7 research outputs found

    Fractional generalizations of Rodrigues-type formulas for Laguerre functions in function spaces

    Get PDF
    Generalized Laguerre polynomials, L(a) n, verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Certain Developments of Laguerre Equation and Laguerre Polynomials via Fractional Calculus

    Get PDF
    Recently, much interests have been paid in studying fractional calculus due to its effectiveness in modeling many of the natural phenomena. Motivated essentially by the success of the applications of the orthogonal polynomials, this paper is mainly devoted to developing Laguerre equation and Laguerre polynomials in the fractional calculus setting. We provide some type of generalizations of the classical Laguerre polynomials, via conformable fractional calculus. We start by solving the fractional Laguerre equation in the sense of conformable calculus about the fractional regular singular point. Next, we write the conformable fractional Laguerre polynomials (CFLPs), through various generating functions. Subsequently, Rodrigues’ type representation formula of fractional order is reported, besides certain types of recurrence relations are then developed. The conformable fractional integral and the fractional Laplace transform, and the orthogonal property of CFLPs, are established. As an application, we present a numerical technique to obtain solutions of interesting differential equations in the frame of conformable derivative. For this purpose, a new operational matrix of the fractional derivative of arbitrary order for CFLPs is derived. This operational matrix is applied together with the generalized Laguerre tau method for solving general linear multi-term fractional differential equations (FDEs). The method has the advantage of obtaining the solution in terms of the CFLPs’ parameters. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method

    Adaptive smoothing of multi-shell diffusion-weighted magnetic resonance data by msPOAS

    Get PDF
    In this article we present a noise reduction method (msPOAS) for multi-shell diffusion-weighted magnetic resonance data. To our knowledge, this is the first smoothing method which allows simultaneous smoothing of all q-shells. It is applied directly to the diffusion weighted data and consequently allows subsequent analysis by any model. Due to its adaptivity, the procedure avoids blurring of the inherent structures and preserves discontinuities. MsPOAS extends the recently developed position-orientation adaptive smoothing (POAS) procedure to multi-shell experiments. At the same time it considerably simplifies and accelerates the calculations. The behavior of the algorithm msPOAS is evaluated on diffusion-weighted data measured on a single shell and on multiple shells

    Adaptive smoothing of multi-shell diffusion-weighted magnetic resonance data by msPOAS

    Get PDF
    In this article we present a noise reduction method (msPOAS) for multi-shell diffusion-weighted magnetic resonance data. To our knowledge, this is the first smoothing method which allows simultaneous smoothing of all q-shells. It is applied directly to the diffusion weighted data and consequently allows subsequent analysis by any model. Due to its adaptivity, the procedure avoids blurring of the inherent structures and preserves discontinuities. MsPOAS extends the recently developed position-orientation adaptive smoothing (POAS) procedure to multi-shell experiments. At the same time it considerably simplifies and accelerates the calculations. The behavior of the algorithm msPOAS is evaluated on diffusion-weighted data measured on a single shell and on multiple shells

