process of barring the number1, when it was first considered,

because it broke conjectures that people wanted to keep. It is an example of vague to vague

semantic negotiation, as the concept of ‘number’ is no more concrete after the discussion and

the barring of 1 than before. The session described in §6.6.2shows an example of monster-

accepting.

The failure at the beginning of the last century of the quest for a perfect language in which

neither ambiguities, nor paradoxes, nor redundancies exist, showed the difficulties involved in

writing a formal language which can be used to describe a reasonably large domain. Different
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types of ambiguity includelexical (where a word has two different meanings);syntactic(where

a sentence has two syntactically correct derivation trees which indicate different meanings);se-

mantic(where a sentence has two meanings, only one of which makes sense), andpragmatic

(where the meaning of a word is relative to the speaker). Muchwork on AI and ambiguity con-

cerns methods to automatically determine a writer’s intended meaning (for example Romacker

and Hahn [2001] who focus on representing and managing ambiguity in natural language text

understanding). In contrast, we are concerned with ways in which ambiguity may be exploited

(or introduced into a previously unambiguous concept), in order to support an argument or set

of beliefs.

Ambiguity is widespread in human argument, and can be exploited in order to support goals.

However, this phenomenon is rarely used in AI research. Economic agents may well disagree

on the price of a potato, even haggle over it in a reasonably sophisticated way, but they do not

usually start arguing about what a potato is. The fact that although participants in a discussion

use a shared language, while some of the terms are ambiguous,raises questions such as: what

sorts of things can be ambiguous? How might ambiguity arise?How can it be resolved? Can

it be used to produce richer theories? The method of monster-barring helps us to answer these

questions5.

What sorts of things can be ambiguous?

In mathematical theories, at least two types of component may be ambiguous - objects and

concepts. Two ways in which an object can be ambiguous are:(i) there may be two different

objects with the same name, or(ii) there may be a single object which is represented in different

mutually inconsistent ways, similar to Rubin’s vase (this is the method of monster-adjusting).

If we see mathematicians as working within a domain, or ‘universe’, such as polyhedra, or

numbers, then both sub-concepts within the universe, such as the concept of a prime number,

as well as the universe itself, can be ambiguous.

How might ambiguity arise?

Some concepts are initially specifically defined (everyone agrees on the definition), and the

definition changed (someone argues that a second definition would be more useful). Others are

initially vague (it is not known whether some objects are examples of the concept or not) and

5There are also questions as to the extent and type of ambiguity. We have already seen deep disagreement
over whether the concept of infinity is a mathematical one or not, with some mathematicians arguing that it simply
cannot be represented mathematically (§6.2). Ryle [1949] describes a notion oflogical geography, which is a
conceptual scheme, or context within which concepts and propositions may legitimately be expressed. If, for
instance, a philosopher represents a concept in a differentlogical geography from another, then misunderstanding
and disagreement will ensue. Ryle demonstrates his point with reference to the traditional mind-body dualism
which, he argues, is absurd since we use physical representations and concepts such as location in space to talk
about mental concepts. He argues that the function of philosophy is to map the logical geography, which will
consist in relocating, rather than denying, ideas. In this view an important aspect of ambiguity would be the
distance on the logical map between different interpretations.
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only when disagreement arises are different concept definitions made explicit.

How can ambiguity be resolved?

Experts evaluate the worth of each of the rival definitions (often with different results). The

existing definition is assumed by default, with the onus on proponents of a new definition to

convince the other experts of its value. Grounds for accepting the new definition include show-

ing that it produces interesting new theories or results (including maintaining an interesting

conjecture). There is usually a period during which it is unclear whether the object in question

belongs to a concept or not. It passes through a period of indefinite status with some people

accepting its status, others not, others unsure, until it either proves its worth and is generally

accepted, or it fails to convince enough people and gradually disappears. Lakatos [1976] does

not explore reasons for choosing one concept definition overanother. Instead, the teacher in

the dialogue simply asks everyone to accept the strictest, i.e., most limited definition suggested

so far (at least for the duration of the discussion). However, the only clear end to this pro-

cess is a tautology (hence a student’s sarcastic suggestionthat a polyhedron be defined as ‘a

system of polygons for which the equationV −E + F = 2 holds’ – [Lakatos, 1976, p. 16].

Dunmore [1992] suggests that concept definitions are chosenand developed according to their

use. For instance, a concept which is not associated with anyinteresting conjectures is unlikely

to become well known and accepted within the mathematical community.

We leave the question of whether ambiguity can be used to produce richer theories, i.e., whether

a more interesting theory can be produced using the method ofmonster-barring than without

it, for chapter 10.

Can we apply monster-barring to other domains?

We have seen examples of monster-barring applied to number theory, which is a new math-

ematical domain for this technique. Furthermore, it is a technique often used in everyday

arguments about other issues. There are many situations in which participants realise partway

through an argument that they are interpreting one of the keyterms differently. The meaning

of the key term is then called into question, and the focus of the argument switches from the

truth or acceptability of a claim or offer to themeaningof the term, i.e., they perform monster-

barring. This is particularly common in subjects such as philosophy, law and politics, in which

persuasive reasoning is all important and concept definitions are modified according to the

proponents’ goals.

Examples in which ambiguity is used to support an argument include an insurance company

which argues that a house damaged in a hurricane is not covered by the owner’s accident policy,

as a hurricane is an ‘act of God’ rather than an accident. Similarly, a lawyer may argue that

a client who jumped a red light while rushing his wife to a maternity ward is not guilty of



86 Chapter 6. The method of monster-barring

reckless driving. In the 1990’s the European Union Food Standards discussed the definition

of chocolate. The minimum cocoa content which a substance must contain in order to be

called chocolate was debated, as countries which produce itwith a higher cocoa content did

not want their chocolate to be confused with products with a lower cocoa content. Finally,

consider the recent controversy over the meaning of ‘prisoners of war’. When challenged that

their treatment of the Taliban prisoners violated the Geneva Convention, that all prisoners of

war should be treated humanely, the American government argued that the prisoners were not

‘prisoners of war’ but ‘battlefield detainees’6. In these examples, the termsaccident, reckless

driving, chocolateand prisoners of warare defined by each party in such a way as to aid

their argument. Here we see that examples in non-mathematical domains might be theoretical,

definition or ethical. The number of examples in non-mathematical domains suggests that it

may be fruitful to test this technique in non-mathematical domains. We test this in chapter 10.

6.8 Related work

We have already seen that research in negotiation is relevant to this method. In this section we

briefly outline work in ambiguity and argumentation, and show how our work differs. We also

describe work by Skalak and Rissland [1991] on different interpretations of terms.

6.8.1 Work on ambiguity and argumentation

Aristotle [1957, 1955, 1976] identified three motivations behind arguments;apodiactic, di-

alectic andrhetoric, in which certainty, a general acceptance and convincing anaudience are

respectively sought. Although many would claim that motivation behind mathematical argu-

ment falls into the first category, the second (or even third)is more appropriate to mathematics

as Lakatos [1976] describes it. Aristotle treated dialectical argument as a game between a de-

fender and attacker, and suggested guidelines such as forcing the defender to contradict herself,

state an untruth or paradox, or to defend a circular argument, for conducting the debate. Certain

moves – called fallacies – were disallowed, including the fallacy of ambiguity. The relevant

fallacy in our case is the fallacy of the ambiguous middle, which is where an argument consists

of two premises and a conclusion, which each contains an occurrence of a term but the term is

defined differently in the two premises, and thus the argument is invalid [Hamblin, 1970].

6The definition ofhumane treatmentwas also disputed, in particular whether it could ever include interrogation,
as the American government felt it important to interrogatethe prisoners while not wanting to be open to the charge
of inhumane treatment.
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In his work on controversy, Crawshay-Williams [1957] emphasised the need for clarifica-

tion of concepts prior to discussion. He claimed that if participants in a discussion agree

upon the criteria under which a statement will be tested, then agreement regarding its abso-

lute/probable/indeterminate truth will soon be reached. He calls one such criterionconven-

tional, to mean the condition that participants agree on the meaning of terms (the others are

logical, in which inference rules must be agreed, andempirical, in which facts and their con-

textual description should also be agreed).

Naess [1953] also stated that criteria for the verification or falsification of a statement are

essential (to the extent that if no such criteria are found then discussion should be abandoned).

However, he includes agreeing on terms as a stage in the discussion, rather than a pre-requisite

to it. The three stages in resolving a discussion, he suggests, are interpretation, clarification

and argumentation. For any statementT there is a set of possible interpretations ofT, and

participants must agree on which interpretation they wish to discuss. He claims thatprecizating

statements, (being more precise) helps to eliminate misunderstandings, whereU is more precise

than T if any interpretations ofU are also interpretations ofT, but there are interpretations ofT

which are not interpretations ofU . This is useful only if the disagreement has occurred through

different interpretations, and he does not advocate continual precization of statements since

discussion would be practically impossible. Naess [1953] calls disagreements which are rooted

in misunderstandings,verbal disagreements. If, after precization, there is still disagreement,

then it is consideredreal disagreement. In the case of a real disagreement, the evidence is

weighed up to see which of the two statements is more acceptable.

Cohen [1962] discusses the role that meaning change plays inthe development of science,

claiming that meaning is not timeless and unchanging. In order to analyse the history of a

concept, he argues, the modern historian of science must analyse the history of the meaning of

the concept in the context of the culture at different times.Conversely, concept meaning is not

all temporal (as suggested by Engels’s dialectic); instead, “the philosophy of meaning has to

steer a course between these two doctrines of oversimplification”[Cohen, 1962, p. 23].

Carbogim et al. [2000] present a survey of issues which can behandled by automated argu-

mentation systems and suggest directions for future research. They consider the generation

and evaluation of arguments, including issues such as drawing conclusions from an incomplete

or inconsistent knowledge base, decision making under uncertainty and multiagent negotiation

systems. Argument about the meaning of terms used is not considered either explicitly in the

text, nor in any of the examples, although it may turn out thatsemantic negotiation fits into one

of the frameworks outlined.

Our view is that ambiguity plays an important rolewithin a discussion. That is, questioning
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the meaning of terms in a discussionis a valid strategy (with restrictions on which words may

be questioned). We differ from Crawshay-Williams’ approach in that we see debate of terms

as an important part of discussion rather than a pre-requisite of it. Participants may not realise

initially that they have different interpretations of a word, indeed they may not themselves have

a clear interpretation. We also differ from Naess’s linear approach: disagreement over terms

could arise at any point in a discussion. Of particular interest in Naess’s work is theevidence

used to resolve ‘real’ disagreements, and we hope by implementing semantic negotiation to

elucidate the sort of evidence required. While the survey byCarbogim et al. [2000] is not

intended to be exhaustive, it does cover the central issues.The omission of semantic negotiation

suggests that it is either irrelevant to argumentation or isa new direction which has received

little attention. We hold that it is the latter.

6.8.2 Different interpretations of terms

Rissland has carried out much work on the role of examples in understanding a domain. In

particular Skalak and Rissland [1991] discuss a theory of heuristics for making arguments in

domains where “A rule may use terms that are not clearly defined, or not defined at all, or the

rule may have unspoken exceptions or prerequisites” [Skalak and Rissland, 1991, p 1]. Clearly

Lakatos’s ideas are relevant to this sort of domain, where Skalak and Rissland’s termrule cor-

responds to Lakatos’s termconjecture, term to concept, caseto entity, andargumentto proof.

In particular, Skalak and Rissland [1991] are interested incases where terms within a rule are

open to interpretation, and different parties will define the term differently according to their

point of view. This corresponds very closely to Lakatos’s method of monster-barring. As an

example, Skalak argues that the term ‘satisfactory progress’ might be interpreted differently by

a student than by a university, in the rule ‘a student must make satisfactory progress towards

a degree’, with the student more likely to define it widely, thus including her own progress as

satisfactory. Skalak and Rissland [1991] discuss argumentmoves which use cases to deter-

mine which interpretation of an ambiguous term in a rule is tobe adopted. These moves are

implemented withinCABARET [Rissland and Skalak, 1991] which is a domain-independent

architecture for combining a production system with a case-based reasoner.

McNeill et al. [2004] describe a system that can dynamicallydiscover some ontological mis-

matches between agents during communication and then refinethem, in order to enable com-

munication between these agents. For instance, an agent mayattempt to buy a ticket by locating

and communicating with a ticket selling agent. Mismatches in representation between agents

may arise during communication, such as the main agent representing money as a unary pred-

icatemoney(?Amount) , and the ticket-selling agent representing it with the binary predicate
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money(?Amount,?Currency). McNeill et al. suggest techniques to diagnose and repair some

such mismatches, and describe their system within which they have implemented these tech-

niques.

Our work differs in motivation and application. Neither Skalak and Rissland [1991] nor Mc-

Neill et al. [2004] mention Lakatos; rather the motivation of the former is to model legal rea-

soning, and the latter to model representational change in the planning domain. Although there

is an analogy between the method of monster-barring and their work, Lakatos’s other methods

are not modelled. With regard to application, Skalak and Rissland [1991] specifically contrast

domains which include rules with terms which are open to interpretation, with mathematics:

“Statutory interpretation can be contrasted with fields like mathematics, where the application

of a rule to a set of facts is a straightforward application ofan inference rule likemodus po-

nens” [Skalak and Rissland, 1991, p 1]. One important different between our work and that of

[McNeill et al., 2004] is the role that counterexamples play. Representational mismatch is not

seen in terms of counterexamples by McNeill et al. [2004], whereas counterexamples are vital

to our project.

6.9 Summary

In this chapter we have developed our computational readingof Lakatos’s method of monster-

barring, and introduced the converse: monster-accepting.We started by outlining Lakatos’s

work, and his views of the method. We then looked for other examples of the method, in

the new domain of number theory, and argued that it can be seenat play in mathematician’s

attitudes to the concept ofnumber, and ‘monsters’ including the number one, zero, irrational,

imaginary and transfinite numbers. In §6.3, we outlined six key points in monster-barring and

then described our implementation of each of these in §6.4 and our algorithms in §6.5. We

presented illustrative sessions in §6.6 and discussed our approach in §6.7. We concluded the

chapter with a discussion of related work in the fields of ambiguity, argumentation and law.





Chapter 7

The method of exception-barring

“... I am ... against the term ‘counterexample’; it rightly admits them on a par
with supporting examples, but somehow paints them in war colours, so that, ...,
one panics when facing them, and is tempted to abandon beautiful and ingenious
proofs altogether. No: they are justexceptions.” Beta, student in [Lakatos, 1976,
p.24].

This chapter discusses our computational reading of Lakatos’s treatment of exceptions. This

is noteworthy for two reasons. Firstly, their role in mathematics, traditionally thought of as an

exact subject in which the occurrence of exceptions would force a mathematician to abandon

a conjecture (§7.1). Secondly, Lakatos showed how exceptions, rather than simply being an-

noying problem cases, can be used to further knowledge (§7.2). In §7.3 we outline the method

of exception-barring. In order to implement the method, we consider how exception-barring

applies to another area of mathematics: number theory, in §7.4, and to different types of con-

jecture, in §7.5. This exploration suggests further distinctions in the method. In sections 7.6,

7.7 and 7.8 we describe our algorithms and example sessions for each of the exception barring

methods: piecemeal exclusion, counterexample barring (which is a type of piecemeal exclu-

sion) and strategic withdrawal. Note that unless otherwisestated, we use the default settings

in HR during the example sessions. In particular, the interestingness measures we use are the

default weightings. We conclude by considering the work from the fields of machine learning,

diagrammatic reasoning, and planning, which is related to this method (§7.9).

7.1 Exceptions in Mathematics

Lakatos was one of the first to make explicit the role of exceptions within mathematics. Pre-

viously (and often still today), it was thought that while inother subjects statements may be

91
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susceptible to exceptions, mathematics was ‘pure’ in the sense that if a conjecture was found to

have a counterexample then that was sufficient to prove it false. A mathematician would then

move on to other, potentially provable conjectures. The idea that exceptions in mathematics

could be used, as in other domains, to modify, as opposed to reject, faulty conjectures was

greeted with horror, henceDelta’s argument that:

“To agree to a peaceful coexistence of theorems and exceptions means to yield to
confusion and chaos in mathematics.”Delta, student in [Lakatos, 1976, p.25].

However, Lakatos, by documenting a theoretical development of Euler’s conjecture, thatfor all

polyhedra, the number of faces (V) minus the number of edges (E) plus the number of faces (F)

is 2, showed just this: that mathematicians found the counterexamples of nested cubes, picture

frame and twin tetrahedra and used them to modify the conjecture (see figure 7.1). This was

done by generalising from the examples to the general case ofpolyhedra with cavities, tunnels

and multiple structure, and then modifying the conjecture to for all polyhedra except those with

cavities, tunnels or multiple structure, V - E + F = 2. Similarly, by examining the supporting

examples, such as the cube, tetrahedron and octahedron (seefigure 7.2), mathematicians re-

treated to the ‘safe’ domain of convex polyhedra (topologically equivalent to a sphere). In a

footnote, [Lakatos, 1976, p.28], Lakatos cites Abel restricting the domain of suspect theorems

about functions to power series as another mathematical example of retreating to a safe domain

when faced with counterexamples.

HOLLOW CUBE
16 - 24 + 12 = 4

TWIN TETRAHEDRA
6 - 11 + 8 = 3

PICTURE FRAME
16 - 32 + 16 = 0

Figure 7.1: Counterexamples to Euler’s conjecture - for all polyhedra, V-E+F = 2

7.2 Using exceptions to further knowledge: their uses and li mits

Lakatos showed how exceptions, or counterexamples, ratherthan simply being problem cases

to be grudgingly dealt with, can be used to enhance understanding of a domain. Studying

counterexamples prompts questions such as ‘what is it aboutthe counterexamples which makes
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CUBE                                  TETRAHEDRON                     OCTAHEDRON
8 - 12 + 6 = 2                              4 - 6 + 4 = 2                               5 - 8 + 5 = 2

Figure 7.2: Supporting examples for Euler’s conjecture; these are all convex

them false?’, and ‘what is it about the positive examples which makes them true?’ Lakatos cap-

tured both these questions with his two methods of exception-barring. Lakatos [1976] showed

how counterexamples can assist in understanding and improving a conjecture, and he suggested

ways in which this can be done.

“One should not confuse false theorems with theorems subject to some restriction.”
Sigma, student, quotingBérard, [Lakatos, 1976, p.24].

“I shall use [exception-barring] to determine precisely the domain in which the
Euler conjecture holds.”Beta, student in [Lakatos, 1976, p.26].

Exception-barring, however, is one of the less sophisticated methods in [Lakatos, 1976]. It

is naı̈ve in the sense that it doesn’t use the ‘proof’ of a faulty conjecture to improve upon

the conjecture, rather depending on examination of examples and counterexamples. Thus it

is presented as anad hocmethod, which can never lead to a conjecture being accepted as a

theorem as one cannot be sure that more counterexamples willnot be found.

“You improvedthe original conjecture, but you cannot claim to haveperfectedthe
conjecture, to have achieved perfect rigour in your proof.”Teacher, in [Lakatos,
1976, p.30].

7.3 Lakatos’s two methods of exception-barring

Generalising from the two approaches above, whereby counterexamples are examined and then

excluded, and supporting examples examined and the domain of the conjecture limited to these,

Lakatos identified two types of exception-barring:(i) piecemeal exclusion, and(ii) strategic

withdrawal. Piecemeal exclusion works by considering the counterexamples and finding a

concept which covers only these, then modifying the conjecture by excluding entities covered
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by the concept; strategic withdrawal by considering the positive examples of a conjecture,

finding a concept which covers only these, and limiting the domain of the conjecture to that of

the concept. That is, given conjecture∀x.P(x) → Q(x), a set of counter (or negative) examples

Negsuch that∀n∈ Neg, P(n)∧¬Q(n), and a set of positive examplesPossuch that∀p∈ Pos,

P(p)∧Q(p):

(i) find a conceptC such that for alln, C(n), and for allp, ¬C(p), and modify the conjecture to

∀x ((¬C(x)∧P(x)) → Q(x)), and

(ii) find a conceptC such that for allp, C(p), and for alln, ¬C(n), and modify the conjecture

to ∀x ((C(x)∧P(x)) → Q(x)).

7.4 Exception-barring in Number Theory

Many conjectures and theorems in number theory have stated exceptions. For instance:

• all even numbersexcept 2are the sum of two primes (Goldbach’s conjecture);

• all primesexcept 2are odd;

• all integersexcept squareshave an even number of divisors, and

• all integersexcept those of the form2k can be written as the sum of 2 or more consecutive

integers

are examples where piecemeal exclusion could feasibly havebeen used. Similarly, many are

limited to a certain domain, for instance:

• for every numbern≥ 3, xn +yn = zn has no integer solutions (Fermat’s Last Theorem);

• everyoddnumber> 5 is the sum of three primes (the Odd Goldbach Problem), and

• everyevennumber is the difference of two primes

can be seen where examples of strategic withdrawal could feasibly have been used. Note

that, as with Lakatos, we do not claim that these conjectures/theoremswere found by using

exception-barring, but that they could be.

Applying exception-barring to number theory highlights the fact that sometimes both methods

result in the same conjecture refinement. For instance, we could present Fermat’s Last Theorem
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as an example of piecemeal exclusion, if we phrase it as ‘xn +yn = zn has no integer solutions,

except for n≤ 2’, or the conjecture that ‘all integersexcept squareshave an even number of

divisors’ as ‘all non-squares have an even number of divisors’. To formalise a simple notion of

this, let us see concepts as sets, and conjectures as statements which link the sets. Suppose that

we have setsP andQ, and conjecture∀x,x∈ P→ x∈ Q, and two further sets,S1 andS2, such

thatS1∩S2 = /0 andS1∪S2 = P. Then the conjecture refinement:

∀x,x∈ (P∩S1) → x∈ Q is the same as

∀x,x∈ (P∩¬S2) → x∈ Q,

since the setsP∩S1 andP∩¬S2 are equivalent. This can be clearly seen in the conjecture

above that “every even number is the difference of two primes”, whereP is the set of numbers,

Q the set of numbers which are the difference of two primes,S1 the set of even numbers, and

S2 the set of odd numbers.

We also notice that sometimes counterexamples arelisted in the conjecture, as in “all even

numbersexcept 2can be expressed uniquely as the sum of two primes”, and “all primesexcept 2

are odd”. Therefore, a special case of piecemeal exception barring, is to bar a specific example

(or examples). We call this counterexample-barring.

7.5 Exception-barring and other types of conjecture

Exception-barring in Lakatos [1976] is applied only to one conjecture, that one concept (poly-

hedra) almost implies another (shapes which satisfy the Euler equation). We represent this

as:

poly(x) euler(x).

There are many other types of conjecture in mathematics. Some of these types have been

categorised and an ability to make them has been added to HR by[Colton, 2001a, chapter 7]

as:

• Equivalence - the definitions of two concepts are logically equivalent (P↔ Q)

• Implication - one concept is a specialisation of another (P→ Q)

• NonExists - no examples satisfy the definition of a given concept (∄x st P(x))
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• Applicability - examples satisfying a definition are restricted to a particular finite set

This raises two questions:

1) How can we apply exception-barring to these types of conjecture, and what sort of conjec-

tures would result?

2) Should we implement other types of conjecture in HR, in order to fully exploit our exception-

barring method, and if so, which ones?

These are useful questions to consider as they provide a way of analysing, understanding, and

extending usage of the methods, which accords with our goal of clarifying and extending the

methods. Additionally, answering these questions will hopefully enable us to extend HR’s

theory formation abilities, thereby supporting our hypothesis that Lakatos’s methods are useful

in automated theory formation.

Applying exception-barring to HR’s conjectures

We cannot directly apply exception-barring to any of HR’s conjectures as they are only made

if they hold empirically for all of the objects of interest inHR’s theory, and Lakatos’s methods

require known counterexamples. HRL partially gets around this, as the agents have access

to different databases, and therefore one agent makes a conjecture which holds for all the

examples in its database and communicates it to others who dohave counterexamples, and

can then apply Lakatos’s methods. This is only partially thecase as, following the approach

of Colton et al. [2000a], when an agent sends a conjecture to asecond, the second has to

reconstruct the conjecture (and its concepts). This is so that the receiving agent has the relevant

data table and categorisation for its entities, and can evaluate the interestingness independently

of the first agent (see §3.1 for more details). If the second agent does have counterexamples, it

will not reconstruct the conjecture as any of the above types(which can only be constructed if

the conjecture holds empirically for all the examples in theagent’s database). However, if we

ignore this for a moment, it is worth noting some general points about exception-barring and

these types of conjecture. We then consider which new types of conjecture HR does need in

order to represent conjectures with known counterexamples.

Equivalence

Recall that in §3.1.1, we stated that one way of representingconcepts in Colton [2001a] is as a

data table, i.e. examples with corresponding values (e.g.,prime(5) = [true], or τ(5) = 2). We

can represent an equivalence or implication conjecture as two sets of examples (corresponding

to the two concepts) where the intersection contains those examples which share the same

values. The example in Lakatos [1976] is represented as suchin figure 7.3:

As this example is an implication, we only have counterexamples on one side, i.e., in one

set. However, for equivalences, we may get counterexampleson both sides, in which case



7.5. Exception-barring and other types of conjecture 97

x
x

x
x

x

x

hollow
cube

the regular polyhedra

polyhedra shapes for which V-E+F=2

Figure 7.3: A Venn-diagram representation of the conjecture: for all polyhedra, V-E+F = 2

we might want to apply exception-barring twice, resulting in two implication conjectures. For

instance, from the faulty conjecture in figure 7.4, “∀x.prime(x) ↔ odd(x)” (shown in figure

7.4 for integers 1-10), we could use piecemeal exclusion to get the conceptsprimes except 2

andodd non-square numbers, and the conjectures “all primes except 2 are odd” (which is true)

and “all odd non-square numbers are prime” (which is false, the first counterexample is 15).

2 3

5
7

1

9

primes odd

Figure 7.4: primes! odds

Implication

All three methods: piecemeal exclusion, counterexample-barring and strategic withdrawal

would result in another implication conjecture. Given an implication conjectureP → Q, and

conceptC1 which covers the counterexamples, (possibly being a conjunction of the individ-

ual counterexamples), or conceptC2 which covers the supporting examples, then the mod-

ified conjecture would take the formP∧¬C1 → Q (in the case of piecemeal exclusion or

counterexample-barring), orP∧C2 → Q (in the case of strategic withdrawal. That is, the

modification would take the form of another implication conjecture.

NonExists:

Both strategic withdrawal and piecemeal exclusion would result in finding a more specialised

concept thanP, sayP′, and another nonexists conjecture,∄x.P′(x). Counterexample barring

would result in a conjecture which could be represented as anapplicability conjecture, i.e.

P(x) → x ∈ S, whereS is the set of counterexamples to the nonexists conjecture. This is the

strategic withdrawal version of counterexample barring, where we retreat to a safe domain



98 Chapter 7. The method of exception-barring

which is so small (or we know of no concept which covers the positives), that we name each

positive example in the conjecture itself.

Applicability

All three methods would result in another applicability conjecture. If the flawed conjecture

is that examples satisfying a definitionD are restricted to a particular finite setS, then coun-

terexample barring would result in adding the counterexamples to the setS. Both piecemeal

exclusion and strategic withdrawal would result in changing the definition: toD∧¬C1 in the

case of piecemeal exclusion, andD∧C2 in the case of strategic withdrawal.

Implementing new types of conjecture in HR

Recall that we have introduced two new types of conjecture into HR: near-equivalences and

near-implications, to enable an agent to represent conjectures with known counterexamples.

This was described in §4.4. These conjectures are like theirempirically true counterparts,

but allow a certain proportion of counterexamples. These can be used as a way of generating

conjectures initially, in which case the user inputs the maximum proportion of counterexamples

allowed. Their main function, however, is to represent conjectures which other agents send

which do not hold for the entities in the receiving agent’s theory. In this case, the proportion

of counterexamples, and the set of counterexamples, is recorded along with the conjecture but

there is no limit on the number of counterexamples acceptable.

The running example in [Lakatos, 1976] of Euler’s conjecture relates to a concept which has,

in the terminology of HR, arity one. That is, either a shape isa polyhedron or not, and its Euler

characteristic is either two or not. So far, we limit ourselves to the same kind of concept, i.e. we

stipulate that any conjecture suggested for modification must involve only concepts with arity

one. Hence, near-equivalence and near-implication conjectures can currently only be made if

the two concepts in the conjecture have arity one, i.e. they have positive or negative examples,

as opposed to functions which have corresponding values foreach entity.

7.6 Piecemeal Exclusion

Suppose that an agent has received a request from the teacherto modify a given conjecture

which the agent has reconstructed to make either a near equivalence or a near implication, for

instance, the near-equivalence conjectureP!Q. Suppose also that the agent is set to perform

piecemeal exclusion. It will first retrieve the set of counterexamples associated with the con-

jecture, and then test to see whether the counterexamples are covered byP or Q, i.e., whether

they exhibit the characteristics specified by the concept. Supposing that the counterexamples
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are covered byP, the agent will look in its theory to see whether it already has a conceptX

which exactly covers those counterexamples covered byP, i.e., has a positive value for all en-

tities covered byP and negative for all other entities. If so, the agent then uses the production

rulenegate, with conceptsX andP and no parameters, to form the new conceptP∧¬X. It then

makes the appropriate conjecture modification by making a new equivalence or implication

conjecture. As there may be more than one modification to a given faulty conjecture, it sends

back a (possibly empty) vector of modifications to the teacher.

See algorithm 5 for our piecemeal exclusion algorithm.

Algorithm 5 The piecemeal exclusion algorithm
Require: given a near equivalenceP!Q:

1: Get the list of counterexamples, and determine whether eachcounterexample is covered

by conceptP or conceptQ.

2: if all counterexamples are covered byP then

3: find a conceptX in the theory which exactly covers all of the counterexamples

4: form the new conceptP∧¬X

5: add the new concept to the agenda, which will then form the conjectureP∧¬X ↔ Q

6: return the conjecture

7: else ifall counterexamples are covered byQ then

8: as for case 1, but instead form the conceptQ∧¬X and the conjectureP↔ Q∧¬X

9: else if there are counterexamples covered by bothP andQ then

10: find a conceptX in the theory which exactly covers the counterexamples inP

11: form the conceptP∧¬X

12: add the new concept to the agenda, which will then form the conjectureP∧¬X → Q

13: do the same forQ

14: return both conjectures

15: end if

7.6.1 Illustrative session

Using three student agents and a teacher, we demonstrate theformation of the conjecture that

“an integer is non-square if and only if it has an even number of divisors”.

Initial information

Student 1 started with entities 1− 10, and core concepts integer, divisor and multiplication.

It was set to use piecemeal exclusion. Before running it independently we forced Student 1

to form the conceptssquare numberand integers which have an even number of divisors, in
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the following way: starting with the concept of divisors it uses thesplit production rule with

parameters [[1], [2]] to reinvent the concept of an even number. Again, starting with the concept

of divisors it usessize[1] to get the concept number of divisors of an integer. It then takes these

two concepts and the production rulecompose, with parameters [s, 0, 1], and thenexists[1]

to get the concept integers with an even number of divisors. Finally, from the core concept of

multiplication it usesmatchwith parameters [0, 1, 1] and then exists with parameters [1]to get

the concept of squares.

Student 2 started with the same input as Student 1, except with integers 11−50.

Student 3 started with integers 51−60, core concepts integer, divisor and multiplication, and

forced concept of integers which have an even number of divisors.

Session details

The teacher sent a request for all students to work independently for 20 steps, and then send

back their best implication conjecture. Student 3 formed the conjecture that all integers have

an even number of divisors, and sent it to the teacher, who puts it on the group agenda for mod-

ifications. The other students found counterexamples [1,4,9] and [16, 25, 36, 49] respectively.

They then found the concept of squares and formed the new concept non-squares. They used

this new concept to form the conjecture that all non-squareshave an even number of divisors,

which is a theorem in number theory.

7.7 Counterexample barring

This is a special case of piecemeal exclusion and can be used when an agent does not have

a conceptX to cover the counterexamples to a faulty conjecture, or if the counterexample

set is small, e.g., containing just one example. In order to build a concept in which no more

information is known than the positive entities, we have written another production rule,entity-

disjunct. This takes as input the entities which the concept expresses as parameters, and the

object of interest concept with the same type as the entitiesin the parameter list.Entity-disjunct

partially applies the production rulesplit with parameter[0] to the object of interest concept

and each of the entities in turn, and then partially applies the ruledisjunct to the resulting

concepts. We have implemented this as a production rule, rather than using a combination

of split and disjunct, for efficiency reasons (the partial implementation ensures that we get

the right specifications and hence definition, without storing superfluous information about the

concept before it has been fully formed). Additionally, it reflects the degree of complexity of

the concept, which is used as a measure of interestingness. The concept of being the number 2 is
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not complex, and therefore we want to reflect this in our measure, but had it taken 5 production

rules to generate it, it would have been evaluated as fairly complex. To avoid a concept which

is just a long list of entities, we limit the number of entities which form the concept, with the

default maximum set to three. (This number may seem, and indeed is, an arbitrary number, but

entity-disjunctis designed to generate a concept which consists of only a fewspecific entities.

See §13.5 for ideas on how to develop a more cognitively plausible concept representation.)

As an example of how the entity-disjunct production rule works, suppose that an agent has

the integers 0 - 20 in its database, and the core concept of integers, denoted by int001. If

the agent performs the theory formation step:int001 entity-disjunct< 1 >, i.e., it applies the

entity-disjunct production rule, with parameter< 1 >, to the concept int001, then the result is

the concept “a is an integer∧ a=1”. We show the input and output data table in table 7.1 below.

Input

integer

0 true

1 true

2 true

3 true

4 true

. .

. .

. .

17 true

18 true

19 true

20 true

→

Output

integer

0 false

1 true

2 false

3 false

4 false

. .

. .

. .

17 false

18 false

19 false

20 false

Table 7.1: The entity-disjunct production rule, with parameter < 1 >

The agent appliesentity-disjunctto the object of interest concept, with the vector of coun-

terexamples as parameters, to get, for instance, the concept of being 2. If the outcome is an

equivalence conjecture then the agent returns this. However, if the outcome is a concept, then

the agent applies the production rulenegatewith no parameters to the concept and the object

of interest. If the previous step had returned the concept ofbeing 2, this would now return the

concept of beingnot 2. The resulting concept is then combined with the problem concept to

get, for instance, the concept of primes except 2. If the faulty conjecture was a near equiva-

lence then a new equivalence conjecture is now constructed and returned, and if it was a near

implication then the modified implication conjecture is constructed and returned.
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7.7.1 The counterexample-barring algorithm

We describe our counterexample-barring algorithm for near-implication conjectures in algo-

rithm 6. Given a list of entities, this algorithm returns a concept for which the entities in the

list are positives and all other entities in the theory are negatives. It works by taking the object

of interest concept, (and if there is more than one object of interest concept, by taking the one

which includes the entities in the given list), and applyingthe production ruleentity-disjunct.

It returns the concept which follows from this application.

Algorithm 6 The counterexample-barring algorithm
Require: Given a near implicationP Q, with counterexamples[x1, ...,xn], wheren≤ 3, and

there is no concept in the theory to cover exactly these entities, then:

1: find the object of interest concept with the same type asx1, ...,xn.

2: apply the production ruleentity-disjunctto this concept, with parameters[x1, ...,xn] to get

the concept of beingx1 or ... orxn.

3: apply the production rulenegatewith no parameters toP and the object of interest concept,

to get the concept ofnot beingx1 or ... orxn. Call this conceptX′.

4: combineX′ andP usingcompose, to getP∧¬(x1∨ ...∨xn)

5: make the conjectureP∧¬(x1∨ ...∨xn) → Q

6: return the conjecture

In the case of near-equivalence conjectures: if there are counterexamples on one side of the

conjecture only, then steps 1 to 4 are the same as those shown in algorithm 6, and step 5 returns

an equivalence conjecture. If there are counterexamples onboth sides of the conjecture, e.g.,

x,y,z in P andx′,y′,z′ in Q, then steps 1 to 4 are carried out twice (firstly onP, then onQ), and

an equivalenceP∧¬(x∨y∨z)↔ Q∧¬(x′∨y′∨z′) is made and returned.

7.7.2 Illustrative sessions

Session one:Using two students and a teacher, we get the conjecture thatall primes except 2

are odd.

Initial information

Student 1 started with integers 1-10, and core concepts integer and divisor. It was set to make

implications from subsumptions and to use piecemeal exclusion. Before running it indepen-

dently we forced the concepts prime and odd number in the following way: applysplit with

parameters [[1], [2]] to the concept of divisor, to get the concept of even numbers, thennegate

[] to the concepts even numbers and integers to get odd numbers. Then applysize[1] to the
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concept of divisors, to produce the number of divisors of an integer, andsplit [[1], [2]] to this

to produce the concept of prime numbers.

