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Abstract

In statistics, nonparametric estimation is often based on local parametric modeling. For pointwise

estimation of the target function, the corresponding parametric neighborhoods can be described

by weights that depend on design points or (additionally) on observations. As it turned out,

the comparison of noisy observations at single points suffers from a lack of robustness. The

Propagation-Separation Approach by Polzehl and Spokoiny [2006] overcomes this problem

by using a multiscale approach with iteratively updated weights. This allows simultaneous

estimation of the parametric neighborhoods and the associated parameters. The method has been

successfully applied to a large variety of statistical problems. Nevertheless, only few properties

are known. Here, we present a theoretical study and numerical results, which provide a better

understanding of this versatile procedure.

For this purpose, we introduce and analyse a novel strategy for the choice of the crucial parameter

of the algorithm, namely the adaptation bandwidth. In particular, we study its variability with

respect to the unknown target function. This justifies a choice of the adaptation bandwidth by

simulations, but independent of the data at hand. For piecewise constant and piecewise bounded

functions, this choice enables theoretical proofs of the main heuristic properties of the algorithm,

which are propagation under homogeneity and separation of distinct regions. Additionally, we

consider the case of a misspecified model. Here, we introduce a specific step function, and we

establish a pointwise error bound between this function and the corresponding estimates of the

Propagation-Separation Approach.

Finally, we develop a method for the denoising of diffusion-weighted magnetic resonance data,

which is based on the Propagation-Separation Approach. Our new procedure, called (ms)POAS,

relies on a specific description of the data, which enables simultaneous smoothing in the

measured positions and with respect to the directions of the applied diffusion-weighting magnetic

field gradients. We define and justify two distance functions on the combined measurement space

R
3×S

2, where we follow a differential geometric approach. We demonstrate the capability of

(ms)POAS on simulated and experimental data.



Zusammenfassung

Lokal parametrische Modelle werden in der mathematischen Statistik häufig im Kontext der

nichtparametrischen Schätzung verwendet. Bei einer punktweisen Schätzung der Zielfunktion

können die zugehörigen parametrischen Umgebungen mithilfe von Gewichten beschrieben wer-

den, die entweder von den Designpunkten oder (zusätzlich) von den Beobachtungen abhängen.

Der Vergleich von verrauschten Beobachtungen in einzelnen Punkten leidet allerdings unter

einem Mangel an Robustheit. Der Propagations-Separations-Ansatz von Polzehl und Spokoiny

[2006] verwendet daher einen Multiskalen-Ansatz mit iterativ aktualisierten Gewichten. Das

ermöglicht die gleichzeitige Schätzung der parametrischen Umgebungen und ihrer Parameter.

Obwohl der Algorithmus auf eine Vielzahl statistischer Probleme erfolgreich angewendet wurde,

sind nur wenige Eigenschaften bekannt. Deshalb präsentieren wir eine theoretische Studie und

numerische Resultate, die ein besseres Verständnis des Verfahrens ermöglichen.

Zu diesem Zweck definieren und untersuchen wir eine neue Strategie für die Wahl des ent-

scheidenden Parameters des Verfahrens, der Adaptationsbandweite. Insbesondere untersuchen

wir ihre Variabilität in Abhängigkeit von der unbekannten Zielfunktion. Unsere Resultate

rechtfertigen eine Wahl der Adaptationsbandweite anhand von simulierten Daten und damit

unabhängig von den jeweils vorliegenden Beobachtungen. Die neue Parameterwahl liefert

für stückweise konstante und stückweise beschränkte Funktionen theoretische Beweise der

Haupteigenschaften des Algorithmus, ungehinderte Glättung unter Homogenität und Separation

unterschiedlicher Regionen. Für den Fall eines falsch spezifizierten Modells führen wir eine

spezielle Stufenfunktion ein und weisen eine punktweise Fehlerschranke im Vergleich zum

Schätzer des Propagations-Separations-Algorithmus nach.

Des Weiteren entwickeln wir auf der Grundlage des Propagations-Separations-Ansatzes ei-

ne neue Methode zur Entrauschung von diffusionsgewichteten Magnetresonanzdaten. Unser

neues Verfahren (ms)POAS basiert auf einer speziellen Beschreibung der Daten, die eine zeit-

gleiche Glättung bezüglich der gemessenen Positionen und der Richtungen der verwendeten

Diffusiongradienten ermöglicht. Für den kombinierten Messraum R
3×S

2 schlagen wir zwei

Distanzfunktionen vor, deren Eignung wir mithilfe eines differentialgeometrischen Ansatzes

nachweisen. Schließlich demonstrieren wir das große Potential von (ms)POAS auf simulierten

und experimentellen Daten.
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Chapter 1

Introduction

In statistics, regression analysis is one of the most commonly used approaches for parametric and

nonparametric estimation, see, for instance, Simonoff [1996]. This technique aims to construct

a function from a given data set {(Xi,Yi)}i in order to describe the relationship between the

explanatory variablesXi and the associated response variables Yi. For example, in the Gaussian

regression model, we observe the random variables Yi = f(Xi) + εi, i ∈ {1, ...,n}, where f

is the target function and εi
iid∼ N (0,σ2) denotes an independent and identically distributed

Gaussian error term with variance σ2 > 0. In this case, the value of the target function f(Xi)
equals the expectation of the random variable Yi. Regression analysis is applicable to a large

variety of scientific research and real-world questions.

In the literature, a large number of regression techniques have been proposed. Naturally, they

have different strengths in their respective domains of application. As typical examples of

parametric regression models, we mention the linear and the polynomial regression, which are

usually solved by means of the ordinary least squares estimation. Here, the regression function

is assumed to depend on a finite number of unknown parameters, which are estimated from the

data. This leads to a global description which may be inappropriate for a satisfying data-fitting.

In contrast, nonparametric regression relaxes this restrictive assumption by imposing as few

assumptions as possible on the regression function. Usually, the corresponding statistical models

are infinite-dimensional, or the dimensionality of the parameter space grows with the sample

size.