    The Propagation-Separation Approach

    Get PDF
    Lokal parametrische Modelle werden häufig im Kontext der nichtparametrischen Schätzung verwendet. Bei einer punktweisen Schätzung der Zielfunktion können die parametrischen Umgebungen mithilfe von Gewichten beschrieben werden, die entweder von den Designpunkten oder (zusätzlich) von den Beobachtungen abhängen. Der Vergleich von verrauschten Beobachtungen in einzelnen Punkten leidet allerdings unter einem Mangel an Robustheit. Der Propagations-Separations-Ansatz von Polzehl und Spokoiny [2006] verwendet daher einen Multiskalen-Ansatz mit iterativ aktualisierten Gewichten. Wir präsentieren hier eine theoretische Studie und numerische Resultate, die ein besseres Verständnis des Verfahrens ermöglichen. Zu diesem Zweck definieren und untersuchen wir eine neue Strategie für die Wahl des entscheidenden Parameters des Verfahrens, der Adaptationsbandweite. Insbesondere untersuchen wir ihre Variabilität in Abhängigkeit von der unbekannten Zielfunktion. Unsere Resultate rechtfertigen eine Wahl, die unabhängig von den jeweils vorliegenden Beobachtungen ist. Die neue Parameterwahl liefert für stückweise konstante und stückweise beschränkte Funktionen theoretische Beweise der Haupteigenschaften des Algorithmus. Für den Fall eines falsch spezifizierten Modells führen wir eine spezielle Stufenfunktion ein und weisen eine punktweise Fehlerschranke im Vergleich zum Schätzer des Algorithmus nach. Des Weiteren entwickeln wir eine neue Methode zur Entrauschung von diffusionsgewichteten Magnetresonanzdaten. Unser neues Verfahren (ms)POAS basiert auf einer speziellen Beschreibung der Daten, die eine zeitgleiche Glättung bezüglich der gemessenen Positionen und der Richtungen der verwendeten Diffusionsgradienten ermöglicht. Für den kombinierten Messraum schlagen wir zwei Distanzfunktionen vor, deren Eignung wir mithilfe eines differentialgeometrischen Ansatzes nachweisen. Schließlich demonstrieren wir das große Potential von (ms)POAS auf simulierten und experimentellen Daten.In statistics, nonparametric estimation is often based on local parametric modeling. For pointwise estimation of the target function, the parametric neighborhoods can be described by weights that depend on design points or on observations. As it turned out, the comparison of noisy observations at single points suffers from a lack of robustness. The Propagation-Separation Approach by Polzehl and Spokoiny [2006] overcomes this problem by using a multiscale approach with iteratively updated weights. The method has been successfully applied to a large variety of statistical problems. Here, we present a theoretical study and numerical results, which provide a better understanding of this versatile procedure. For this purpose, we introduce and analyse a novel strategy for the choice of the crucial parameter of the algorithm, namely the adaptation bandwidth. In particular, we study its variability with respect to the unknown target function. This justifies a choice independent of the data at hand. For piecewise constant and piecewise bounded functions, this choice enables theoretical proofs of the main heuristic properties of the algorithm. Additionally, we consider the case of a misspecified model. Here, we introduce a specific step function, and we establish a pointwise error bound between this function and the corresponding estimates of the Propagation-Separation Approach. Finally, we develop a method for the denoising of diffusion-weighted magnetic resonance data, which is based on the Propagation-Separation Approach. Our new procedure, called (ms)POAS, relies on a specific description of the data, which enables simultaneous smoothing in the measured positions and with respect to the directions of the applied diffusion-weighting magnetic field gradients. We define and justify two distance functions on the combined measurement space, where we follow a differential geometric approach. We demonstrate the capability of (ms)POAS on simulated and experimental data

    Solutions to differential equations via fixed point approaches: new mathematical foundations and applications

    Full text link
    The central aim of this thesis is to construct a fuller and firmer mathematical foundation for the solutions to various classes of nonlinear differential equations than is currently available in the literature. This includes boundary value problems (BVPs) that involve ordinary differential equations, and initial value problems (IVPs) for fractional differential equations. In particular, we establish new conditions that guarantee the existence, uniqueness and approximation of solutions to second-order BVPs, third-order BVPs, and fourth-order BVPs for ordinary differential equations. The results enable us, in turn, to shed new light on problems from applied mathematics, engineering and physics, such as: the Emden and Thomas-Fermi equations; the bending of elastic beams through an application of our general theories; and laminar flow in channels with porous walls. We also ensure the existence, uniqueness and approximation of solutions to some IVPs for fractional differential equations. An understanding of the existence, uniqueness and approximation of solutions to these problems is fundamental from both pure and applied points of view. Our methods involve an analysis of nonlinear operators through fixed-point theory in new and interesting ways. Part of the novelty involves generating new conditions under which these operators are contractive, invariant and/or establishing new a priori bounds on potential solutions. As such, we draw on: Banach fixed- point theorem, Schauder fixed-point theorem, Rus's contraction mapping theorem, and a continuation theorem due to A. Granas and its constructive version known as continuation method for contractive maps. The ideas in this thesis break new ground at the intersection of pure and applied mathematics. Thus, this work will be of interest to those who are researching the theoretical aspects of differential equations, and those who are interested in better understanding their applications
    corecore