Student 2 had the same information, except integers 11−20 instead of integers 1−10.

Session details

The teacher sent a request for the students to work independently for 20 steps, and then send

back their best implication conjecture. Student 2 made and sent the conjecture that all primes

are odd, which the teacher put on the group agenda for discussion. Student 1 found the coun-

terexample 2, looked for a concept to cover it and failed, so makes the concepts of being 2,

integers except 2, then primes except 2, and finally constructs the conjecture that all primes

except 2 are odd.

Session two:

Using two students and a teacher, we got the conjecture thatall even numbers except 2 are the

sum of two primes(Goldbach’s conjecture).

Initial information

Student 1 started with integers 1− 10 and core concepts integers and divisors. It was set to

make implications from subsumptions and to use piecemeal exclusion. It forced the concepts

even numbers and integers which are the sum of two primes in the following way: get even

numbers and primes as above, thencompose[0, 1, 0] on addition and prime to get the concept

of being the sum of two numbers, one of which is prime, andcompose[0, 0, 1] on prime and

this concept, thenexists[1, 2] on the resulting concept to get the concept of being thesum of

two primes.

Student 2 started with the same information except integers11−20 instead of integers 1−10.

Session details

The teacher sent a request for the students to work independently for 20 steps, and then send

back their best implication conjecture. Student 2 formed the conjecture that all even numbers

can be expressed as the sum of two primes. The teacher sent a request for modifications, and

Student 1 found the counterexample 2, and made the concept ‘even numbers except 2’ and the

conjecture that ‘all even numbers except 2 are the sum of two primes’.

7.8 Strategic Withdrawal

Strategic withdrawal is the easiest of the exception-barring methods to implement, because it

does not involve making new concepts. However, it is perhapsthe least useful, for the same
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reason. It consists of considering the positive examples for which a conjecture holds, looking

to see if there if a concept to cover them, and if so, forming a new conjecture with it.

See algorithm 7 for our implementation of strategic withdrawal.

Algorithm 7 The strategic withdrawal algorithm
Require: Given a near-equivalenceP!Q:

1: Get the list of counterexamples, and determine whether eachcounterexample is covered

by conceptP or Q.

2: if all counterexamples are covered byP then

3: find a conceptX in the theory which exactly covers the positive examples (and is differ-

ent fromQ)

4: make the conjecturesX ↔ Q; X → Q; X → P

5: return the conjectures

6: else ifall counterexamples are covered byQ then

7: As for case 1, instead forming the conjecturesX ↔P; X →P; X →Q, where the concept

X is different fromP

8: else if there are counterexamples which are covered by bothP andQ then

9: find a conceptX in the theory which exactly covers the positives

10: make the conjecturesX → P, andX → Q

11: return the conjectures

12: end if

7.8.1 Illustrative sessions

Using two students and a teacher, we get the conjecture thatall odd non-squares are prime.

Initial information

Student 1 started with integers 1− 10, and core concepts integer, less than or equal, divisor,

multiplication and addition. It was set to make near equivalences which hold for 60% of the

objects of interest and to perform strategic withdrawal.

Before running it independently we forced the concepts prime and odd number in the way

described above (§7.7.2, example 1)

Student 2 had the same information, with the forced concept odd non-squares, where the con-

cepts odd number and square number are forced as described in§7.6.1, non-square number is

forced by applyingnegate[] to square and integer, and the concept of odd non-square numbers

produced by applyingcompose[1] to the concepts odd number and non-square number.
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Session details

The teacher sent a request to the students to work independently for 20 steps, and then send

back their best near equivalence conjecture. Student 1 formed the near equivalence prime!

odd, the teacher then asked for modifications and Student 2 found the counterexample [2],

which is prime and not odd, and [1,9] which are odd but not prime. It looked for a concept to

cover the positives, [3,5,7] and found the concept odd non-square, then makes the conjectures

odd and non-square→ odd (which is a tautology) and odd and non-square→ prime (this is

false; the first counterexample is 15).

7.9 Related work

7.9.1 The boosting technique

The methods of exception-barring, by looking at supportingexamples and counterexamples,

are clearly related to machine learning techniques. For instance, boosting, described in [Freund

and Schapire, 1999] and [Schapire, 2002], is a technique in which there are are several learners,

which use possibly different algorithms to learn a classification task. The boosting algorithm

is a meta-algorithm which forms a classification rule by selecting a subset of a training set, a

sample set, and giving it as input to the first learner. It thenlooks at the output of the learner,

its ‘weak’ rule, and the examples which the learner misclassified (i.e., counterexamples). The

boosting algorithm increases the weighting of these counterexamples in the training set, thus

increasing the likelihood that these examples are selectedfor the sample given as input to

the next learner. Based on this input, the next learner generates another weak rule for the

same classification task. The boosting algorithm then further increases the weighting of any

examples which both the first and the second learner misclassified. Another sample from the

training set is then selected for a third learner, and so on. The cycle continues until it arrives

at some point, for instance, all of the learners have been consulted. The boosting algorithm

then combines the weak rules into a single weighted sum, where the weight of each rule is

determined by its accuracy.

This process is similar to piecemeal exclusion and counterexample-barring in that it involves

different ‘agents’ forming a rule (or conjecture) about theexamples in their databases, and then

attempting to improve the rule by focusing on counterexamples. However, it differs in the fol-

lowing ways. Firstly, the examples which a learner has may differ, over continued application

of the cycle by the boosting algorithm. That is, the same learner may be asked for another weak

rule for the same classification and given different examples as input for the rule. This con-

trasts with our system, in which the set of examples which an agent has may be added to, but
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otherwise remains constant. A second difference is that in boosting there might not be a fixed

number of learners: further learners may be added until a given accuracy is achieved. Thirdly,

the boosting algorithm only raises the likelihood of a counterexample being selected as input,

whereas piecemeal exclusion and counterexample-barring focus purely on counterexamples.

The most important difference is that in boosting, the weak rule suggested by the learners is

generated independently of previous weak rules. Although the final rule is a combination of

these weak rules, it is not the case that the first is modified. Conversely, exception-barring ex-

plicitly builds upon a faulty conjecture by stating the exceptions and formally excluding them

in a new expression of the conjecture. The criteria to which each technique refers differ: the

final rule produced by the boosting algorithm is judged solely on accuracy, whereas other qual-

ities are sought in the final conjecture produced by exception-barring, such as how simple it

is, or how surprising. Finally, the goal for which the technique is used is different: the goal

of the boosting algorithm is to accurately predict an example, whereas our goal is to build

a theory. These are different intelligent tasks and therefore a detailed comparison would be

inappropriate.

7.9.2 Work in diagrammatic reasoning

Winterstein [2004] looked at using diagrammatic reasoningto prove mathematical theorems in

the continuous domain of analysis. He argued that one approach, hisgeneralisation method,

can be seen as a simple form of Lakatos’s method of strategic withdrawal [Winterstein, 2004,

p. 69]. This method is one of the methods which Winterstein has devised for representing and

reasoning with diagrams. It works by firstly proving a theorem in a specific case, for instance

by instantiating variablesx andy in a theorem and then proving the theorem in this case. The

second step is to analyse the proof to check which cases it canbe applied to, i.e. to examine

whether the proof depended on the values ofx andy and to show that the values were arbitrary

or at least arbitrary within certain constraints. The final step is to generalise the proof to all

cases where the chain of reasoning is guaranteed to be valid.Winterstein argues that this is a

form of strategic withdrawal since it analyses positive examples of a proof, abstracts the key

features from these examples, and then restricts the domainof application of the theorem and

proof accordingly. Our work differs in that it is a systematic computational reading of Lakatos’s

theory, rather than a single method.

7.9.3 Hayes-Roth’s heuristics for repairing flawed plans

Hayes-Roth [1983] describes 5 heuristics for repairing flawed beliefs, which are based on

Lakatos’s methods. These constitute the only attempt that we have seen, to produce a com-
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puter model which is inspired by Lakatos’s methods. While two of Hayes-Roth’s techniques

correspond to surrender and monster-barring, we include his work here since the remaining

three correspond to exception-barring.

Hayes-Roth explains his heuristics in terms of revising a flawed strategy in a card game, where

the counterexample corresponds to a move which follows the strategy but which does not have

the desired outcome. Below we express Hayes-Roth’s terminology in Lakatos’s terms, with

examples where relevant.

Lakatos’s terminology Hayes-Roth’s terminology

conjecture: a plan – if conditionsC hold and actionA is executed then effectsE will result

i.e.C∧A→ E

proof: justification of a plan (e.g. because this plan will minimise the number of my points)

entity: an action which is executed according to a plan (e.g.play the 9 spades)

counterexample: an action which is executed according to a plan but which fails to achieve the goal

i.e.C∧A∧¬E

concept: a concept (e.g. a spade lower than the Queen)

Hayes-Roth demonstrates his heuristics with reference to the card game hearts (which is similar

to whist). The pack is divided amongst players, then one player plays a card and the others must

all put down a card in the same suit as the first if they have one,and otherwise play any card.

The person who played the highest card in the specified suit wins that trick and starts the next.

One point is awarded for each heart won in a trick, and 13 for the queen of spades (QS). The

aim of the game is to get either as few points as possible (“go low”) or all the points (“shoot the

moon”). A strategy which beginners sometimes employ is to win a trick to take the lead, and

then play a spade in order to flush out the QS and avoid the 13 points. Hayes-Roth represents

this as shown (p.230):

Plan: Flush the QS

Effects: (1) I will force the player who has the QS to play thatcard

(2) I will avoid taking 13 points

Conditions: (1) I do not hold the QS

(2) The QS has not yet been played

Actions: First I win a trick to take the lead, and whenever I lead I play a spade

The plan (analogous to a faulty conjecture) may backfire if the beginner starts with the king of

spades (KS) and then wins the trick and hence the unwanted points (this situation is a coun-

terexample to the plan). The heuristics then provide various ways of revising the plan:

1) Retraction (like surrender) - retract the part of the plan which fails, in this case effect (2).

2) Exclusion (like monster-barring) - bar the theory from applying to thecurrent situation, by

excluding the situation. Add the conditionI do not play KS.
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3) Avoidance(like piecemeal exclusion) - rule out situations which can be predicted to fail the

plan, by adding conditions to exclude them. For example by assessing why the plan failed add

the conditionI do not win the trick in which the queen of spades is played. A system can further

improve its plan by negating the new condition -I win the trick in which the queen of spades

is played, using this and its knowledge of the game to infer that it mustplay the highest card

in the specified suit, and then negating the inference to getI must not play the highest card in

the specified suit. This is then incorporated into the action which becomesFirst I win a trick to

take the lead and whenever I lead, I play a spade which is not the highest spade.

4) Assurance(like strategic withdrawal) - change the plan so that it onlyapplies to situations

which it reliably predicts. In this case the faulty prediction is effect (2), and so the system

looks for conditions which guarantee it. It does this by negating it, inferring consequents and

then negating one of these and incorporating it into the action. For example negating effect (2)

givesI do take 13 points, the game rules state thatthe winner of the trick takes the points in the

trick so we can infer thatI win the trick, then use this and the rule thatthe person who plays

the highest card in the suit led wins the trickto infer thatI play the highest card in the suit led.

Given thatplayer X plays the QSwe can now infer thatI play a spade higher than the QSand

negate it to getI play a spade lower than the QS.

5) Inclusion (also like strategic withdrawal) - this differs from assurance in that the situations

for which the plan is known to hold are listed rather than a newconcept being devised. There-

fore instead of addingI play a spade lower than the QSto the action, we addI play a spade in

the set{2o f spades,3o f spades,4o f spades...,10o f spades, jacko f spades}.

Hayes-Roth argues that these heuristics can be implementedusing existing techniques (al-

though adding that this may take considerable effort). The primary capabilities, he claims, are

symbolic deduction and heuristic search. He suggests ways in which one heuristic may be

preferred over another, in order to avoid a combinatorial explosion. These include preferring

general to specific theories, seeking canonical representations and experimentally evaluating

alternative fixes to determine the most fruitful.

Our work differs from [Hayes-Roth, 1983] in several ways. Firstly, his motivation is different.

Hayes-Roth uses Lakatos’s ideas as inspiration for modifying plans, rather than attempting a

faithful model of Lakatos’s work. Secondly, Hayes-Roth differs in his application of Lakatos’s

methods, which is to machine learning tasks as opposed to theory formation. Although these

two fields are linked, as we argued above (§7.9.1), they differ in that typically the output from

a machine learning program would be a classification, or concept definition which has been

induced from some positive and possibly some negative examples; whereas output from a

theory formation program is a theory, consisting of examples, concepts, conjectures, and pos-
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sibly proofs. In particular, there is usually a specific taskin machine learning, as opposed to

the rather more fluid goal in automated theory formation of developing interesting theories.

Hayes-Roth applies the methods to situations in which thereis a clear goal, for example to

minimise the number of points scored in hearts. The third difference is that Hayes-Roth is

proposing how the techniquesmay beautomated and applied, rather than presenting a finished

implemented system. It is this latter difference which our project most clearly contrasts, as we

present an implemented system: HRL.

7.10 Summary

In this chapter we have described Lakatos’s treatment of exceptions, in Lakatos [1976], and

his methods of piecemeal exclusion and strategic withdrawal. By considering these methods

in number theory, we have further distinguished between counterexample and piecemeal ex-

clusion, and the need to apply a method twice to equivalence conjectures. We have described

our implementation of these methods in HRL, and described some sessions which illustrate the

types of concept and conjecture which can be developed usingthese methods. Finally, we have

considered related work.





Chapter 8

A computational representation of

Cauchy’s proof

... “I propose to retain the time-honoured technical term ‘proof’ for a thought-
experiment – or ‘quasi-experiment’ – which suggests the decomposition of the
original conjecture into subconjectures or lemmas, thusembedding itin a quite
possibly distant body of knowledge.” Teacher, in [Lakatos,1976, p. 9].

The method of lemma-incorporation is a precursor to the method of proofs and refutations,

and, combined, these two methods are considered by Lakatos to be the most sophisticated

methods. They are the only methods to consider the ‘proof’ ofa conjecture; the other methods

consider only the conjecture and the concepts in it. Given a counterexample to a conjecture,

lemma-incorporation uses the proof to improve the conjecture, as well as improving the proof

itself.

Euclid attempted, inThe Elements, to present results in geometry in a formally precise way

using the axiomatic method. Since then, mathematicians have traditionally ascribed great im-

portance to proofs. Given this, it is surprising that only two of Lakatos’s seven methods which

detail the evolution of a conjecture, actually consider theproof of it. This is particularly sur-

prising given the case study which Lakatos chose, since Euler proposed a proof at the same

time as the conjecture itself (he published the conjecture in [Euler, 1758b] and the proof in

[Euler, 1758a]). Cauchy [1813] also published a proof, and it is this proof which is discussed

in [Lakatos, 1976]. Therefore, proofs of Euler’s conjecture wereknown to those who found

counterexamples and those who modified the conjecture. Whencounterexamples arose, it

seemed, mathematicians performed exception-barring without considering how a proof of a

faulty conjecture was possible, nor what to do with the old proof now that a problem had

111
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arisen. The situation was even more strange in Lakatos’s second case study, in which Fourier

found a counterexample to Cauchy’s principle of continuity, which Cauchy was aware of,be-

fore Cauchy proved it (although Fourier did not consider it to be avalid counterexample).

The ‘proven’ fallibility of proofs has led mathematicians to change their view of the principal

role that proof plays, from a guarantee of truth, to an aid to understanding a theorem [Hardy,

1928], a way of evaluating a theorem by appealing to intuition [Wilder, 1944], and a memory

aid [Polya, 1945] (described in [Lakatos, 1976, p 29]). However, even given the changing view

of the role of proof (which may include a combination of the roles suggested) the idea that proof

does indeed play an important role in mathematics is usuallyunquestioned. Possibly because

of this, the methods which deal with proof are considered by both Lakatos and commentators

(for instance, [Corfield, 1997]) to be the most important.

There were two stages to our implementation of lemma-incorporation. Firstly it was necessary

to represent Cauchy’s proof of Euler’s conjecture, in orderto be able to build and run a model

of lemma-incorporation, which was our second task. In this chapter we describe the first stage.

We have not intended to represent the proof in a cognitively plausible manner: this would

have necessitated modelling an understanding of space, motion, stretchability etc. to be able

to visualise the operations of removing parts of a polyhedron and transforming the remainder.

The question of how humans are able to perceive and manipulate rigid and non-rigid spacial

structures is outwith the scope of this thesis (although ideas in §13.5 may be a starting point

for such a project). This chapter is simply a building block for the following chapter, in which

we outline Lakatos’s method of lemma-incorporation, and discuss our implementation of it.

We organise this chapter as follows: in §8.1 we outline Cauchy’s proof of Euler’s conjecture.

In §8.2 we briefly describe how the proof is relevant to the method of lemma-incorporation,

and we introduce Lakatos’s distinction between global and local counterexamples. In §8.3

we consider three ways of representing a proof scheme in HRL:using Haggith’s argument

structures (§8.3.1), as a series of Java methods (§8.3.2), and as a series of production rules and

associated conjectures (§8.3.3). Finally, in §8.4 we describe the representation we chose to use,

which is a hybrid of those discussed. We summarise the chapter in §8.5.

8.1 Cauchy’s proof

A proof idea for Euler’s conjecture is presented by the teacher on the second page of [Lakatos,

1976]. This comes from Cauchy [1813], and consists of three steps. For a diagrammatic

representation of these steps, carried out on the cube, see figure 8.1, taken from [Lakatos,

1976, p.8].
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Step 1:Let us imagine the polyhedron to be hollow, with a surface made of thin
rubber. If we cut one of the faces, we can stretch the remaining surfaces flat on the
blackboard, without tearing it. The faces and edges will be deformed, the edges
may become curved, andV andE will not alter, so that if and only ifV −E+F =
2 for the original polyhedron,V −E + F = 1 for this flat network - remember
that we have removed one face.Step 2: Now we triangulate our map - it does
indeed look like a geographical map. We draw (possibly curvilinear) diagonals in
those (possibly curvilinear) polygons which are not already (possibly curvilinear)
triangles. By drawing each diagonal we increase bothE andF by one, so that
the totalV −E + F will not be altered. Step 3: From the triangulated map we
now remove the triangles one by one. To remove a triangle we either remove an
edge - upon which one face and one edge disappear, or we removetwo edges and
a vertex - upon which one face, two edges and and one vertex disappear. Thus,
if we hadV −E + F = 1 before a triangle is removed, it remains so after the
triangle is removed. At the end of this procedure we get a single triangle. For this
V −E+F = 1 holds true. [Lakatos, 1976, p.7-8]

Lakatos argues that nineteenth century mathematicians viewed this proof as establishing the

truth of the ‘theorem’ beyond doubt (in [Lakatos, 1976, p.8]he cites Crelle [1827], Matthiessen

[1863] and Jonquières [1890] as examples).
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  part 1                                                                  part 2

(a)                               part 3                            (b) 

Figure 8.1: Given the cube, after removing a face and stretching it flat, we are left with the

network in part 1. After triangulating, we get part 2. When removing a triangle, we either

remove one edge and one face, or two edges, one vertex and a face – shown in parts 3(a) and

(b) respectively.
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8.2 Using counterexamples to improve a faulty conjecture an d a

faulty proof

Lemma-incorporation works by considering an object which is a counterexample either to a

conjecture or to one of the proof steps, and using it to improve the conjecture, the faulty proof

or both. Lakatos distinguishes between aglobalcounterexample, which is a counterexample to

the conjecture, and alocal counterexample, which is a counterexample to one of the conjectures

in the proof. For instance, the picture frame (in figure 8.2) is a global counterexample, since

V −E + F = 16−32+ 16 = 0. It is also a local counterexample as it violates the conjecture

that if we remove a face from any polyhedron then we can stretch it flat on a board. Note that

while the picture frame is both a local and global counterexample, it is possible for an entity

to be a local but not global counterexample, if it is a counterexample to a conjecture in the

proof, but not to the main conjecture, or to be a global but notlocal counterexample, if it is a

counterexample to the main conjecture, but not to any of the conjectures in the proof. The first

of these suggests that the conjecture may be true but the proof of it is flawed, and the second,

less intuitive case, suggests that the proof is overly simplified and contains hidden assumptions.

Figure 8.2: The picture frame, for which V −E+F = 16−32+16= 0

Note that Lakatos calls the conjectures in the proof ‘lemmas’: we adopt this terminology,

despite the fact that the word ‘lemma’ has a recognised meaning in mathematics as a minor

theorem, which is usually used in the proof of a more important result. We do this partly to

be consistent with Lakatos, and partly to easily distinguish between the global conjecture and

those in the proof. We can see the proof sketch as combining the following three lemmas,

which we show for the cube in figure 8.1 (taken from [Lakatos, 1976, p.8]).

Conjecture: for any polyhedron,V −E+F = 2

‘Proof’:

lemma 1: any polyhedron, after having a face removed, can be stretched flat on the blackboard.

lemma 2: in triangulating a map one will always get a new face for any new edge.

lemma 3: if we drop the triangles one by one from a triangulated map, there are only two

alternatives – the disappearance of one edge or else of two edges and a vertex.
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There is a fourth lemma: if we drop the triangles one by one from a triangulated map, we

will end up with a single triangle. This lemma is inherent in Lakatos’s early descriptions of

Cauchy’s proof, but omitted later on. We discuss this further in §9.2.3.

8.3 Representing Cauchy’s proof in HRL

In order to modify a faulty proof, we first need to be able to represent it. Although HR is

already interfaced with the theorem prover Otter [McCune, 1990], we cannot use Otter’s output,

as we need HR to work with informal, flawed proofs. Therefore we have extended HR to

incorporateproof schemes. Our proof scheme class is a subclass of the pre-existing class

‘theory constituent’; other subclasses of theory constituent are concept, conjecture and entity.

The method of lemma-incorporation startsfrom the proof, rather than looking at how it was

generated (Lakatos claims that Polya [1962] suggested waysof doing this, and that [Lakatos,

1976] starts where [Polya, 1962] leaves off). That is, the interesting aspect of lemma-incorporation

startsgivena proof and counterexample to it.

We considered three ways in which to represent a proof scheme:

(i) using Haggith’s argument structures [Haggith, 1996];

(ii) as a series of Java methods; and

(iii) as a series of production rules and associated conjectures.

8.3.1 Using Haggith’s argument structures to represent Cau chy’s proof

Haggith [1996] starts from the viewpoint that if a domain is controversial, then there may be

more than one answer to a question and therefore disagreements may be useful, rather than

an obstacle to be overcome. The primary goal of the system described in [Haggith, 1996]

therefore, is toexplorerather than resolve conflicts. In order to incorporate a highdegree of

flexibility, Haggith represented arguments at the meta-level which is independent of logic or

any specific representation language or domain. Knowledge is represented as a set of propo-

sitions related by disagreement, equivalence, enlargement or justification. An argumentA in

whichC is the conclusion, derived from P1 and P2, where P2 is itself derived from P3 is repre-

sented asA= {C<= {P1,P2<= {P3}}}. Trees are constructed using the justification relation

between nodes within the tree and the other three relationships between nodes in different trees.

For example, given a propositionP and an argumentA for P, possible argument moves which

provide support for P include:
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• corroboration- an argument for a proposition which is equivalent to (or is)P;

• enlargement- an argument for an elaboration ofP, and

• andconsequence- an argument in whichP is a premise.

Argument moves which opposeA include:

• rebuttal - an argument for a proposition which disagrees withP;

• undermining- an argument for a proposition which disagrees with a proposition which is an

elaboration of, or is equivalent toP;

• undercutting- an argument for a proposition which disagrees with a premise ofP;

• target - an argument which contains a premise which disagrees withP, and

• counter-consequence- an argument which contains a premise which disagrees with the con-

clusion of another argument in whichP is a premise.

We can express Cauchy’s proof in Haggith’s terms, if we writeit as a series of propositions and

the relationships between them. This is shown in figure 8.3.

The proof looks as follows:A= {C<= {P0,P1<= {P2<= {P7},P3,P4<= {P8},P5,P6}}}.

We can also represent the counter-arguments offered (we state them as propositions whereas

in [Lakatos, 1976] they are questions, i.e., “are you sure that”... rather than “it is not possi-

ble”...). The counter-arguments are all examples of Haggith’s target arguments, disagreeing

with a premise ofC.

Counter-argument 1:

−P0: Some polyhedra, after having a face removed, cannot be stretched flat on a board.

Counter-argument 2:

−P8: In triangulating the map, we will not always get a face for every new edge.

Counter-argument 3:

−P7: There are more than two alternatives, when we remove the triangles one by one, that

either one edge and a face; or two edges, a face and a vertex disappear.

Counter-argument 4:

−P3: If we remove triangles one by one from a triangulated map, then we will not be left with

a single triangle.
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from a triangulated map then we’ll
be left with a single triangle

if we remove triangles one by one

for any triangle,
V−E+F=1

results from removing a face from
a polyhedron and stretching it flat
on the board

that results from removing a face

on the board, then V−E+F is unchanged

by drawing any diagonal on a map
we increase both E and F by 1

from a triangulated map, 
if we remove any triangle,
then we either remove
one F and one E, or

from a polyhedron and stretching it flat

triangulated map, then V−E+F is unchanged
P2: if we remove triangles one by one from a

P4: if we triangulate the map

P6: we can triangulate the map which 

: 

P5:

P3:

P7:

P8:

P0: for any polyhedron, we can remove one face and

C: For any polyhedron, V−E+F=2

one face and stretch it flat on the board, then V−E+F=1

P1: for any polyhedron, V−E+F=2 iff when we remove 

one F, two E’s and one V

then stretch it flat on the board, and V−E+F=1

Figure 8.3: The original proof of Euler’s conjecture, represented in Haggith’s terms. The arrows

represent the justification relation.

An advantage of using this representation is that it is a wellthought out way of represent-

ing arguments and disagreement, based on argumentation research such as Elvang-Goransson

et al. [1993], Toulmin [1958] and Sartor [1993], who inspired the rebuttal, under-cutting and

counter-argument forms respectively. A minor consideration is that using this representation to

represent mathematical ‘proofs’ and disagreements extends Haggith’s work, as mathematics is

a new domain which is not considered in [Haggith, 1996].

One disadvantage of using this representation is that the propositions are simply strings and

therefore impenetrable. Strings such as these currently form no part of HR’s theories, and

would not be an obviously useful addition, and thus the representation sits rather poorly with

the HR methodology.

8.3.2 Writing the proof as a series of Java methods

Lakatos’s version of Cauchy’s proof has a strongly procedural flavour, which, in the interests

of staying faithful to Lakatos’s book, would be desirable toincorporate into our representa-

tion. Work on procedural proofs has been done by, for example, [Winterstein, 2004], [Jamnik,
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−P
                disagree

P7 P8

       P0               P1

C

P2                P3     P4   P5          P6

Figure 8.4: The first counter-argument, represented in Haggith’s terms. Unmarked arrows rep-

resent the justification relation.

2001a]. One way of representing the proof procedurally is asa series of Java methods. For

instance, we could write a Cauchy Proof Scheme class in the HRcode, consisting of three

main methods which constitute the three main steps in the proof. These might look like the

following methods:

1) removeOneFaceAndStretchFlatOnBoardwould take in a polyhedron, remove a face, stretch

the resulting object flat, and return the network which results;

2) triangulateNetworkwould take in a network, triangulate it and return the result;

3) removeTrianglewould take in a triangulated network, remove a triangle, andreturn the

result.

After each step, the Euler characteristic would be calculated, and claims about its value tested.

Before performing any of the methods, the Euler characteristic of the polyhedron passed to the

proof should be 2, and after each of the methods, the Euler characteristic of the resulting object

should be 1. The third method would be repeated until a singletriangle remains, which would

be returned.

If a counterexample were passed to the proof, it could fail ontwo counts. Firstly, the method

may fail. Java may throw an exception as the procedure cannotbe performed, for instance in

the case of the hollow cube being passed to the first method, where it is not possible to remove

a face and stretch the resulting object flat. The other way in which a method could fail is if

it loops infinitely, for instance in the third method if passed an infinite triangulated network

(assuming that we can represent such an object), or if it is passed a triangulated network which

has no triangles (such as a circle). In these two cases, a single triangle could never result.

Secondly, the method may succeed, but the Euler characteristic of the resulting object have a

different value to that which the proof claims it will have. For instance, in the third method,
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given the triangulated network resulting from removing a face of a cube and stretching it flat,

it is possible to remove an inner triangle. This would removeonly a face and leave the number

of vertices and edges unchanged, thus altering the Euler characteristic.

As the proof is procedural, and HR is written in Java, this would be a reasonable way of

representing the proof. The main objection to this way is that we are adding code for a specific

proof to the general HR code. This is very much against the HR methodology, and would

provide no way of testing whether our lemma-incorporation algorithm works on other proofs,

without having to write a separate proof class for each case we want to test.

8.3.3 Using HR’s production rules and conjecture making mec hanisms to rep-

resent Cauchy’s proof

Lakatos (or the teacher) describes his interpretation of a proof as “a thought-experiment - or

‘quasi-experiment’ - which suggests a decomposition of theoriginal conjecture into subconjec-

tures” [Lakatos, 1976]. One way of representing the proof, therefore, is as a set of conjectures,

and procedures for constructing the concepts in the conjectures. In §8.2 we suggested three

conjectures, with a possible fourth one which together represent the proof. Here we break

down the proof further, and below we state the procedures andconjectures and the step in

Cauchy’s proof to which they correspond.

The procedures in Cauchy’s proof are:

• remove one of the faces (step 1)

• stretch the remaining surfaces flat (step 1)

• draw diagonals on any polygons which are not already triangles (step 2)

• recursively remove each triangle one at a time (step 3)

The conjectures are:

1. A polyhedron with a face removed can be stretched flat (step1, P0)

2. Given a polyhedron, its Euler characteristic is 2 if and only if the Euler characteristic of

its flat network is 1 (step 1, P1)

3. By drawing each diagonal we increase bothE andF by one (step 2, P8)

4. The Euler characteristic of an untriangulated map is equal to that of the corresponding

triangulated map (step 2, P4)

5. If we remove an edge from a triangulated network, then one face and one edge disappear

(step 3, P7)
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6. If we remove two edges and a vertex from a triangulated network, then one face, two

edges and one vertex disappear (step 3, P7)

7. The Euler characteristic of a triangulated network remains constant when we remove a

triangle (step 3, P2)

8. If we take a triangulated network and remove the trianglesone by one, then we are left

with a single triangle (step 3, P3)

9. The Euler characteristic of a triangle is 1 (step 3, P5)

This way of representing proof fits very well with HR’s methodology of using production rules

to change one concept into another, and forming conjectureswhich link a new concept to other

concepts. Additionally, it clearly fits with Lakatos’s way of viewing proofs.

A disadvantage of representing a proof as a series of conjectures is that it is not always clear

how the conjectures fit together to form a proof. Given the above series of conjectures, we

can represent the proof starting with the last conjecture,9, and working backwards; i.e.,9

→ 8 → ... → 2 → 1. However, the order of the conjectures and relationship between them

is neither obvious nor unambiguous, and a straight series ofimplications may not be a rich

enough representation to capture this, and other, proofs.

8.4 A hybrid representation of Cauchy’s proof

We have attempted to combine the best of each of these approaches and avoid the disadvan-

tages, mainly using ideas from sections 8.3.1 and 8.3.3.

We use Haggith’s representation of arguments as trees, from[Haggith, 1996]. However, rather

than each node being a string, it is a conjecture which HRL hasformed. To avoid hard coding

proofs in the HRL code, we force the concepts and conjecturesin an input file. This is the usual

way of inputting information to HR; the input file also contains information such as which

production rules are to be used in the session. At the end of the file, we give the structure of the

proof in the form of Haggith’s argument trees. In order to getcore concepts such as whether a

network is planar or not, and the triangulated version of a network, we use ideas from §8.3.2,

where the methods are written into the UserFunctions class in HRL. This is the usual place for

calculating information about core concepts, containing code for calculating the divisors of an

integer, etc..

We have written a new domain file for HRL, in which we include concepts from number theory,

polyhedra and graph domains. From number theory, we have theconcept of being an integer.
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From the polyhedra domain, we have the concept of being a polyhedron, of removing a face

from a polyhedron and stretching it out, and the Euler characteristic of a polyhedron. From

graph theory, we have the concept of being a graph, the Euler characteristic of a graph, the

concept of taking in a graph and triangulating it, of whethera given graph is planar and whether

it is triangulated, the concept of removing a triangle from agraph, and the concepts of removing

one edge and one face from a graph, and removing two edges, onevertex and one face from

a graph. The entities are integers 1-8, the polyhedron cube –represented just as the string

‘cube’, and a series of graphs – represented by a string of vertices (denoted by letters) and

edges (denoted by two vertices). The set of graphs include the graph in figure 8.1, and those

created by recursively removing a triangle from this graph.

We have extended HR by adding aproof schemeclass, which is a subclass oftheory-constituent.

Each proof scheme has a global conjecture, a vector of conjectures in the proof, and a proof tree

which specifies how the conjectures fit together to prove the global conjecture. We continue to

use the term ‘lemma’ to mean a conjecture which is in the proof: these objects are not different

in any way from the usual conjecture object in HR. Below, we show an HRL proof scheme

for Euler’s conjecture, where the conjectures are shown as HR represents them in ascii format.

This involves some repetition of concepts, which are independent of the conjecture that links

them. HR is able to represent conjectures in a variety of other formats, but this one makes the

concepts involved very clear. In the fifth lemma, a specific graphegh[gh;he;eg] is shown: this

is the concept in HR of a triangle graph, where the graph has verticese, g andh, and edgesgh,

heandeg.

Global conjecture:

for all a: a is a polyhedron→ a is a polyhedron & the euler characteristic of a is 2

Proof scheme:
1. for all a: a is a polyhedron→ a is a polyhedron & existsb (b is a graph & remove a face

from a and stretch it flat to getb & b is planar)

2. for all a: a is a polyhedron & the euler char ofa is 2↔ a is a polyhedron & existsb (b is

a graph & remove a face froma and stretch it flat to getb & b is planar & the euler char

of graphb is 1)

3. for all a b: b is an integer &a is a graph & the euler char of the grapha is b & a is

planar↔ b is an integer &a is a graph &a is planar & existsc (c is a graph &c is the

triangulated version ofa & the euler char of the graphc is b)

4. for all a: a is a graph &a is triangulated→ a is a graph & ((b is a graph &b is a with one

triangle removed)→ (b is a graph & ((a is a graph &b is a with one edge and one face

removed) or (a is a graph &b is a with two edges, one vertex and one face removed))))
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5. for all a b: b is an integer &a is a graph & the euler char of the grapha is b & a is

triangulated &¬(a = egh[gh;he;eg]) ↔ b is an integer &a is a graph & existsc (c is a

graph &c is a with one triangle removed & the euler char of the graphc is b)

6. for all a b: b is an integer &a is a graph & the euler char of the grapha is b &

a = egh[gh;he;eg] ↔ b is an integer &a is a graph & the euler char of the grapha is b

& a = egh[gh;he;eg] & b = 1

We use Haggith’s representation of proof structure.

8.5 Summary

We have laid the groundwork for our implementation of Lakatos’s method of lemma-incorpora-

tion. Because this method uses a possibly flawed proof of a conjecture, we have had to enable

HRL to represent a proof scheme which may be faulty. We have discussed different ways of

doing this, and outlined the way we selected. Thus we are now able to describe our implemen-

tation of lemma-incorporation.



Chapter 9

The method of lemma-incorporation

Not only do refutations act as fermenting agents for proof-analysis, but proof-
analysis may act as a fermenting agent for refutations! Whatan unholy alliance
between seeming enemies!Sigma, in [Lakatos, 1976, p. 48].

In the previous chapter, we outlined our representation of Cauchy’s proof in HRL, and intro-

duced Lakatos’s method of lemma-incorporation. We now build on that work by discussing the

method further, and describing our implementation of it in HRL. We organise the chapter in the

following way. Firstly, we distinguish three types of counterexample: an entity which breaks a

conjecture, one which breaks one of the proof steps, or one which breaks both. Each of these

types of counterexample corresponds to a different type of lemma-incorporation, which we

describe in §9.1. We discuss aspects of the method in §9.2 with a view to how we might imple-

ment it. In §9.3 we discuss how lemma-incorporation might beapplied to examples other than

Euler’s conjecture and Cauchy’s proof, giving examples from geometry, and group theory, as

well as Lakatos’s second case study in the field of real analysis. In order to implement lemma

incorporation, we need(i) a way of representing the initial proof, and(ii) a way to modify

it, given a counterexample. In §9.4 we show how HRL determines which kind of lemma-

incorporation to perform, based on the type of counterexample being considered. In sections

9.5, 9.6, and 9.7, we describe our implementation of each type of lemma-incorporation, out-

lining our algorithm and presenting an illustrative session in each case. In §9.8 we briefly

consider the method of proofs and refutations, which is a combination of the method of lemma-

incorporation and counterexample generation. We discuss related work in §9.9, and conclude

by summarising the chapter in §9.10.