For instance, we can introduce more flexibility by allowing the derivatives of the regression

function to have discontinuities. The regression function can then be estimated by fitting

piecewise polynomials, called splines. Alternatively, we can expand the regression function in

an orthogonal series and compute an approximation, using an appropriate subset of its basis

functions. This leads to the well-known wavelet approach. The classic approach is based on

localization, where we want to concentrate on. The monograph by Fan and Gijbels [1996] gives a

comprehensive overview of local polynomial estimation for regression and some other statistical

models. We also note the monograph by Wand and Jones [1995]. For recent reviews of local

modeling in image processing, see Buades et al. [2005a] and Katkovnik et al. [2010]. Due to the

large number of publications concerning local modeling, we refer the reader to the references in

these studies. They treat the main techniques as well as their historical development.
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Introduction

Local modeling

Instead of increasing the number of describing parameters, the local modeling approach assumes

the parametric model to be satisfied locally. For each explanatory variable Xi, we apply the

polynomial regression technique on a certain fraction of the data around Xi. Then, the value

of the estimated regression function at Xi is used as the pointwise estimator at Xi. Globally,

this leads to a nonparametric description of the target function. Obviously, the choice of the

corresponding neighborhood of Xi is crucial for the estimation quality when using the local

modeling approach.

A local model can be described by weights. For each explanatory variable Xi, we fix some

weighting schemeWi which assigns a weight w(Xi,Xj) to every explanatory variableXj . This
determines the impact of the corresponding response variable Yj on the pointwise estimator atXi.
For instance, in order to estimate the expectation of the random variable Yi under the above intro-

duced Gaussian regression model, we may apply a weighted mean f̂(Xi) :=∑
jw(Xi,Xj)Yj

with weights that satisfy
∑
jw(Xi,Xj) = 1. The simplest example of a weighting scheme

Wi = {w(Xi,Xj)}j is localization by a window, where the weighting function equals the

indicator function of a certain subset (window) of the design around Xi. Applications of this

approach can be found in [Müller, 1992; Qiu, 1998; Spokoiny, 1998], among many others.

Alternatively, the weights can be defined by a kernel function, where the corresponding band-

width determines the amount of smoothing. Popular examples are the Nadaraya-Watson and the

Gasser-Müller estimators [Fan and Gijbels, 1996, §2.2]. The bandwidth can be chosen either

by the data analyst or by a data-driven procedure. Additionally, we distinguish between global

choices of the bandwidth and local choices, which allow more flexible modeling. Some interest-

ing proposals for a structure-adaptive bandwidth choice in the context of image processing are

compared in the review by Katkovnik et al. [2010]. These are mostly linked to Lepski’s method,

which was introduced in [Lepskiı̆, 1990], but see also Lepski et al. [1997], Lepski and Spokoiny

[1997], Mathé and Pereverzev [2006], and Spokoiny [1998].

The above weights depend on the explanatory variables {Xi}i only. An alternative approach

for local modeling is based on weighting schemes which depend (additionally) on the response

variables {Yi}i. This helps to avoid blurring at discontinuities. An overview of such algorithms

can be found in [Katkovnik et al., 2010]. The authors distinguish between local and non-local

procedures. They call a method local if it assigns small weights to spatially distant design points,

which restricts the size of the estimation support. On the contrary, a non-local method allows

large weights to distant points, resulting in a (possibly) disconnected estimation support. In a

nutshell, the distinction between local and non-local methods relies on the question whether

the explanatory or the response variables dominate the weights. The Propagation-Separation

Approach by Polzehl and Spokoiny [2006] has an outstanding position in this classification.

By using iteratively updated weights at increasing scales, it relates the local with the non-local

approach.

Tibshirani and Hastie [1987] and later on Fan et al. [1998] and Loader [1999] proposed an

extension of local modeling to the likelihood approach. We recall that the local exponential

family model provides, under regularity conditions, an explicit representation of the maximum

likelihood estimator. This considerably simplifies the theoretical analysis and the computations,

while still including many of the usual probability distributions. Following Polzehl and Spokoiny

[2006], we will restrict a large part of our study to the local exponential family model, and we

will use, for our pointwise estimator, a local maximum likelihood estimator with specifically

defined adaptive weights.
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Previous results and objective of this thesis

In this thesis, we will study the Propagation-Separation Approach by Polzehl and Spokoiny

[2006]. Due to its structural adaptivity, this method for nonparametric estimation avoids blurring

at discontinuities. Moreover, it can be applied on any design space which is endowed with a

metric, independent of the dimension or geometry of this space. Therefore, it is applicable

to a large variety of problems. The method has been successfully applied in the context of

image denoising [Li et al., 2011, 2012; Polzehl and Spokoiny, 2000, 2008; Tabelow et al., 2008],

time series analysis [Divine et al., 2008], density estimation, and classification [Polzehl and

Spokoiny, 2006], for example. Despite the practical use of this method, only few properties are

known. The aim of this thesis is to provide a better understanding of the Propagation-Separation

Approach, the involved parameters, its theoretical properties, and its behavior in practice. The

corresponding results were published in [Becker, 2013] and [Becker and Mathé, 2013].

We know from the original study by Polzehl and Spokoiny [2006] that the Propagation-Separa-

tion Approach possesses the following theoretical properties.

• Propagation: In a homogeneous setting, the algorithm provides similar results as the

corresponding non-adaptive estimator, which is optimal in this situation.

• Separation: The method avoids blurring at structural borders by separating distinct

homogeneous regions.

• Stability: The procedure provides a certain stability of estimates.

We will revisit the above properties for the following two reasons.

First, the proof of the propagation property by Polzehl and Spokoiny [2006] is based on a

doubtable assumption, called (S0). This assumption requires the statistical independence of

the adaptive weights from the observations, which is problematic as discussed in [Polzehl and

Spokoiny, 2006, Rem. 5.1]. Theoretically, the standard splitting technique could be used to

ensure the required statistical independence. However, in practice, such a split is questionable

due to the iterative approach of the algorithm. Here, we will present theoretical results, which

do not require Assumption (S0).

Second, Polzehl and Spokoiny [2006] included an additional memory step into the algorithm.