123
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9.1 Three types of counterexample

In the previous chapter, we described how lemma-incorporation works by considering an ob-

ject which is a counterexample either to a conjecture or to one of the proof steps, and using it

to improve either the conjecture, the faulty proof or both. We also introduced Lakatos’s dis-

tinction between aglobal counterexample, which is a counterexample to the conjecture, and

a local counterexample, which is a counterexample to one of the conjectures in the proof. In

this section, we discuss the three different types of lemma-incorporation, which correspond to

different types of counterexample.

We refer to Lakatos’s description of Cauchy’s proof sketch as the following three lemmas,

taken from [Lakatos, 1976, p.8].

Conjecture: for any polyhedron,V −E+F = 2

‘Proof’:

lemma 1: any polyhedron, after having a face removed, can be stretched flat on the blackboard.

lemma 2: in triangulating a map, one will always get a new face for anynew edge.

lemma 3: if we drop the triangles one by one from a triangulated map, there are only two

alternatives – the disappearance of one edge or else of two edges and a vertex.

As we observed in the previous chapter, a further fourth lemma, inherent in Lakatos’s early

descriptions of Cauchy’s proof, but omitted later on is: if we drop the triangles one by one

from a triangulated map, we will be left with a single triangle.

9.1.1 Local, but not global counterexamples

In the lemma-incorporation method, given a counterexample, the first step is to determine

which type of counterexample it is. The first counterexampleto arise in [Lakatos, 1976] is the

cube. This is a supporting example of the conjecture, sinceV −E+F = 8−12+6= 2. When

we have performed the steps in lemmas 1 and 2, we are left with the triangulated network in part

2, figure 8.1. However, when we remove the triangles one by one, there is a third possibility

to the possibilities (a) and (b) which are shown in figure 8.1,on page 113. This is to remove

the triangle shown in figure 9.1. This is a counterexample to lemma 3, as we have dropped a

triangle, but no edges or vertices have disappeared. Therefore the cube is a local, but not global

counterexample.

The cube is the least threatening type of counterexample, asit does not show that the conjecture

is false, only that the reason for believing it is flawed. The reaction to this type of counterex-

ample is to use it to modify the lemma in question, by generalising from the counterexample
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part 3 (c)

Figure 9.1: Given the network which results from taking the cube, removing a face and stretching

it flat, and triangulating, we can remove a triangle which results in removing one face, no edges

and no vertices.

to a class of counterexamples, and excluding that class fromthe lemma. This is piecemeal

exclusion, as we discuss further, in §9.2.1. In this example, we generalise from the triangle

highlighted in figure 9.1, toinner triangles, and then form the concept of triangles which are

not inner triangles, i.e.,boundary triangles. We then limit the lemma to this type of triangle.

The modified version oflemma 3is: ‘there are only two alternatives – the disappearance of one

edge or else of two edges and a vertex – when one drops theboundarytriangles one by one’.

We leave the global conjecture unchanged. We call thislocal-only lemma-incorporation.

9.1.2 Global and local counterexamples

The second type of counterexample the students discover is the hollow cube. This is both

global, asV −E + F = 16− 24+ 12 = 4, and local, as it violates the conjecture that if we

remove a face from any polyhedron then we can stretch it flat ona board. In this case, we should

find which step of a faulty proof a counterexample violates, i.e. which is the problem lemma,

and then make that step a condition of the conjecture. The proof is left unchanged. Therefore,

given the hollow cube, we should incorporate the first lemma into the global conjecture. The

global conjecture becomes ‘for any polyhedron which, by removing one face, can be stretched

flat onto a blackboard,V −E+F = 2’. We call thisglobal and local lemma-incorporation.

9.1.3 Global, but not local counterexamples

The last type of counterexample which the students discoveris one which is global, but not lo-

cal. This is an odd type of counterexample, as it suggests that the conjecture is flawed and yet

the proof of it is upheld. This situation occurs because of ‘hidden assumptions’, or lemmas, in
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the proof, which the counterexampledoesviolate. The students only find one such counterex-

ample, the cylinder. This is a global counterexample, asV −E+F = 0−2+3 = 1. However,

as the studentgammaargues in a heated exchange about truth and meaning, [Lakatos, 1976,

43-45], it does not break any of the lemmas. We can remove a face and stretch it flat, as shown

in figure 9.2 on page 127. In order to falsify the second lemma,we would have to draw an

edge which joins two non-adjacent vertices, but does not create a new face. Clearly we cannot

do this as there are no vertices on the map. Similarly, in order to falsify the third lemma, we

would have to be able to remove a triangle and not remove either one edge and one face, or two

edges, a vertex and a face, and since there are no triangles onthe map, we cannot fail at this

stage either.

Faced with such a counterexample, we have to retrace our progress through the proof, until we

come to a step which is in some way surprising. One reason a step may be surprising is if it

violates some hidden assumption in the mathematician’s mind. Once this has been identified,

we should make it explicit in the proof. The counterexample then becomes a globaland local

counterexample, which should be dealt with as outlined above.

In the case of the cylinder, there are two hidden assumptions. Firstly, we expect that having

performed lemma 1, we are left with a connected network. Therefore we should add this into

the proof explicitly, and modify lemma 1 to ‘any polyhedron,after having a face removed, can

be stretched flat on the blackboard, and the result is a connected network’. The cylinder clearly

violates this, so we incorporate the new, explicit lemma, into the conjecture statement, which

then becomes ‘for any polyhedra which, after having a face removed, can be stretched flat on

the blackboardleaving a connected network, V −E + F = 2’. The second hidden assumption

is that once we have a triangulated network, there is at leastone triangle on the board. Again

we can make this assumption explicit in the proof and incorporate it into the statement of the

global conjecture.

Lakatos calls the principle of turning a global but not localcounterexample into one which is

both, theprinciple of retransmission of falsity. This requires that falsehood should be retrans-

mitted from a global conjecture to the local lemmas. Thus, any entity which is a counterexam-

ple to the conjecture must also be a counterexample to one of the lemmas. Lakatos calls this

hidden lemma-incorporation.

9.2 Discussion of the method of lemma-incorporation

In the previous section, we outlined Lakatos’s three different types of lemma-incorporation

which correspond to the three types of counterexample. In this section, we discuss these
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case 1

case 2

Figure 9.2: If we remove a face from the cylinder and stretch it flat, then we either get case 1,

if we remove an end face, or case 2, if we remove the jacket. Either way, we have satisfied the

first lemma.

lemma-incorporation methods, highlighting aspects whichhave influenced our implementa-

tion.

9.2.1 Combining the methods

This is the first time in [Lakatos, 1976] that a combination ofmethods is suggested: exception-

barring to get a ‘very fine delineation of the prohibited area’ [Lakatos, 1976, p 37], and then

lemma-incorporation.

The best exception-barrers do a careful analysis of the prohibited area... in fact
your method [the method of lemma-incorporation] is, in thisrespect, a limiting
case of the exception-barring method... [Lakatos, 1976, p 37].

For implementation purposes, this means that within the method of lemma-incorporation, we

can reuse our exception-barring methods.

9.2.2 Identifying a problem lemma in hidden lemma-incorpor ation

The problem of identifying lemmas which involve hidden assumptions which may be unjusti-

fied is not difficult for humans. This is because of the elementof surprise which people feel

when an entity does not behave in the expected way, where the ‘expected way’ has been learned

from previous examples. Simulating this feeling of surprise, however, is a difficult task. To help
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us, we consider here what exactly caused the students’ surprise. Hidden assumptions are found

in two lemmas and cause surprise in different ways.

Surprise caused by unexpected behaviour

Lemma one states that any polyhedron, after having a face removed, can be stretched flat onto

a blackboard. Although the cylinder is a supporting exampleof this conjecture, it is surprising:

when we remove the jacket from the cylinder, it falls into twoparts, leaving two disconnected

circles. This is surprising since all previous examples left connected networks. Therefore, we

want to capture the idea of an entity being surprising with respect to a given conjecture.

Surprise caused by non-meaningful terms

The discussion of the second lemma, thatany face dissected by a diagonal falls into two pieces,

with respect to the two disconnected circles, is related to work on meaning and denotation, for

instance, [Russell, 1971]. The problem is that although there are no diagonals on a circle,

we are making a claim about the properties that they have.Gammaargues that it is correct

to say that ‘every new diagonal we draw on two disconnected circles results in a new face’

(P), since the negation, that ‘there is a diagonal of the two circles which doesnot create a

new face’ (¬P), is false. This argument uses the law of excluded middle in classical logic,

P∨¬P, i.e. ¬(¬P) → P. According to this argument, the cylinder is a global but notlocal

counterexample.Alpha, who disagrees, argues that if we say thatP is true then we must be

able to construct at least one instance of it, i.e. there mustbe an existential clause in the lemma.

The statement ‘a face is simply connected’ means ‘for all x, if x is diagonal then x cuts the face

into two; and there is at least one x that is a diagonal’ [Lakatos, 1976, p. 45]. UnderAlpha’s

interpretation, the cylinderis a counterexample to this lemma, as there are no diagonals on the

circle. Therefore the cylinder is a local as well as global counterexample, and the problem is

no longer a case of hidden lemma-incorporation.

Although it would be difficult to model the surprise that a human feels when they attempt to

triangulate a circle, the emphasis on vacuously true statements does give us an insight into how

to automate this method.

9.2.3 Controversy over whether a global counterexample is l ocal or not

Even if we disregard the different interpretations of the second lemma, and hence disagreement

about whether the cylinder is a local as well as global counterexample, Gamma’s argument that

it is only global is not convincing. In the initial proof given (see §8.1) itdoessay explicitly

that at the end of the process there is a single triangle. We represented this as a fourth lemma;

if we drop the triangles one by one from a triangulated map, wewill end up with a single
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triangle, in §8.2, on page 115. This lemma is violated by the cylinder,making it both a global

and local counterexample. This would allow for the usual modification of making the lemma a

precondition, i.e. the conjecture would become:

‘for any polyhedra which, after having a face removed, and then stretched flat, triangulated and

the triangles removed one by one,leaves a single remaining triangle, V −E+F = 2’.

Gamma is able to make his argument because the students get distracted by his claim that the

cylinder can be triangulated, and the discussion turns to the meaning of statements which are

vacuously true. If they had not disputed this point, Gamma would not have been able to uphold

his argument. However, the cylinder is still an important example, in that it highlights hidden

assumptions in the proof, which should be explicit.

9.2.4 The type of counterexamples in hidden lemma-incorporation

The typeof entity that we are dealing with is important for computational purposes. This may

change as we step through a proof. For instance, in Cauchy’s proof, we begin by talking about

polyhedraand, having removed a face and stretched it onto the board, wetalk aboutgraphs.

Therefore it may appear that we have a counterexample which is global and not local, since a

polyhedron can only be a counterexample to conjectures about polyhedra, not to conjectures

about graphs. We have to look for the corresponding graph anddetermine whether this entity

is a counterexample to those conjectures about graphs. In this case, the disconnected circles in

lemma 2 correspond to the cylinder. This is glossed over in [Lakatos, 1976], as the following

quote shows:

Gamma:The cylindercanbe pumped into a ball – so according toyour interpre-
tation it does comply with the first lemma.

Alpha: Well... But you have to agree that it doesnot satisfy thesecondlemma,
namely that ‘any face dissected by a diagonal fall into two pieces’. How will you
triangulate the circle or the jacket? Are these faces simplyconnected? [Lakatos,
1976, p. 44].

When Alpha uses the word ‘it’, he refers to the cylinder. However, he then moves onto talking

about the associated graph. While for humans this leap may beacceptable, when implement-

ing this in a program we need to be explicit about which types of entity we are referring to.

Suppose, for instance, that we hold that the graph which results from removing a face from the

cylinder and stretching it flat,is a counterexample to a proof lemma. In this case, the cylinder

is considered to be a local as well as a global counterexample, despite the fact that the cylinder

itself is not a local counterexample. We use this observation in our algorithm for determining

which kind of lemma-incorporation to perform.
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9.2.5 The number of applications of lemma-incorporation

It is worth noting that students apply lemma-incorporationmore than once. In the example in

[Lakatos, 1976], it is applied at least three times, thus enabling the discussion on different types

of lemma-incorporation. This is like the previous methods;one counterexample is found and

dealt with and then more counterexamples to the modified conjecture and proof are sought.

9.3 Lemma-incorporation applied to other examples

It is useful to see how the method of lemma-incorporation is used in other examples, in order to

help us to extract the important aspects, and to provide testcases for our implementation. In this

section, we consider Lakatos’s application of the method toCauchy’s Principle of Continuity,

as well as our own descriptions of how it can be applied to two of Hilbert’s theorems, and an

imaginary conjecture in the theory of groupoids.

9.3.1 Cauchy’s Principle of Continuity

In appendix 1 of [Lakatos, 1976], Lakatos shows how the method of hidden lemma-incorporation

was used to fix Cauchy’s faulty conjecture that ‘the limit of any convergent series of continuous

functions is itself continuous’. The counterexample, found by Fourier is:

cosx - 1/3 cos 3x + 1/5 cos 5x -...

which converges to the step function. The most interesting aspect of this example is the timing

of various discoveries. Fourier discovered the above series in 1808 (see [Fourier, 1808]), and it

wasafter this that Cauchy discovered the conjecture and proof, in 1821 (see [Cauchy, 1821]).

One solution to this awkward situation was that the limit function was actually continuous,

and therefore it was not a counterexample (Fourier held thatit was continuous). However,

Cauchy had provided a new interpretation of continuity, according to which the limit wasnot

continuous (the existence of Fourier’s example was considered by some to be evidence that

the new interpretation should be rejected). Another possible solution was the argument that

the series did not converge, although this view was not accepted by most mathematicians,

including Cauchy, who later proved that it did converge. There was then a long gap until 1847

when Seidel found the hidden assumption of uniform convergence in the proof. Indeed, it was

Seidel who invented the method of proofs and refutations. Lakatos thought that the main reason

for such a long gap, and the willingness of mathematicians toignore the contradiction, was a

commitment on the part of mathematicians to Euclidean methodology. Deductive argument

was considered infallible and therefore there was no place for proof analysis.
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9.3.2 Hilbert’s theorem

This example was highlighted by Meikle and Fleuriot’s formalisation of Hilbert’sGrundlagen

der Geometrie, described in [Meikle and Fleuriot, 2003]. Hilbert’s programme aimed to give a

more precise and rigorous system of axioms for geometry thanEuclid had given, by abstracting

from any intuitive meaning of the terms. Thus, theorems should hold under any interpretation

in which the axioms are satisfied. Bernays describes Hilbert’s view thus: “it is insisted that in

reasoning we should rely only on those properties of a figure that either are explicitly assumed

or follow logically from the assumptions or axioms” [Bernays, 1967, p. 497], cited in [Shapiro,

2000, p. 152]. However, Meikle et al claim that by formalizing Hilbert’s work in the theorem

provers Isabelle/Isar, they have shown that “Hilbert’s work glossed over subtle points of rea-

soning and relied heavily, in some cases, on diagrams which allowed implicit assumptions to

be made” [Meikle and Fleuriot, 2003, p. 16]. Thus, Meikle et al’s work not only suggests

examples of where the method of lemma-incorporation may apply, but also demonstrates the

widespread application of the method within mathematics. It does this by studying the work

of a mathematician who explicitly set out to remove all hidden assumptions, and showing how

even he failed to do so completely.

The example below can be seen as an instance of hidden lemma-incorporation (global and

not local). Since Lakatos described his method in terms of a procedural proof, we paraphrase

Hilbert’s proof as a procedural proof, from the deductive proof which Hilbert gave. However,

it is worth noting that the method of lemma-incorporation also applies to declarative proofs,

which we demonstrate with respect to the first step of Hilbert’s proof, and our group theory

example below. The axioms which are referred to are in appendix B, as is Hilbert’s declarative

proof.

Theorem: For two points A and C there always exists at least one point D on the line AC that

lies between A and C.

Proof: (paraphrased from [Hilbert, 1901, p. 6] as a procedural proof)

lemma 1:draw a line AC between the two points

lemma 2:mark a point E outside the line AC (axiom (I,3))

lemma 3: mark another point F such that F lies on AE and E is a point of thesegment AF

(axiom (II,2))

lemma 4:mark on FC a point G, that does not lie on the segment FC (axiom (II,2) and axiom

(II,3))

lemma 5:the line EG must then intersect the segment AC at a point D (axiom (II,4))�
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A=C                                                                                    A=C

Figure 9.3: Diagram of Hilbert’s proof of the theorem that for two points A and C, there always

exists at least one point D on the line AC that lies between A and C. In the first figure, A and C

are different points, and in the second, they are the same.

The counterexample comprises any two points which are identical, i.e.,(a,a). With the proof

phrased as above,(a,a) is a global, but not local counterexample. This example is interesting,

since, in Hilbert’s original German edition of the Grundlagen in 1899, reprinted in [Hallett and

Majer, 2004], he does not exclude this example: there is nothing in the axioms to say that a line

must join twodifferentpoints,1 nor that a line which intersects a segment AC must be strictly

between the points A and C, etc. However, in later editions, Hilbert has amended this: for

instance, at the beginning of [Hilbert, 1901], which is a later, English translation, Hilbert states

that in all of the theorems, he assumes that where he says two points, they will be considered

to be two distinct points (the relevant omission in his first work is [Hallett and Majer, 2004, pp.

437-438, Chap 5]). A diagram which illustrates the proof steps for both cases, whereA 6= C

andA = C, is shown in figure 9.3.

The hidden assumption that the two points are different becomes obvious to humans when they

try to draw the line which joins A and C. The resulting line is theoretically acceptable, but

not what we were expecting. The first step of the proof then, contains the hidden assumption.

Following the method of lemma-incorporation, this should be made explicit and the first step

modified to:

lemma 1′: Draw a line AC between the two points,which has positive length.

Modified theorem: For two points A and C, such that when we draw a line AC between them,

AC has positive length, there always exists at least one point D on AC that lies between A and

C.

This can be simplified to: ‘For twodistinctpoints A and C there always exists at least one point

D on the line AC that lies between A and C’.

1The relevant axiom is (I,1), which states that for every two points, A,B there exists a line that contains each of
the points. The axiom does not specify that the points must bedifferent.
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Note that, although we have paraphrased Hilbert’s proof as aprocedural proof (to fit Lakatos’s

terminology), it was a declarative proof, and the method of lemma-incorporation applies equally

well in this form. The first step of Hilbert’s proof is:

By Axiom (I,3) there exists a point E outside the line AC, and by Axiom (II,2) there exists on

AE a point F such that E is a point of the segment AF.

This would be modified via lemma-incorporation to:

By Axiom (I,3) there exists a point E outside the line AC, where the line AC has positive length,

and by Axiom (II,2) there exists on AE a point F such that E is a point of the segment AF.

This example highlights the following points.

1) We were expecting a line of positive length, and being toldto draw a line between two

identical points was unexpected because it was only vacuously true that such a line existed.

This again illustrates the role that surprise plays;

2) The method is not limited to procedural proofs, but also applies to declarative proofs in

exactly the same way. This suggests that the method could be apowerful technique: not one

which works only on a contrived example, but one of general use;

3) Exception-barring can be used to delineate the problem area. When the problem lemma

is identified, it is simple to find a concept which covers the positive examples in the lemma

and excludes the counterexample, i.e., to find the concept ofpositive length, and then limit the

domain of the theorem to those points which satisfy this concept, thereby performing strategic

withdrawal;

4) Thetypeof counterexample changes: in the global theorem the counterexample is apoint,

whereas in lemma 1 the counterexample is aline;

5) The teacher and students in [Lakatos, 1976] consider the possibility of an entity being a

local only, global only, or a both local and global counterexample. They do not consider that

a problem entity might be neither global nor local, assumingthat such entities are positive

examples of the theorem and proof, and therefore support rather than attack it. However, the

admission that lemmas in the proof may contain hidden assumptions which mean that an entity

satisfies the lemma, albeit it in a surprising way, raises thequestion of whether there could

be an entity which satisfies the global conjecture in the sameway, thus uncovering a hidden

assumption in the global conjecture itself.
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9.3.3 An example in group theory

This example is an invented example of hidden lemma-incorporation. It is the left hand can-

cellation law, which is a theorem in group theory. Here we hypothesise that it holds for all

groupoids, where a groupoid is a closed set with a binary operation. Note that all groups are

groupoids, but not vice versa (see glossary of group theory terms on page 253). In the fol-

lowing, g−1 denotes the unique inverse of elementg, ande denotes the identity element of

G.

Global conjecture: let G be a groupoid andg, h, k be inG. Thengh= gk→ h = k

Proof:

lemma 1:gh= gk→ g−1(gh) = g−1(gk)

lemma 2:g−1(gh) = g−1(gk) → eh= ek

lemma 3:eh= ek→ h = k

A counterexample is the groupoidG = < {0,1},∗ >, where the * operator is defined as follows:

0∗0 = 0; 1∗0 = 0; 0∗1 = 1; and 1∗1 = 0. We representG in table 9.1. To see thatG is a

global counterexample, letg = 1, h = 0, andk = 1. Thengh= 1∗0 = gk = 1∗1, but 06= 1.

0 1

0 0 0

1 1 0

Table 9.1: A tabular representation of the groupoid G = < {0,1},∗ >

This conjecture, proof and counterexample is a good analogyto Euler’s conjecture, Cauchy’s

proof and the cylinder counterexamples discussed in [Lakatos, 1976]. The counterexample is

global, and is actually local as well, since it is a counterexample to the final lemma. However,

when going through the proof, we never get to the final step, because of the surprisingness of

the intermediate lemmas. The reason they are surprising is because they are vacuously true (or

meaningless, depending on your notion of truth). This follows exactly the same pattern as in

[Lakatos, 1976].

The counterexampleG = < {0,1},∗ >, vacuously satisfies both lemmas 1 and 2. This sounds

very odd at first sight, asG does not contain an identity element, and therefore elements do not

have a unique inverse. It follows the same sort of reasoning as gammaperformed in [Lakatos,
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1976, p. 44], in which he argues that because the statement ‘there is a diagonal of the circle

that does not create a new face’ is false, its negation, ‘all diagonals of the circle create a new

face’, must be true, despite the fact that there are no diagonals on a circle. In our case, because

the statement ‘there existsg,h,k ∈ G such thatg−1(gh) 6= g−1(gk)’ is false, then its negation,

that ‘for all g−1,g,h,∈ G,g−1(gh) = g−1(gk)’ must be true.2 Similarly, in lemma 2, because

the statement ‘there existsh,k,e∈ G such thateh 6= ek’ is false, then its negation, ‘for all

h,k,e∈ G,eh= ek’, must be true. Therefore, for lemma 1 the consequent will always be true

(hence the lemma is satisfied), and for lemma 2 both antecedent and consequent will always be

true (hence again, the lemma will be satisfied). The final lemma however could be false, as the

consequent could be false, whereas the antecedent must always be true. However, by studying

the vacuously true lemmas, it is possible to uncover the hidden assumption being made, and

thus improve the proof by making it explicit. The hidden assumption in this example is that

G is associative, in which case we would haveg−1(gh) = g−1(gk) → (g−1g)h = (g−1g)k. To

modify the proof then, we make this explicit by adding it in asan extra lemma, which our

counterexample breaks. The modified proof is then:

lemma 1: gh= gk→ g−1(gh) = g−1(gk)

lemma 2: g−1(gh) = g−1(gk) → (g−1g)h = (g−1g)k

lemma 3:(g−1g)h = (g−1g)k→ eh= ek

lemma 4: eh= ek→ h = k

G is now considered a local and global counterexample, so we incorporate the new lemma into

the conjecture in the usual way:

Modified global conjecture: let G be a groupoid such thatg−1(gh) = g−1(gk) → (g−1g)h =

(g−1g)k holds. Letg, h, k be inG. Thengh= gk→ h = k

If we strengthen the extra condition into associativity, then we could simplify the modified

global conjecture to: ‘letG be an associative groupoid, and letg, h, k be inG. Thengh= gk→
h = k’.

This example highlights the following points.

1) Vacuously true lemmas can play a role in alerting us to the fact that a hidden assumption is

being made. In particular, this is of interesteven when the counterexample is actually a local

2Our analogy differs in that the diagonals of a circle are not assumed to be unique, whereas the inverse element
of g is unique. Russell’s work on definite description, and his example of the ‘present king of France’ [Russell,
1971], as a denoting phrase which denotes a non-existent object, is relevant to our example.
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counterexample as well. If an earlier lemma is vacuously true, then the assumption should be

made explicit.

2) There may be more than one hidden assumption. Here we assumed thatG had an identity,

inverse and was associative.

3) It may be preferable to add in a clause which is slightly stronger than that needed, in order

to get a simpler conjecture statement.

9.4 Determining which type of lemma-incorporation to perfo rm

When a student receives a proof scheme from the teacher, it reconstructs the global conjec-

ture and all of the local lemmas in the proof. When it does this, it looks to see whether it

has any counterexamples, and if so, reconstructs an implication conjecture which the teacher

sent as a near-implication, or an equivalence as a near-equivalence. If the student does have

a counterexample, it needs to determine which type of lemma-incorporation to perform, by

determining which type of counterexample it has. If the counterexample is global, then the

student first tests to see if the same counterexample violates one of the local lemmas. If it

does, then the student performsglobal and local lemma-incorporationby incorporating this

lemma into the global conjecture. If not, then in order to avoid the problem of confusing the

typeof counterexamples and mistakenly performing hidden lemma-incorporation (expounded

in §9.2.4), the student performs another test. Firstly, it determines whether any of the lem-

mas have any counterexamples at all. If so, then taking the first lemma with a counterexample

(known as a local counterexample), HRL looks to see if there is a concept in the theory which

links the global counterexample and the local counterexample. If there is, then it finds the

first lemma in the proof scheme in which this concept appears,and performsglobal and local

lemma-incorporationby incorporation this lemma into the conjecture statement.We say that a

concept links two entities if it is a function which takes oneof them as input and outputs the

other entity. If there is a global counterexample, but neither of these two tests are satisfied, then

the student performshidden lemma-incorporation. If there is no global counterexample, but

there is a local counterexample, then the student will perform local-only lemma-incorporation.

If there is no counterexample, then the student returns the conjecture and proof unchanged. We

present the method to determine which kind of lemma-incorporation to perform as algorithm

8, below.
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Algorithm 8 Algorithm to determine which kind of lemma-incorporation to perform
Require: Given a proof scheme consisting of a global conjecture and local lemmas, then:

1: if there are any counterexamples to the global conjecturethen

2: if these counterexamples are also counterexamples to any of the lemmas in the proof

then

3: performglobal and local lemma-incorporation

4: else

5: if there is a counterexample to a local lemmathen

6: if there is a concept which links the local counterexample to the global counterex-

amplethen

7: if this concept appears in one of the lemmas in the proof schemethen

8: performglobal and local lemma-incorporation

9: end if

10: end if

11: end if

12: performhidden lemma-incorporation

13: end if

14: else if there are counterexamples to any of the lemmas in the proofthen

15: perform local-only lemma-incorporation

16: end if

17: return the proof scheme
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9.5 Given a counterexample which is local but not global

Our method for local but not global lemma-incorporation, shown as algorithm 9, uses our

exception-barring techniques. This uses the idea discussed in §9.2.1, in which a combination

of methods is suggested. Stages 1-6 below are an attempt to perform piecemeal exclusion on

the faulty lemma; stages 9 - 10 are an attempt to perform counterexample-barring; and stages

13 - 14 are an attempt to perform strategic withdrawal. Thesemethods are explained in more

detail in sections 7.6, 7.7 and 7.8 respectively.

Algorithm 9 Algorithm for local not global lemma-incorporation
Require: Given a conjecture to which there are no known counterexamples, and a proof tree

which contains a faulty lemma,P Q, to which there is at least one counterexample, then:

1: loop

2: if there is a conceptC in the theory which exactly covers the counterexamplesthen

3: make the conceptP∧¬C, add it to the agenda, and perform one theory formation

step.

4: if this theory formation step results in the new conjectureP∧¬C→ Q then

5: replace the faulty lemma withP∧¬C→ Q, and return the improved proof scheme.

6: else

7: force the conjectureP∧¬C→Q explicitly (this situation may occur if HR is not set

to make implications in its input file). Replace the faulty lemma withP∧¬C→ Q,

and return the improved proof scheme.

8: end if

9: end if

10: if we have up to three counterexamples;x, y andz then

11: find the object of interest concept with the same type asx, y andz, and apply the pro-

duction ruleentity disjunctto this concept, with parameters [x,y,z], to get the concept

C of beingx or y or z.

12: else if there is a conceptC in the theory which exactly covers the positives inP, and is

different fromQ then

13: make the new conjectureC ↔ Q. Replace the faulty lemma withC ↔ Q, and return

the improved proof scheme.

14: else

15: return the old proof scheme.

16: end if

17: end loop
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9.5.1 Illustrative session

Initial information

We ran the agency with one student and the teacher. Both teacher and student were given the

concepts described in §8.4. Additionally, given the graph in figure 9.4, the student’s data table

for the concept of removing a triangle from a graph has two possibilities: to remove the triangle

e f g (shaded dark grey), or to remove the triangleab f (shaded light grey). Since graphs are

represented in terms of vertices and edges only, removing the face highlighted returns the same

graph. For instance, suppose that we are given the graph

abcdefgh[ab;bc;cd;da;ae;bf;cg;dh;ef;fg;gh;he;af;bg;ch;de;eg], whereabcdefgh

is a list of all of the vertices and[ab;bc;etc. ] is a list of all the edges which are represented

by the vertices which they join. Then, the concept ‘remove triangle from graph’ returns both

the same graph, and the graph

abcdefgh[bc;cd;da;ae;bf;cg;dh;ef;fg;gh;he;af;bg;ch;de;eg], which has the edge

ab removed.

                  f

h                 g

 e

d                                  c

a                                 b

Figure 9.4: Given this graph, the concept ‘remove triangle from graph’ returns graphs resulting

from removing triangle e f g, or from removing triangle ab f.

Session details

The student was given the initial concepts in the proof, in its input file. The teacher constructed

the proof and sent it to the student, with the instruction to run for 100 steps and then perform

lemma-incorporation on the proof. The student reconstructed the proof scheme as follows:

Global conjecture:

for all a: a is a polyhedron→ a is a polyhedron & the euler characteristic of a is 2

Proof scheme:
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1. for all a: a is a polyhedron→ a is a polyhedron & exists b (b is a graph & remove a face

from a and stretch it flat to get b & b is planar)

2. for all a: a is a polyhedron & the euler char of a is 2↔ a is a polyhedron & exists b (b is

a graph & remove a face from a and stretch it flat to get b & b is planar & the euler char

of graph b is 1)

3. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b & a is

planar↔ b is an integer & a is a graph & a is planar & exists c (c is a graph &c is the

triangulated version of a & the euler char of the graph c is b)

4. for all a: a is a graph & a is triangulated 

a is a graph & ((b is a graph & b is a with one triangle removed)→ (b is a graph & ((a is

a graph & b is a with one edge and one face removed) or (a is a graph & b is a with two

edges, one vertex and one face removed))))

5. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b & a is

triangulated & -(a=egh[gh;he;eg])↔ b is an integer & a is a graph & exists c (c is a

graph & c is a with one triangle removed & the euler char of the graph c is b)

6. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b &

a=egh[gh;he;eg]↔ b is an integer & a is a graph & the euler char of the graph a is

b & a=egh[gh;he;eg] & b=1

The student found no global counterexamples, but identifiedfaulty lemma (4), and the graph

counterexampleabcdefgh[ab;bc;cd;da;ae;bf;cg;dh;ef;fg;gh;he;af;bg;ch;de;eg].

The student then looked in its theory for a concept which covered only this counterexample,

and found the concept of the grapha which is unchanged by having a triangle removed, i.e.,

the concept was ‘for alla: a is a with one triangle removed’. It then formed the new concept of

being a triangulated graph andnotbeing unchanged by having a triangle removed, and formed

the new conjecture ‘for alla: a is a graph &¬(a is a with one triangle removed)→ a is a graph

& a is triangulated’. Finally, the student replaced the old lemma (4) in the proof scheme with

this new lemma, and sent the new proof scheme to the teacher. This modification is analogous

to that performed in [Lakatos, 1976, pp 10-11], in which Cauchy’s proof of Euler’s conjecture

is modified to state that the triangles which are removed fromthe network must beboundary

triangles.
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9.5.2 Discussion

Note that while in [Lakatos, 1976], the counterexample is considered to be the cube, in our

implementation, the counterexample is considered to be thegraph:

abcdefgh[ab;bc;cd;da;ae;bf;cg;dh;ef;fg;gh;he;af;bg;ch;de;eg]. The student does

not connect this with the cube. It would be possible to trace it up through the proof, but as it

does not affect the role of the counterexample, we have not done this.

9.6 Given a counterexample which is both global and local

Algorithm 10 Algorithm for global and local lemma-incorporation
Require: Given a proof scheme where there are counterexamples to the global conjecture, and

these counterexamples are also counterexamples to a lemma in the proof. Let the global

conjecture be a near-implicationP Q, and the faulty lemma be a near-implicationR S,

then:

1: form the conceptC ‘objects which satisfy the faulty lemma’, by merging the twoconcepts

R andS. This is done by applying the production rule ‘compose’ toRandS.

2: modify the global conjecture by making the new conjectureC→ Q.

3: replace the old global conjecture in the proof scheme with the modified version.

4: return the proof scheme.

9.6.1 Illustrative session

A student is given the hollow cube as an example of a polyhedron. When asked to perform

lemma-incorporation, it finds that the hollow cube is a counterexample, both to the global

conjecture, and the lemma that ‘if we remove a face from any polyhedra, then we can stretch

it flat onto a blackboard’. It makes the concept ‘polyhedra which, if you remove a face, can be

stretched flat on a board’, and then limits the domain of the global conjecture to polyhedra of

this type.

Initial information

A student was given the initial concepts in the proof, in its input file. The student was given

the hollow cube as an example of a polyhedron.

Session details
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The teacher constructed the proof and sent it to the student,with the instruction to run for 100

steps and then perform lemma-incorporation on the proof. The student reconstructed the proof

scheme as follows:

Global conjecture:

for all a: a is a polyhedron a is a polyhedron & the euler char of a is 2

Proof scheme:

1. for all a: a is a polyhedron a is a polyhedron & exists b (b is a graph & remove a face

from a and stretch it flat to get b & b is planar)

2. for all a: a is a polyhedron & the euler char of a is 2↔ a is a polyhedron & exists b (b is

a graph & remove a face from a and stretch it flat to get b & b is planar & the euler char

of graph b is 1)

3. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b & a is

planar↔ b is an integer & a is a graph & a is planar & exists c (c is a graph &c is the

triangulated version of a & the euler char of the graph c is b)

4. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b & a is

triangulated & -(a=egh[gh;he;eg])↔ b is an integer & a is a graph & exists c (c is a

graph & c is a with one triangle removed & the euler char of the graph c is b)

5. for all a b: b is an integer & a is a graph & the euler char of thegraph a is b &

a=egh[gh;he;eg] ↔ b is an integer & a is a graph & the euler char of the graph a

is b & a=egh[gh;he;eg] & b=1

The student found that the hollow cube is a counterexample tothe global conjecture, and then

looked to see if it is a counterexample to any of the lemmas as well, and found that it violates

lemma 1. The student then applied the production rulecomposeto the two concepts in the

faulty lemma: (i) a is a polyhedron, and (ii) a is a polyhedron& exists b (b is a graph&

remove a face from a and stretch it flat to get b& b is planar), to produce:a is a polyhedron

& exists b (b is a graph& remove a face from a and stretch it flat to get b& b is planar).

That is, the student made the concept of objects which satisfy the faulty lemma. The student

then modified the global conjecture to holding for objects ofthis type only, i.e., the global

conjecture became ‘for all a: a is a polyhedron & exists b (b isa graph & remove a face from

a and stretch it flat to get b & b is planar)→ a is a polyhedron & the euler char of a is 2’. This

has no counterexamples in the database. The student updatedthe proof scheme to contain the

new global conjecture, and returned it. it currently
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9.6.2 Discussion

Lakatos [1976] prescribes how to modify a global conjecture, given a faulty lemma. However,

he does not make it clear what to do with the lemma. The relevant rule is:

Rule 2: If you have a global counterexample discard your conjecture, add to your
proof-analysis a suitable lemma that will be refuted by the counterexample, and
replace the discarded conjecture by an improved one that incorporates that lemma
as a condition. [Lakatos, 1976, p 50]

The problem is that these ‘lemmas’ in the proof are seen at different times as procedural steps

to be carried out, and as declarative conjectures. If they are steps to be carried out, then the

problem disappears: we have the conjecture, ‘for any polyhedra which, by removing one face

can be stretched flat onto a blackboard,V −E +F = 2’, and the step ‘remove a face from the

polyhedron and stretch it flat onto the blackboard’, which can now, by definition, be carried

out. However, if we regard them as conjectures, then we have three options. Firstly, we can

keep the faulty local conjecture that ‘all polyhedra can be stretched flat onto a blackboard, if we

remove one face’. Secondly, we can replace it by the tautology that ‘all polyhedra which, if we

remove one face can be stretched flat onto a blackboard, can bestretched flat onto a blackboard

if we remove one face’. The third option is to look for a concept which covers the objects that

satisfy the faulty lemma.