The authors argued that in some situations the adaptivity of the procedure may not suffice

in order to avoid an increase of the estimation error after some iterations. Therefore, they

included the memory step which is constructed to ensure a stability of estimates up to some

constant. However, the corresponding constant can be large, which leads to a reduced stability.

Additionally, the use of the memory step turned out to be questionable in practice. More

precisely, to our best knowledge, no situation has been reported to date where the memory

step considerably improved the results of the Propagation-Separation Approach. Hence, in

many applications of the algorithm, the memory step was omitted, see for example Becker et al.

[2012], Divine et al. [2008], Li et al. [2011, 2012], and Tabelow et al. [2008], still yielding the

desired behavior.

We aim to justify the simplified Propagation-Separation Algorithm where the memory step is

omitted. Our theoretical and numerical results will answer the question whether the memory

step is needed and if, where. A general justification of the Propagation-Separation Approach

itself and a comparison with other estimation methods is however beyond the scope of this study.

Instead, we refer the reader to the previous articles by Polzehl and Spokoiny [2000, 2004, 2006,

2008].

3
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In addition, we will develop a new method for the denoising of diffusion-weighted magnetic

resonance data, which is based on the simplified Propagation-Separation Approach. Our

proposed algorithm uses a specific perspective on the measured data which allows simultaneous

smoothing in the voxel space R
3 and on the sphere S

2, where the diffusion-weighting magnetic

field gradients are uniformly sampled. Additionally, we will improve adaptation by a coupling

between measurements with different magnetic field strengths and diffusion time, called q-shells.
As it turns out, this approach leads to a very promising and efficient method. The crucial steps

are the search for and the justification of an appropriate distance function on the combined

measurement space R
3×S

2. We refer the reader to the recent articles [Becker et al., 2012] and

[Becker et al., 2013].

Research highlights

In practice, the original and the simplified Propagation-Separation Algorithm show a very

similar behavior with obvious heuristic properties. Unfortunately, the theoretical verification

of these properties is complicated due to the iterative approach. Polzehl and Spokoiny [2006]

tackled this problem with the help of the questionable Assumption (S0) and the additionally

included memory step. Here, we will follow a different approach which uses neither the memory

step nor Assumption (S0). Instead, we will take advantage of what is known as the propagation
condition. As proposed by Polzehl and Spokoiny [2006], such a condition can be used for

the choice of the crucial parameter of the algorithm, namely the adaptation bandwidth. We

will present a new formulation which enables our subsequent study and which improves the

interpretability of the resulting bandwidth choice.

The new propagation condition allows the verification of the propagation property and a certain

stability of estimates for (piecewise) constant parameter functions. The corresponding results

are stated in Chapter 4. In particular, we will analyze, for the first time, the interaction of

propagation and separation during iteration. All previous studies have concentrated on the

respective properties on their own. Our results provide an insight in the reciprocal effects of the

different components which influence the estimation quality.

Then, we will extend the presented results from piecewise constant to piecewise bounded

parameter functions with sharp discontinuities, supposing the adaptation bandwidth to be in

accordance with an inhomogeneous extension of the propagation condition. Moreover, we will

study consequences of a misspecified structural assumption. We will introduce an associated
step function, and we will explore its heuristic properties by numerical simulations in Chapter 5.

In all examples, the Propagation-Separation Approach converges to the associated step function.

This result could be interpreted as an intrinsic stopping criterion which provides a certain

stability of estimates for arbitrary parameter functions. Unfortunately, we still lack a definite

proof for reasons that we will discuss in Chapter 5 (§ 5.4.1). As a consequence, a stopping

criterion with respect to the maximal number of iterations is needed to still ensure a general

stability property. Particularly, in the case of a piecewise smooth function, where the formation

of a step function may worsen the smoothing result, an appropriate stopping is advantageous.

Finally, we will generalize the setting of our study, first by relaxing the assumed local exponential

family model, and second by considering a local likelihood model without additional restrictions.

We will discuss the theoretical and numerical results for the simplified algorithm in Chapter 5

(Section 5.4). This includes a detailed comparison of the presented results with the original

study by Polzehl and Spokoiny [2006], and some proposals for future research.

4



Our theoretical results and the corresponding numerical simulations in Chapter 5 justify the

simplified Propagation-Separation Algorithm. The novel approach via the propagation condition

provides a better understanding of the procedure by evaluating its behavior during iteration,

the impact of the involved components, and the effects of different probability distributions.

Nevertheless, we pay a price for the omittance of the memory step and the avoidance of

Assumption (S0), which follows from the propagation condition. For our analysis, an appropriate

choice of the adaptation bandwidth is crucial. In the above mentioned results, we will assume

the adaptation bandwidth to be in accordance with our new propagation condition. However, the

original as well as the new propagation condition rely on an artificial data set which satisfies

a parametric model with some fixed parameter value. Hence, we need a justification that the

adaptation bandwidth is in accordance with the propagation condition for the unknown parameter

values which we aim to estimate.

For this purpose, we will evaluate in Chapter 3 (§ 3.1.2) the variability of the propagation

condition with respect to the fixed parameter. This analysis is based on a sufficient criterion for

the invariance of the composition of two functions with respect to some parameter. Then, our

main result of this chapter will be stated in Theorem 3.8, where the non-adaptive estimator will

be considered. An extension to the adaptive estimator is hampered by the iterative approach

of the algorithm, which leads to an unknown probability distribution of the adaptive weights.

Therefore, we will illustrate by simulations the close relation of the adaptive and the non-adaptive

estimator under a satisfied propagation condition.

Together, Theorem 3.8 and the numerical simulations suggest the desired invariance of the

propagation condition for several probability distributions, such as the Gaussian and exponential

distributions and, as a consequence, the log-normal, Rayleigh, Weibull, and Pareto distributions.

For probability distributions where the propagation condition varies with the fixed parameter, we

recommend to choose the adaptation bandwidth with respect to some least favorable parameter.

If this parameter is chosen appropriately, then the propagation condition remains valid for the

unknown target parameters. However, the resulting adaptation bandwidth may be much larger

than needed, leading to a loss of adaptation. To our knowledge, this is the first theoretical

analysis of the propagation condition, forming an essential step in our analysis. In summary,

we will replace the obviously violated Assumption (S0) by the more realistic assumption of an

appropriate choice of the adaptation bandwidth.

In our last chapter, we will demonstrate the practical value of the Propagation-Separation

Approach. Here, we will use the simplified algorithm for the denoising of diffusion-weighted

magnetic resonance images. Basically, the Propagation-Separation Approach is applicable on

any data set where the design and the observation space are endowed with possibly asymmetric

distance functions. As it turns out, the smoothing results can be considerably improved by

taking the specific properties of the data into account. Therefore, we aim to benefit from the

whole information provided by the measurement process of magnetic resonance imaging, in

position, orientation, and with respect to different magnetic field strengths and diffusion times.

We will introduce a specific description of the measured data, and we will extend the adaptive

weights, where we will reconstruct possibly missing data by spherical interpolation.

Our new method is theoretically justified via a natural embedding of diffusion-weighted data into

the theory of orientation scores as proposed by Duits and Franken [2011] and Franken [2008]. It

is well-known that the use of invertible transformations in image processing simplifies processing

of a certain feature of interest in the transformed domain. For example, the Fourier transform

concentrates on global frequencies, the Gabor transform relates to local frequencies, and wavelet

transforms manipulate features at different scales. Similarly, the invertible orientation score

5
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transform considers the local orientation as the feature of interest. Here, we will replace the

design space R
3×S

2 by a Lie group, using a lifting of real valued functions on R
3×S

2 to

real valued functions on the special Euclidean motion group SE(3) with a certain invariance

property which ensures invertibility. Then, our main result will be stated in Theorem 6.38.

In order to make the procedure applicable in practice, we seek for a distance function on the

design space. There are two natural approaches. First, the above embedding provides the Carnot-

Carathéodory distance as a natural metric on SE(3), and we will establish its appropriateness

for diffusion-weighted data. However, this metric does not have an explicit representation, and

the proposed approximation violates a certain invariance. Therefore, we will introduce a second

distance which is given as the sum of the Euclidean metric on R
3 and the great circle distance

on the sphere S
2. This distance satisfies all desired properties.

The promising behavior of our smoothing method will be illustrated on simulated and experimen-

tal data. Finally, we will discuss its advantages and limitations (Section 6.6). In particular, we

will review alternative perspectives on the data, give a brief overview of competing smoothing

methods, and propose several topics for future research.

Notes to the reader

This thesis is written in such a manner that most chapters can be considered on their own.

Possibly needed previous results are explicitly mentioned. Nevertheless, we recommend at least

the reading of Section 2.2, where we introduce the original and the simplified Propagation-

Separation Approach. The underlying statistical model and some basic concepts can be found in

Section 2.1. Usually, we postpone longer proofs to the end of the respective chapter, in order to

improve readability.

In Chapter 3, we will present our new propagation condition, its inhomogeneous extension, and

the corresponding results concerning the invariance with respect to the unknown parameters and

the application in practice. Here, we will use some auxiliary results by Polzehl and Spokoiny

[2006] which are stated in Chapter 2. Then, in Chapter 4, we will deduce our theoretical study

of the simplified Propagation-Separation Approach, assuming that the adaptation bandwidth

has been chosen in accordance with the propagation condition. For the results on (piecewise)

constant functions, it suffices to know the homogeneous propagation condition in Definition 3.2.

Similarly, the results on (piecewise) bounded functions rely on the inhomogeneous propagation

condition in Definition 3.15. Throughout this chapter, we will assume the local exponential

family model (§ 2.1.2). Additionally, we will again use the auxiliary results in Chapter 2. We

will illustrate several aspects of our theoretical study by numerical simulations, see Chapter 5.

Although Chapter 4 helps for a better understanding of the examples and the subsequent

discussion, the main points only require the knowledge of the original and the simplified

algorithm.

Finally, Chapter 6 treats the application of the simplified Propagation-Separation Approach in

the context of diffusion-weighted magnetic resonance imaging. This chapter can be considered

on its own. Nevertheless, Chapters 2, 3, and 5 may help for a better understanding of the

algorithm and the corresponding parameter choices. Most of the theoretical results in Chapter 4

do not apply since the assumed local exponential family model is not satisfied in the case of

diffusion-weighted magnetic resonance data. We refer the reader to Section 4.4 and § 5.3.5 for

more details about the Propagation-Separation Approach in this case.
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Notation

We summarize some quantities that we will frequently use. For reasons of clarity and in order to

avoid confusion, we concentrate on the most important ones.

General symbols

B,C B′(θ) = θC ′(θ), see p(y,θ) 10

E θ̃(k)i E θ̃(k)i = ∑n
j=1 w̃

(k)
ij θj/Ñ

(k)
i 40

{h(k)}k∗k=0 Increasing sequence of location bandwidths with h(0) > 0 15

I Fisher information, I(θ) = C ′(θ) 11

KL Kullback-Leibler divergence, it holds under Ass. A1 that

KL(θ,θ′) = θ [C(θ)−C(θ′)]− [B(θ)−B(θ′)] 11, 95

Kloc,Kad,Kme Location, adaptation, and memory kernels 15

k Iteration step, k ∈ {0, ...,k∗} 16

N
(k)
i Sum of the non-adaptive weights, N

(k)
i = ∑

jw
(k)
ij 15

Ñ
(k)
i Sum of the adaptive weights, Ñ

(k)
i = ∑

j w̃
(k)
ij 18

N̂
(k)
i Relaxed sum of weights, N̂

(k)
i = η(k)i Ñ

(k)
i +(1−η(k)i )N̂ (k−1)

i 16

n Sample size, n ∈ N 9

P = {Pθ}θ∈Θ Parametric family of probability distributions 9

P Dominating σ-finite measure 9

p(y,θ) p(y,θ) = dPθ/dP = p(y)exp[T (y)C(θ)−B(θ)] 10

pκ, p̆κ, p̆κ,0 Probabilities of unfavorable realizations 22, 25

s
(k)
ij Statistical penalty, s

(k)
ij = Ñ (k−1)

i KL(θ̃(k−1)
i , θ̃

(k−1)
j ) 18

T Eθ [T (Y )] = θ, see p(y,θ) 10

U
(k)
i Neighborhood under consideration, U

(k)
i = {Xj : w(k)

ij > 0} 40

w
(k)
ij Non-adaptive weights, w

(k)
ij =Kloc

(
δ(Xi,Xj)/h(k)