In [Lakatos, 1976] the students discover the concept of ‘polyhedra which you can inflate into

a sphere’ as one which is equivalent to the concept of ‘polyhedra which, after removing one

face, can be stretched flat onto a board’. This concept can then be used to modify the global

conjecture to ‘all polyhedra which you can inflate into a sphere have an Euler characteristic of

2’, and the lemma in the proof step to ‘for all polyhedra whichyou can inflate into a sphere,

it is possible to remove a face and stretch it flat on the board’. The first two options above

are clearly undesirable, while the third option – at least the lemma modification aspect of it –

seems to be the most sensible. However, Lakatos does not discuss how we should modify a

faulty lemma, if we have a counterexample which is both global and local. Even if a concept

equivalent to the concept in the lemma is found, it is not usedin the modification of the local

lemmas (see [Lakatos, 1976, p. 34]).

9.6.3 An example in groupoid theory

In order to test our method, we invented an example of global and local lemma-incorporation

in an algebraic domain (see the glossary of group theory terms on page 253).
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Global conjecture: Let G be an algebra with one binary operator, andg, h, k be inG. Then

gh= gk→ h = k.

Proof:

lemma 1:gh= gk→ g−1(gh) = g−1(gk)

lemma 2:g−1(gh) = g−1(gk) → (g−1g)h = (g−1g)k

lemma 3:(g−1g)h = (g−1g)k→ eh= ek

lemma 4:eh= ek→ h = k

This conjecture is the left hand cancellation law, which is atheorem in group theory (note that

a group must be associative and have a unique identity in the group, and a unique inverse for

each element, in addition to being a groupoid). The proof is standard in group theory. We

hypothesise that both the conjecture and proof hold for groupoids as well.

9.6.4 Illustrative session

We ran HRL with one student which had three groupoids:

G1 = the trivial algebra< {0},∗ >,

G2 = < {0,1},∗ >, where the * operator is defined as follows: 0∗0 = 0; 1∗0 = 0; 0∗1 = 1;

and 1∗1 = 0, and

G3 = < {0,1,2},∗ >, where the * operator is defined as follows: 0∗0 = 0; 0∗1 = 1; 0∗2 = 2;

1∗0 = 1; 1∗1 = 0; 1∗2 = 0; 2∗0 = 2; 2∗1 = 0; and 2∗2 = 0.

The first two algebras are groups, and the third,G3, is only a groupoid as it is not associative

and does not have a unique inverse for each element. We represent its multiplication table in

table 9.2 below.

0 1 2

0 0 1 2

1 1 0 0

2 2 0 0

Table 9.2: The groupoid G3
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The teacher started with the following proof scheme: globalconjecture⇐{lemma 1, lemma 2,

lemma 3, lemma 4}, and asked the student to perform lemma-incorporation. Thestudent found

G3 as a counterexample to the global conjecture, and found that this was also a counterexample

to lemma 2. It then formed the concept:

algebras with tuplesg, h andk such that(g−1g)h = (g−1g)k,

and from this the student modified the global conjecture to:

for all algebras with elementsg, h andk, (g−1g)h = (g−1g)k→ (gh= gk→ h = k).

9.6.5 Discussion

It is encouraging that the method ran in a different domain tothat used by Lakatos, and used

the proof and counterexample to modify a false conjecture toa true theorem. However, the

theorem is trivial as it only applies toG1, i.e. the trivial group. This is unnecessarily restricted.

This criticism is not surprising, as the lemma-incorporation methods used exception-barring; in

particular strategic withdrawal, which is subject to the criticism of retreating too far. Lakatos’s

comments on how to avoid this problem, by generalising the conjecture, are relevant here too.

We discuss this in §13.1.

9.7 Given a global but not local counterexample

This has been one of the most difficult methods to implement, as it involves hidden assump-

tions, and in §9.2, we outlined various considerations which have influenced our implementa-

tion of it. As described in §9.2.2, in order to identify a problem lemma, there are two types of

phenomena which cause surprise. The first is where it makes sense to use a concept to describe

a given entity, but the entity gives a surprising result, as is the case when we remove the jacket

from the cylinder, and it falls into two parts, leaving two disconnected circles, where all other

entities had resulted in connected networks. The second type of surprise is where it only makes

questionable sense to use a concept to describe a given entity, as the entity is not an example

of the concept.

In order to implement the notion of surprise, we have considered previous ways of measuring

surprise in automated theory formation. Colton et al. [1999] define the surprisingness of an

equivalence conjecture as the number of concepts which appear in the construction path of one

concept related by the conjecture, but not both. In AM, Lenat[1976] measured a concept as
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surprising if it possessed a property not possessed by its parents. However, neither of these

measures captures what we want, which is to measure the surprisingness of anentity, as op-

posed to a conjecture or concept. In Lakatos’s example, it makes sense to apply the concept of

removing a face from a polyhedron and stretching it flat, to the cylinder, but the result differs

from what we get when we apply that concept to other polyhedra. Applying this concept to all

of the other entities results in a graph which is connected, i.e. there is a property (or concept)

which applies to everything except the surprising entity.

9.7.1 Modelling surprise

Recall that we are interested in two types of surprise: surprise caused by unexpected behaviour,

and surprise caused by non-meaningful terms. We refer to these as type 1 and type 2 respec-

tively. In this section, we define each of these types of surprise and describe our algorithm for

each.

Surprise caused by unexpected behaviour

We define the first type of surprise as follows:

• surprisingness (type 1): an entityx is surprising with respect to a conjectureP→ Q if there

exists another conjectureC′ such thatx is the only counterexample toC′ andC′ has the form

P→ Q∧R, for some conceptR.

In order to identify the ‘hidden assumption’ in a conjecture, we have to break down the con-

cepts in it, in particular the conceptQ in the conjectureP → Q. This is made easy for our

purposes since for each of its concepts, HR records the construction path, i.e. the concepts to

which production rules were applied to get the current concept. This ancestor list allows us to

gradually dissect a concept until we find what we were lookingfor. Our algorithm for surprise

caused by unexpected behaviour is shown in algorithm 11.

Surprise caused by non-meaningful terms

The second cause of surprise described in §9.2.2 concerns statements which are about non-

meaningful terms. We have implemented this as:

• surprisingness (type 2): an entitym is surprising with respect to conjectureP(x) → Q(x) if

¬P(m).

This is a simplification of the example in [Lakatos, 1976], inwhich the circle is argued to be

a counterexample to the conjecture that ‘all diagonals on all polygons create a new face’. To see

this, consider representing this conjecture as: for allp, e, diagonal(e, p)→ create new f ace(e, p),
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wherep is a polygon ande is an edge. The entity circle is considered to be surprising since if

p = circle, there do not existe such thatdiagonal(e, p). While our definition does not capture

predicates with more than one argument, it is clearly a simplification of such cases.

This type of surprise can be determined by testing to see whether the antecedent fails with

respect to the global counterexample, i.e., whether, givencounterexamplem, the lemma is of

the form P(x) → Q(x), and¬P(m). We describe an algorithm for finding a hidden lemma

and generating an explicit faulty lemma, using surprise type 2, in algorithm 12. Note that this

algorithm is only partially implemented.

Algorithm 11 Algorithm for finding a hidden lemma and generating an explicit faulty lemma,

using surprise caused by unexpected behaviour (type 1)
Require: given a proof scheme and an entity which is a global but not local counterexample:

1: for 0≤ i ≤ length of proof schemedo

2: take each lemmaCi = P(x) → Q(x) in the proof scheme

3: take the ancestor list for the conceptQ(x)

4: for 0≤ j ≤ length of ancestor list forQ(x) do

5: take each conceptQ j(x) in the ancestor list, starting withQ(x) and going back to the

core concept(s) from which all the ancestors were subsequently generated.

6: for 0≤ k≤ length of concepts list in the theorydo

7: for each conceptRk(x) in the theory

8: perform the theory formation step “composeQ j(x)∧Rk(x)”

9: if the outcome of the theory formation step is a conceptthen

10: if this concept has the same arity asP(x) then

11: make the conjectureC′
i = P(x) → (Q j(x)∧R(x))

12: else ifthis concept has an arity which is greater thanP(x) by n then

13: apply theexistsproduction rule with parameter [1]n times to the composed

concept

14: when the arity of the conceptC(x), which results from the above step matches

that of conceptP(x), make the conjectureC′
i = P(x) →C(x),

15: end if

16: if the entity is the only counterexample toC′
i then

17: returnCi as the hidden faulty lemma andC′
i as the explicit lemma.

18: end if

19: end if

20: end for

21: end for

22: end for
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Note that in our implementation of surprise caused by unexpected behaviour, described in

algorithm 11, it would not make sense to make some conjectures, for instance, between con-

cepts with different types or arities. Therefore, before making the conjectureC′ = P(x) →
(Qi(x)∧R(x)), the student checks thatQi(x)∧R(x) is a concept, and if not, it moves onto the

next concept. IfQi(x)∧R(x) actuallyis a concept, but has an arity which is larger than the arity

of P(x) by n, then the student applies the ‘exists’ production rule withparameter [1]n times to

the composed concept, reducing the arity by 1 each time. Whenthe arity of the composed con-

ceptQi(x)∧R(x) matches that of conceptP(x), the student makes the conjectureP(x) →C(x),

whereC(x) is the concept which results from repeated application of the ‘exists’ production

rule to the conceptQi(x)∧R(x). This process in shown in stage(v) of the illustrative session

below (§9.7.2).

Algorithm 12 Algorithm for finding a hidden lemma and generating an explicit faulty lemma,

using surprise caused by non-meaningful terms (type 2)
Require: given a proof scheme and an entitymwhich is a global but not local counterexample:

1: for 0≤ i ≤ length of proof schemedo

2: take each lemmaCi = P(x) → Q(x) in the proof scheme

3: if Ci is of the formP(x) → Q(x), and¬P(m) then

4: generate the conceptP(m)

5: generate the conjectureC′ = (P(x) → Q(x))∧P(m). The entitym is now a counterex-

ample toC′

6: ReturnCi as the hidden faulty lemmaC, andC′
i as the explicit lemma.

7: end if

8: end for

9.7.2 Illustrative session

In this section, we describe a session with HRL which demonstrates our model of surprise

caused by unexpected behaviour.

Initial information

A student was given the proof scheme with global conjecture “for all a: a is a polyhedron a

is a polyhedron & the euler char of a is 2”, and the cylinder entity, which is a counterexample.

Session details

The student reconstructed the following lemmas from the proof scheme which the teacher

passed to it:
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local lemmas:

1. for all a : a is a polyhedron→ a is a polyhedron∧ exists b (b is a graph∧ remove a face

from a and stretch it flat to get b∧ b is planar)

2. for all a : a is a polyhedron∧ the euler char of a is 2↔ a is a polyhedron∧ exists b (b is

a graph∧ remove a face from a and stretch it flat to get b∧ b is planar∧ the euler char

of graph b is 1)

3. for all a b : b is an integer∧ a is a graph∧ the euler char of the graph a is b∧ a is

planar↔ b is an integer∧ a is a graph∧ a is planar∧ exists c (c is a graph∧ c is the

triangulated version of a∧ the euler char of the graph c is b)

4. for all a b : b is an integer∧ a is a graph∧ the euler char of the graph a is b∧ a is

triangulated∧ ¬(a=egh[gh;he;eg])! b is an integer∧ a is a graph∧ exists c (c is a

graph∧ c is a with one triangle removed∧ the euler char of the graph c is b)

5. for all a b : b is an integer∧ a is a graph∧ the euler char of the graph a is b∧
a=egh[gh;he;eg] ↔ b is an integer∧ a is a graph∧ the euler char of the graph a

is b∧ a=egh[gh;he;eg] ∧ b=1

In order to evaluate whether the cylinder was surprising in the first sense, i.e., surprise caused

by unexpected behaviour, with respect to any of the lemmas inthe proof scheme, the student

performed the steps below.

(i) It started cycling through all of the lemmas in the proof scheme. Firstly, it took lemma (1)

asC = P(x) → Q(x), whereP(x) is the conceptfor all a : a is a polyhedron, andQ(x) is the

concepta is a polyhedron∧ exists b (b is a graph∧ remove a face from a and stretch it flat to

get b∧ b is planar).

(ii) The student then found the ancestor list forQ(x) [p31 0, p140, graph005, poly002] (shown

in figure 9.5). We show the concepts below.

(iii) the student took the first concept in the ancestor list,p31 0, and cycled through all of the

concepts in its theory, attempting to compose them with thisconcept.

(iv) Stage (iii) failed, and so the student looked at the next concept in the ancestors list,p14 0.

When the student composedp14 0 with the concept in its theorygraph002 = [a] : a is a graph

∧ a is a connected network; it generated the new concept:
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p31_0 [a]: a is a polyhedron & exists b (b is a graph & remove a face from a and stretch flat to get b & b is planar)

p14_0 [a,b]: a is a polyhedron & b is a graph & remove a face from a and stretch it flat to get b & b is planar

compose [0,1]

graph005 [a]: a is a graph & a is planar

poly002 [a,b]: a is a polyhedron & b is a graph & remove a face from a and stretch it flat to get b

exists [1]

Figure 9.5: The ancestor tree for the right hand concept in lemma (1)

p38 0 [a, b] a is a polyhedron∧ b is a graph∧ remove a face from a and stretch it flat to get b

∧ b is planar∧ b is a connected network.

(v) Since this new concept was of a higher arity thanP(x), the student performed another theory

formation step:< p38 0,exists[1] >. This generated a further new concept:

[a] a is a polyhedron∧ exists b (b is a graph∧ remove a face from a and stretch it flat to get b

∧ b is planar∧ b is a connected network)

(vi) Since this further new concept had the same arity asP(x), the student made the conjecture

C′:

for all a : a is a polyhedron→ a is a polyhedron∧ exists b (b is a graph∧ remove a face from

a and stretch it flat to get b∧ b is planar∧ b is a connected network).

(vii) The student then found that this conjecture had exactly one counterexample: the cylinder.

Therefore, the student evaluated that the cylinderis surprising with respect to lemma (1).

(viii) The student returns lemma (1) as the hidden faulty lemma, andC′ as the explicit lemma.
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9.7.3 Algorithm for hidden lemma-incorporation

For hidden lemma-incorporation, we need to find out whether there is a hidden lemma in the

proof scheme and if so, identify it and generate an explicit lemma which the global counterex-

ampledoesbreak. We do this by testing to see whether the global counterexample is surprising

with respect to any lemmaC in the proof scheme, where surprising is defined first as surpris-

ingness 1, and then if unsuccessful, as surprisingness 2, described in §9.7.1. If so, thenC is

returned as the hidden faulty lemma. The student then generates an intermediate proof scheme

in which the hidden faulty lemma is replaced by the explicit lemma, and then call global and

local lemma-incorporation on the intermediate proof scheme, and return the result. We de-

scribe this procedure in algorithm 13. Note that this methodis currently only implemented for

implication conjectures in the proof scheme.

9.7.4 Illustrative session

We ran the agency with one student and a teacher. The student had the polyhedron cylinder,

which was a counterexample to the global conjecture, but lemma 1 or lemma 2. In order to

avoid the controversy over whether a global counterexampleis local or not, as outlined in

§9.2.3, we omitted lemma 3 from the proof when testing this method.

Initial information

The teacher started with one polyhedron, the cube, and the proof scheme in §9.7.2, where all

lemmas and the global conjecture were proper, rather than near, implications and equivalences.

The student had two polyhedra, the cube and the cylinder.

Session details

The teacher sent the proof scheme to the student and asked it to perform lemma-incorporation

on it. The student reconstructed it as the proof scheme in §9.7.2. Since it had a global

counterexample which was not also a local counterexample, it performed global but not local

lemma-incorporation. It went through each of its lemmas in turn, to see whether the cylinder

was surprising (type 1) with respect to it, and found that it was surprising with respect tolemma

1, as described in §9.7.2. It then generated the explicit lemmaC′:

for all a : a is a polyhedron→ a is a polyhedron∧ exists b (b is a graph∧ remove a face from

a and stretch it flat to get b∧ b is planar∧ b is a connected network).

The student then replacedlemma 1in its proof scheme withC′, and performed local and global

lemma-incorporation. The outcome was the following modified conjecture and proof scheme:
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Algorithm 13 Algorithm for global but not local lemma-incorporation
Require: Given a proof scheme where there are counterexamples to the global conjecture, but

these counterexamples are not counterexamples to any of thelemmas in the proof, and none

of the lemmas have counterexamples which are related to the global counterexamples. Let

the global conjecture be a near-implicationP Q. Then:

1: go through the proof scheme and take each lemma in turn, testing each to see whether the

global counterexample is surprising in the first sense (type1) with respect to the lemma

2: if sothen

3: return this lemma as the hidden faulty lemma, and generate another conjecture, which

the global counterexampleis a counterexample to, as the explicit lemma

4: else

5: go through the proof scheme and take each lemma in turn, testing each to see whether

the global counterexample is surprising in the second sense(type 2) with respect to the

lemma

6: if so then

7: return this lemma as the hidden faulty lemma, and generate another conjecture, which

the global counterexampleis a counterexample to, as the explicit lemma

8: else

9: return the proof scheme unchanged

10: end if

11: end if

12: if an explicit lemma has been foundthen

13: generate an intermediate proof scheme in which the hidden faulty lemma is replaced by

the explicit lemma

14: perform explicit lemma-incorporation, i.e., global and local lemma incorporation on the

intermediate proof scheme, and return the result

15: end if
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Global conjecture:

for all a : a is a polyhedron & exists b (b is a graph & remove a face from a and stretch it flat to

get b & b is planar & b is a connected network)→ a is a polyhedron & the euler char of a is 2

Proof scheme:

1. for all a : a is a polyhedron a is a polyhedron & exists b (b is a graph & remove a face

from a and stretch it flat to get b & b is planar & b is a connected network)

2. for all a : a is a polyhedron & the euler char of a is 2↔ a is a polyhedron & exists b (b is

a graph & remove a face from a and stretch it flat to get b & b is planar & the euler char

of graph b is 1)

3. for all a b : b is an integer & a is a graph & the euler char of thegraph a is b & a is

planar↔ b is an integer & a is a graph & a is planar & exists c (c is a graph &c is the

triangulated version of a & the euler char of the graph c is b)

4. for all a b : b is an integer & a is a graph & the euler char of thegraph a is b & a is

triangulated & -(a=egh[gh;he;eg]) ! b is an integer & a is a graph & exists c (c is a

graph & c is a with one triangle removed & the euler char of the graph c is b)

5. for all a b : b is an integer & a is a graph & the euler char of thegraph a is b &

a=egh[gh;he;eg] ↔ b is an integer & a is a graph & the euler char of the graph a

is b & a=egh[gh;he;eg] & b=1

9.7.5 Discussion

Since this method involves surprise and implicit assumptions, it has been the most difficult

of the lemma-incorporation methods to implement. The fact that HR records the construction

history of each of its concepts has made it possible to trace concepts back, and identify hidden

meanings. This has enabled us to write an algorithm which, although a simplified version,

captures Lakatos’s method. This is shown in our illustrative session in §9.7.2.

Note that although the global conjecture in the illustrative session in §9.7.4 now has no coun-

terexamples, there are still known problems in lemmas 1 and 4. Lakatos did not specify exactly

what to do with a faulty lemma once it had been used to modify the global conjecture, and we

have not extended this aspect of Lakatos’s theory in our implementation. It would be sensible

to remove the faulty lemma from the proof: however, this would affect the proof structure and

a new lemma should be generated.
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9.8 The method of proofs and refutations

The method of proofs and refutations is the method of lemma incorporation “rechristened”

[Lakatos, 1976, 49]. The only addition is that the method of finding counterexamples is made

more explicit. This consists of using both the global conjecture and the local lemmas in a proof

scheme to suggest counterexamples, by looking for entitieswhich violate them. For the sake

of completeness, we include an illustrative session below.

9.8.1 Illustrative session

We gave the global conjecture in the group theory example to the MACE model generator

McCune [2001], as shown below:

for all g, h, k ∈ G, (((g∗h) = (g∗k)) → (h = k)),

and asked it to generate models of size 1, size 2, etc. up to size 8, and to spend 10 seconds on

each search. It found counterexamples in which the product was 0 for every pair of elements.

We show examples of groups of size 2 and 3 in table 9.3. To see why the first of these is a

counterexample, let g = 1; h = 1 and k = 0. Theng∗h = 1∗1 = 0, andg∗k = 1∗0 = 0, but

1 6= 0.

0 1

0 0 0

1 0 0

0 1 2

0 0 0 0

1 0 0 0

2 0 0 0

Table 9.3: Two groups generated by MACE as counterexamples to the conjecture ‘for all ghk∈
G,(((g∗h) = (g∗k)) → (h = k))’

We have not implemented this aspect of the method of proofs and refutations within HRL, as

it is beyond the scope of this project.

9.9 Related work

Bundy et al. [2004] have used Lakatos’s rational reconstruction of Cauchy’s proof to help them

to provide a logic-based account of the way in which mathematicians discover and present

proofs. They argue that mathematicians do not work within the Hilbertian notion of proof, as
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proofs tend to be difficult to check and are often flawed, whichwould not be the case for a

Hilbertian proof. Bundy et al use Lakatos’s ideas to ask how it is possible for errors in a faulty

proof to go unnoticed for years – even when counterexamples are known.

Their account of this phenomenon consists of the constructive ω-rule, which is a refinement of

theω-rule. Theω-rule states that we can inferφ(x) for all natural numbersx, so long as we can

proveφ(1), φ(2), φ(3), φ(4),... The constructiveω-rule takes a variant of this as its first step –

specifying that we must be able to find proofsφ(i) for afinitenumber of natural numbers. It has

two further requirements. Step two is that each proofφ(i) must share a common structure, so

that we can generalise and build a programproo fφ which takes a natural numbern as input and

outputs a proofφ(n). This function is aschematic proof, calledproo fφ : φ(n). Step three is that

we can prove by meta-level mathematical induction thatproo fφ : φ(n) is valid for all natural

numbers; i.e. we must be able to show(i) proo fφ : φ(0), and (ii) proo fφ : φ(n) ⊢ proo fφ :

φ(n+1).

Bundy et al argue that we can see Cauchy’s proof in terms of theconstructiveω-rule. An

initial proof was offered for the cube (step one), and this type of proof was generalised to all

polyhedra (step two). However, the third step, of verification, was omitted, and this is why the

proof was not sound and counterexamples arose. Bundy et al suggest that omission of the third

step is not uncommon, and they hypothesise that their constructiveω-rule provides a cognitive

model of how some proofs are discovered and presented. In particular, they suggest that their

notion of schematic proofs may account for errors in proofs –both why they arise at all, and

why they can be difficult to find, in a way that the conventionallogical account fails to do.

The constructiveω-rule has been implemented in two systems, [Baker, 1993] and[Jamnik,

2001b]. These take as input a conjecture and uniform proofs of examples from the domain

(step one). They output a schematic proof for which both steptwo and step three have been

performed.

Our works differs from Bundy et al’s approach in that we have not attempted to answer the

question ofhow it is possible for errors in a faulty proof to go unnoticed? Instead, our aim has

been to provide a computational representation of Lakatos’s answer to the question ofhow can

counterexamples be used to improve a faulty proof and conjecture? In doing so, we have had

to answer the following questions (see the relevant sections):

• how can we represent an informal proof in our system? (§8.3)

• how can a computer program uncover hidden assumptions in a proof? (§9.7)

• given a counterexample, how can a computer program determine whether it is global or local?

(§9.4)
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• how can a computer program perform local/global/hidden lemma incorporation? (sections

9.5, 9.6 and 9.7).

9.10 Summary

We have discussed Lakatos’s method of lemma-incorporation, including local but not global,

both global and local, and global but not local lemma-incorporation. We have described our

implementation of all three variations of the method, and given illustrative sessions in each

case. We have considered how the method may be applied to further mathematical domains,

including geometry and group theory. We hold that the process of providing a formal repre-

sentation of Lakatos’ method of lemma-incorporation, which we have described in this chapter

and the previous one, has enabled us to answer questions suchas: how can we represent an

informal proof? How can we uncover hidden assumptions in a proof? How can we modify a

faulty conjecture or a faulty proof, given a counterexample? How can we formalise the surprise

we feel when an example behaves in an unexpected manner in a proof? We have also briefly

considered how we could extend HRL using the model generatorMACE, in order to generate

counterexamples in the way described in Lakatos’s method ofproofs and refutations. Finally,

we have discussed work which is related to Lakatos’s method of lemma-incorporation.



Chapter 10

Testing hypotheses in HRL

10.1 Introduction

In chapters 5 to 9, we described our implementation of each ofLakatos’s methods, except

for monster-adjusting which we leave as further work (see chapter 13). At the end of each

chapter, we have presented illustrative sessions, and a discussion about ways in which our

implementation has extended or clarified Lakatos’s methods. In the following three chapters,

we evaluate our project. We argue that the process of producing an algorithm and subsequent

implementation of Lakatos’s methods has not only enabled usto improve upon his theory, but

also to evaluate both his theory and our extended theory. Thethree chapters are distinguished

by the criteria to which we refer. In this chapter we use the interestingness measures in HRL to

evaluate theories which it has produced, and we test hypotheses about our system. In chapter

11 we appeal to philosophical criteria of a good theory, and argue that our interpretation and

extension of Lakatos’s methods is useful from this perspective. Finally, in chapter 12, we argue

that automating Lakatos’s methods has useful application to the field of automated theorem

proving.

Our primary aim in this chapter is to evaluate three main hypotheses:

• it is possible to fine-tune the method of surrender;

• it is possible to fine-tune the method of monster-barring;

• it is possible to fine-tune the method of exception-barring.

Our secondary aim is to evaluate the claim that Lakatos’s methods apply both to other types of

conjecture and to other domains.

157
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In order to achieve these aims, we run HRL with different parameter settings, and present

and discuss the output. The purpose of this process is threefold: firstly, we wish to provide

support for, or to falsify our three hypotheses, that changing the parameters to HRL has an

effect on its output. Secondly, we wish to investigate whichparameter settings produce certain

desired behaviours, in particular whether the ‘Lakatos variable’ (i.e. the variable which most

closely mirrors an aspect of a method as Lakatos described it), or an extension, is better in

different situations. Thirdly, we wish to show HRL using different methods and working in

different domains, with different types of conjectures. This would demonstrate the generality

of Lakatos’s methods. Thus, we evaluate both Lakatos’s methods and our extended theory of

mathematical discovery and justification.

The chapter is organised as follows: firstly, in §10.2, we describe our experimental setup,

recapping the variables in HRL at both the student and the agency level. We also state the

default values and state where we have varied these. The following three sections; §10.3, 10.4

and 10.5 contain our evaluation of our three hypotheses, giving the particular experimental

setup, evaluation criteria, results and discussion in each. We conclude the chapter in §10.6.

10.2 Experimental setup

In order to investigate our three hypotheses, and to achieveour secondary aim, we vary the

method used, domain, and conjecture type which the teacher requests. We have also varied

interestingness weightings between the students.

10.2.1 Variables in HRL

Within HRL we have continued Colton’s methodology of allowing for empirical experimenta-

tion rather than making design decisions, where possible. This allows us to test our hypotheses

by differing the variables. Below we show these variables, the values they take, and their

default values where relevant.

10.2.2 Variables at the student level

These variables are flags which are set in the individual input file to each student, at the start of

a session. Different students might have different values for each variable.
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1. Domain. HRL can work in many different domains. We test it in group theory, an

animals data set, and number theory.

2. Method of generating false conjectures.These are different ways of automatically

generating false conjectures:

(a) near-conjectures: these are either near-equivalences or near-implications and hold

for x% of a student’s entities, where 0≤ x < 100. The default is that students do

not generate near-conjectures.

(b) data distribution: we distribute the data by concept, by natural ordering or ran-

domly between different students.

3. Discussion. These are variables which direct the length of discussion and the content

which is taken from them. They consist of:

(a) number of independent work phases:this is the number of independent work

phases which are performed altogether in a session. This takes any value inZ+,

and has a default of 10.

(b) length of independent work phase:this is the length of each independent phase,

measured by the number of theory formation steps performed.This takes any value

in Z+, and has a default of 10.

(c) threshold to add conjecture to theory: any conjecture which arises during the

discussion phase must be more interesting than this threshold in order for the stu-

dent to add it to its own theory after the discussion. This takes any non-negative

real value, and has a default of 0.

(d) threshold to add concept to theory:any concept which arises during the discus-

sion phase must be more interesting than this threshold in order for the student to

add it to its own theory after the discussion. This takes any non-negative real value,

and has a default of 0.

4. Lakatos Method. These variables dictate which Lakatos method should be usedand

how it is to be applied.

(a) surrender: these variables dictate when a student should perform surrender (see

§10.3.1).

(b) monster-barring: these variables dictate when, and how to perform monster-

barring (see §10.4.1).

(c) exception-barring: these variables dictate which type of exception-barring should

be performed, and when (see §10.5.1).
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10.2.3 Variables at the agency level

These variables are flags set at the start of a session which are universal to the agency.

1. Conjecture request. This is the type of conjecture which the teacher requests, and

take the following values: conjecture, implication, near-implication, equivalence, near-

equivalence, non-exists. The default conjecture is “conjecture”.

2. Number of students. HRL consists of a variable number of students, and one teacher.

There is no upper limit on the number of students. The defaultnumber is 2.

3. Use communal piecemeal exclusion.If this flag is set, then the class perform piecemeal

exclusion together rather than individually. This takes either true or false as input, with

the default being false.

10.2.4 Variable settings

Unless otherwise specified, the students were set to make near equivalence conjectures which

held for 60% of their entitites. The data distribution is shown below, in §10.2.5. The number

of independent work phases was set to 10, and the length of each independent work phase was

set to 20.

In order to prevent conjectures which are dull from being discussed, we introduced a threshold

for the purposes of the hypothesis testing. When a student received a request to send a certain

type of conjecture, it sent the first conjecture it found in its theory of the appropriate type,

whose interestingness is greater than 1.0.

There are many further variables and parameter values in HRL, since it encompasses all those

in HR. For instance, the production rules and parameters, interestingness measures and search

technique to be used in the individual theory formation are all variables to be set at the start of

each session. Where relevant, we state these, otherwise we use default values. be found

10.2.5 Domains

Group Theory

We tested HRL on an algebra data-set. This consisted of fourteen groups, one semi-group and

three groupoids. The core concepts were group, element, thebinary operator, identity, inverse,
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associativity, and whether the left hand cancellation law held. The first student worked in group

theory, the second in semi-group theory, and the third in groupoid theory, as shown below.

Student 1 had 14 groups: one of size one, one of size two, one ofsize three, two of size four,

one of size five, two of size six, one of size seven, and five of size eight.

Student 2 had one semi-group, SG1: a set with elements{0,1,2}, where the∗ operator is

defined in table 10.1. It is associative, but has no identity,and no inverse.

0 1 2

0 0 2 2

1 2 1 2

2 2 2 2

Table 10.1: The ∗ operator for SG1

Student 3 had three groupoids. The first, GP1 is the trivial groupoid: a set with element{0},

where the∗ operator is the first table defined in 10.2. This is associative, has identity 0, and

inverse 0.

The second groupoid, GP2 is a set with elements{0,1,2}, where the∗ operator is the second

table defined in 10.2. This is not associative, has identity 0, and does not have a unique inverse

for each element.

The third groupoid, GP3 is a set with elements{0,1,2}, where the∗ operator is the third

table defined in 10.2. This is not associative, has no identity, and therefore no inverse for any

element.

0

0 0

0 1 2

0 0 1 2

1 1 0 0

2 2 0 0

0 1 2

0 2 2 1

1 2 2 1

2 2 2 1

Table 10.2: The ∗ operator for GP1, GP2 and GP3

We set the interestingness weighting of a conjecture to:

interestingness = surprisingness * 0.5 + comprehensibility * 0.5 + applicability * 0.5 + plausi-

bility * 0.5.
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Animal taxonomy

We tested HRL on a machine learning data-set from Inductive Logic Programming. This con-

sisted of the following 18 animals: dog, dolphin, platypus,bat, trout, herring, shark, eel, lizard,

crocodile, t-rex, turtle, snake, eagle, ostrich, penguin,cat, and the dragon. The core concepts

were: whether they were covered by hair, scales or feathers;the number of legs they have;

whether they are homeothermic; whether they produce milk, lay eggs, or have gills; what sort

of habitat they live in; and what class of animal they are: mammal, fish, reptile or bird. We

distributed the data as shown below:

Student 1: all animals except the platypus. Interestingness measures were weighted towards

conjectures which were surprising, as follows:

interestingness = surprisingness * 3 + comprehensibility *0.5 + applicability * 0.5 + plausibil-

ity * 0.5

Student 2: all animals except the trout. Interestingness measures were weighted towards con-

jectures which were high in comprehensibility, as follows:

interestingness = surprisingness * 0.5 + comprehensibility * 3 + applicability * 0.5 + plausibil-

ity * 0.5

Student 3: all animals except the cat. Interestingness measures were weighted towards conjec-

tures which had a high applicability, as follows:

interestingness = surprisingness * 0.5 + comprehensibility * 0.5 + applicability * 3 + plausibil-

ity * 0.5

Note that although we would normally consider the t-rex and the dragon to be odd, and thus

liable to be barred as monsters, the domain file contains no information about whether the

animals are now extinct, or are mythical, and so it would be unfair to penalise HRL for not

identifying these two as potential monsters.

Number Theory

We tested HRL on an number theory data-set. This consisted ofthe integers 0 - 60, and the core

concepts of integer, divisor, multiplication, and addition. The data was distributed as shown

below:

Student 1: integers 0−20

Student 2: integers 20−40
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Student 3: integers 40−60

We set the interestingness weighting of a conjecture to:

interestingness = surprisingness * 0.5 + comprehensibility * 0.5 + applicability * 0.5 + plausi-

bility * 0.5

10.3 It is possible to fine-tune the method of surrender

There needs to be some limit on our system as to when it can apply each method. Conjectures

which have been over-modified may become dull or too specific (for instance after repeated

application of piecemeal exclusion). Resources spent discussing such conjectures will prevent

the system from investigating more interesting paths. In this section, we experiment to see how

best to measure when a conjecture is over-modified or dull. Weconsider the following five

variables: the number of modifications already performed ona conjecture, the interestingness

of the conjecture compared to a user-given threshold, the interestingness of the conjecture

compared to the average interestingness of all the conjectures in the theory, the plausibility

of the conjecture compared to a user-given threshold, and the domain of application of the

conjecture compared to a user-given threshold.

10.3.1 Experimental setup

We investigate the five ways of testing whether to surrender aconjecture by testing the values

as shown below. The value false indicates that the variable in question is not considered.

1. the number of modifications: 0 (a), 1 (b), 2 (c), 3 (d), false

2. the interestingness threshold of the conjecture:0.5 (a), 0.75 (b), 1.0 (c), false

3. whether to compare the interestingness of the conjecture with the average interest-

ingness of all the conjectures in the theory:true (a), false

4. the plausibility threshold of the conjecture: 0.7 (a), 0.8 (b), 0.9 (c), false

5. the domain of application of the conjecture (which is divided by the number of

entities in the student’s database):0.4 (a), 0.6 (b), 0.8 (c), false

We ran the agency 42 times; 14 times each in group theory, animal taxonomy and number

theory, each time with three students. The students ran for 20 theory formation steps in each
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individual work phase, and they performed 10 individual work phases. For each session, the

three students were set to perform surrender where the students had identical values for the

surrender variables. They were also set to perform piecemeal exclusion. Students were set to

make near-equivalences which held for 60% of their entities. The input values for the surrender

variables, in terms of the key above, for sessions 1-14 are presented table 10.3.