)
15

w̃
(k)
ij Adaptive weights, w̃

(k)
ij = w(k)

ij ·Kad
(
s

(k)
ij /λ

)
18

X Metric space with metric δ 9

{Xi}ni=1 Deterministic design, {Xi}ni=1 ⊆X 9

Y Measurable observation space, Y ⊆ R 9

{Yi}ni=1 Statistically independent observations, Yi ∼ Pθ(Xi) 9

Zλ Function for the homogeneous propagation condition 33

Ẑλ Function for the inhomogeneous propagation condition 41
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Notation

Specific symbols in Chapter 6

b b-value, b≥ 0 81

B Set of applied b-values b > 0 91

B0 B∪{0} 91

B Number of applied b-values b > 0, B = |B| ∈ N 91

Gb Set of applied gradient directions at b-value b, Gb ⊆ S
2∪{�0} 86

L Number of MR receiver coils, L ∈ N § 6.1.4

L′ Effectively utilized MR receiver coils, L′ ≤ L § 6.1.4

S0 Non-diffusion weighted image 86, 91

Sb Diffusion weighted image at b-value b > 0 86, 91

S
(k)
b Non-adaptive estimator of (ms)POAS 97

S̃
(k)
b Adaptive estimator of (ms)POAS 97

V Voxel space 86

Greek symbols

δ Metric on the design space X 9

δκ,Δκ Discrepancies on R
3×S

2 (only Chapter 6) 96, 120, 122

ε Propagation level 33, 41

η
(k)
i Relaxation weight, see θ̂

(k)
i 16

Θ Convex parameter set, Θ⊆ R 9

Θκ Compact and convex subset Θκ ⊆Θ, see κ 11

Θ∗ Restriction of the range of θ(.), {θi}ni=1 ∈ (Θ∗)n, Θ∗ ⊆Θ 22

θ(.) Parameter function that we aim to estimate, θi = θ(Xi) 9

θb,m Non-centrality parameter, Sb(m)∼ χ2L′(θb,m),
E [Sb(�v,�g)]/σ = μ(θb,m) with μ as in Equation (6.7) 91

θi,θ
(k)
i Non-adaptive estimator, θ

(k)
i = ∑n

j=1w
(k)
ij T (Yj)/N

(k)
i 15

θ̃
(k)
i Adaptive estimator, θ̃

(k)
i = ∑n

j=1 w̃
(k)
ij T (Yj)/Ñ (k)

i 18

θ̂
(k)
i Aggregated estimator, θ̂

(k)
i = η(k)i θ̃

(k)
i +(1−η(k)i )θ̂(k−1)

i 16

κ I(θ1)/I(θ2)≤ κ
2 for all θ1,θ2 ∈Θκ, under Ass. A1 11

κ Balancing parameter between spatial and spherical distances 96

κ0 Specific choice: κ(h(k)) := κ0/h(k), see κ § 6.2.2

λ Adaptation bandwidth, see w̃
(k)
ij 15, Chapter 3

τ Memory bandwidth 18

ϕ0,ϕ Variability bounds 22, 40

Ωκ Set of the favorable outcomes under homogeneity 25

Ω̆κ Set of the favorable outcomes under inhomogeneity 25

(Ω,F ,Pθ) Probability space 9
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Chapter 2

The Propagation-Separation
Approach

In this chapter, we will recall some basic concepts, the original and the simplified algorithm of

the Propagation-Separation Approach, and the corresponding parameter choices. Additionally,

we will compare the Propagation-Separation Approach with the previously introduced Adaptive

Weights Smoothing [Polzehl and Spokoiny, 2000], with Lepski’s method [Lepskiı̆, 1990; Lepski

et al., 1997; Spokoiny, 1998], and with the recent approaches for non-local smoothing as

reviewed by Katkovnik et al. [2010]. Finally, we will provide some auxiliary results.

2.1 Basic concepts

We will introduce the statistical setting of our study and several illustrating examples. Then, we

will consider a local exponential family model. In particular, we will recall some basic results

concerning the Fisher information and the Kullback-Leibler divergence of an exponential family.

Finally, we will concentrate on local likelihood estimation.

2.1.1 Statistical model

We assume a local parametric model, more precisely the local likelihood model. This general

setting enables a unified approach to a broad class of nonparametric estimation problems as we

emphasize in the subsequent example.

Notation 2.1 (Setting). Let P := {Pθ}θ∈Θ denote a parametric family of probability distribu-
tions with a convex parameter set Θ⊆R, where (Ω,F ,Pθ) forms, for every θ ∈Θ, a probability
space with dominating σ-finite measure P. We consider a metric space X with metric δ, and a
measurable observation space (Y,B), where Y ⊆ R and B denotes the Borel algebra. On the
deterministic design {Xi}ni=1 ⊆X with n ∈ N, we observe the statistically independent random
variables {Yi}ni=1, where Yi ∼ Pθ(Xi) ∈ P and Yi(ω) ∈ Y , ω ∈Ω, for every i ∈ {1, ...,n}. Then,
we aim to estimate, the unknown parameter function θ : X → Θ ⊆ R on the design {Xi}ni=1,
that is {θi}ni=1 with θi := θ(Xi).

For the sake of simplicity, we assume the design to be known and the observation space as

well as the parameter set to be one-dimensional, that is Y,Θ⊆ R. Basically, the Propagation-
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The Propagation-Separation Approach

Separation Approach can be applied on any measurable vector space Y ⊆M with Yi ∼ Pθ(Xi)
for every i ∈ {1, ...,n} and θ : X →Θ⊆M , whereM is endowed with a possibly asymmetric

distance function. The extension of this setting to a random design would require conditional

probabilities. We recall some examples from Polzehl and Spokoiny [2006] in order to illustrate

the introduced setting. The last example was added in preparation of Chapter 6.