Session student 1 student 2 student 3

1 surr-1a surr-1a surr-1a

2 surr-1b surr-1b surr-1b

3 surr-1c surr-1c surr-1c

4 surr-1d surr-1d surr-1d

5 surr-2a surr-2a surr-2a

6 surr-2b surr-2b surr-2b

7 surr-2c surr-2c surr-2c

8 surr-3a surr-3a surr-3a

9 surr-4a surr-4a surr-4a

10 surr-4b surr-4b surr-4b

11 surr-4c surr-4c surr-4c

12 surr-5a surr-5a surr-5a

13 surr-5b surr-5b surr-5b

14 surr-5c surr-5c surr-5c

Table 10.3: Experiments on the surrender variables

10.3.2 Evaluation criteria

When evaluating the different variable settings in the method of surrender, we are interested in

four types of conjecture:

(i) conjectures which should have been surrendered and were (true positives),

(ii) conjectures which should have been surrendered but were not(false negatives),

(iii) conjectures which should not have been surrendered but were(false positives), and

(iv) conjectures which should not have been surrendered and werenot (true negatives).

(i) and (ii) involve dull, or uninteresting conjectures, and(iii) and (iv) conjectures which are

interesting. We would like to find variables settings which maximise the number of conjectures

of type(i) and(iv), and minimise the number of conjectures of type(ii) and(iii) .
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10.3.3 Results

In figure 10.1, we show the results in terms of the number of conjectures which each student

either surrendered or considered surrendering but opted tomodify, and the average interesting-

ness of these conjectures as evaluated by the student. We show this for each domain, in terms

of the four quadrants(i) to (iv) above, where we take 0.8 as our threshold for interestingness.

This value is an average of the average interestingness values of all conjectures in all of the

students’ theories.

In figure 10.2 we show the results in terms of each of the five variables that we test. For each

domain, we give the number of conjectures for each value of a given variable, which were

in either of the quadrants which it is desirable to maximise ((i) and(iv)), shown above thex-

axis; and the number of conjectures which were in either of the quadrants which it is desirable

to minimise ((ii) and (iii) ), shown below thex-axis. We have calculated this accumulatively

for each student in each session. For instance, in session 1 in group theory, the second stu-

dent surrendered two conjectures which it evaluated as uninteresting (in quadrant ((i)), and the

third student surrendered four conjectures which it evaluated as uninteresting (also in quadrant

((i)). We show this in the first graph in figure 10.2, in which thex-axis denotes the number of

modifications variable (set to 0 in session 1), by the coordinate(0,6).

Recall that the results show the subjective values of the individual students. That is, in this set

of experiments we are considering which conjectures the students themselves believe that they

should surrender or modify.

10.3.4 Discussion

The best setting for the number of modifications was 0, as shown in the first graph in figure 10.2.

This was a surprising result, as it amounted to the situationin which a student surrenders any

conjecture for which it can find a counterexample, i.e., the default setting in which a student was

set to perform surrender, but all five values are false. This was one of the best indicators of all of

the variables that we tested. The reason was that only students working in the animal taxonomy

domain found conjectures which they actually considered interesting enough to modify. This

indicates that we should change the interestingness setting themselves in future experiments.

The worst value of all those we tested, was setting the numberof modifications to 3. This

produced only conjectures in quadrants(ii) or (iii) in every domain. This was because no

conjectures had been modified more than three times, and so itamounted to modifying every

conjecture which was discussed, despite the fact that most were evaluated by the students as

uninteresting. Again, before concluding that this value isineffective, it would be useful to
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Figure 10.1: Results from testing the surrender variables. The numbers denote the sessions,

and student one is represented as S1, etc.. The bottom right quadrant contains true positives;

the top right quadrant contains false positives; the bottom left quadrant contains false negatives;

and the top left quadrant contains true negatives.

experiment further, changing the interestingness settings of the students, as well as comparing

them with an external evaluation of interestingness.

Using the interestingness threshold was the most successful variable of the five, and was the

only variable to obtain conjectures only in quadrants(i) or (iv) (above thex-axis in figure 10.2).

This was unsurprising, since the interestingness measure we used in presenting the results is

that of the individual agents, rather an external measure. In future experiments, it would be

useful to use an external measure. The results, however, were inconclusive as to which value

the threshold should take.

The third variable, comparing the interestingness of the conjecture under discussion with the

average interestingness of all of the conjectures in the theory, was very effective. The only

domain in which setting this variable to true led to a studentmodifying rather than surrendering

a conjecture, which the student evaluated as being uninteresting (quadrant(ii) ), was in number

theory. This was one of the most successful indicators whichwe tested.
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Figure 10.2: The number of conjectures for which each of the five surrender variables give us
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Testing the plausibility of the conjecture under discussion was a useful indicator, and the opti-

mal setting in our experiments was 0.7.

Finally, using the domain of application was not a useful variable, with more conjectures being

below thex-axis than above for every setting.

If we add the number of conjectures in quadrants(i) and (iv), and subtract the number of

conjectures in quadrants(ii) and(iii) , for each variable, then we obtain the following hierarchy

of variables and their settings: 2a, 2b, 2c (14); 3a (12); 1a (8); 4a (7); 4b (6); 4c (5); 5c (-4);

5b (-6); 1c, 5a (-8); 1d (-12). This provides a useful guide asto which of the five variables, and

which value of a given variable, enabled the students to modify those conjectures which they

evaluated as interesting, and surrender those conjectureswhich they evaluated otherwise.

Many conjectures which were proposed were not considered interesting at all by some students.

In these situations, the students either had very differententities in their databases, or very

different interestingness measures. We could investigateadding a lower, as well as an upper

threshold on the interestingness of a conjecture when considering whether to reject it or not.

That is, definex and y such that 0< y < x, and if the interestingness of a conjecture lies

betweeny and x then surrender the conjecture; if it is either less thany or greater thanx,

then further investigation may be productive. The type of investigation would depend on the

interestingness: for instance, if it were less thany, then an agent might ask the student who

proposed the conjecture why they thought it was interesting, and if greater thanx, then the

student might attempt to modify the conjecture alone. HRL currently uses only the upper

threshold.

One further way of evaluating whether to surrender a conjecture or not might be to attempt to

modify it, and, if successful, evaluate the modification. Ifan agent either could not modify a

conjecture, or did so but evaluated the modification as dull,then it would surrender the original

conjecture.

10.4 It is possible to fine-tune the method of monster-barrin g

10.4.1 Experimental setup

Monster-barring variables consist of determining when to propose to bar an object (variables 1

- 8 below), how to perform monster-barring (variable 9), andhow to evaluate a proposal to bar

an object (variables 2, 4 and 10). We tested the values shown below.
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1. use monster barring: true (a); false (b)

2. use breaks conj under discussion:true (a); false (b)

3. use percentage conjectures broken:true (a); false (b)

4. monster barring minimum: 0 (a); 10 (b); 20 (c); 30 (d); 40 (e); 50 (f); 60 (g); 70 (h);

80 (i); 90 (j); 100 (k)

5. use culprit breaker: true (a), false (b)

6. use culprit breaker on conjecture under discussion:true (a), false (b)

7. use culprit breaker on all conjectures: true (a), false (b)

8. monster barring culprit min: 0 (a); 10 (b); 20 (c); 30 (d); 40 (e); 50 (f); 60 (g); 70 (h);

80 (i); 90 (j); 100 (k)

9. monster barring type: “vaguetovague” (a); “vaguetospecific” (b)

10. accept strictest: true (a), false (b)

We describe the experiments we ran in sections 10.4.2, 10.4.3 and 10.4.4 below.

10.4.2 When to propose to bar an object

We tested when to propose to bar an object by running the agency with three students: the first

of whom took the values shown in variables 1-8, with the flag “use monster-barring” always

set to true (1a); and the other two students were set to perform surrender, and to accept the

strictest definition if a monster-barring proposal were made. Accepting the strictest definition

is the Lakatos variable, i.e. the variable which is the closest interpretation of the earliest part of

Lakatos’s theory.

We set the students to run for 10 theory formation steps to each individual work phase, and to

perform 10 individual work phases. The input data from 24 sessions are shown in table 10.4,

and the results are discussed in §10.4.6.

10.4.3 How to perform monster-barring

The “monster barring type” variable concerns the two different ways of performing monster-

barring: “vaguetovague”, and “vaguetospecific”.
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Session student 1 student 2 student 3

1 mb-2a surr surr

2 mb-3a-4a surr surr

3 mb-3a-4b surr surr

4 mb-3a-4c surr surr

5 mb-3a-4d surr surr

6 mb-3a-4e surr surr

7 mb-3a-4f surr surr

8 mb-3a-4g surr surr

9 mb-3a-4h surr surr

10 mb-3a-4i surr surr

11 mb-3a-4j surr surr

12 mb-3a-4k surr surr

13 mb-5a-6a surr surr

14 mb-5a-7a-8a surr surr

15 mb-5a-7a-8b surr surr

16 mb-5a-7a-8c surr surr

17 mb-5a-7a-8d surr surr

18 mb-5a-7a-8e surr surr

19 mb-5a-7a-8f surr surr

20 mb-5a-7a-8g surr surr

21 mb-5a-7a-8h surr surr

22 mb-5a-7a-8i surr surr

23 mb-5a-7a-8j surr surr

24 mb-5a-7a-8k surr surr

Table 10.4: Experiments to determine when to perform monster-barring

In sessions 1 - 24, this takes its default value “vaguetospecific”. To test this variable, we

performed sessions 25 - 48, shown in table 10.5. These take the same variable values as sessions

1 - 24 except that the “monster barring type” flag is set to “vaguetovague”. We discuss the

results from sessions 25 - 48 in §10.4.7.

10.4.4 How to evaluate a proposal to bar an object

The first variable concerning how to evaluate a proposal to bar an object is 2: “use breaks

conjecture under discussion”, which is set to true (a) or false (b). For three students, the four

different combinations for this variable are:(i) 2a (student 1), 2a (student 2), 2a (student 3);

(ii) 2a, 2a, 2b;(iii) 2a, 2b, 2b; and(iv) 2b, 2b, 2b. In sessions 49 - 52 we test variable 2, with

the results shown in table 10.6.
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Session student 1 student 2 student 3

25 mb-2a-9a surr surr

26 mb-3a-4a-9a surr surr

27 mb-3a-4b-9a surr surr

28 mb-3a-4c-9a surr surr

29 mb-3a-4d-9a surr surr

30 mb-3a-4e-9a surr surr

31 mb-3a-4f-9a surr surr

32 mb-3a-4g-9a surr surr

33 mb-3a-4h-9a surr surr

34 mb-3a-4i-9a surr surr

35 mb-3a-4j-9a surr surr

36 mb-3a-4k-9a surr surr

37 mb-5a-6a-9a surr surr

38 mb-5a-7a-8a-9a surr surr

39 mb-5a-7a-8b-9a surr surr

40 mb-5a-7a-8c-9a surr surr

41 mb-5a-7a-8d-9a surr surr

42 mb-5a-7a-8e-9a surr surr

43 mb-5a-7a-8f-9a surr surr

44 mb-5a-7a-8g-9a surr surr

45 mb-5a-7a-8h-9a surr surr

46 mb-5a-7a-8i-9a surr surr

47 mb-5a-7a-8j-9a surr surr

48 mb-5a-7a-8k-9a surr surr

Table 10.5: Experiments to determine how to perform monster-barring

The second relevant variable is the monster-barring minimum (4). We tested twelve combina-

tions, where this flag was set to 30% (d), 60% (g) and 90% (j), for three students. These are

shown in sessions 53 - 64, shown in table 10.6.

The final relevant variable is the “accept strictest” flag (10). This is set to true (a) or false (b).

We test all combinations of this variable in sessions 65 - 68,shown in table 10.6.

The second and third students were set to perform surrender by default in sessions 49 - 68.

In order to enable all students to propose to monster-bar an object, in sessions 69 - 92, table

10.7, we gave all of the students the value of the monster-barring variable which first student

had in sessions 1 - 24. This prevented the distribution of thedata affecting which entities could

be highlighted as monsters. We ran HRL in all three domains.
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Session student 1 student 2 student 3

49 mb-2a mb-2a mb-2a

50 mb-2a mb-2a mb-2b

51 mb-2a mb-2b mb-2b

52 mb-2b mb-2b mb-2b

53 mb-4d mb-4d mb-4d

54 mb-4d mb-4d mb-4g

55 mb-4d mb-4d mb-4j

56 mb-4d mb-4g mb-4g

57 mb-4d mb-4g mb-4j

58 mb-4d mb-4j mb-4j

59 mb-4g mb-4d mb-4g

60 mb-4g mb-4g mb-4g

61 mb-4g mb-4g mb-4j

62 mb-4g mb-4j mb-4j

63 mb-4j mb-4d mb-4j

64 mb-4j mb-4j mb-4j

65 mb-10a mb-10a mb-10a

66 mb-10a mb-10a mb-10b

67 mb-10a mb-10b mb-10b

68 mb-10b mb-10b mb-10b

Table 10.6: Experiments to determine how best to react to a proposal to bar an object

10.4.5 Evaluation criteria

The purpose of these experiments was to determine which entities were highlighted during

each session as potential monsters. We then compared these to certain entities we expected to

be highlighted, which were as follows:

Group theory

The semi-group SG1, and groupoids GP2 and GP3 are odd entities compared to standard

groups. Therefore, of the seventeen different algebras in our group theory domain, we con-

sidered three to be odd.

Animal taxonomy

The platypus was first brought from Australia to Britain in the 19th century, and was initially

thought to be a hoax played by taxidermists. It was describedby Darwin as a ‘funny sort’

[Mozley Moyal, 2001], and [Burrell, 1927, p. 1] claims that “No animal has given rise to so

much controversy among both layman and professed zoologists”. Therefore, of the eighteen



10.4. It is possible to fine-tune the method of monster-barring 173

Session student 1 student 2 student 3

69 mb-2a mb-2a mb-2a

70 mb-3a-4a mb-3a-4a mb-3a-4a

71 mb-3a-4b mb-3a-4b mb-3a-4b

72 mb-3a-4c mb-3a-4c mb-3a-4c

73 mb-3a-4d mb-3a-4d mb-3a-4d

74 mb-3a-4e mb-3a-4e mb-3a-4e

75 mb-3a-4f mb-3a-4f mb-3a-4f

76 mb-3a-4g mb-3a-4g mb-3a-4g

77 mb-3a-4h mb-3a-4h mb-3a-4h

78 mb-3a-4i mb-3a-4i mb-3a-4i

79 mb-3a-4j mb-3a-4j mb-3a-4j

80 mb-3a-4k mb-3a-4k mb-3a-4k

81 mb-5a-6a mb-5a-6a mb-5a-6a

82 mb-5a-7a-8a mb-5a-7a-8a mb-5a-7a-8a

83 mb-5a-7a-8b mb-5a-7a-8b mb-5a-7a-8b

84 mb-5a-7a-8c mb-5a-7a-8c mb-5a-7a-8c

85 mb-5a-7a-8d mb-5a-7a-8d mb-5a-7a-8d

86 mb-5a-7a-8e mb-5a-7a-8e mb-5a-7a-8e

87 mb-5a-7a-8f mb-5a-7a-8f mb-5a-7a-8f

88 mb-5a-7a-8g mb-5a-7a-8g mb-5a-7a-8g

89 mb-5a-7a-8h mb-5a-7a-8h mb-5a-7a-8h

90 mb-5a-7a-8i mb-5a-7a-8i mb-5a-7a-8i

91 mb-5a-7a-8j mb-5a-7a-8j mb-5a-7a-8j

92 mb-5a-7a-8k mb-5a-7a-8k mb-5a-7a-8k

Table 10.7: Experiments to determine when to perform monster-barring, when all three agents

are able to perform it

different animals in our animal taxonomy, we considered oneto be odd. Recall that although

we would normally consider the t-rex and the dragon to be odd,and thus liable to be barred as

monsters, the domain file contains no information about whether the animals are now extinct,

or are mythical, and so we do not penalise HRL for not identifying these two as potential

monsters.

Number theory

We discussed the history of number theory in §6.2, and arguedthat the numbers 0 and 1 were

previously considered to be monsters. Therefore, of the sixty one numbers in our number

theory domain, we considered only 0 and 1 to be odd.

We also assume in our evaluation that these entities should be monster-barred, rather than

monster-accepted. This does not reflect history, as the platypus was considered to be odd, but
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later on it was accepted as a valid animal, and similarly while the numbers 0 and 1 were initially

rejected, they were later accepted as valid numbers. We use this categorisation only because

the theories we evaluate from HRL are young, in terms of the number of theory formation steps

which have been performed, and therefore might be considered to be in the initial conservative

stage still. We show how the entities were classified whenever we give our evaluation of the

percentage of entities which were correctly classified.

10.4.6 When to propose to bar an object: results and discussi on

We show the results from sessions 1 - 24 in table 10.8, where wepresent which of the expected

‘monsters’ identified above, were proposed as monsters, andwhich other entities were similarly

proposed. We calculate the percentage of correct classifications, where an entity is correctly

classified if it is one which we identified as a monster and it was proposed as a monster (true

positives), or if it was not one which we considered to be a monster, and was not proposed as

a monster (true negatives). The results show that using the ‘Lakatos variable’, to propose to

bar any entity which is a counterexample to a conjecture currently being discussed, produced

optimal results in group theory and animal theory. Similarly, using the monster-barring min-

imum of up to 30 or 40% produced good results in both domains. Using a higher value for

the monster-barring minimum, or any of the culprit breaker variables, proved to be too high a

restriction, and while we did not get entities which we considered to be valid being proposed as

monsters, nor did we get the entities which we wanted to see. This suggests that our restriction

for the culprit breaker, namely that including the entity ina theory causes more than half of the

entities in a theory to become counterexamples, is too high.

In number theory, the agency identified neither 0 nor 1 as monsters in any of the sessions 1 - 24,

and hence scored 97% according to our scheme. This was disappointing. The reason was that

the only student which was set to perform monster-barring was the student with the ‘monsters’

0 and 1. Even though it was set to make near-equivalence conjectures which held for at least

60% of its entities, it did not raise any conjectures in the discussion to which either 0 or 1 were

counterexamples.

In order to prevent the distribution of the data from influencing the monster-barring method in

this way, we performed further experiments in sessions 69 - 92. In these sessions, all of the

students were set to perform monster-barring if the right conditions arose. We show the results

in table 10.9. This table shows which entities were proposedas monsters by one or more of

the students, which were monster-barred by the group and which were monster-accepted by

the group, and the degree to which we considered the classification to be correct, shown as a
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percentage. Note that in table, 10.9,∗1 stands for all groups except the trivial group, and∗2

stands for a single group of size eight.

In group theory, the results in sessions 69 - 75, excluding session 73, were good, although not

optimal. This was consistent with our results in table 10.8,describing our investigation into

when a single agent should propose to bar an object. The students did not identify the semi-

group as a monster in any of the sessions. This was because it did not arise as a counterexample

to any of the conjectures under discussion. Although surprising, we conjecture that the reason

for this was that the discussion focused more on the groupoids in the theory and therefore there

was not time to discuss the semi-group. We hypothesise that if we ran the agency with mainly

examples of groups, a few examples of semi-groups, and no groupoids, then the semi-groups

would be highlighted as monsters. In session 70, we saw quiteextreme behaviour, in which

two semi-groups, and all of the groups except the trivial group were proposed as monsters.

However, only one of the groups was barred by the students.

In animal theory, the platypus was the only animal to be highlighted as a monster, which

was very encouraging. This was highlighted in sessions 69, 71 and 74, when the monster-

barring threshold was either zero or very low. In the intermediate sessions, it did not arise as a

counterexample before the session timed out. As in group theory, the agency tended to produce

the behaviour we expected when the monster-barring minimumwas set fairly low: between 0

and 10%.

In session 69 in number theory, the numbers 2 and 3 were also highlighted, and subsequently

barred, as monsters, which was not behaviour we expected. The best session was 71, in which

the monster-barring minimum was 10%, and both 0 and 1 were barred. We also saw a case

of monster-accepting, in session 76. Although we evaluate this as a misclassification, it was

interesting behaviour as it is analogous to the historical acceptance of the number zero. We also

saw a case of monster-accepting, in session 75 in group theory, in which one of the groupoids

was accepted as a valid member of the domain.

From these results, we hypothesise that using a monster-barring minimum of 10% for all stu-

dents in the agency, produces the most interesting behaviour in this method.

10.4.7 How to perform monster-barring: results and discuss ion

The “monster barring type” variable concerns the two different ways of performing monster-

barring: “vaguetovague”, and “vaguetospecific”. The interesting setting is “vaguetospecific”,

since we then see suggested definitions for the domain of interest. When the variable is set
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Session monsters other % correct

Group theory GP2; GP3; SG1

1 XXX − 100%

2 XX− − 94%

3 XXX − 100%

4 XXX − 100%

5 XXX − 100%

6 − XX − 94%

7 − XX − 94%

8 - 24 − − − − 82%

Animal theory platypus

1 X − 100%

2 X − 100%

3 X − 100%

4 X − 100%

5 X − 100%

6 X − 100%

7 - 24 − − 94%

Number theory 0; 1

1 - 24 − − 97%

Table 10.8: Monster-barring results: proposing a monster

to “vaguetovague”, discussion continues with no agreementas to how the domain is defined,

although the status of the entity in question has been settled.

In table 10.10 we show the different definitions which were suggested for the domain of inter-

est, in our three different domains, when the monster barring type variable was set to “vague-

tospecific”. Definitions 1 - 5 are from group theory, 6 and 7 from animal theory, and 8 - 11

from number theory.

The group theory definitions (1 - 5 in table 10.10) were the most satisfactory, with the proposed

definitions starting to resemble the group axioms. For instance, the associativity criterion was

introduced to prevent the groupoid GP2 from breaking conjectures. Similarly, the criterion of

an inverse for at least one element in a group was introduced to prevent the semi-group SG1

from breaking conjectures.

The number theory definitions (8 - 11 in table 10.10) were moreobscure, and concerned the

way that the core concepts were calculated. For instance, one student defined the domain of

interest as “a is an integer anda | a” as a way of excluding the number zero. This was because

zero did not have any divisors, according to the way that it calculated divisors of a number.
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Session proposed monsters barred accepted % correct

Group theory

69 GP2; GP3 GP3 - 88%

70 GP2; GP3;∗1 GP2; GP3;∗2 - 88%

71 GP2; GP3 GP3 - 88%

72 GP2 - - 82%

73 - - - 82%

74 GP3 GP3 - 88%

75 GP3 - GP3 82%

76 - 92 - - - 82%

Animal theory

69 platypus platypus - 100%

70 - - - 95%

71 platypus platypus - 100%

72 - - - 95%

73 - - - 95%

74 platypus - - 95%

75 - 92 - - - 95%

Number theory

69 0; 1; 2; 3 0; 1; 2; 3 - 97%

70 0 0 - 97%

71 0; 1 0; 1 - 100%

72 0 0 - 98%

73 - - - 97%

74 0 0 - 98%

75 0 0 - 98%

76 0 - 0 97%

77 - 92 - - - 97%

Table 10.9: Monster-barring results: the decision of the agency about which monsters to bar,

and which to accept, when all students are able to propose a monster

In animal theory however, the alternative suggested definitions (6 and 7 in table 10.10) were

inappropriate. They were both introduced either to exclude, or to cover the platypus. However,

clearly none of them do exclude the platypus. The reason for the lack of success in this domain

was the way that concepts are represented in HRL. Data tablesfor new mathematical entities

can be calculated: for instance, given a new algebra, HRL candetermine whether it is associa-

tive or not. However, data tables for other types of new entities, such as a platypus, cannot be

calculated by HRL. Each student considers its data table to be complete, and so if a platypus

is not in the data table for “animals which live in habitat b”,then the student would consider

making this concept a condition of the domain of interest which would exclude the platypus.
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Def Suggested definition

GT

1 a is a group and the left hand cancellation law holds for a

2 a is a group and a is associative

3 a is a group and exists b c (b in a and c in a and inv(b)=c)

4 a is a group and exists b (b in a and b=id)

5 a is a group and exists b c d (b in a and c in a and d in a and b*c=d)

AT

6 a is an animal and exists b (b is a habitat for animals and a lives in b)

7 a is an animal and exists b (b is an integer and a has b legs)

NT

8 a is an integer anda | a

9 a is an integer and exists b (b is an integer andb | a)

10 a is an integer and exists b c (b is an integer andb | a and c is an integer andc | a

and c*b=a and b*c=a)

11 a is an integer and exists b c (b is an integer and c is an integer and c+b=a and

b+c=a)

Table 10.10: Alternative suggested definitions for the domain of interest

Clearly, it does not.

Our conclusions in this variable, therefore, are that the monster barring type variable should

be set to “vaguetovague” unless it can calculate new rows in its data tables when new entities

arise.

10.4.8 How to evaluate a proposal to bar an object: results an d discussion

In experiments 49 - 68, we tested to see which variable setting was the most effective when

students were asked to evaluate a proposal to bar an object. Entities which were proposed as

monsters were: 0, 1, 2, 3, 13, 17, 19, 20, 40, 60 in number theory; SG1, GP2, GP3, and a group

of size eight in group theory; and the platypus in the animal taxonomy. We were interested

in how the students reacted to these proposals, and we evaluated objects as being correctly

classified according to our argument in §10.4.5.

We show the results from our experiments in figures 10.3 and 10.4. The first of these shows the

percentage of correct classifications, as an average of the each student’s vote for each proposed

monster, for each session 49 - 68. We show each domain in a different colour. For instance,

in session 49, students correctly classified 71% of the objects proposed as monsters in number

theory, and 100% in group theory and the animal taxonomy. We show the details of this session
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in table 10.11, where the number in brackets denoted the percentage of conjectures which the

entity breaks in the given student’s theory.

Session monster S1 S2 S3 % classification

GT

49 GP3 bar (66) bar (50) bar (42) 9/9 = 100

49 GP2 bar (31) bar (33) bar (25)

49 SG1 bar (24) bar (3) bar (52)

AT

49 platypus bar (27) bar (18) bar (20) 3/3 = 100

NT

49 0 bar (60) bar (80) bar (80) 15/21 = 71

49 1 accept (0) accept (0) bar (80)

49 19 accept (0) accept (0) accept (0)

49 17 bar (12) accept (0) accept (0)

49 13 bar (15) accept (0) accept (0)

49 3 bar (18) accept (0) accept (0)

49 2 bar (26) accept (0) accept (0)

Table 10.11: Monster-barring results for session 49: determining how to react to a proposal to

monster-bar entities.

In figure 10.4, we present the average of the percentage of correct classifications across the

three domains, and the result for each of the three variableswe tested: “use breaks conjecture

under discussion” (which was set to true or false); “accept strictest” flag (which was set to true

or false), and the monster-barring minimum (set to 30%, 60%,or 90%). In the latter case,

we add up the value of the monster-barring minimum of all three students in the agency. For

instance, in session 49, whose details are presented in table 10.11, we have taken the average

percentage of correctly classified entities over the three domains, as (71 + 100 + 100)/3 = 90%.

The variable “use breaks conjecture under discussion” was set to true for each of the three

students in the agency in this session; therefore this is represented by the brown cross in the

left hand graph, at co-ordinates (3,90).

The results suggest that the most effective settings were toset the “use breaks conjecture under

discussion” variable to true, or the “accept strictest” flagto false for most, or all of the students

in the agency. The best results for the “monster-barring minimum” flag were when the total

amount came to 120 or 150%, i.e., the average percentage for each student was either 40%

or 50%. However, the former two flags produced the best results. The percentage of correct

classifications decreased as the average value of the students’ “monster-barring minimum” flag

increased, and was lowest, 0% in session 64, when each of the students had a “monster-barring

minimum” flag of 90%. This is unsurprising, since if the percentage of conjectures which a
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Figure 10.3: The percentage of correct classifications, given a proposed monster, for each

domain: sessions 49 - 68
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Figure 10.4: The average percentage of correct classifications, given a proposed monster, over

the three domains

proposed monster must break in a given student’s theory mustbe very high, before the student

agrees to bar it, then many entities which we consider to be monsters will be accepted, as they

do not break a sufficiently high proportion of the student’s conjectures. We show the results

for this variable in number theory, in table 10.12. The numbers given in brackets denote the

percentage of conjectures which the entity breaks in the given student’s theory. In the case of

some sessions, for instance, 51, 52 and 65, no entities were proposed as monsters, and therefore

we were unable to evaluate the students’ responses.

10.5 It is possible to fine-tune the method of exception-barr ing

10.5.1 Experimental setup

We tested four variables associated with exception-barring: piecemeal exclusion, piecemeal

exclusion with counterexample-barring, strategic withdrawal, and communal piecemeal exclu-

sion. The first three are variables at the student level, whereas communal piecemeal exclusion

is at the agency level.

1. use piecemeal exclusion:true (a); false (b)

2. use piecemeal exclusion with counterexample-barring:true (a); false (b)

3. use strategic withdrawal: true (a), false (b)

4. use communal piecemeal exclusion:true (a), false (b)
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Session monster S1 S2 S3 % classification

53 0 bar (50) bar (66) bar (62) 3/6 = 50

53 1 accept (6) accept (17) accept (18)

54 0 bar (42) bar (57) accept (57) 2/3 = 67

55 0 bar (50) bar (66) accept (66) 11/15 = 73

55 20 accept (0) accept (0) accept (0)

55 40 accept (0) accept (11) accept (0)

55 60 accept (0) accept (0) accept (0)

55 1 accept (5) accept (16) accept (17)

56 0 bar (42) accept (57) accept (57) 4/9 = 44

56 1 accept (6) accept (18) accept (20)

56 60 accept (22) accept (10) accept (5)

57 0 bar (50) bar (66) accept (57) 8/12 = 67

57 1 accept (6) accept (17) accept (12)

57 3 accept (12) accept (0) accept (4)

57 2 accept (15) accept (0) accept (4)

58 0 bar (42) accept (57) accept (57) 1/3 = 33

59 0 accept (42) bar (57) accept (57) 4/9 = 44

59 1 accept (6) accept (18) accept (20)

59 60 accept (15) accept (10) accept (5)

60 0 accept (42) accept (57) bar (62) 7/12 = 58

60 1 accept (5) accept (18) accept (20)

60 3 accept (21) accept (0) accept (0)

60 2 accept (25) accept (0) accept (0)

61 0 accept (50) accept (57) accept (57) 0/3 = 0

62 0 accept (42) accept (57) accept (57) 3/9 = 33

62 1 accept (6) accept (18) accept (20)

62 60 accept (15) accept (10) accept (5)

63 0 accept (50) bar (57) accept (57) 1/6 = 17

63 1 accept (6) accept(17) accept (18)

64 0 accept (42) accept (57) accept (57) 0/3 = 0

Table 10.12: Monster-barring results: determining how to react to a proposal to monster-bar

entities in number theory

In session 1, we tested the communal piecemeal exclusion flagin each of our three domains.

Since this is a variable at the agency, rather than student level, we did not test different com-

binations. This meant that fewer experiments were performed on this method than on other

methods.

In sessions 2 - 9, we tested all combinations of the piecemealexclusion and piecemeal exclu-

sion with counterexample-barring methods, for three students. This was to investigate how

different combinations affected the number and quality of the modifications made. In the
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piecemeal exclusion and counterexample methods, the teacher requested non-existence con-

jectures. In tables 10.13, 10.14 and 10.15, we present the input variables for testing the piece-

meal exclusion and counterexample-barring variables; combinations of piecemeal exclusion

with counterexample-barring; and combinations of strategic withdrawal, respectively.

Session student 1 student 2 student 3

2 pm pm pm

3 pm pm pm+cb

4 pm pm+cb pm

5 pm pm+cb pm+cb

6 pm+cb pm pm

7 pm+cb pm pm+cb

8 pm+cb pm+cb pm

9 pm+cb pm+cb pm+cb

Table 10.13: Testing the piecemeal exclusion and counterexample-barring variables

Session student 1 student 2 student 3

10 pm+cb pm+cb pm+cb

11 pm+cb pm+cb surr

12 pm+cb surr pm+cb

13 pm+cb surr surr

14 surr pm+cb pm+cb

15 surr pm+cb surr

16 surr surr pm+cb

Table 10.14: Testing combinations of piecemeal exclusion with counterexample-barring and

surrender

Session student 1 student 2 student 3

17 sw sw sw

18 sw sw surr

19 sw surr sw

20 sw surr surr

21 surr sw sw

22 surr sw surr

23 surr surr sw

Table 10.15: Testing combinations of strategic withdrawal and surrender
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10.5.2 Evaluation criteria

We evaluate the interestingness of the original conjectureand of any modifications produced

using exception-barring methods, in terms of the interestingness measures described in 3.1.3

and 4.4. To recap:

• The applicability of a conjecture is the proportion of entities that the conjecture discusses.

The applicability of an equivalence conjecture is the applicability of the concepts which are

hypothesised to be equivalent. The applicability of an implication conjecture is the applicability

of the antecedent concept). The applicability of a non-exists conjecture is zero.

• The comprehensibilityof a conjecture is the reciprocal of the number of distinct concepts

which appear in the construction path of the concepts discussed in the conjecture. Comprehen-

sibility is not defined for non-existence conjectures.

• Thesurprisingnessof an equivalence or an implication conjecture is the numberof concepts

which appear in the construction path of one concept, but notboth. The surprisingness of a

non-existence conjecture is measured by the applicabilityof its parent concept.

• Theplausibility of a conjecture is (the number of entities the conjecture discusses - the num-

ber of counterexamples to the conjecture)/the number of entities the conjecture discusses.

10.5.3 Communal piecemeal exclusion results

Domain counterexample concept found

number 0 no

group - -

animals platypus a is an animal∧ a produces milk∧ a produces eggs

Table 10.16: Communal piecemeal exclusion results

The results in communal piecemeal exclusion are shown in table 10.16. While only three

sessions were performed, the results suggest that either the independent work phase should be

increased when using this method, in order to give students more time to form concepts, or

that the communal aspect of the method does not add to its effectiveness. In the only case

where an appropriate concept was found, it was a concept which the students who had the

counterexample in their theories had already formed, and sothey could have performed the

modification independently. This would save time because itwould decrease the amount of

communication necessary for a single modification. We implemented piecemeal exclusion in
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its communal form, with the idea that those students with counterexamples to a conjecture may

not be the same as those with an appropriate concept which could be used in the modification,

and thus collaboration would be useful. However, the results do not support this idea and more

work would need to be done on this method for it to become useful.

10.5.4 Piecemeal exclusion and counterexample-barring re sults

We show our piecemeal exclusion and counterexample-barring results in terms of the interest-

ingness of the original conjecture and of the modification, in table 10.17. We are only interested

in the surprisingness and plausibility of the conjectures found using piecemeal exclusion, since

the applicability of a non-existence conjecture will always be zero, and comprehensibility is

not defined for non-existence conjectures. Recall that the surprisingness of a non-existence

conjecture is measured by the applicability of its parent concept. This is based on the idea

that it is more surprising if the parent concept has many examples than if the parent concept

has only a few examples. For instance, conjecture 1 in numbertheory, shown in table 10.17

below, states that “∄a such that (a is an integer∧ a | a∧ a * a = a)”. This has surprisingness 1,

since its parent concept, the core concept given for multiplication, has applicability of 1 (since

it applies to every entity in the theory). Using this measure, the surprisingness of a modified

non-existence conjecture is the number of counterexamplesto the original conjecture (which

provides the parent concept) divided by the number of entities in a student’s theory, i.e., the

applicability of the concept in the original non-existenceconjecture. The first conjecture in

table 10.17 was modified by student 1, working with entities 0- 20. The student found coun-

terexample 1 to the conjecture, and modified it to become∄a such that (a is an integer∧ a | a

∧ a * a = a∧ ¬(a = 1)). We measure the modification as having overall surprisingness 1/61,

since the parent concept has 1 example, and there are 61 entities altogether in the theory.

In table 10.17 below, we refer to the overall surprisingnessand plausibility of the original

and the modified conjecture. In the penultimate column, we also give the average interesting-

ness of the modified conjecture, calculated as (surprisingness + plausibility)/2. For instance,

modification 1 in number theory has surprisingness 1/61 and plausibility 1, and so average in-

terestingness of (1/61 + 1)/2 = 0.508. We give this figure to three decimal places. The final

column shows whether piecemeal exclusion (pm) or counterexample-barring (cb) was used.

In figure 10.5, we also represent these results (to two decimal places), showing the number of

modifications for each session, and the average interestingness of the modification. The latter is

calculated by the interestingness given in table 10.17 (which is an average of the surprisingness

and plausibility of each modification). For instance, session 6 achieved three modifications in
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Modn surp plaus int method

orig → modn orig → modn

NT

1 1 → 1/61 60/61 → 1 0.508 cb

2 1 → 1/61 60/61 → 1/61 0.016 pm

3 1 → 1/61 60/61 → 1 0.508 cb

GT

1 0.5 → 1/17 16/16 → 1 0.571 cb

2 1 → 1 0/17 → 15/17 0.941 pm

3 0.5 → 0/17 17/17 → 0/17 0 pm

4 1 → 3/17 14/17 → 3/17 0.176 cb

5 0.6 → 14/17 3/17 → 14/17 0.824 cb

6 1 → 3/17 14/17 → 14/17 0.5 cb

AT

1 0.5 → 1/18 17/18 → 1 0.528 cb

Table 10.17: The interestingness of the original and modified conjectures, where the modifica-

tion was performed using piecemeal exclusion and counterexample-barring

number theory (shown as 1-3) and therefore had an average interestingness of 0.508 + 0.016 +

0.508 = 0.344.

10.5.5 Discussion

The most noticeable aspect of figure 10.5 is that, of the threedomains we tested, piecemeal

exclusion works best in group theory. This is a particularlyencouraging result since it indicates

that HRL is not fine-tuned to only work in number theory. Another aspect to notice is that

giving some, but not all agents counterexample-barring seems to improve the modifications.

However, in general, while we had some interesting modifications, the number of modifications

was too low to be able to draw conclusions about optimal parameter settings.

In number theory, conjectures 1 and 3 were similar, though not identical, to conjectures found

in the illustrative sessions described in sections 6.6.1 and 6.6.3, in which the students were

set to perform monster-barring, and they barred the numbersone and zero. When exception-

barring methods are performed instead, conjecture 1:∄a such that (a is an integer∧ a | a∧ a *

a = a) was modified to:

• ∄a such that (a is an integer∧ a | a∧ a * a = a∧ ¬(a = 1))

Conjecture 3:∄a such that (a is an integer∧ a + a = a) was modified to:
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= number theory

= group theory

= animals

modifications
interestingness of

modifications
number of

8; 11

6; 9; 12

8; 13

9

10

12

6
3; 5; 7; 8; 10; 16

Figure 10.5: The exception-barring results for sessions 2 - 16. In those sessions which do not

appear, no modifications were performed. Session numbers appear in the figure.

• ∄a such that (a is an integer∧ a + a = a∧ ¬(a = 0))

In group theory, we saw sequences of modifications which weresometimes poorly understood

by one of the agents. For instance, the first conjecture in group theory in table 10.17 states

that there does not exist a group in which every element is theidentity. This was modified, in

session 6, to the theorem that the only group in which every element is the identity, is the trivial

group, phrased as:

• ∄a such that (a is a group∧ ((b ∈ a)→ (b∈ a∧ b = id))∧ ¬(a = 0))

When this became the conjecture under discussion, the student without the trivial group could

not reconstruct the concept of the trivial group, and instead “modified” the conjecture to saying

that there are no groups (conjecture 3 in table 10.17). This in turn was modified to saying that

there are no groups which are not associative (conjecture 2 in table 10.17). While the discussion

did result in some interesting conjectures, these results suggest that we need to enable agents

in HRL to question when they see a concept which they cannot reconstruct (since they lack

either a core concept or the parameters necessary). This could be done in a similar way to that

in which a student comes across an entity which is new to it. A further improvement would be
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to measure the number of production rule applications that it takes to modify a conjecture, as

multiple applications resulted in overly specialised conjectures.

There was only one example of a modified conjecture in the animal domain:∄a such that (a is

an animal∧ a produces milk∧ a produces eggs). This was modified to:

• ∄a such that (a is an animal∧ a produces milk∧ a produces eggs∧ ¬(a = platypus))

This was an alternative reaction to the monster-barring technique of barring the platypus. This

was also a very encouraging result. It was disappointing, however, that there were no other

modifications. The reason for this was a lack of false conjectures: there was only one other

conjecture suggested for which agents had counterexamplesin their data sets. This led on

directly from the above modification, and stated that there is no such animal as the platypus.

The two agents with the platypus in their data sets attemptedto modify this, but were unable to

find a modification.

10.5.6 Strategic withdrawal results

In 2 of the 7 sessions, namely, 17 and 19, students successfully performed strategic withdrawal

only in the group theory domain. In both sessions, the methodwas performed twice. In the

first case, the flawed conjecture was that:

a is a group↔ a is associative.

Student 2 found counterexamples GP2 and GP3, and only one positive example, GP1, the

trivial group. The student looked for a concept to cover the trivial group, and found “a is a

group∧ the left hand cancellation law holds for a”. It then modified the original conjecture in

three ways:

• for all a: a is a group∧ the left hand cancellation law holds for a↔ a is a group∧ a is

associative,

• for all a: a is a group∧ the left hand cancellation law holds for a→ a is a group∧ a is

associative,

• for all a: a is a group∧ the left hand cancellation law holds for a→ a is a group.

The second flawed conjecture was “a is a group↔ a is a group∧ the left hand cancellation law

holds for a”. This was also modified by student 2 in three ways:
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• for all a: a is a group∧ a is associative↔ a is a group∧ the left hand cancellation law holds

for a,

• for all a: a is a group∧ a is associative→ a is a group∧ the left hand cancellation law holds

for a,

• for all a: a is a group∧ a is associative→ a is a group.

Considering the agency as a whole, and measuring the combined plausibility, all six modifica-

tions improved upon their original conjecture. However, the combined applicability decreased

in all cases. This was unsurprising, as the method of strategic withdrawal narrows the domain

of application. (Note that in measuring the applicability of near-equivalence conjectures, we

use that of the concept with highest applicability.) The surprisingness and comprehensibility

measures stayed constant in all cases. We show the values forthese four measures of interest-

ingness, in table 10.18.

int conj1 modn1 modn2 modn3 conj2 modn1 modn2 modn3

plaus 15/17 16/17 1 1 14/17 16/17 16/17 1

appl 1 15/17 14/17 14/17 1 15/17 15/17 15/17

surp 2 2 2 2 2 2 2 2

comp 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Table 10.18: Showing the effects of strategic withdrawal on the interestingness measures

10.5.7 Discussion

One reason for the failure to perform strategic withdrawal more often was that we have not

implemented this method for non-existence conjectures, which was the form of some of the

conjectures under discussion. Another reason was that students were often unable to find a

concept which covered all of their positive entities. We might solve this problem by increasing

the number of steps in the independent work phase, so that more concepts are available to the

students. Another solution would be to allow the students touse a concept which covers a

proper subset of the positives. This would result in weaker conjectures, but may be preferable

to not being able to perform the method at all. Although therewere not enough instances of

strategic withdrawal being performed to be able to test our hypothesis, all of the modifications

were interesting conjectures, and the method was also shownto work well in group theory.
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10.6 Conclusions

In this chapter we have presented and discussed results fromevaluating our three hypotheses:

that it is possible to fine-tune the method of surrender; it ispossible to fine-tune the method

of monster-barring, and it is possible to fine-tune the method of exception-barring. This has

taken the form of an investigation of which variables and parameter settings produced certain

desired behaviour, as well as showing that by altering the parameters we alter the behaviour of

the system.

We have presented results from experiments in which we test different parameter settings.

These indicate which settings produce the desired behaviour and which do not. We have run all

of our experiments in three domains: group theory, animal theory and number theory. Although

we developed HRL in number theory and therefore might expectit to perform better in this

domain than in others, it does not. This shows that our systemis not fine-tuned. We have also

shown results from experiments in which we focused on different types of conjecture: namely

non-existence conjectures in piecemeal exclusion.

Although we have performed only preliminary tests, we have seen that the methods work in

different domains as well as on different types of conjectures. We have also identified which

variable settings lead to desirable conjectures and concepts. Our experimentation has also

highlighted areas of future experimentation which may prove interesting, as well as aspects of

the system which could be improved.
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Philosophical evaluation

Our project is to(a) give a computational reading of Lakatos’s theory of mathematical dis-

covery and justification, and(b) to show that it has been useful to do so. In this chapter we

continue the argument which we began in the previous chapter, that it has been useful to do

so, where ‘useful’ is defined by a set of criteria suggested byThagard, Sloman, Popper and

Lakatos, and described in §3.3.1. We adopt a shotgun approach with respect to these criteria:

a theory is not either good or bad, but good with respect to certain criteria. We are evaluating

two aspects of our project. Firstly, our computational approach suggests new ways in which to

evaluate Lakatos’s theory. Secondly, this approach has suggested ways in which to clarify and

extend Lakatos’s theory, hence embedding it within a broader theory.

This chapter is organised as follows: in §11.1 we recap criteria of a good theory, suggested

by Thagard [1993], Sloman [1978] and Popper [1972], and described in §3.3.1. From these,

we identify the two main criteria of consilience and simplicity which we use to evaluate our

project in this chapter. In §11.2 we describe these two criteria in terms of sets, where we are

interested in the set of all mathematical conjectures, the set of all mathematical conjectures

which a theory accounts for, and the set of all mathematical conjectures which one attempts to

account for with the theory (the inspiring set). In sections11.3, 11.4, 11.5 and 11.6 we evaluate

the methods of surrender, monster-barring, exception-barring and lemma-incorporation with

reference to elements in the sets, and the two main criteria.Where relevant, we discuss sessions

from experiments in the previous chapter. In §11.7 we argue that our approach has satisfied

five further criteria of a good theory, suggested by Sloman: that a theory explain a range of

possibilities, and a good theory be: definite, rigorous, economical, and extendable. In §11.8,

we discuss our project with reference to Feferman’s criticisms of Lakatos’s theory, and we

argue that the computational approach has suggested answers to some of these. Finally, in

191
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§11.9 we discuss our project and Lakatos’s project with reference to Lakatos’s own criteria for

evaluating scientific research programmes. We summarise the chapter in §11.10.

11.1 Recap of criteria of a good theory

We consider criteria suggested by Thagard [1993], Sloman [1978] and Popper [1972], de-

scribed in §3.3.1. These consist of Thagard’s notions of consilience, simplicity and analogy

(§ 3.3.2); Sloman’s criteria that a theory(i) explain a range of possibilities, and a good theory

is (ii) definite, (iii) general,(iv) able to explain fine structure,(v) non-circular,(vi) rigorous,

(vii) plausible,(viii) economical,(ix) rich in heuristic power, and(x) extendable (§3.3.3); and

Popper’s criteria of being independently testable, and rich in content (§3.3.4). These three sets

of criteria overlap in the criteria shown below. A good theory should:

• be as general as possible (Thagard’s notion of consilience,and Sloman’s third generality

criterion);

• explain more than it set out to explain (Thagard’s notion of simplicity, and Popper’s

richness in content criterion);

• not assume what it sets out to explain (Sloman’s fifth non-circularity criterion, and Pop-

per’s independently testable criterion).

We focus on the first and second of these criteria. We give further arguments that we have

satisfied Sloman’s first, second, sixth, eighth and tenth criterion. We do not consider Tha-

gard’s notion of analogy, Sloman’s fourth, seventh and ninth criteria or Popper’s independently

testable criterion. This is because they are either not relevant, in the case of Thagard’s notion of

analogy, or it is difficult to show that our project has satisfied them, in the case of the remaining

criteria. Since the criteria are considered to be desirablerather than necessary characteristics

of a good theory, showing that our theory satisfies some of them is sufficient to support our

argument that it is a good theory.

11.2 The criteria in terms of sets

Ritchie [2001] suggested that we evaluate the degree of creativity in a computer program by

considering four sets within a universe of basic items (all possible instances of an intended class

of artefacts). These consist of the set of inspiring examples used to guide the construction of
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the creative program; the set of items generated by the program in a session; and two fuzzy sets:

Typicality and Value, which respectively measure the novelty and quality of an item. Ritchie

suggests a catalogue of fourteen formally expressed criteria, based on the relative proportions

of the cardinality of the four sets. This methodology is continued in [Colton et al., 2001], in

which the set of inspiring examples and the set of artefacts of high quality are among those

considered to be relevant to an evaluation of creativity. Colton et al. [2001] also relate their

work to the criteria outlined by Popper. We adopt this methodology of seeing programs and

output as sets, and considering the content of relevant subsets. We therefore view the first and

second of the overlapping criteria above, in terms of sets.

There are three relevant sets. Firstly, there is the set of all mathematical conjectures. We

assume that this set is fixed, containing future as well as historical mathematical conjectures,

and conjectures which may never be considered. This is the universal set,U1. Secondly, there

is the set of all mathematical conjectures which a theory accounts for,E. Finally, we have the

set of all mathematical conjectures which one attempts to account for with the theory. This is

the inspiring set,I . We are interested in making the setE large with respect toU , and with

varied and interesting members. This is the first criterion above. We are also interested in the

difference between setsE andI , i.e., the intersection ofE and the complement ofI : E∩ I ′, or

E\I . This is the second criterion above. In terms of our evaluation of Lakatos’s theory, ifI

is Lakatos’s inspiring set, containing Euler’s conjectureand associated concepts, conjectures

and proofs, i.e., the case study which Lakatos documented, thenE contains further concepts,

conjectures and proofs which can be explained by Lakatos’s theory. In this chapter, we identify

members ofE. Furthermore, if the inspiring set for our extended theory is I1, thenE1 contains

all of the concepts, conjectures and proofs which can be explained by our theory. Figure

11.1 shows a Venn diagram which is a simplified representation of these five sets, assuming a

subset relation between the sets. Our evaluation mainly consists of identifying elements inE\I

andI1\E. Elements inE\I show both that Lakatos’s theory is general (criterion 1), and that it

explains more than the data it set out to explain, i.e., that it applies to more than the evolution of

Euler’s conjecture (criterion 2). Elements inI1\E are the inspiring examples for our extended

theory, and help us to see the gaps in Lakatos’s theory. Elements inE1\I1 allow us to make

the argument that our extended theory is general and that it explains more than the data it set

out to explain.

In general, at the start of chapters 5 to 9, we have outlined Lakatos’s theory and his inspiring

examples from [Lakatos, 1976] inI (we assume that examples which are not in [Lakatos,

1976] are not inI ). We have then suggested further inspiring examples – whichare generally

1We would have liked to include concepts and other mathematical phenomena such as objects, theoretical state-
ments, and proofs in this set. However, since this set would then itself be a concept of mathematical interest, we
stay on the safe side of Russell and Zermelo’s madness by limiting it to conjectures.
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applications of the method being discussed – to number theory. These examples either fall into

E, if they are strong applications, orI1, if they are extensions of Lakatos’s theory. We have

presented details of our implementation, and illustrativesessions, the results of which either fall

into E, for a faithful implementation of Lakatos’s theory,I1, if we were specifically replicating

a theoretical example, orE1\I1 for further results. In chapter 10 we tested hypotheses in HRL

by running it in various domains with various parameter settings, and produced further results

in E\I andE1\I1.

E1
E

I I1

x
x

conjecture

Goldbach’s 

the conjecture that
all integers except squares have an even number of divisors

Universal set of all possible mathematical phenomena 

x

Euler’s conjecture

Figure 11.1: A simplified Venn diagram representation of Lakatos’s inspiring set (I ), the mathe-

matical conjectures which his theory explains (E), our inspiring set (I1), and the mathematical

conjectures which our theory explains (E1)

11.3 Evaluating the method of surrender

The method of surrender consists of using a counterexample to refute a conjecture. Lakatos’s

inspiring example inI was the rejection of Euler’s conjecture, once the counterexample of the

hollow cube had arisen.

We identified an application of this method in number theory,discussed in Burton [1985]. This

is the conjecture that thenth perfect numberPn contains exactlyn digits. This conjecture was

rejected when the fifth perfect number, 33,550,336, which isa counterexample, was found.

This example is inE\I , i.e., it is explained by Lakatos’s theory but was not one of the inspiring

examples.

We show another application of this method to the domain of groupoids, which was a result
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from our experiments in the previous chapter. Below, we givean extract from session 1 in

group theory (table 10.3 on page 164), in which all three students in HRL were set to perform

surrender whenever they had a counterexample to a conjecture. The students were discussing

groupoids. Student 1, who had only examples of groups, conjectured that all groupoids have an

identity. Student 3, who had examples of non-groups, found acounterexample of a groupoid

which did not have an identity (the groupoid GP3 in table 10.2on page 161), and rejected

the conjecture. Note that we have implemented some natural language capabilities in HRL, in

order to make the output easier to follow. There are some grammatical and punctuational errors

in the output, which we include in the extracts.

Teacher: Has anyone got any interesting conjectures to get the discussion started?

Student 1: for all a : a is a groupoid↔ a is a groupoid∧ exists b (b in a∧ b=id)

Teacher: Has anyone got any conjectures which modify the conjecture ’for all a :
a is a groupoid↔ a is a groupoid∧ exists b (b in a∧ b=id)’? We want to perform
individual methods

Student 3: for all a : a is a groupoid! a is a groupoid∧ exists b (b in a∧ b=id)
is not worth modifying

This example is also inE\I .

We extended Lakatos’s theory by considering further when someone may decide to reject a

conjecture, given a counterexample. We implemented the situations where a conjecture:

• has already been modified a certain number of times;

• is less interesting than a certain threshold;

• is less interesting than the average interestingness of someone’s conjectures;

• is considered to be implausible, and

• has a domain of application which is below a user-set threshold.

In session 12, the students are set to consider the domain of application before performing sur-

render and rejecting a conjecture. The first student sent thefollowing conjecture for discussion:

Student 1: for all a : a is a group↔ a is a group∧ a is associative

The third student reconstructs this as a near-equivalence conjecture, since it has a counterex-

ample. However, the student does not reject the conjecture,because the conjecture has a high

domain of application. Therefore, the third student instead attempts to modify the conjecture.

This example is inE1\I1, and shows how someone working with groupoids may start to con-

sider groups to be a more interesting domain.
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11.4 Evaluating the method of monster-barring

The method of monster-barring consists of defending a conjecture from a counterexample by

arguing that the counterexample is not valid. In [Lakatos, 1976], a series of definitions of

polyhedron are suggested and negotiated. Students who wantto defend a conjecture argue for

definitions whichexcludea proposed counterexample, or monster. Students who want toattack

the conjecture argue for definitions whichincludea given counterexample, i.e., which would

mean that the conjecture is false. The teacher resolves eachsuch discussion by asking the class

to accept the strictest definition, i.e., that which excludes the monster, leaving the conjecture

open. The first inspiring example inI from [Lakatos, 1976] is the hollow cube, which is barred

as a monster. Two rival definitions of polyhedra are raised: “a solid whose surface consists of

polygonal faces”, and “a surface consisting of a system of polygons”. The teacher suggests

that the class accept the second, stricter definition.

11.4.1 Ambiguity in theory formation

In order to implement monster-barring, we have had to model ambiguity. This forces us to

answer questions about what can be ambiguous. In mathematical theories, at least two types

of component may be ambiguous: objects of interest and concepts. An example fromI1 is

that it may be ambiguous whether the object of interestℵ0 (the size of the set of all integers,

i.e., the first transfinite number) is really a number or not. Another example is that it may be

ambiguous whether the definition of the concept of prime number is ‘any number with exactly

two divisors’, or ‘a number which is only divisible by itselfand one’ (the difference being

whether we consider the number 1 to be prime or not).

In our implementation, objects of interest and core concepts can be ambiguous. Students can

question whether the definition of a core concept includes a specific object or not, for instance

whether the concept of number should include zero, or whether the concept of animal should

include the platypus.

11.4.2 When to perform monster-barring

Implicit in the method of monster-barring is the fact that each party has a reason for wanting

to define a concept in a certain way. This is a common phenomenon in everyday reasoning; for

instance, politicians will define ‘unemployment’ or ‘violent crime’ differently, depending on

whether they wish to argue that the figures have risen or fallen. In [Lakatos, 1976] the students
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discuss what was their original, unexpressed, intended definition and whether it corresponds

to the explicit definition they are currently defending. Very little time is spent on why an

alternative definition is first proposed, or why it may eventually be accepted or rejected; in

[Lakatos, 1976] the teacher always instructs the class to accept the monster-barring definition,

i.e., that which excludes the monster. This is a gap in the theory; always accepting the strictest

definition is an unrealistic way of settling the dispute. As Corfield says; “Mathematicians have

an intuitive feeling of the behaviour of objects they try to define – the process of discovery

involves the struggle to find a good or ‘right’ definition” [Corfield, 1997, p.113].

We have addressed this gap in our algorithm for the way in which students decide:(i) whether

they want propose an alternative definition or not, and(ii) given a proposed new definition,

whether they want to accept it or not. There are a range of motives which mathematicians have

for rejecting or accepting a concept definition. In the context which Lakatos presents, the most

obvious motivation is to defend or attack a given conjecture(i.e., Euler’s conjecture). Another

factor is the effect that choosing one of two competing definitions will have on the rest of a

mathematician’s theories or beliefs (this is known as the degree ofepistemic entrenchmentin

belief revision [Gärdenfors, 1992]). In our implementation, we have extended Lakatos’s theory

to reflect this.

Suppose that a student is sent an object of interest which is acounterexample to a conjecture

that the group is currently discussing, and the object is newto the student. If this object is

presented as an example of a conceptC which the student is familiar with, then it is clear that

there is some ambiguity over the definition ofC. For instance, suppose a student receives the

‘number’ 0 when it has only previously seen positive examples of number (1, 2, etc..). In this

case, the concept ‘number’ is ambiguous. The student then has two ways to decide whether it

wants to bar the object (where the user decides which of the two ways should be used, at the

start of the session). The first way is to test whether the counterexample breaks more than a

(user-defined) percentage of all the conjectures in the student’s theory, and if so, it proposes to

monster-bar the counterexample. The second way is to test tosee whether the new object is

a ‘culprit breaker’. This means that not only is the object a counterexample to the conjecture

under discussion, but if it is allowed into the student’s theory, then it forces other objects

in the theory which previously supported the conjecture, tobe involved in a counterexample

to the conjecture. For instance, suppose that the conjecture under discussion is the law of

monotonicity itself, that for all numbersa, b andc, if b< c, thena+b< a+c. A mathematician

who does not considerℵ0 to be a number may hold monotonicity to be true, and be opposed

to acceptingℵ0 as a number since not only is it a counterexample to the law of monotonicity

– if a = ℵ0 (for any finiteb andc) – but also because it forces the numbersb andc into being

part of a counterexample (the triple[a,b,c]), where previously they were supporting examples.
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This example is inI1. Similarly, suppose that the conjecture under discussionis the conjecture

that there do not exist integersa, b, c such thata+b = c andc|a. A mathematician who does

not consider 0 to be a number may make this conjecture. However, if the number 0 is proposed

as a counterexample, then the mathematician will find that if0 is to be accepted as a number,

there is not just a single counterexample, 0, to this conjecture, but that the existence of 0 has

forced all of the other objects to become counterexamples aswell. For instance, if we take

b = 0 anda = c, then 1 is a counterexample since 1+ 0 = 1 and 1|1, and similarly 2 is also a

counterexample since 2+0= 2 and 2|2, etc. Therefore, allowing 0 into a theory containing the

integers 1−10 means that there are now 11 sets of counterexamplesa, b andc. This example

is also inI1. These examples inspired our implementation of the ‘culprit breaker’: an entity

is monster-barred if it forces other entities into being counterexamples also. In our algorithm,

if the object in question forces other objects into being counterexamples for a higher number

of conjectures than a minimum, user defined, proportion, then the object is called a ‘culprit

breaker’, and monster-barred.

Rather than the teacher instructing the students to use the narrowest definition, once a concept

has been raised as being ambiguous and two definitions suggested, each student decides which

definition they prefer and votes accordingly. The definitionis then decided democratically,

based on these votes. If the votes are equal, then we follow Lakatos’s principle of taking the

narrowest definition. The students make the decision based on the proportion of conjectures

in their theories which still hold under each of the rival definitions. Clearly this way of deter-

mining a definition means that we have to be able to accept the ‘monster’. In our algorithm, if

the consensus between the students is to extend a definition,then the teacher asks them all to

perform monster-acceptingby agreeing on the new, wider definition. [Lakatos, 1976, p. 83 -

99] does raise this issue, calling it concept stretching. However, the discussion in this part of

Lakatos’s book principally concerns the semantics and methodology of monster-barring rather

than reasons for initially proposing and accepting a rival definition.

For example, in session 1 in table 10.4 on page 170, the first student is set to perform monster-

barring whenever another student suggests an entity which is a counterexample to a conjecture

which the first student believes in. The following is an extract from the output of this session.

Teacher: Has anyone got any interesting conjectures to get the discussion started?

Student 1: for all a : a is an animal∧ a produces eggs↔ a is an animal∧ ¬(a
produces milk)

Teacher: Has anyone got any entities which break the conjecture ’ for all a : a is
an animal∧ a produces eggs↔ a is an animal∧ ¬(a produces milk)’? We want
to perform communal piecemeal exclusion

Student 1: No, sorry.
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Student 2: platypus

Student 3: platypus

Student 1: platypus is not a animal.

By contrast, in session 7 in table 10.4 on page 170, the first student is set to perform monster-

barring whenever another student suggests an entity which is also a counterexample to more

than 50% of its conjectures. When the platypus is given as a counterexample in the situation

above, the first student looks to see how many of its conjectures this entity breaks, and finds

that it breaks 48%. Therefore the student does not propose tobar it, and instead accepts it and

adds it to its theory. In the above dialogue, rather than the last message from student 1, that a

“platypus is not a animal”, the next message is:

Teacher: Has anyone got any concepts which cover platypus; ? We want toper-
form communal piecemeal exclusion

We see an example of how to react to a proposal to monster-bar an object in session 66 in

table 10.4, the animal taxonomy domain. In this session, thefirst two students are set to accept

the strictest definition. Given the proposal from student 1 above to bar the platypus, all three

students vote to bar the entity, with the outcome being that they all downgrade it to a pseudo-

entity.

11.4.3 Proposing a new definition

In [Lakatos, 1976], there are two types of concept definitions: an initial vague concept, which

is not explicitly defined but for which some positive examples are known; and an explicit

definition, for which the extension of the concept should be easier to determine. The two ways

in which HR [Colton, 2002] can represent concepts bears someanalogy to these: a core concept

has no explicit definition, and a concept which HR has generated does.

The process of monster-barring in [Lakatos, 1976] might start with a vague definition and be-

come more specific, or start with a specifically defined concept and by discussion reach agree-

ment to define it in a different, yet still specific way. We haveextended this by implementing

the case which starts and finishes with a vague concept, i.e.,a specific definition is not reached,

but agreement is reached about whether a concept includes a given object or not. This is useful

as explicit and precise definitions cannot always be reachednor agreed upon: even supposed

specific definitions contain vague terms. For instance, defining a polyhedron as ‘a solid whose

surface consists of polygonal faces’ [Lakatos, 1976, p.14]is being more explicit about what
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is meant by the concept of a polyhedron, but there is still ambiguity in the sub-concepts solid,

surface, polygon and face. We have implemented the process of generating a specific definition

from a vague conceptC, by finding all of the concepts which are conjectured to be equivalent

toC, and then selecting the most interesting of these.

In session 66 in table 10.6 (on page 172), working in group theory, the first and second stu-

dents are set to accept the strictest definition if controversy arises. The third student (working

with groupoids) sends the groupoid GP2 in table 10.2 (on page161) as a counterexample to a

conjecture, and the second student sends the reply that GP2 is not a counterexample since the

domain of interest concerns algebras which are associative.

All students then evaluate the proposal to monster-bar thisobject. The first two vote to bar it

and accept the strictest definition, where associativity isrequired. Having counted the votes,

the teacher asks everyone to downgrade GP2 to a pseudo-entity.

This is an example of how mathematicians might begin to develop group theory, although hav-

ing started working with the more general theory of groupoids. It shows the situation in which

a concept, which was previously conjectured to be equivalent to another concept, becomes a

part of the definition of the latter concept. This example is in E1\I1.

11.5 Evaluating the method of exception-barring

Exception-barring consists of generalising from a set of counterexamples and then excluding

entities with this property from the domain of application of the conjecture, or generalising

from a set of supporting examples and then limiting the domain of application of the conjecture

to entities with this property. Lakatos’s first inspiring example of the former was generalising

from the hollow cube to polyhedra with cavities, and then excluding polyhedra of this type

from Euler’s conjecture. Lakatos’s first inspiring exampleof the latter was generalising from

cubes, octahedra, pyramids and prisms to convex polyhedra and then limiting the domain of

application of Euler’s conjecture to convex polyhedra. These examples are all inI .

We considered the application of the exception-barring methods to number theory. For in-

stance, we considered Goldbach’s conjecture that ‘all evennumbers except 2 are the sum of

two primes’, and the conjecture that ‘all primes except 2 areodd’. These examples, inI1,

led us to distinguish between counterexample and piecemealexclusion. Introducing this dis-

tinction raised the question ofwhenwe should use concept-barring and when we should use

counterexample-barring, which we explored in the previouschapter. We also considered ex-

tending the method to form equivalence conjectures. For instance, in §7.6.1 we described our
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application of piecemeal exclusion to the conjecture that “all integers have an even number of

divisors”. Using piecemeal exclusion, HRL modified this to the equivalence conjecture “an

integer is non-square if and only if it has an even number of divisors”.

11.6 Evaluating the method of lemma-incorporation

The process of providing a formal representation of Lakatos’s method of lemma-incorporation

as a computer program has forced us to answer questions such as: how can we represent an

informal proof? How can we uncover hidden assumptions in a proof? How can we modify a

faulty conjecture or a faulty proof, given a counterexample? How can we formalise the surprise

we feel when an example behaves in an unexpected manner in a proof?

Much of our work for this method consisted of defining and implementing formal procedures

for modifying proofs and conjectures in the way specified by Lakatos, and we have not per-

formed hypothesis testing in this method. Instead, we have produced a formal theory and shown

that it is possible to derive the mathematical phenomena which Lakatos claims his theory ex-

plains. This provides evidence for Lakatos’s argument, andshows that his method satisfies

Sloman’s first criterion for callingT a theory: thatT must actually explain what it sets out to

explain (see §11.7.1 below).

We have considered two examples of hidden lemma-incorporation, in different domains. In

geometry, we considered Hilbert’s theorem that for two points A and C, there always exists at

least one point D on the line AC that lies between A and C. We analysed how Lakatos’s method

could help us to revise the proof of this theorem and the faulty conjecture statement. This is in

part an application of Lakatos’s method, and in part a further extension of his method, which

inspired us when writing our algorithm. Therefore, aspectsof this example are inE\I , and

aspects are inI1\E. Our other inspiring example was an invented example in group theory: let

G be a groupoid andg, h, k be in G. Thengh = gk→ h = k. As in the geometry case, this

example was partially an application of Lakatos’s method, and in part a further extension of his

method, and therefore partly inE\I , and partly inI1\E.

We performed a session with HRL in which we tested an example of both global and local

lemma-incorporation. The faulty conjecture was that the left hand cancellation law holds for

groupoids, with the proof being the proof for the left hand cancellation law for groups. HRL

modified the faulty conjecture to a true theorem, although one with a very limited domain of

application. This example was neither an inspiring examplefor us nor for Lakatos, and is

therefore in the setE, to the extent in which we were faithful to Lakatos’s theory,and in the set

E1, to the extent to which we have extended Lakatos’s theory.
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11.7 Further criteria of a good theory

Below we consider Sloman’s first, second, sixth, eighth and tenth criteria in [Sloman, 1978],

for what constitutes a good theory.

11.7.1 A theory should explain a range of possibilities

Sloman’s first criterion for a theory says that the possibilities which the theory purports to

explain must be validly derivable from the theory; that is, atheory must actually explain what

it sets out to explain. By implementing Lakatos’s theory as acomputer program, we have

created a way of testing this criterion. In terms of our sets above, this involves exploringI , and

ensuring that Euler’s conjecture and associated concepts,entities, conjectures and proofs can

be generated by Lakatos’s theory. We have shown this in the method of lemma-incorporation,

which we modelled in HRL.

We described illustrative sessions in §9.5.1 (given a counterexample which is local but not

global), §9.6.1 (given a counterexample which is both global and local), §9.7.2 (showing our

model of surprise which is sometimes felt when given a globalbut not local counterexample),

and §9.7.4 (given a counterexample which is global but not local). By generating the new

proofs, concepts and conjectures shown in [Lakatos, 1976],these sessions show that Lakatos’s

method of lemma-incorporation does indeed explain those possibilities.

11.7.2 A good theory should be definite

Sloman’s second criterion for a good theory says that it should be clear what the theory ex-

plains and what it does not explain. Lakatos was attempting to explain a phenomenon which is

not deterministic, and his theory of mathematical discovery is neither deterministic nor predic-

tive. By formalising Lakatos’s theory as a program which canbe tested empirically, we have

provided a way of determining what the theory can explain. That is, we can run HRL with the

Lakatos settings for the variables, in a variety of domains,and the conjectures, concepts, and

proofs which are generated can be said to have been explainedby Lakatos’s theory (assuming

that our model is faithful). It is more difficult to show that apossibility cannot be explained by

the theory, i.e., that HRL would never generate it.
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11.7.3 A good theory should be rigorous

Sloman’s sixth criterion for a good theory says that the procedures by which possibilities are

derived from the theory should be explicitly specified. We have clearly achieved this, both

for Lakatos’s theory and for our extended theory, by presenting a set of thirteen algorithms

throughout the thesis.

In chapter 5 we give an algorithm which shows how a student is to determine when to perform

the method of surrender (algorithm 1).

In chapter 6 we give three algorithms. Algorithm 2 shows how astudent is to determinewhen

to propose to bar an entity; algorithm 3 shows how a student isto evaluate a proposalto bar an

entity; and algorithm 4 shows how a student is to determinehow to perform monster-barring

or monster-accepting.

In chapter 7 we give three algorithms. Algorithm 5 shows how to perform the method of

piecemeal exclusion; algorithm 6 shows how to perform our extension to this in the method

of counterexample-barring; and algorithm 7 shows how to perform the method of strategic

withdrawal.

Finally, in chapter 9 we give six algorithms. Algorithm 8 shows how to determine which

kind of lemma-incorporation to perform; algorithm 9 shows how to perform local but not

global lemma-incorporation; algorithm 10 shows how to perform global and local lemma-

incorporation; algorithm 11 shows how to find a hidden lemma and generate an explicit faulty

lemma, using the first type of surprise which we identify; algorithm 12 shows how to find a

hidden lemma and generate an explicit faulty lemma, using the second type of surprise which

we identify; and algorithm 13 shows how to perform global butnot local lemma-incorporation.

11.7.4 A good theory should be economical

Sloman’s eighth criterion for a good theory says that it should not include elements which

are not required to explain the possibilities. By reusing some of our code for the method

of exception-barring in our implementation of the method oflemma-incorporation, we have

progressed some way towards satisfying this criterion. Lakatos also made this point, that the

method of lemma-incorporation is a “limiting case of the exception-barring method” [Lakatos,

1976, p.37].
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11.7.5 A good theory should be extendable

Sloman’s tenth criterion for a good theory says that it should be extendable. That is, the the-

ory can be embedded within an improved, larger theory which explains more possibilities or

more of the fine-structure of previously explained possibilities. We have suggested extensions

to Lakatos’s theory throughout the thesis: for instance, our analysis of when to surrender a

conjecture, our method of counterexample-barring, new ways of determining when to reject or

when to accept a ‘monster’ as a valid entity, and our analysisof different types of surprise which

one might feel when faced with an unexpected counterexample. By doing this, we have shown

that Lakatos’s theory can be extended, both in terms of explaining more possibilities and more

of the fine-structure. Our theory, in turn, could be extended, for instance, by implementing a

more sophisticated interaction protocol between the agents (see §13.3).

11.8 Answers suggested by the computational approach

In chapter 2 we described ten criticisms of Lakatos [1976] which Feferman [1978] gave, and

claimed that the process of providing a computational representation has enabled us to answer

some of Feferman’s questions, and has also raised more questions which we have answered

(§2.4). These mainly consist of highlighting gaps in Lakatos’s theory. We outline below the

questions and criticisms of the theory, and ways in which ourmodel has allowed, or might

allow us, to answer them. We refer to the criticism number, from Feferman’s ten criticisms in

[Feferman, 1978, pp.316-320], in italic roman numerals.

11.8.1 The scope of the methods

Although Lakatos is praised for the extremely detailed and in-depth analysis of his case studies,

in particular of Euler’s conjecture, he has been criticised(see, for instance, [Feferman, 1978])

for only considering two examples. Certainly, it is difficult to claim to have found patterns

general to mathematical and even other types of discovery from such a small sample. We

see determining the scope of the methods as one of the major contributions of our work, and

suggest an alternative to [Larvor, 1998, p.11] who claims that “this type of dispute [whether

Lakatos’s methods are typical or atypical of mathematical reasoning] can only be resolved by

extensive historical research”. Producing a computer model gives us an obvious way of testing

the variety of domains to which the methods can be usefully applied.

It is worth noting that while Lakatos did claim that his methods are general enough to apply

to other domains, both mathematical and non-mathematical,he did not believe them to be the
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sole explanation of mathematical discovery. Indeed, as Larvor argues, Lakatos did not believe

that there is a unique logic of mathematical discovery, muchless that he had found it. (Larvor

points out that it was the editors, rather than Lakatos, who gave the book the subtitlethe logic

of mathematical discovery.) Instead, in his original thesis at least, he states the more modest

aim of pointing out ‘some tentative rules which may help us toavoid some deeply entrenched

wrong heuristic habits’ (Thesis, p. 75; quoted in [Larvor, 1998, p.12]). This view, that there are

many ways of practising mathematics is echoed in the philosophy of science; for instance, Bird

[Bird, 1998, chap 8] and Feyerabend [1975] argue that there is no such thing asthescientific

method.