Example 2.2.

1. Gaussian regression: For every i ∈ {1, ...,n}, we assume that Yi = θ(Xi) + εi, where

εi
iid∼ N (0,σ2) denotes an independent and identically distributed Gaussian error term

with variance σ2 > 0. The Gaussian regression model appears in many applications, for

instance in image processing.

2. Inhomogeneous exponential model: For every i ∈ {1, ...,n}, let Yi ∼ Exp(θ(Xi)) follow

an exponential distribution with parameter θ(Xi). Possible applications of this model are

the reliability or survival analysis and the tail-index estimation theory.

3. Binary response model: For every i ∈ {1, ...,n}, we assume that Yi ∼ Bernoulli (θ(Xi))
follows a Bernoulli distribution with parameter θ(Xi). This model is often used for

classification, digital imaging, and various econometric applications.

4. Inhomogeneous Poisson model: Let Y ⊆ N, and assume for every i ∈ {1, ...,n} that

Yi ∼Poiss(θ(Xi)) follows a Poisson distribution with parameter θ(Xi). The binning pro-

cedure, see Fan and Gijbels [1996] for more details, provides this model as approximation

of the density model. Additionally, it is used in the queuing theory.

5. In the context of diffusion-weighted magnetic resonance images, the setting in Notation 2.1

appears for every b ∈ B0 with X := V ×Gb ⊆ R
3×S

2, Y := R, and non-central chi-

distributed observations Sb(m)/σ ∼ χ2L′(θb,m), m ∈ X . This will be motivated in

Section 6.1 and summarized in the introduction of Section 6.2, where the corresponding

notation is clarified. In § 6.2.1, a vector-based description of the observations will be

constructed. This leads to a multidimensional observation space Y := R
B+1, B ∈ N.

2.1.2 The local exponential family model

Following Polzehl and Spokoiny [2006], we assume the parametric family of probability

distributions in Notation 2.1 to be an exponential family with standard regularity conditions. We

use the common notation

C2(Θ,R) := {f : Θ→ R : the first and second derivative of f exist and are continuous} .

Assumption A1 (Local exponential family model). The parametric family P = {Pθ}θ∈Θ in
Notation 2.1 is an exponential family. More precisely, there are two functions C,B ∈ C2 (Θ,R),
a non-negative function p : Y → [0,∞), and a sufficient statistic T : Y → R such that

p(y,θ) := dPθ/dP(y) = p(y)exp[T (y)C(θ)−B(θ)] , θ ∈Θ,

where C is strictly monotonic increasing. The parameter θ satisfies B′(θ) = θC ′(θ),∫
p(y,θ)P(dy) = 1, and Eθ [T (Y )] =

∫
T (y)p(y,θ)P(dy) = θ. (2.1)

Remark 2.3.

• In [Polzehl and Spokoiny, 2006, Ass. (A1)], the authors presumed the sufficient statistic T
to equal the identity map. In this study, we explicitly allow any sufficient statistic in order
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2.1 Basic concepts

to clarify where this transformation T comes into play. As it turns out in Lemma 2.5 (3),

this extension of Assumption A1 leaves the Kullback-Leibler divergence unchanged due

to Equation (2.1).

• The required unbiasedness Eθ [T (Y )] = θ of the parameter θ in Equation (2.1) can be

achieved via reparametrization with θ := t(ϑ), where t(ϑ) := Eϑ [T (Y )]. This will be

discussed in § 4.4.1.

• A list of parametric families which are in accordance with Assumption A1 are summarized

in Table 2.1.

In our subsequent analysis, the notions of the Kullback-Leibler divergence KL(., .) and the

Fisher information I(.) will be important.

Notation 2.4. For θ,θ′ ∈Θ, we set

KL(Pθ,Pθ′) :=
∫

log
(
dPθ
dPθ′

(y)
)

Pθ(dy) and I(θ) :=−Eθ

[
∂2

∂θ2
logp(Y,θ)

]
.

Moreover, we introduce the abbreviatory notation KL(θ,θ′) :=KL(Pθ,Pθ′) for the Kullback-
Leibler divergence between the probability distributions Pθ and Pθ′ with parameters θ,θ′ ∈Θ.

Lemma 2.5. Under Assumption A1 it holds the following.

1. The Fisher information satisfies I(θ) = C ′(θ) for all θ ∈Θ.
2. For every compact and convex subset Θ′ ⊆Θ, there is a constant κ ≥ 1 such that

I(θ1)
I(θ2) ≤ κ

2 for all θ1,θ2 ∈Θ′. (2.2)

3. The Kullback-Leibler divergence is convex with respect to the first argument. Additionally,
it has an explicit representation, and it satisfies a quadratic expression

KL(θ,θ′) = θ
[
C(θ)−C(θ′)

]− [B(θ)−B(θ′)
]

(2.3)

= r(θ∗,θ0)
[
θ−θ′]2 /2, (2.4)

where θ,θ′ ∈Θ, r(θ∗,θ0) := [I(θ∗)]2 /I(θ0), and θ∗,θ0 lie between θ and θ′.

Equation (2.2) allows the following notations.

Notation 2.6. For every compact and convex subset Θ′ ⊆Θ, we set

κ := max{I(θ1)/I(θ2) : θ1,θ2 ∈Θ′} ≥ 1 and Θ′ := Θκ.

Vice versa, for every constant κ ≥ 1, we use the notation Θ′ := Θκ for any compact and convex
set Θ′ ⊆Θ which satisfies Equation (2.2).

The set Θκ should be sufficiently large such that θ(Xi) ∈Θκ for all i ∈ {1, ...,n}. We specify

its precise choice where necessary. Lemma 2.5 and Table 2.1 provide under Assumption A1

explicit expressions for the Kullback-Leibler divergence and the Fisher information.

Example 2.7. We consider the same probability distributions as in Example 2.2 (1) and (2). For

P :=
{N (θ,σ2)

}
θ∈R

, it holds

I(θ) = 1/σ2 and KL(θ,θ′) = (θ−θ′)2/(2σ2), θ,θ′ ∈Θ.

For P := {Exp(1/θ)}θ∈(0,∞), it holds

I(θ) = 1/θ2 and KL(θ,θ′) = θ/θ′−1− ln(θ/θ′), θ,θ′ ∈Θ.
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The Propagation-Separation Approach

P , Y Θ p(y) T (y) Ct(ϑ) Bt(ϑ) Eϑ [T (Y )]

N (ϑ,σ2) R
e−y

2/(2σ2)
√

2πσ2
y

ϑ

σ2
ϑ2

2σ2 ϑ

y ∈ R

N (0,ϑ) (0,∞) 1√
2π

y2 − 1
2ϑ

lnϑ
2

ϑ

y ∈ R

logN (ϑ,σ2) (0,∞) e−(lny)2/(2σ2)

y
√

2πσ2
lny ϑ

σ2
ϑ2

2σ2 ϑ

y ∈ (0,∞)

Γ(p,ϑ) (0,∞) yp−1

Γ(p)
y − 1

ϑ
p lnϑ pϑ

y ∈ (0,∞)
Exp

( 1
ϑ

)
(0,∞) 1 y − 1

ϑ
lnϑ ϑ

y ∈ [0,∞)

Erlang
(
n,

1
ϑ

)
(0,∞) yn−1

(n−1)!
y − 1

ϑ
n lnϑ nϑ

y ∈ [0,∞)
Rayleigh(ϑ) (0,∞) y y2 − 1

2ϑ2 2lnϑ 2ϑ2

y ∈ [0,∞)
Weibull(ϑ,k) (0,∞) kyk−1 yk − 1

ϑk
k lnϑ ϑk

y ∈ [0,∞)

kY/ϑ∼ χ2(k) (0,∞) kk/2yk/2−1

2k/2Γ(k/2)
y − k

2ϑ
k lnϑ

2
ϑ

y ∈ [0,∞)
Pareto

(
xm,

1
ϑ

)
(0,1) 1

y
ln
(
y

xm

)
− 1
ϑ

ln(ϑ) ϑ

y ∈ [xm,∞)
Poiss(ϑ) (0,∞) 1/k! k lnϑ ϑ ϑ
y := k ∈ N

Bin(n,ϑ) (0,1)
(
n
k

)
k ln

(
ϑ

1−ϑ
)
−n ln(1−ϑ) nϑ

y := k ∈ {0,1, ...,n}
NegativeBin(r,ϑ) (0,1)

(
k+ r−1
k

)
k lnϑ −r ln(1−ϑ) rϑ

1−ϑ
y := k ∈ N

Bernoulli(ϑ) (0,1) 1 k ln
(
ϑ

1−ϑ
)

− ln(1−ϑ) ϑ

y := k ∈ {0,1}

Table 2.1: One-parametric exponential families which satisfy Assumption A1, possibly after reparametri-

zation with θ := t(ϑ), where t(ϑ) := Eϑ [T (Y )].
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2.1 Basic concepts

Finally, we recall a technical lemma by Polzehl and Spokoiny [2006, Lem. 5.2]. In Section 2.4,

we will discuss some details concerning the applicability of this lemma.

Lemma 2.8. Suppose Assumption A1, and let Θκ ⊆Θ and κ ≥ 1 be as in Notation 2.6. For
any sequence θ0,θ1, ...,θm ∈Θκ, it holds

KL1/2 (θ0,θm)≤ κ

m∑
l=1
KL1/2 (θl−1,θl) .

2.1.3 Local likelihood estimation

Let us consider the local likelihood model in Notation 2.1. Recall that the standard maximum

likelihood estimator (MLE) is constructed to select the set of parameter values which maximize

the log-likelihood function L. More precisely, the MLE is given as

argsup
θ∈Θ

L(θ) with L(θ) :=
n∑
j=1

logp(Yj ,θ),

where p := dPθ/dP denotes the probability density with respect to the dominating measure P.

In order to enable more flexible modeling, we turn to the locally weighted MLE.

Notation 2.9. The weighted maximum likelihood estimator is given as

θ
(MLE)
i := argsup

θ∈Θ
L(W i,θ) with L(W i,θ) :=

n∑
j=1
wij logp(Yj ,θ), (2.5)

where the weighting schemeW i equals the set {wij}nj=1.

Under the very general setting in Notation 2.1, this estimator does not need to have an explicit or

unique solution. Therefore, we presume the local exponential family model in Assumption A1

(page 10) and state the following lemma.

Lemma 2.10. Under Assumption A1 it holds the following.

1. The weighted MLE in Equation (2.5) has a unique solution which equals the corresponding
weighted mean of the transformed observations. More precisely, forW i := {wij}nj=1, it
holds

θ
(MLE)
i = argsup

θ∈Θ

n∑
j=1
wij logp(Yj ,θ) =

n∑
j=1
wijT (Yj)/N i =: θi, (2.6)

where N i denotes the sum of weights
∑
jwij .

2. If the transformed observations have a homogeneous variance σ2 = Var[T (Yi)] for every
i ∈ {1, ...,n}, then the variance reduction by the weighted MLE is given by the factor

Var
(
θ

(MLE)
i

)
/σ2 =

n∑
j=1
w2
ij/(N i)2.

Additionally, we get the upper bound Var(θ(MLE)
i )≤ σ2/N i ifW i ∈ [0,1]n.

Remark 2.11. The weighted mean in Equation (2.6) is a refinement of the simple running local

average. It coincides with the Nadaraya-Watson estimator if wij :=K(‖Xi−Xj‖/h)/h for all
i, j ∈ {1, ...,n}, where h > 0 denotes a bandwidth and K is usually a symmetric probability

density [Fan and Gijbels, 1996, §2.2].
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The Propagation-Separation Approach

For additive noise models, the approximation error is usually measured by some function which

depends on the residual θi−θ. For the local likelihood model, this approach is less natural since

the target parameter does not need to be additive. For instance, in the case of the exponential

distribution the target parameter θ is a scale parameter. Then, it is more natural to consider the

ratio θi/θ. The fitted log-likelihood

L(W i,θ,θ′) := L(W i,θ)−L(W i,θ′), θ,θ′ ∈Θ,

provides a natural measure for the approximation distance under a local likelihood model. Under

Assumption A1 the fitted log-likelihood is closely related with the Kullback-Leibler divergence.