Applying the methods to other areas of mathematics

Feferman [1978] argues that Lakatos’s methods only explaina small fraction of mathematical

reasoning. For instance, he argues that the main method, themethod of proofs and refutations,

fails to account for foundational changes before 1847(i). Feferman also questions Lakatos’s

claim that the method of proofs and refutations is most appropriate to young, growing theo-

ries (ii) . He argues that(a) Lakatos’s main example of the method, Euler’s conjecture, was

not a young, growing theory, and(b) there are examples of young, growing theories, such as

continuous probability measures, which progressed without recourse to counterexamples and

therefore without recourse to Lakatos’s method. Hacking [1981] argues that since Lakatos’s

reasoning assumes the hypothetico-deductive model, its relevance is restricted to this type of

knowledge, and there are other styles of knowledge such as Crombie’s six styles of reasoning

(see [Crombie, 1994]). He warns us not to let “the eternal verities depend on a mere episode in

the history of human knowledge” [Hacking, 1981, p.143].

Our implementation strategy has been to develop the methodsin other mathematical domains,

mainly number theory. In this way, we can help to ensure that we implement them in a general

way. This also lets us investigate whether the methods are sufficiently general to produce

interesting mathematics in areas other than topology, vector algebra and real analysis.

Applying the methods to empirical sciences

[Lakatos, 1976] is often seen as Lakatos’s attempt to apply Popper’s philosophy of science

to mathematics. There are both methodological and epistemological parallels: the view that

mathematics advances by studying refutations and therefore practitioners should focus on find-

ing counterexamples and anomalies, and the belief that there is no certain knowledge: both

mathematics and science are fallibilist. We have already noted one key difference between

Popper and Lakatos, the discovery/justification distinction. Another difference (pointed out by

Larvor [1998]) is what we should do with the refutations oncewe have found them. Popper’s
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naive falsificationism tells us to reject the hypothesis, whereas this reaction is the first and most

naive method in [Lakatos, 1976], the method of surrender, towhich Lakatos devotes only one

out of the total one hundred and twenty pages in the book. Moresophisticated methods use the

counterexample to refine the conjecture and concepts in it.

Lakatos partially addresses this problem by inheriting Kuhn’s ideas on demarcation. Kuhn

[1970] argued that the boundaries between scientific and non-scientific knowledge are not

sharp; and Lakatos thought that the degree to which mathematics and science are the same type

of (empirical) knowledge, corresponds to the degree to which his methods apply to science

as well as mathematics. Lakatos claimed that “mathematicalheuristic is very like scientific

knowledge – not because both are inductive, but because bothare characterised by conjectures,

proofs, and refutations. The – important – difference lies in the nature of the respective con-

jectures, proofs (or, in science, explanations), and counterexamples” [Lakatos, 1976, p.74]. He

credits Polya’s stress on the similarities between scientific and mathematical heuristic as one

of the most important contributions of his work (see [Lakatos, 1976, p.74], footnote 1).

Feferman [1978] also asks(x) what is distinctive about mathematics?He argues that Lakatos’s

methods do generalise to other domains, that his logic of mathematical discovery is really a

logic of rational discovery. However, Feferman sees this as a shortcoming, claiming that they

would then be overly general and “could account only for a fewgross features of the actual

growth of mathematics” [Feferman, 1978, p.320].

11.8.2 Applying Lakatos’s methods to other types of conject ure

Feferman [1978] points out(vii) that all the examples of conjectures given by Lakatos are of

the form∀x [A(x) → B(x)] and gives examples of other types of conjecture found in mathe-

matics and the form their refinement might take. This is also an aspect which has arisen in

our implementation and we have suggested and implemented ways of applying the methods to

other types of conjecture.

A related criticism is that, with the exception of strategicwithdrawal, Lakatos’s methods are

only applicable to the type of conjecture which could be falsified by counterexample [Fefer-

man, 1978];(ii) and (iii) . This corresponds to the criticism of Popper’s falsificationism (for

example, see [Bird, 1998]), that it only applies to scientific hypotheses which are generali-

sations. This excludes, for instance statistical hypotheses (nothing can falsify a probabilistic

hypothesis). While we cannot avoid this criticism, by running our model on different domains,

and considering the conjectures it generates, we have to a certain extent investigated how lim-

iting this is.
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11.8.3 Comparing the methods

In both Lakatos’s and commentators’ writings, for example [Corfield, 1997], there is a clear

hierarchy of methods, where they are presented as being increasingly sophisticated. Therefore,

much work focuses purely on the final method to be described: proofs and refutations. Indeed,

to the best of our knowledge, the first method – of surrendering a conjecture as false when

faced with a counterexample – is not mentioned in any book on Lakatos. Lakatos wrote that

“Mere ‘falsification’ (in Popper’s sense) must not imply rejection” [Lakatos, 1981, p.116]. He

called exception-barring, monster-barring and monster-adjusting ‘conventionalist strategems’

[Lakatos, 1981, p.117], and thought that they aread hoc in the sense that once applied, the

new conjecture has no more empirical content than the old one. Therefore they cannot form

part of a progressive research programme (i.e., one which successfully predicts novel facts).

Commentators usually make scant reference to these methods, with the assumption often being

made that [Lakatos, 1976] is solely about the final method.

By running our system on different combinations of the methods and evaluating the resulting

mathematical theories, we have been able to investigate these views. For instance, we hold

that surrender can be useful in preventing resources from being wasted on uninteresting con-

jectures. The challenge is to find ways of knowing when to use acounterexample to surrender

a conjecture, and when to use it as a catalyst for refining the conjecture. Similarly, we hold

that the method of exception-barring has enabled us to generate interesting conjectures. More-

over, by allowing us to explore concepts more fully, monster-barring can generate interesting

discussion and highlight entities which are in some way odd.

11.9 Applying Lakatos’s MSRP to this project

The question of whether we can apply Lakatos’s methodology of scientific research programmes

(MSRP) to mathematical research programmes has been raisedby very few philosophers. Koet-

sier [1991] was one exception, arguing that the analogy between science and mathematics is

not close enough to merit the cross-over. This was in contrast to Hallett [1979a,b], and Oliv-

eri [2006], the latter of which used mathematical case studies to rebut Koetsier’s objections.

We could view the case study of Euler’s conjecture in Lakatosian terms by including Euler’s

conjecture that for any polyhedron,V −E +F = 2, in the hard core, and the various monster-

barring definitions of polyhedron, face, edge, etc. in the protective belt (monster-barrers such

asDeltamay characterise it thus). Alternatively, the hard core mayconsist in the more general

hypothesis that there is a relationship between the number of edges, faces and vertices of a

polyhedron, analogous to the two dimensional case. Viewed in this way, Euler’s conjecture
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and subsequent modifications would be in the protective belt. (Clearly the question of which

elements are in the hard core of a programme is subjective.) In this case we might interpret

the mathematical analogy of “predicting novel facts” to be generating new open conjectures,

and “some of the excess content being corroborated” as generating new theorems. However, in

this section we are more concerned with whether we could apply Lakatos’s criteria of a good

theory, or a progressive research programme, to his philosophy of mathematical progress, and

to our extended model, than whether, or how, it may be appliedto mathematical examples (we

leave this latter question to [Koetsier, 1991], [Hallett, 1979a,b] and [Oliveri, 2006]).

We can see the hard core of Lakatos’s research programme as comprising the following hy-

potheses:

1. it is possible to write a rational reconstruction of mathematical progress in terms of the

theory of the interaction of counterexample and conjecture, proof and concept defini-

tions;

2. informal, quasi-empirical mathematics does not grow through a monotonous increase of

the number of indubitably established theorems, but through the incessant improvement

of guesses by speculation and criticism, by the logic of proof and refutations; and

3. the context of discovery and justification are conjoined.

The protective belt of Lakatos’s research programme by nature changes throughout the pro-

gramme. It includes the following hypotheses:

1. the methods of surrender monster-barring, piecemeal exclusion, strategic withdrawal,

and lemma-incorporation help to describe the progress madein examining Euler’s con-

jecture and connected proofs, definitions and entities; and

2. we can distinguish between local and global counterexamples and use this distinction to

help to determine what to do when faced with a counterexample.

This is modified as the different methods evolve and form a hierarchy (for example, monster-

barring turns into monster-stretching and lemma-incorporation into proofs and refutations).

According to Lakatos’s criteria, this was a progressive research programme in the sense that

it retained its coherence throughout the programme, i.e., the assumptions in its hard core were

unchanged. The question of whether it generated any novel predictions is less clear, although

he did predict that presenting mathematical research and textbooks using his heuristic style
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rather than the typical deductivist style would benefit bothexperts and students. We could

also argue that Lakatos’s research programme led to the prediction, or suggestion, that it could

be represented computationally, although it does not necessarily imply this. The programme

was non-scientific to the extent that it failed this criterion, which we would expect as it was a

philosophical programme.

Our programme shares the same hard core as Lakatos’s programme, with the additional hy-

pothesis thatit is possible to give a computational reading of mathematical progress. This

process of giving a computational representation of Lakatos’s theory has led us to extend and

modify the protective belt by further considering the following:

• when to use the method of surrender;

• when and how to use the method of monster-barring;

• how we can distinguish different types of exception-barring ;

• how we can determine when to use each type of exception-barring;

• how the methods might apply to different types of conjecture;

• how we can represent an informal proof;

• how we can uncover hidden assumptions in a proof;

• how we can modify a faulty conjecture or a faulty proof, givena counterexample;

• how we can formalise the surprise we feel when an example behaves in an unexpected

manner in a proof; and

• which other domains Lakatos’s theory might apply to.

Our extended programme has given rise to predictions such asit is possible to fine-tune the

methods of surrender, monster-barring and exception-barring, andwe can usefully apply Lakatos’s

exception-barring methods to the field of automated theoremproving, which we have tested in

chapters 10 and 12. Additionally, it suggests the followinghypotheses:

• Lakatos’s method of surrender can be seen as comparable to Kuhn’s ideas on paradigm

revolution;

• it is useful to base the selection of a concept definition during the method of monster-

barring by protecting definitions which are either very young (and thus need time to

prove themselves) or very established; or
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• we can evaluate the interestingness of an entity by considering the diversity of conjecture

which it breaks;

• the method of monster-adjusting can be seen as a special caseof monster-barring;

• a model of Lakatos’s theory would be an aid to scientists;

• a model of Lakatos’s theory would be an aid to students;

• we can use Lakatos’s theory to develop a meta theory, for instance, about which is the

most useful method to use in a given situation;

• we can develop a way of using the exception-barring methods to aid theorem proving by

splitting a theorem into different conjectures which are then easier to prove, and finally

• by developing and running our model in a variety of mathematical and non-mathematical

domains we can determine their domain of application.

These and other hypotheses which our research programme suggests are considered in chapter

13.

Building, running and evaluating our model enable us to testpredictions in a way which was

less obvious under Lakatos’s original research programme.Therefore, we argue that not only

is it progressive according to Lakatosian criteria, but that our extended programme is scientific

where Lakatos’s was not.

11.9.1 Falsification

Recall that a theoryT is falsified if and only if another theoryT ′ has been proposed with the

following three criteria:

(i) T’ predicts novel facts, i.e., phenomena which was not predicted by T (this is a sign of a

theoretically progressive research programme);

(ii) T’ explains all of the confirming instances that T explained;and

(iii) some of the excess content of T’ is corroborated (this is a sign of an empirically progressive

research programme).

We can see Lakatos’s theory asT and our extended theory asT ′, and interpret the philosophical

analogy of “predicting novel facts” to be suggesting new methods by which mathematics pro-

gresses, and “some of the excess content being corroborated” as these new methods explaining
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new areas of mathematics. Then we can argue that our theoryT ′ has predicted novel facts,

such as the counterexample-barring method, which has been corroborated by explaining how,

for instance, Goldbach’s conjecture, might be thought of. We cannot argue, however, that our

extended model has falsified Lakatos’s theory (in a Lakatosian sense), since our computational

model fails the second criterion. For instance, we have not implemented Lakatos’s method of

monster-adjusting (see section 13).

11.10 Summary

We have evaluated our project from a philosophical perspective, using criteria from Thagard

[1993], Sloman [1978] and Popper [1972]. The main two criteria which we have considered

are that a good theory should be general, and that it explain more than it set out to explain. We

have used these criteria to evaluate Lakatos’s methods of surrender, monster-barring, exception-

barring and lemma-incorporation, and our implementation of them. We have described these

criteria and our evaluation in terms of five sets:I is the set of examples which inspired Lakatos’s

theory,E is the set of possibilities which Lakatos’s theory explains, I1 is a larger set of exam-

ples which inspired us in our extended computational theory, E1 is the set of possibilities which

our theory explains, andU is the set of all possible mathematical conjectures. The first criterion

considers the size and type of elements inE andE1. We have identified elements in both of

these sets, and in particular elements inE1\E, which suggests that our theory is more general

than Lakatos’s theory. The second criterion considers the size of E\I andE1\I1 and, again,

we have identified elements in both of these sets. Where relevant, we have presented output

from HRL. We have also considered five other criteria suggested by Sloman [1978]: that a

theory explain a range of possibilities, and a good theory bedefinite, rigorous, economical, and

extendable, and we argue that our approach has satisfied these criteria. We have discussed our

project with reference to Feferman’s criticisms of Lakatos’s theory, and argued that the com-

putational approach has suggested answers to some of these.Finally, we have discussed our

project and Lakatos’s project with reference to Lakatos’s own criteria for evaluating scientific

research programmes.





Chapter 12

Application to automated theorem

proving

In this chapter we further substantiate our claim that it is useful to automate Lakatos’s work, by

describing the application of his exception-barring methods to the field of automated theorem

proving1. The chapter is organised as follows: firstly, in §12.1, we describe a spin-off system,

Theorem Modifier, or TM, in which we have automated the methodof exception-barring. We

then describe experiments which we have performed in order to test the hypothesis that TM can

find meaningful modifications to non-theorems, and discuss the results, in §12.2. We conclude

in §12.3.

12.1 The Theorem Modifier System

Colton and Pease [2004] have developed a spin-off system, Theorem Modifier, or TM, which

uses Lakatos’s methods to modify faulty conjectures into true ones. Given a conjecture, the

system uses the Otter theorem prover [McCune, 1990] to first try and prove the conjecture. If it

fails, the system uses the MACE model generator [McCune, 2001] to produce examples which

support the conjecture, and examples which falsify the conjecture. We then use concept barring

and strategic withdrawal methods implemented within HRL, to find concepts covering a subset

of the falsifying examples and/or concepts covering a subset of the supporting examples. The

system uses the first type of concept to perform piecemeal exclusion, and the second type of

concept to perform strategic withdrawal, again to specialise the conjecture. A set of modified

1Note that the work in this chapter was jointly carried out by Colton and Pease. In particular, Colton did much
of the programming and all of the interfacing to Otter and MACE, while Pease did much of the testing. Analysis of
the results was carried out jointly, with Colton directing the project.
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conjectures is generated this way, and each is tested for theorem-hood by Otter. The user is

shown only those modified theorems which Otter has proved.

TM works by taking in a conjecture of the formA⇒C whereA is a conjoined set of axioms,

andC is the conjecture a user wishes to prove, modify or disprove.We limited TM to algebraic

domains; for instance group theory, where there is a single binary operator which satisfies the

three axioms of associativity, identity, and inverse.

Stage 1: Given a conjecture, TM first performs two preliminary checksto see whether it is

worth modifying. These are:

(i) if Otter can prove in a user-specified period of time that the conjecture is true, i.e.,A⇒C,

then TM reports this and returns the proof

(ii) TM negates the conjecture and invokes Otter to try to prove the negation. If the negation is

true, then TM will not be able to modify it, hence this ends thesession.

Stage 2:If unsuccessful, then TM performs a further check before invoking MACE and HR –

whether the conjecture is true if and only if we limit the objects in the domain to (a) the trivial

group, i.e., ifA ⇒ ((∀ a,b (a = b)) ⇔C), or (b) non-trivial groups, i.e., ifA⇒ ((∃ a,b (a 6=
b))) ⇔C. This check is a type of modification inspired by Lakatos’s exception-barring meth-

ods, where (a) the only supporting example is the trivial group, so we limit the domain to this

(a type of strategic withdrawal), and (b) the only counterexample is the trivial group, so we

exclude it from the conjecture (a type of piecemeal exclusion). We apply these methods sep-

arately at this stage as it is often the case that a theorem is true only for the trivial algebra, in

which case the theorem is usually uninteresting. The opposite case, that the theorem is true for

everythingbut the trivial algebra is rare.

Stage 3:If the conjecture gets beyond these checks, then TM has the chance to modify it. To

do this;

(i) TM invokes MACE to generate two sets of algebras; the first containing those which support

the conjecture, and the second containing those which contradict it.

(ii) These sets are then passed to HR as objects of interest, as well as the conjecture, from

which it extracts the core concepts. It uses this input to produce a theory, for a user-specified

number of steps.

(iii) TM then identifies all the different types of group which havebeen defined, i.e., speciali-

sation concepts (such as Abelian or self-inverse groups) which HR has invented. TM extracts

those which describe only the algebras which support the conjecture (or a subset of them). For

each extracted specialisation,M, TM forms the modified conjecture(A∧M)⇒C by addingM

to the axioms.

(iv) Otter is invoked to see which of these modifications can be proved, and any which are
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proved are presented to the user (after stage 4).

Stage 4:Finally, TM evaluates whether its modifications are likely to be interesting to the user.

It does this by testing whether:

(i) the only example to satisfy M is the trivial algebra, in whichcase TM invokes Otter to check

whetherA⇒ (M ⇔ (∀ a,b (a = b)));

(ii) the concept is a redefinition of the conjecture statement, for instance,M is the condition

that a group is Abelian, when the original conjecture wasall groups are Abelian, i.e., the mod-

ification is thatall Abelian groups are Abelian. If everysupporting example has the property

prescribed by M, then TM uses Otter to try to prove: (a)M ⇔C, (b)A⇒ (M ⇔C), (c) M ⇒C.

TM marks these as probably uninteresting, though still reports them to the user, as it may be

that the equivalence ofC andM is surprising and non-trivial, and hence the modified conjecture

interesting.

This process of modifying conjectures is an implementationof Lakatos’s strategic withdrawal

method. However, since TM instructs HR to use its negate production rule, for every special-

isationM, the negation¬M will also be produced. Hence, if the examples ofM contained all

the falsifying examples for the conjecture, then¬M would describe a subset of the support-

ing examples, and hence would be used in a modification attempt. Therefore, TM also uses

piecemeal exclusion to form the modifications.

12.2 Experiments and results

We have tested the hypothesis that TM can find meaningful modifications to non-theorems

by using the TPTP library [Sutcliffe and Suttner, 1998]. From theorems in this library, we

have generated non-theorems by removing axioms, changing or removing quantifiers, altering

variables and constants, and altering bracketing. We have also tested TM on some of the

non-theorems in TPTP. We set Otter and MACE to run for 10 seconds and HR for 3000 theory

formation steps. From 98 invented non-theorems, TM produced valid modifications for 83% of

them, and found an average of 3.1 modifications per non-theorem. When we tested it on 9 non-

theorems already in TPTP, it found modifications to 7 of them (78%). For instance, we gave

TM the non-theorem (RNG031-6 in TPTP) that the following property, P, holds for all rings:

∀ w,x ((((w∗w) ∗ x) ∗ (w∗w)) = id) whereid is the additive identity element (see glossary).

MACE found 7 supporting examples for this, and 6 falsifying examples. HR produced a single

specialisation concept which was true of 3 supporting examples: ∄ b (b∗b = b∧−(b+b= b)).

Otter then proved thatP holds in rings for which HR’s invented property holds. Hence, while

TM couldn’t prove the original theorem, it did prove that, inrings for which∀x,(x∗x = x⇒
x+x = x), propertyP does hold.
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12.3 Conclusion

Our results show that TM can be used to produce theorems from conjectures which are either

false or open, and we hold that these modified theorems are interesting. This argument, as

presented in [Pease and Colton, 2004] and [Colton and Pease,2004], provides support for

our argument that automating Lakatos’s methods has applications to the field of automated

theorem proving. By adding more robustness and flexibility to automated theorem proving, we

increase the potential to aid mathematicians, as well as producing more intelligent behaviour.

Furthermore, we have demonstrated the application of Lakatos’s work to another algebraic

domain: ring theory.



Chapter 13

Further work

This project is an initial implementation of Lakatos’s theory of mathematical discovery and

justification. We have argued that it is both possible and useful to give a computational reading

of Lakatos’s theory. There are many ways in which our work could be extended. These include

improving our implementation of Lakatos’s methods and implementing further aspects, de-

scribed in §13.1; generating an initial problem and an initial proof scheme, described in §13.2;

increasing the sophistication of the agency in terms of interaction and autonomy, described in

§13.3; making the parameter-settings flexible, described in §13.4; giving a cognitively plau-

sible notion of mathematical concepts, described in §13.5,and investigating applications of

our system, described in §13.6. In this chapter, we discuss these improvements and estimate

whether each improvement would be a long or short term project.

13.1 Improving our implementation of Lakatos’s methods

13.1.1 Extending the method of surrender

We claimed in chapter 5 that the two questions concerned withthe method of surrender are:

1) whenshould we give up on a conjecture?, and 2) what should we do next? We considered

the first, which partly connected to how specialised the conjecture had become. The answer

to the second question concerns specialisation. Lakatos calls it the problem of content, and it

concerns the situation where a conjecture has been specialised to such an extent that its domain

of application is severely reduced.

The methods of proofs and refutations, lemma incorporation, exception-barring and monster-

barring may increase the certainty of the theorem being true, but they decrease content, as each
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new lemma, or condition we add reduces the domain of the theorem. [Lakatos, 1976, p 57]

compares this to throwing the baby out with the bath water, and argues that a proof and theorem

should explainall of the supporting examples, rather than just exclude the counterexamples.

Sometimes this is possible, while sometimes there may not bea single theorem which explains

all of the supporting examples. If this is the case, then we need to surrender the conjecture, and

consider what to do next. One possibility would be to generate aninitial problem(see §13.2.1)

and to return to this once a conjecture had been surrendered.

Although surrender is presented as a naive and unproductivereaction to a counterexample, it

can be of great use, and in particular the question of what to do next is interesting. There

are parallels here to Kuhn’s work on the patterns of science in [Kuhn, 1970]. Kuhn’snormal

scienceperiod is where the other methods are at play. His notion ofcrisis corresponds to a

counterexample which cannot be ignored nor absorbed as a modification. The old discipline

(or conjecture) is increasingly unable to solve pressing anomalies. Therevolutionconcerns the

shift from one paradigm (conjecture) to another. Finally, thenew normal scienceis concerned

with new problems (or conjectures). These new problems may or may not be better than the

previous approach. Seen in this light, surrender is no longer a weak and premature rejection of

a useful idea leaving one with no further recourse, but rather a triumphant overturning of old

dogma.

13.1.2 Extending the method of monster-barring

Larvor1 has suggested that our current algorithm in monster-barring for determining whether a

concept definition is good or not, by testing to see how many conjectures an entity within the

concept definition breaks, is too conservative. It may be thecase that a new concept breaks

current conjectures, but shows the promise of exciting new theories. We have partially ad-

dressed Larvor’s point by allowing the students in the agency to select what they evaluate as

interesting from the discussion vector, and to continue working with personal definitions which

other students may not have accepted. This evaluation is based on the interestingness measures

described in §3.1.3. One further aspect we could implement would be to use the number of

theory formation steps as a confidence measure, so that youngtheories could be protected and

allowed time to develop before having to prove themselves, and similarly concepts which have

been accepted and form an important part of an older theory could be made much more difficult

to change (this would fit with Lakatos’s concept of a hardcorebelt in science [Lakatos, 1970]).

More sophisticated methods we would like to implement include comparing the interestingness

of the conjectures the entity in question either supports orbreak. Another way of evaluating

1Personal communication
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an entity would be to consider proofs of theorems in the theory. If the entity is used in proofs,

then that would be a further reason for a student to accept theentity or keep it in the student’s

theory. It would also be interesting to consider the diversity of conjectures which are broken

by the entity. Once disagreement over a concept definition has arisen, an agent might suggest

one and justify why it is good (for example it may be used in many of the agent’s conjectures).

This may then lead another agent to re-evaluate the definition and rate it more highly. This is

relevant to work by [Jennings et al., 1998], which we outlined in §3.2.4.

13.1.3 Implementing the method of monster-adjusting

For time reasons, we omitted implementing the method of monster-adjusting. Like the method

of monster-barring, this method also exploits ambiguity inconcepts, but reinterprets an object

in such a way that it is no longer a counterexample. The example in [Lakatos, 1976] concerns

the star polyhedron (see figure 13.1). This entity is raised as a counterexample since, it is

claimed, it has 12 faces, 12 vertices and 30 edges (where a single face is seen as a star polygon),

and thus an Euler characteristic of−6. This is contested, and it is argued that it has 60 faces, 32

vertices and 90 edges (where a single face is seen as a triangle), and thus an Euler characteristic

of 2. The argument then turns to the definition of ‘face’.

This method can be seen as a type of monster-barring, where the concept in question may be

the right hand concept in an implication or equivalence conjecture, rather than the domain. Let

us formalise monster-barring as follows: from conjecture∀x,P(x) → Q(x), and (known) coun-

terexamplemsuch thatP(m) and¬Q(m), (re)define eitherP or Q so that for them in question,

either¬P(m) or Q(m) is true. Monster-adjusting can be seen as a case of this formalisation,

where the concept under debate isQ rather thanP.

Modelling this ambiguity could be related to work carried out in humour research, for instance,

[Ritchie, 2006], on reinterpretation and viewpoints, which exploits the ambiguity in language

in order to make jokes. In this paper, Ritchie observes that many jokes rely on listeners reinter-

preting the initial part of a joke once the punchline has beendelivered. He outlines how these

reinterpretations may happen in various ways. There is a clear analogy with the method of

monster-adjusting. Implementing this method would be a rather open ended project: it could

be a medium, or a long term project, depending on the level of detail.



220 Chapter 13. Further work

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
����

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

                                 

The method of monster−adjustment is 
used when someone brings up the star polyhedron,
with 12 vertices, 30 edges and 12 faces, as a counterexample. 
Later others object to this interpretation, saying that this is
the case only if each face is a pentagon. This interpretation
can be ‘adjusted’ to seeing each face as a triangle, in which case
the equation becomes 32 − 90 + 60 =2 and therefore it is no 
longer a counterexample.

Figure 13.1: The star polyhedron

13.2 Generating an initial problem and an initial proof sche me

13.2.1 Generating an initial problem

Lakatos distinguishes between an initial problem and an initial conjecture. In the Euler case

study, the initialproblem is to find out whether there is a relationship between the number

of edges, vertices and faces on a polyhedron which is analogous to the relation which holds

for polygons, that is, the number of vertices is equal to the number of edges. The initial

conjectureis that for any polyhedron,V −E+F = 2. After surrendering an initial conjecture,

the initial problem should be reconsidered and a new initialconjecture, such asV −E + F =

2−2(n−1)+
F

∑
k=1

ek for ann-spheroid polyhedra, found and discussed.

One way in which this could be implemented in HRL would be to run two agents in two dif-

ferent domains. Either of the agents could send a conjecturewhich it evaluated as interesting

to the other agent and a request to find an analogous relation in its domain. (Part of the in-

terestingness evaluation could include whether it has beenproved as a theorem by third party

software, such as Otter [McCune, 1990].) This would constitute the initial problem. The sec-

ond agent would need a way of determining whether it already has analogous conjectures and

concepts, and a way of constructing new ones if necessary. Two concepts could be defined to

be analogous if:

• they have been constructed with the same production rules and parameters, although the

initial core concepts may be different (as the two agents areworking in a different domain).

Two conjectures could be defined to be analogous if:

• they combine analogous concepts (as well as possibly other concepts).

If the agent did not already have concepts which shared the same construction history as the

concepts in the conjecture then it would attempt to construct them from core concepts. The
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agent would then have a list of analogous concepts and would check its list of conjectures to

see whether it already had any which combined some combination of these concepts. If so,

these are candidate initial conjectures and if they are later rejected then this list can be updated

to find a new initial conjecture. If not, then combining the analogous concepts could become a

gold standard which would guide the search for future conjectures. This would guide both the

concept and conjecture formation.

13.2.1.1 Case study

Suppose that we run the agency with one agent working in the polygon domain and a second

in the polyhedra domain. In table 13.1 we show a reduced version of a polygon domain in

which a triangle, withvertices a, b andc andedges e1, e2 ande3, is an example of apolygon.

Other concepts in the polygon domain would includevertex-on-edge(P,V,E)as well as core

conceptsinteger, additionetc. from number theory. In table 13.2 we show a reduced version of

a polyhedron domain, in which a tetrahedron, withvertices a, b, c andd andedges e1, e2, e3,

e4, e5 ande6, is an example of apolyhedron. Other concepts in the polyhedron domain would

includevertex-on-edge(P,V,E)andface-on-edge(P,F,E)as well as the same core concepts from

number theory.

The first agent might construct the conceptsnumber of edges of a polygon (E)andnumber of

vertices of a polygon (V)respectively, as follows:

• [polygon002,size,[1]], and

• [polygon003,size,[1]].

This would then automatically form the conjecture that for all polygons, E = V. Suppose

that this agent then sent this conjecture to the second agent, working with polyhedra, with the

request for an analogous relation in that domain. The secondagent would then check in its

theory to see whether it had any concepts which shared the same construction history as the

concepts in the conjecture.

The second agent would find, or generate, the conceptsnumber of edges of a polyhedron (E),

andnumber of vertices of a polyhedron (V)andnumber of faces of a polyhedron (F)by per-

forming the same production rule with the same parameters onits core concepts ofvertex, edge

and face. It would then look for a conjecture which combined these three concepts, and if it

did not have one, it would use them as a gold standard to guide its search.
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polygon001

polygon(P)

“P” is a polygon

polygon(triangle).

polygon002

vertex(P,V)

“V” is a vertex of “P”

vertex(P,V)→ polygon(P)

vertex(triangle,a).

vertex(triangle,b).

vertex(triangle,c).

polygon003

edge(P,E)

“E” is an edge of “P”

edge(P,E)→ polygon(P)

edge(triangle,e1).

edge(triangle,e2).

edge(triangle,e3).

Table 13.1: Partial representation of the triangle polygon

13.2.1.2 Polya’s work on Induction and Analogy in Mathemati cs

Lakatos refers the reader to [Polya, 1954, chapter 3] for theinitial phase of conjecturing and

testing. Polya describes the process which mathematiciansmight go though in order to generate

a conjecture which is worthy of a proof attempt, drawing parallels with natural science. He

splits the process up into the stages shown below. We look at each of these steps and suggest

ways in which they might be implemented. A general model would then link up all of these

stages.

1. Examine empirical evidence.

2. If necessary, change the representation in order to better see patterns in the data.

3. Find a regularity which holds for all considered instances. Conjecture that it holds in all

cases (i.e., use scientific induction).

4. Do more tests, and look at more examples. Do they satisfy the conjecture? If so, go on

to 5. If not, go back to 2.

5. We need a worthwhile way of testing the conjecture. Another supporting example won’t

show much at this stage. Look at the original data again, and search for a deeper pattern.

Try to show that the conjecture holds for a general type (possibly an infinite set).

6. Submit your conjecture to a severe, searching test that stands a good chance of refuting

it.

Stages 1 and 3 could easily be implemented using the standardHR mechanism, by looking

at data tables for given and generated concepts and generating conjectures about similarities

between the data tables. The initial steps of finding a counterexample could also be easily

implemented: for instance, asking other agents in the agency for a counterexample, or appeal-

ing to third party software, such as MACE [McCune, 2001], fora counterexample. The fifth
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polyhedron001

polyhedron(P)

“P” is a polyhedron

polyhedron(tetrahedron).

polyhedron002

vertex(P,V)

“V” is a vertex of “P”

vertex(P,V)→ polyhedron(P)

vertex(tetrahedron,a).

vertex(tetrahedron,b).

vertex(tetrahedron,c).

vertex(tetrahedron,d).

polyhedron003

edge(P,E)

“E” is an edge of “P”

edge(P,E)→ polyhedron(P)

edge(tetrahedron,e1).

edge(tetrahedron,e2).

edge(tetrahedron,e3).

edge(tetrahedron,e4).

edge(tetrahedron,e5).

edge(tetrahedron,e6).

polyhedron004

face(P,F)

“F” is a face of “P”

face(P,F)→ polyhedron(P)

face(P,F)→ face(F)

face(tetrahedron,f1).

face(tetrahedron,f2).

face(tetrahedron,f3).

face(tetrahedron,f4).

Table 13.2: Partial representation of the tetrahedron polyhedron

stage of testing a conjecture and looking for a deeper pattern could be implemented by using

exception-barring in order to form case splits of the conjecture, and then using Otter to try to

prove some (or all) of the splits. We envisage that the secondstage of re-representing the data

and the final stage of submitting the conjecture to a severe test would be the most difficult to

implement, constituting a medium or long term project. Workby [Karmiloff-Smith, 1990] on

representational change may be relevant to the second stage.

A model of how we form initial problems might provide the beginnings of an answer to the

question “where do problems come from in real mathematical activities?”.

13.2.2 Generating an initial proof scheme

We have not addressed the automatic generation of an initialproof scheme for a conjecture,

since [Lakatos, 1976] starts with an initial proof. Doing so, however, would make a more

complete cycle of mathematical discovery and justification. It should be possible to integrate

HRL with a system which can generate schematic proofs, such as those systems described in

[Baker, 1993] or [Jamnik, 2001b]. This would automate the process of finding a general, yet

flawed proof of a conjecture, given some example proofs. To automate the full cycle, however,

the difficult stage of generating example proofs automatically would be necessary. We show a
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potential integration in figure 13.2. We see this as a medium term project.

1) develop more  concepts
    form a conjecture

, send conjecture 
and examples   2) prove the conjecture individually 

    for each example, where all  
    proofs share common structure    

HRL HUMAN

send the set of proofs

SCHEMATIC PROOF GENERATOR

3) abstract from individual proofs  
    to general schematic proof
    (omit final verification step)

send schematic
        proof

send proof
and conjecture

5) determine which step of the  
    proof the counterexamples
    violate (if any) 

6) perform appropriate type
    of lemma−incorporation,
    thus modifying proof
    and/or conjecture

7) repeat steps 4−6 until 4
    fails output improved conjecture and proof

examples and
core concepts

  

   send 
          

counterexamples ,
   each step of the proof

4a) look for counterexamples to

4b) generate counterexamples to

    i) the conjecture, 

ii)
i) the conjecture,

    ii) each step of the proof

        MODEL GENERATOR

Figure 13.2: Building an interface between a HRL, a schematic proof generator and a model

generator would make a more complete cycle of mathematical discovery and justification. Au-

tomating step two would be a further project.

13.3 A more sophisticated agency

We would like to improve the agency, both in terms of the interaction protocol in HRL and mak-

ing the students more autonomous. The global theory is the collection of conjectures, concepts,

objects of interest (both those provided by the user and those discovered as counterexamples

to conjectures), and ‘proofs’ which the group discuss and accept. Three main factors can in-

fluence the production of the global theory. These are the user, the teacher and the students,

and the complexity of the system increases respectively with the degree of influence that these

have.
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We can distinguish five different layers of complexity in theinteraction between agents, shown

below. Our approach has been to implement these sequentially, each time building on the

last. This follows that of Brooks [1991], in which an architecture is built layer by layer, with

increasing complexity. An advantage of this approach is that we can compare global theories

in different types of system, to see which is the best.

1. Maximum user input (a puppet show). The user has control over which method is used

by the students, and what should be added to the group agenda (and in which order).

2. Teacher/user using students as references (a dictatorship). The teacher plays the role of

the user above.

3. Teacher allowing students to make decisions: the students decide which method they

want to use on a particular faulty conjecture.

4. Students decide the group agenda (a democracy). Studentsdecide the order in which

responses are inserted into the agenda (for example, they evaluate all responses and vote

on the order of importance).

5. Students are allowed class discussion: they can interactwith each other directly and

are not tied to responding to the teacher’s requests. They can also send requests for

conjectures etc. themselves.

HRL is currently at level two in some regards, and three in other regards. For instance, a stu-

dent who has a counterexample to a conjecture under discussion will try to perform piecemeal

exclusion if it is set to by the user, regardless of whether itevaluates the conjecture as inter-

esting or not, or whether it can find an appropriate concept toexclude. In this regard, it is at

the second level. However, students can also decide whetherto perform monster-barring or

counterexample-barring, based on aspects of their theories. In this regard, therefore, students

are at the third level. Increasing the capabilities of HRL tolevel four would be a simple, short

term task. Achieving the fifth level would be a significant improvement to HRL, and would

be a longer task. This would be a worthwhile goal, since the type of discussion held inProofs

and Refutationswas far more complex than we have modelled, and interaction between the

students is an integral part of Lakatos’s theory. One way of achieving this might be to make

the teacher’s role more analogous to the role of a blackboard.
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13.4 Flexible parameter settings

Another way of increasing the sophistication of the agents would be to make the parameter

settings flexible. Our current method of setting parameter values at the start of a session,

which are then fixed throughout the session, is unsatisfactory as a way of capturing differences

between mathematicians. Additionally, it is inflexible in that students cannot learn from their

application of Lakatos’s methods, or develop preferences during a run. In future versions of this

system we would like to include a meta-level functionality.We envisage that this meta-level

would work as a theory formation in which the input background knowledge would be current

parameters in HRL: for instance, the Lakatos methods, the way in which they are applied,

the number of individual theory formation steps, the percentage of entities for which a near-

conjecture should hold, as well as parameters in HR, such as the production rules used in the

generation of new concepts and the interestingness measures themselves.

Conjectures would be made about the way in which theories arebeing formed, such asexception-

barring always produces interesting results, the concepts which monster-barring produces are

not interesting, or concepts which are surprising do not lead to interesting conjectures. This is

turn would affect the parameter values which students use when they operate once more on the

object-level. Students would be able to change from object to meta-level; when and how often

they do this might be one further parameter which is open to change. How to generate inter-

esting theories might also be a topic of discussion within the agency, for instance one student

might communicate its conjecture thatexception-barring always produces interesting results, a

second student might find a counterexample, i.e., a conjecture or a concept which was produced

by this method but not considered by the second student to be agood result (the disagreement

may arise if the first student does not know of the counterexample, or it may know it but eval-

uate it differently). Students could then perform one of Lakatos’s methods on the conjecture:

for instance, monster-barring might lead to analysis of thedefinition of “interesting”.

Lakatos’s dialectic itself evolves during the dialectic: even the methods themselves undergo

a refinement, with monster-barring turning into monster-stretching and lemma-incorporation

into proofs and refutations. Adapting parameter values in the way we have described would be

a first step to capturing this subtlety. We anticipate that this would be a medium term project.

Colton [2001b] has already demonstrated that HR works on themeta-level. This worked very

successfully as HR was able to form meta-theories in the sameway as object-theories. Colton

outlined ideas for using HR’s meta-level reasoning functionality in a multiagent setting, in

which one agent would produce a theory while another agent, working in near-parallel, would

produce a theory about the way in which the first was producingits theory. The first agent
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would be able to access this meta-theory and use it to alter its search accordingly. These

ideas, however, have not yet been implemented. Other examples of automated reasoning on the

meta-level include Buchanan’s program Meta-DENDRAL, which reasoned about the program

DENDRAL [Buchanan and Feigenbaum, 1978], and Lenat’s program Eurisko, which reasoned

about the AM program [Lenat, 1983].

13.5 A cognitively plausible notion of mathematical concep ts

In this thesis we make no claim that the way in which concepts are represented in the input

data is cognitively plausible: it clearly is not, especially in the case of the concepts which are

purely defined extensionally. While our representation wassufficient for our goal of modelling

Lakatos’s theory, it would be interesting to replace the current way in which we input data

with techniques which better characterise the way in which humans represent, use and store

mathematical concepts. Very little work has been carried out in this area; a deficiency which

led cognitive scientists Lakoff and Núñez to claim in 2001that “there was still no discipline of

mathematical idea analysis”[Lakoff and Núñez, 2001, p.XI]

Sloman [Sloman, 1978, Chapter 8] also argues that we are not yet able to answer questions such

as “What are number concepts?”, “How is it possible for them to be learnt?”, “How is it possi-

ble for them to be used?”, “How is it possible to discover non-empirical facts about them?”, but

does offer a preliminary exploration of some of the issues. He suggests that methods of con-

ceptual analysis, traditionally used by philosophers and linguists, can also be important for a

psychological account how we understand mathematical concepts. Conversely, a new psycho-

logical account could feed back into old philosophical problems about the nature of numbers.

Sloman presents a series of increasingly complex data structures as possible ways of repre-

senting this knowledge. For instance, in order to grasp the numberthree, a child must build

associations between different representations of it (both written and oral) and information

such as the fact that it is a number name, that its successor isfour and its predecessor is two,

the fact that it is a prime number, that it is odd, its additiontable, i.e.,(0+3), (3+0), (2+1),

(1+2), (1+1+1), its multiplication table, and so on. A theory which purports to explain how

mathematical concepts are represented must specify a structure which is can be gradually built

up, extending the structure so as to contain more explicit information about itself, how it can be

partially modified or replaced, how complex information is held an efficiently accessible form,

and how someone might learn new procedures for doing things with the structure. Sloman

also highlights the educational potential inherent in a better understanding of how we build and

use representations of a mathematical concept such asnumber. One advantage would be an

increased respect for the abilities of children to grasp such concepts.
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Lakoff and Núñez have also addressed the deficiency. They claim that mathematics is about

ideas and understanding, rather than formal proofs from formal axioms and definitions, which

could be seen as a cognitive counterpart to Lakatos’s philosophical ideas. In particular, they

argue that mathematical concepts develop by means of conceptual metaphors which are rooted

in our biology and are best understood in light of the embodied mind.

Lakoff and Núñez claim that we are born with some minimal innate arithmetic. This includes

capacity for subitizing (immediately recognising how manyobjects there are in a small col-

lection), simple adding and subtracting of small numbers, and making rough estimates of the

number of objects in a group.

In order to form more complex mathematical ideas, we need to be able to form two types of

conceptual metaphor between innate arithmetic and the morecomplex arithmetic of natural

numbers. Firstly, we need to be able to makegrounding metaphors. These allow us to project

from everyday experiences onto abstract concepts. For instance, we make the metaphor be-

tween putting physical objects into groups, and the abstract concept of addition. Lakoff and

Núñez identify four grounding metaphors: forming collections, putting objects together, us-

ing measuring sticks, and moving through space. The second type of metaphor that we need

to be able to make is alinking metaphor. This consists of blending different metaphors, for

instance to blend subitizing with counting, and enables us to link arithmetic, for example, to

other branches of mathematics. (It can be seen as forming metaphors where the source and

target domain are themselves metaphors.) Lakoff and Núñez argue that much of the abstrac-

tion of higher mathematics is the consequence of this type ofsystematic layering of metaphor

upon metaphor and show where mathematical concepts and lawscome from, in terms of these

metaphors.

In each of the grounding metaphors, there is a relationship between our physical world and

mathematics. There are collections of objects, complex objects with parts, physical segments

and locations, in the physical world. Lakoff and Núñez call this relationship theNumbers are

Things in the Worldmetaphor and argue that the grounding metaphors induce thismore gen-

eral metaphor. They use this general metaphor to derive the mathematical concept ofclosure,

which they hold, does not derive from innate mathematics. (For example, they claim that we

can subitize three objects and we can subitize four objects,but we cannot subitize seven ob-

jects.) Instead, they argue, from experience we notice the general principle that “an operation

on physical things yields a physical thing of the same kind”[Lakoff and Núñez, 2001, p.81]

and, therefore, we can use theNumbers are Things in the Worldmetaphor to conclude thatan

operation on numbers yields a number of the same kind. This central concept of mathemat-

ics has led to the extension of the number system in order to achieve closure with respect to
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different arithmetic operations. For instance, the operation of subtraction led to zero and nega-

tive numbers, division led to rational numbers, and taking roots led to irrational and imaginary

numbers.

Another example of metaphor being central to our mathematical concepts is what Lakoff and

Núñez term theBasic Metaphor of Infinity. This is a single general conceptual metaphor in

which processes that go on indefinitely are conceptualised as having an end and an ultimate

result. Special cases of this general metaphor include infinite sets, points at infinity, limits of

infinite series, infinite intersections and least upper bounds.

To our knowledge, the work by Sloman and Lakoff and Núñez has not yet been explicitly

represented computationally. However, a cognitively plausible account of the way in which

we represent and manipulate mathematical concepts is vitalto any model which purports to

explain human mathematical reasoning. For instance, in §6.1 we refer to the fact that math-

ematicians had formed conjectures about polyhedra and evenformulated detailed proof plans

of conjectures which involved complicated manipulations of polyhedra, without ever explic-

itly defining what a polyhedron is (highlighted by [Lakatos,1976]). Clearly, theorems can be

meaningful even without an explicit definition of the concepts involved. In Euler’s example

the concept of a polyhedron is evidently embedded within a lot of knowledge about two and

three-dimensional Euclidean space, as shown by Cauchy’s initial proof. How that intuitive

information is acquired, how it is represented, and how it isused, are important questions, to

which Sloman [1978], and Lakoff and Núñez [2001] have started to give theoretical answers. A

model of their ideas might entail combining a model of an embodied world (either simulated or

real) with work from the areas of metaphor and conceptual blending. It might be the case that

the fields of robotics and of research into metaphors are bothsufficiently developed for such

a relationship to be established. Work in the former includes [Almeida e Costa and Rocha,

2005], while Pereira and Cardoso [2003] and Veale and O’Donoghue [2000] who present com-

putational representations of conceptual blending, extending work by [Fauconnier and Turner,

1998], are examples of work in the latter.

We see an implementation of these ideas as being a long term project, of particular interest.

13.6 Applications of our system

An aid to scientists

We could use Lakatos’s ideas to help us to develop new techniques which aid scientists in

their work [Langley, 2002]. As with much work in the automated reasoning field, HR [Colton,
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2002] was originally developed for this purpose, i.e., to help mathematicians discover new

results, and we consider that our extended version of automated theory formation contributes

to this purpose. Research, for instance [Fielder, 2001] and[Langley, 2002], has shown that

scientists prefer to know the background of a claim made by a computer program, rather than

take it on trust. This fits perfectly with Lakatos’s philosophy of presenting the history of a

result rather than isolated results with no explanation as to the thinking behind them.

Bundy [2006] has addressed the problem of why mathematicians tend not to accept automated

proofs, despite computer proofs of theorems which mathematicians have been trying to prove

for years. Examples of such theorems include the Kepler problem on the densest packing

of spheres, and the four-colour theorem that any map in a plane can be coloured using four

colours in such a way that regions sharing a common boundary (other than a single point)

do not share the same colour. Bundy argued that mathematicians normally give two reasons

for not accepting automated proofs; the proof may not be correct, and the proof is not human

understandable. Of these, Bundy suggested that the first wasnot the real issue since non-fatal

errors are tolerated elsewhere in mathematics, for instance in computer algebra systems used

as teaching aids (such as Maple), and in human proofs where errors may go undetected for

hundreds of years. He argues that the main reason that mathematicians are reluctant to accept

computer proofs is the latter, that computer generated proofs are inaccessible to humans. Using

computers to make proofs more accessible, therefore, is a current challenge within the field of

computational mathematical reasoning. A system which showed the evolution of a proof, the

statement which it proved, and the concepts in the statementand the proof, could make the

final proof much more accessible. Our implementation of Lakatos’s theory would be one way

of addressing this challenge.

An aid to students

Lakatos’s work had a strong pedagogical flavour. He hypothesised that students of mathemat-

ics would benefit from a more realistic presentation of the history behind concept definitions,

theorem statements, etc., since giving the motivation for defining a certain set of entities would

aid understanding rather than seeming arbitrary. As Kadvany [2001] argues, “pedagogy is a

main topic in Lakatos’s philosophy, and compliments his role as an educator and pedagogical

philosopher” [Kadvany, 2001, p. 8].

Lakatos’s theory can be seen as a theory of ‘debugging’ applied to mathematics2. Counterex-

amples indicate bugs of some sort, in concepts, conjectures, proofs, etc., and Lakatos’s heuris-

tic methods can be seen as different debugging strategies. The role of debugging in learning is

demonstrated by Sussman [1975], in which he discusses various kinds of bugs that can occur,

2Thanks to Aaron Sloman for pointing this out.
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techniques for dealing with them, and kinds of learning thatprevent similar bugs from being

written. Polya [1945] also discusses ways in which a teachercan set challenges which are at

an appropriate level for a given student, and ways in which a student can make mistakes which

then aid the learning process.

[Lakatos, 1976] is the story of a class of individual students learning, whose progress is an

analogy for Lakatos’s rational reconstruction of the progress of mathematical thought in this

area. Kadvany [2001] points out that this uses Haeckel’s biogenetic law that “ontogeny reca-

pitulates phylogeny”. If it is true that the progress in mathematical thought of an individual in

some way mirrors historical progress, then a tool which modelled progress through a subject

would have an obvious application as an intelligent tutor. Conversely, developing the model as

an intelligent tutor would enable us to test Lakatos’s claims about its value. Such an application

of HRL would be a long term project.

Finding knowledge of interest to experts

One motivation behind computational philosophy of scienceis to develop new techniques

which are useful in finding new knowledge of interest to experts [Langley, 1999]. To this end, it

would be interesting to develop both HRL and our spin-off system, TM, so that mathematicians

could use it to discover new, proved theorems. This would be along term project.

13.7 Conclusion

[Lakatos, 1976] is a highly detailed account of how mathematics evolves, and while we hope

to have achieved our goals of showing that it is both possibleand useful to provide a computa-

tional reading of his ideas, our work is only a preliminary reading, and there are many future

directions which the project could take. In this chapter, wehave discussed six such directions.

Further possibilities, which would be valuable and interesting endeavours to pursue, include

the following:

(i) extending the domain of application of the methods, and working with larger data-sets;

(ii) further areas of improvement of the system, as well as further experiments, which we

identified in chapter 10;

(iii) using Lakatos’s methods to develop a meta theory, for instance, about which was the most

useful method to use in a given situation. Lakatos’s dialectic itself evolves during the dialectic:
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even the methods themselves undergo a refinement, with monster-barring turning into monster-

stretching and lemma-incorporation into proofs and refutations;

(iv) developing a way of using the exception-barring methods to aid theorem proving by split-

ting a theorem into different conjectures which are then easier to prove, as described by Colton

et al. [2005]. For instance, Colton et al. [2005] show how strategic withdrawal might be used to

narrow the domain of application of an open conjecture aboutall groups, to all Abelian groups.

This modified conjecture might then be proved, and another conjecture about the negation of

the concept, in this case non-Abelian groups, would then be the new open conjecture. This may

be possible to prove, or the process repeated and strategic withdrawal applied again, and so on

until all of the different cases, and therefore the originalconjecture, have been proven; and

(v) implementing other theories of scientific discovery, for instance, Popper [1972] and Kuhn

[1970], and comparing the theories produced by each system.This would be an ambitious

research project of great interest to computational philosophers of science.
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Conclusions

Lakatos attacked the view that mathematical knowledge is a priori and infallible, arguing in-

stead that mathematics is a quasi-empirical subject, and mathematical knowledge evolves via

analysis of conjectures, concepts and proofs, which are refined through interaction with coun-

terexamples. Lakatos’s work is still relevant today, as evidenced by its inclusion in a recent

work on new directions in the philosophy of mathematics [Tymoczko, 1998].

We hold that Lakatos’s work in the philosophy of mathematicsis of interest to researchers in

artificial intelligence, since it provides an account of theevolution of a mathematical conjec-

ture, which is rare in its richness of detail and historical attention. We also hold that the field of

artificial intelligence provides us with the tools to gain a novel perspective on Lakatos’s philo-

sophical work, since the process of implementing an idea as an algorithm forces one to clarify

the idea, raises questions which otherwise may not arise, and results in a model which provides

a new way of evaluating the idea. This thesis is the story of our exploration of the symbiotic

relationship between the two fields.

Our central thesis is that it is possible to give a computational reading of Lakatos’s theory.

Our secondary thesis is that it is useful to do so, both from the philosophy of mathematics

perspective, and the AI perspective. In §14.1 we argue that we have provided strong evidence

for both of these positions. In §14.2 we discuss the contributions of this thesis. We conclude

the discussion of our project in §14.3.

14.1 Have we achieved our aims?

In §1.2, we stated that the aims of this project were to:
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(i) provide a computational reading of Lakatos’s theory;

(ii) clarify and extend Lakatos’s methods;

(iii) test the domains to which the methods apply;

(iv) evaluate the methods; and to

(v) evaluate our implementation.

Achieving the first of these aims would provide evidence for our primary thesis, i.e., we show

that it is possibleto give a computational reading of Lakatos’s theory by doingso. The four

remaining aims suggest ways in which providing such a reading would be a useful endeavour

to undertake.

We have achieved our first aim by developing a computational model of Lakatos’s theory:

HRL. This is a multiagent system in which ‘students’ discusstheir theories with each other via

a ‘teacher’, which is based on the dialogue format which Lakatos uses to present his theory.

Each agent is able to perform the method of surrender, monster-barring, exception-barring and

lemma-incorporation. We describe our representation of each of these methods in chapters 5,

6, 7 and 9 respectively.

The process of developing this model has raised questions concerning how ambiguity arises

and how it can be resolved; in what way we are surprised when faced with an unusual coun-

terexample in a proof; and when we should surrender a conjecture. Writing algorithms which

are then translated into a computer program has forced us to provide answers to these questions,

and thus clarify some of Lakatos’s methods. We have also extended Lakatos’s theory by con-

sidering the application of his methods to other types of conjecture; in particular to equivalence,

and non-existence conjectures. Implementing counterexample-barring and monster-accepting

is a further extension of Lakatos’s theory. In this way, we have achieved our second aim.

We achieved our third aim by testing the domains to which the methods apply: considering

their application to further mathematical domains of number theory and group theory, as well

as the non-mathematical domain of animal taxonomy.

Our system HRL has enabled us to evaluate the methods, thus achieving our fourth aim, by

performing empirical experiments and analysing the output. This is described in chapter 10. In

particular, we have tested three hypotheses:

• it is possible to fine-tune our system;

• the methods are of general use; and

• the methods have application as AI techniques.
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Finally, in chapter 11, we have performed a philosophical evaluation of Lakatos’s theory and

our extended theory, based on criteria suggested by Thagard[1993], Sloman [1978] and Popper

[1972]. Hence our fifth and final aim has been achieved.

14.2 Contributions

This is the first systematic automated realisation of Lakatos’s theory. We have contributed to

three areas: computational philosophy of science and philosophy of mathematics, automated

theory formation, and automated theorem proving.

14.2.1 Computational philosophy of science

We contribute to computational philosophy of science by providing a novel perspective on

Lakatos’s theory. The computational perspective has suggested new ways to clarify, extend

and evaluate Lakatos’s theory.

14.2.2 Automated theory formation

We contribute to the field of automated theory formation by extending the capabilities of a

state of the art automated theory formation program HR [Colton, 2002]. HRL can modify

its conjectures, discuss and reject objects which are controversial, and represent and improve

proof plans. These are all important processes in theory formation, and automating them has

advanced the state of the art in this field.

14.2.3 Automated theorem proving

We contribute to the field of automated theorem proving by implementing a system, which is

based on Lakatos’s methods. This system is able to take in a conjecture, try to prove it and, if

unsuccessful, produce modified versions of the conjecture which it canprove. This improves

upon current automated theorem provers, which are inflexible in that if they are passed a con-

jecture which is either false or too difficult to prove withinthe allocated time, they simply

fail.
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14.3 Conclusions

Understanding the phylogeny and the ontogeny of mathematical thought is a challenge to re-

searchers in the field of artificial intelligence, as well as to philosophers of mathematics and

psychologists. Lakatos has shed some light on the problem, and we have used his insights to

develop an automated theory formation system within which agents are able to discuss and

refine conjectures, raise counterexamples, negotiate meaning of concepts, and improve upon

a faulty proof. Sloman argues that“the development of science, the learning of a child, and

the mechanisms necessary for an intelligent robot all involve computational processes, which

build up and deploy knowledge of the form and contents of the world. This is one of several

points at which bridges can be built between philosophy of science, developmental psychology,

and artificial intelligence.” [Sloman, 1978, p. 61]. We have successfully built one such bridge.
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Polyhedra and their Euler

characteristic

CUBE                                  TETRAHEDRON                     OCTAHEDRON
8 − 12 + 6 = 2                              4 − 6 + 4 = 2                               5 − 8 + 5 = 2

Figure A.1: Regular polyhedra

Figure A.2: The hollow cube: V - E + F = 16 - 24 + 12 = 4
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Figure A.3: The twin tetrahedra: V - E + F = 6 - 11 + 8 = 3

Figure A.4: The picture frame: V - E + F = 16 - 32 + 16 = 0

Figure A.5: The cylinder: V - E + F = 0 - 2 + 3 = 1
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Figure A.6: The star polyhedron: V - E + F = 12 - 30 + 12 = -6 (if each face is a pentagon); or

32 - 90 + 60 = 2 (if each face is a triangle)
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Mathematical proofs

B.1 Proof of Euler’s conjecture

Theorem: If G is a connected plane graph, thenv−e+ f = 2

Proof: (By induction one)

Base case:

(i) Let e= 0. Thenv = 1 and f = 1. 1−0+1= 2

(ii) Let e= 1. Then we either have a circle, or a line, as shown in figure B.1.

1 − 1 + 2 = 2 2 − 1 + 1 = 2

Figure B.1: The two possible connected plane graphs consisting of one edge, and their associ-

ated Euler characteristics

So the theorem holds fore≤ 1.

Inductive hypothesis:Assume thate≥ 1, and that the theorem holds for all graphs withe−1

edges.

Case 1:If G is a tree, thenf = 1, andv = e+1. Sov−e+ f = (e+1)−e+1= 2.

Case 2: If G is not a tree, then remove an edgee belonging to some circuit. We now have

planar graphH with v vertices ande−1 edges, andf −1 faces (i.e., we have removed an edge

and a face). By the base case, we know thatH satisfies Euler’s conjecture, i.e.,
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v− (e−1)+ ( f −1) = 2

v−e+1+ f −1 = 2

v−e+ f = 2. �

B.2 The Diagonalisation proof

Theorem: The set of real numbers is uncountable1

Proof:2 Assume that the set of real numbers (R ) is countable. Then any subset ofR is also

countable. Take the interval (0,1). If it is countable then there exists a functionf such that

f : Z → (0,1) and f is one-to-one onto. Then we can list all of the elements in (0,1) as they

are mapped toZ+, say inS . But then we can constructb ∈ (0,1) such that b differs from

every number inS by letting b = 0.b1b2b3...bi ... wherebi is 1 if the theith position of the

ith integer inS is 2, and 2 otherwise. Thereforeb /∈ S . But S is a list of all elements, i.e.,

a∈ (0,1) => a∈ S . This is a contradiction. ThereforeR is uncountable.�

B.3 Hilbert’s proof

We present the relevant axioms from [Hilbert, 1901] and Hilbert’s proof of the theorem that for

two points A and C there always exists at least one point D on the line AC that lies between A

and C.

Axioms of incidence:

Axiom (I,3): There exist at least two points on a line. There exist at leastthree points that do

not lie on a line.

Axioms of order:

Axiom (II,2): For two points A and C, there always exists at least one point Bon the line AC

such that C lies between A and B.

Axiom (II,3): Given any three points A, B, C of a line, one and only one of the points is

between the other two

1An infinite set is countable if there exists a one-to-one ontocorrespondence between the set and the integers.
Otherwise it is uncountable.

2This proof is a sketch only.
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Axiom (II,4): Let A, B C be three points that do not lie on a line and leta be a line (in the

plane ABC) which does not meet any of the points A, B, C. If the linea passes through a point

of the segment AB, is also passes through a point of the segment AC, or through a point of the

segment BC.

Theorem: For two points A and C there always exists at least one point D on the line AC that

lies between A and C.

Proof: By Axiom (I,3) there exists a point E outside the line AC, and by Axiom (II,2) there

exists on AE a point F such that E is a point of the segment AF. Bythe same axiom and by

Axiom (II,3) there exists on FC a point G, that does not lie on the segment FC. By Axiom (II,4)

the line EG must then intersect the segment AC at a point D.�

E

F

D

G

C
A

Figure B.2: Hilbert’s proof of the theorem that for two points A and C there always exists at least

one point D on the line AC that lies between A and C.
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Output from HRL

C.1 Lemma-incorporation

This example shows HRL performing global and local lemma incorporation in the algebra

domain (see §9.6.3).

Global conjecture:

∀ a b c d : a is a group∧ b in a∧ c in a∧ d in a a is a group∧ b in a∧ c in a∧ d in a∧ b *

c = b * d implies c = d; i.e., the left hand cancellation law holds for a

Proof scheme:

1. ∀ a b c d : a is a group∧ b in a∧ c in a∧ d in a∧ b * c = b * d → a is a group∧ b in a

∧ c in a∧ d in a∧ inv(b) * (b * c) = inv(b) * (b * d)

2. ∀ a b c d : a is a group∧ b in a∧ c in a∧ d in a∧ inv(b) * (b * c) = inv(b) * (b * d)  a

is a group∧ b in a∧ c in a∧ d in a∧ (inv(b) * b) * c = (inv(b) * b) * d

3. ∀ a b c : a is a group∧ b in a∧ c in a∧ exists d (d in a∧ (inv(d) * d) * b = (inv(d) * d) *

c )→ a is a group∧ b in a∧ c in a∧ exists d (d=id∧ d * b = d * c )

4. ∀ a b c : a is a group∧ b in a∧ c in a∧ exists d (d=id∧ d * b = d * c ) → a is a group∧
b in a∧ c in a∧ b=c

The algebra 012100200 is a counterexample to both the globalconjecture and to lemma 2.

After performing local and global lemma-incorporation, HRL modifies the global conjecture

to:
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∀ a b c d : a is a group∧ b in a∧ c in a∧ d in a∧ (inv(b) * b) * c = (inv(b) * b) * d → a is a

group∧ b in a∧ c in a∧ d in a∧ b * c = b * d implies c = d; i.e., the left hand cancellation law

holds for a.



Appendix D

Further details of HR

In this appendix we extend the technical details on HR [Colton, 2002], which we briefly dis-

cussed in chapter 3.

D.1 Production rules

We motivate and describe the production rules in HR which we refer to in the thesis. We outline

how they work, and show an example in terms of taking an old data table and generating a

new one. We describe the parameters in standardPROLOGnotation, and also include the HR

notation for completeness. For details on how the new definitions are generated, see [Colton,

2002, chapter 6]. Most of the motivating and illustrative examples are taken from [Colton,

2002, chapter 6].

The match production rule

The match production rule is motivated by concepts such as asquare number, where the pred-

icate is multiplication, and the sub-objects are two divisors which are equal. Other motivating

examples includeself inverse groupsin group theory, andloopsin graph theory, where a node

is adjacent to itself.

The match production rule extracts those rows from the data table where the entries in certain

columns are equal. InPROLOGnotation, it takes parameters[X1,X2,X3, ...Xn], wheren is the

arity of the input concept, and where thenth entry takes the value of the specified columnXi.

For instance, the parameters[X,Y,Y] would take a data table with arity three (i.e. there are three

columns in the data table) and keep those rows of the data table where the entry in the third
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column is equal to the entry in the second column. We show an example in table D.1, where

the input concept is multiplicative pairs, and the output concept is squares with their integer

square roots. In HR notation this is< 1,2,2 >.

Input

int div div

1 1 1

2 1 2

2 2 1

3 1 3

3 3 1

4 1 4

4 2 2

4 4 1

. . .

. . .

. . .

10 1 10

10 2 5

10 5 2

10 10 1

→

Intermediate

int div div

1 1 1

4 2 2

9 3 3

→

Output

int div

1 1

4 2

9 3

Table D.1: An example of the match production rule, with parameters [X,Y,Y]. Here, any tuple

from the input concept where the the entry in the second column is equal to the entry in the

third column is entered into an intermediate data table. The output data table is generated from

the intermediate data table by omitting the final column, i.e. by taking all tuples [X,Y]. In this

example the input concept is multiplicative pairs and the output concept issquares with their

integer square roots

The negate production rule

The negate production rule is motivated by concepts such asnon-squares, non-central elements

in groups, andclosed graphs– which have no endpoints. It finds the complement of a concept,

i.e. those entities with a certain property, such as integer, which do not satisfy the predicate of

an input concept, such as square.

This rule does not require a parameterisation. We show an example in table D.2, where the

input concept is squares, and the output concept is non-squares.

The size production rule

The size production rule is motivated by concepts such as theτ function in number theory,

which counts the number of divisors of an integer, and the concept of anorder of a group,
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Input

integer

1

4

9

→

Integers

integer

1

2

3

4

5

6

7

8

9

10

→

Output

integer

2

3

5

6

7

8

10

Table D.2: An example of the negate production rule It takes an input concept and then finds

the data table for the objects of interest in the theory in which it is working. It then produces a

new data table consisting of all of the tuples in the the objects of interest data table which are

not in the data table for the input concept. In this example the input concept is square numbers,

the object of interest data table represents integers and the output concept is non-squares. This

rule takes no parameters

which counts the number of elements in a group.

The size production rule counts the number of tuples of sub-objects which satisfy the definition

of a concept. It takes parameters which specify which columns should be counted, and then

counts each tuple in the specified column for each entry, and records this number. For instance,

given parameterisation[X] (or < 1 > in HR notation), it counts the number of tuples for each

entry in column one and records this figure. We show an examplein table D.3, where the input

concept is divisors of an integer, and the output concept is the number of divisors of an integer.

The split production rule

The split production rule is motivated by concepts such as aprime number, where the number

of divisors is exactly 2. Another example if that of asymmetric group, which has exactly one

central element.

The split production rule extracts rows from a data table where specified columns have specified

values. For example, given parameterisation[X,2,Y] for a concept of arity three, the split rule

will extract those rows whose second column has value 2. (This is represented as< 2 = 2 >

in HR notation.) We show an example in table D.4, where the input concept is the number of

divisors of an integer, i.e. theτ function, and the output concept is integers which have exactly

two divisors, i.e. prime numbers.
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Input

integer divisor

1 1

2 1

2 2

3 1

3 3

. .

. .

. .

10 1

10 2

10 5

10 10

→

Intermediate

integer

1

2

2

3

3

4

4

4

.

.

.

10

→

Output

integer number

1 1

2 2

3 2

4 3

5 2

6 4

7 2

8 4

9 3

10 4

Table D.3: An example of the size production rule, with parameters [X]. In this example, the

size rule counts the number of tuples for each entry in column one of the input concept. It

represents each entry the appropriate number of times in an intermediate data table. The rule

then generates a new data table from the intermediate data table by counting the number of

times an entry appears in the data table and recording this number next to the entry. In this

example, the input concept is divisors of an integer, and the output concept is the number of

divisors of an integer.

The compose production rule

The compose production rule was motivated by thecompositionof two functions. For instance,

given functionsf (x) andg(x), it was designed to construct the functionf (g(x)).

This production rule takes two concepts, a primary and a secondary concept, as input. It then

‘overlaps’ the rows of the primary concept with those of the secondary concept in a way which

has been specified: both(i) which pairs of tuples to overlap and(ii) how to overlap them.

For instance, suppose we have primary conceptP and secondary conceptS, both of arity 3.

We might specify that(i) we are to overlap all tuples[P1,P2,P3] from P with any tuples

[P1,P3,S3] from S, to produce(ii) a new concept of arity 4 with tuples[P1,P2,P3,S3]. A

simpler example would be to take two conceptsP andSboth of arity 1, and overlap any tuple

[P1] from P with any tuple[P1] from S, to produce a new concept of arity 1 with tuples[P1].

The parameterisation in the latter example would be[X] (or < 1 >). In table D.5 we show an

example of this case, where the primary input concept isodd numbers, which has arity 1, and

the secondary concept isnon-square numbers, also of arity 1. Given the parameterisation[X],

the compose production rule will take any tuple[P1] from the first concept and see whether

there are matching tuples[P1] from the second concept. If so, the tuple will be included in the



D.1. Production rules 249

Input

integer number

1 1

2 2

3 2

4 3

5 2

6 4

7 2

8 4

9 3

10 4

→

Intermediate

integer number

2 2

3 2

5 2

7 2

→

Output

integer

2

3

5

7

Table D.4: An example of the split production rule, with parameters [X,2]. The split rule extracts

from the input data table those rows whose second column has value 2, and represents these

in an intermediate data table. The rule then extracts each entry and omits the second column,

[X], in the data table for the output concept. In this example the input concept is the number of

divisors of an integer, i.e. the τ function, and the output concept is integers which have exactly

two divisors, i.e. prime numbers.

data table for the new concept. If not, the tuple will be omitted. The resulting new concept in

this example isodd, non-square numbers.
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Input (primary concept)

integer

1

3

5

7

9

+

Input (secondary concept)

integer

2

3

5

6

7

8

10

→

Output

integer

3

5

7

Table D.5: An example of the compose production rule, with parameters [X]. The input is

two concepts: a primary concept odd numbers and a secondary concept non-square numbers.

Compose takes any tuples from the data table for the primary concept which also match tuples

in the data table for the secondary concept, and adds them to the data table for the new concept.

Any tuples which do not match are omitted. The resulting output concept is odd, non-square

numbers



Glossary of Philosophical terms

Philosophers of mathematics are usually concerned with what kind of knowledge mathemat-

ical knowledge is, what sort of entity a mathematical entityis, whether mathematical truths

correspond to reality, and whether mathematical truths exist independently of humans. Below

we briefly describe traditional perspectives and proponents1 .

Constructivism – the view that mathematical entities are mental constructions and do not exist

independently of the mind. On this view we invent, as opposedto discover, theorems. Kant

held this viewpoint.

Empiricism – the view that mathematical truths are based on sensory experience of the external

world. All numbers must be numbersof something, such as bodies, sounds, or beatings of the

pulse. Mill [1973] was an empiricist.

Game formalism – seemathematical formalism.

Logicism – the view that all of mathematics is reducible to logic. Frege and Russell were

logicists.

Mathematical formalism – the view that there are no mathematical objects, only uninterpreted

formal systems. Hilbert was a mathematical formalist. There are two types of formalism;

term formalismandgame formalism. The first is the view that mathematics is about linguistic

expressions, that is, we identify mathematical entities, such as 0, with their names, ‘0’. Game

formalism likens the practice of mathematics to a game played with linguistic characters. These

symbols and expressions are devoid of reference, and so it would make no sense to ask, for

example, what 0 refers to. Mathematics is seen as the manipulation of meaningless symbols,

or a game played with arbitrary or conventional rules. Hilbert suggested one such rule in his

definition of proof as “a sequence of formulae each of which iseither an axiom or follows from

earlier formulae by a rule of inference” Hilbert [1901]. Formal logic and Hilbertian view of

proof is largely a twentieth century invention.

1We are grateful to Jeffery Ketland for his lecture notes on the philosophy of mathematics, from which we have
drawn in this appendix.
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Mathematical realism – the view that mathematical entities exist independently of the mind.

Mathematical statements have a truth value which is independent of our knowing it, and hu-

mansdiscover, rather than invent theorems. Statements such as 2+2 = 4 are true because they

correspondto facts. Plato was a proponent of this view.

Term formalism – seemathematical formalism.



Glossary of Mathematical terms 2

Abelian group: a group on which the defined binary operation is commutative;that is, ifa and

b are members of an Abelian group,a∗b = b∗a.

algebra: a system, such as a ring, group or field, endowed with finitary operations with specific

properties.

algebraic number: any number that is the root of a polynomial equation with coefficients

drawn from a given field, in particular the rationals. We denote this byA

Euler characteristic: the following equation of a graph or polyhedron:

number of vertices - number of edges + number of faces

group: a set which is closed under an associative binary operation with respect to which there

exists a unique identity element within the set and every element has an inverse within the set.

groupoid: a set together with a binary operation under which it is closed.

integer: a number that may be expressed as the sum or difference of two natural numbers; a

member of the set{...,−3,−2,−1,0,1,2,3, ...}, usually denoted byZ.

irrational number: any real or complex number that cannot be expressed as the ratio of two

integers.

quasi-group: a groupoid in which every element has a unique left inverse and a unique right

inverse, which need not be equal unless the associative law holds. If a quasi-group is commu-

tative, each element has at least one inverse, but it need notbe unique.

rational number: any number that can be expressed as a ratio,a
b, of two integers, of which

the latter may not be zero. Usually denoted byQ.

real number: any rational or irrational number, usually denoted byR.

2Extracts from Borowski and Borwein [1989]
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ring: a non-empty set endowed with two binary operations, usuallycalled addition and multi-

plication, such that the set is an Abelian group under the addition and a semi-group under the

multiplication, the latter being both left and right distributive over addition. If, furthermore,

the ring has a multiplicative identity element, it is said tobe a ring with identity.

semi-group: a set endowed with an associative binary operation, usuallycalled addition, under

which it is closed.

transcendental number:a number that is real but not algebraic. We denote this byT.
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