Lemma 2.12. Under Assumption A1, it holds L(W i,θi,θ) = N iKL(θi,θ) for every θ ∈ Θ,
where θi is as in Equation (2.6).

This shows with Example 2.7 that the fitted log-likelihood depends for the (additive) Gaussian

model on the difference θi−θ, while considering for the exponential distribution the ratio θi/θ.
We recall an exponential bound for the excess probability P(N iKL(θi,θ)> z) of the Kullback-

Leibler divergence between the weighted mean θi and the true parameter θ. This result will be

crucial in our study. It was established by Polzehl and Spokoiny [2006, Thm. 2.1].

Theorem 2.13. Let Assumption A1 be satisfied, and presume a parametric model, θ(.) ≡ θ.
Then, for each i ∈ {1, ...,n} and every weighting schemeW i := {wij}nj=1 ∈ [0,1]n, we get

P

(
N iKL(θi,θ)> z

)
≤ 2e−z for all z > 0

with N i and θi as in Equation (2.6).

2.2 Methodology of the Propagation-Separation Approach

The Propagation-Separation Approach provides pointwise estimates of the unknown parameter

function θ(.) in Notation 2.1. The method is constructed to yield similar results as non-

adaptive smoothing within homogeneity regions (propagation), while avoiding smoothing

across discontinuities (separation). Therefore, it is especially powerful in the case of large

homogeneous regions and sharp discontinuities. Originally, it relies on a local constant model.

However, it can be extended to a local polynomial model in an analogous manner as presented

in [Polzehl and Spokoiny, 2004] for an additive random noise model. Hence, the procedure

is applicable to a broad class of nonparametric models. In our study, we concentrate on the

local constant model for the sake of simplicity. Important application can be found in image

processing, where this is often reasonable.

First, we will recall the original algorithm as introduced by Polzehl and Spokoiny [2006]. Then,

we will detail the corresponding parameter choices. Furthermore, we will introduce a simplified

version of the method, where the additionally included memory step of the original procedure is

omitted. We will close with two illustrating examples in order to provide some intuition for the

heuristic behavior of the simplified algorithm.

2.2.1 The original algorithm

The Propagation-Separation Approach presumes a local parametric model. Then, it estimates

the parametric neighborhoods and the associated parameters simultaneously during an iterative
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2.2 Methodology of the Propagation-Separation Approach

procedure. The algorithm is based on the weighted MLE in Equation (2.5), where the non-

adaptive weights are replaced by structure-adaptive weights which penalize large differences

between the corresponding unknown parameter values. For this purpose, the algorithm uses

previously aggregated information to improve the pointwise estimates during iteration. We

emphasize that the Propagation-Separation Approach does not use adaptive parameters. It is

adaptive in the sense that the returned estimator function is based on structure-adaptive weights

which describe the homogeneity regions of the unknown parameter function θ(.).

In each iteration step, the pointwise estimator is defined as the weighted mean in Equation (2.6),

which equals the weighted MLE under Assumption A1 (page 10). For each design point Xi
with i ∈ {1, ...,n}, the local weights are chosen adaptively as a product of two kernel functions.

The location kernel acts on the design space X , where it determines the vicinity under con-

sideration, using the metric δ in Notation 2.1. The adaptation kernel compares the pointwise

parameter estimates of the previous iteration step in terms of the Kullback-Leibler divergence,

providing iteratively updated local weights. Here, a statistical penalty, which is based on the

Kullback-Leibler divergence, is used as a test statistic for homogeneity. Basically, it checks

whether the previous estimate at Xj belongs to the confidence interval of the previous estimate

at Xi [Polzehl and Spokoiny, 2006, Eq. (3.1)]. An additional motivation follows from the

relationship between the fitted log-likelihood and the Kullback-Leibler divergence, which we

established in Lemma 2.12. Polzehl and Spokoiny [2004] introduced the fitted log-likelihood

as an asymmetric modification of the classic two populations likelihood-ratio test statistic,

assuming a Gaussian regression model. They interpreted the statistical penalty as the difference

between the weighted MLE atXi, using the weighting schemeW i and the ’plug-in’ MLE atXj ,
which is evaluated with respect to the weighting schemeW i although it was calculated with the

weighting schemeW j .

For both kernels, a bandwidth controls how much information is taken into account. Usually, the

adaptation bandwidth is chosen as a fixed constant, while the location bandwidth increases along

the number of iterations. Starting at a small neighborhood, in each iteration step, the considered

region is extended. According to Lemma 2.12, the statistical penalty becomes more restrictive

during iteration by the factor N̂
(k−1)
i which equals the relaxed sum of the adaptive weights. This

approximately compensates the already achieved variance reduction, see Lemma 2.10 (2) for the

case of non-adaptive weights and a homogeneous variance. The described procedure enables an

advancing variance reduction during iteration, while avoiding blurring at structural borders.

Finally, an additional memory step ensures a certain stability of estimates. In each iteration step,

the memory penalty compares, for every design point, the new estimate with the previous one. In

the case of a significant difference the new estimate is relaxed, replacing it by a value between

the two estimates. The memory step provides a smooth transition of the pointwise estimates

during iteration. For a detailed study about spatial aggregation of local likelihood estimates, we

refer the reader to Belomestny and Spokoiny [2007].

We turn to a formal description of the algorithm, and we start by introducing some notation.

Notation 2.14. Suppose Assumption A1. We fix three non-increasing kernel functions

Kloc,Kad,Kme : [0,∞)→ [0,1]

with support [0,1), satisfying K·(0) = 1. These kernels will be used for location, for adap-
tation, and for the memory step, respectively. Moreover, let λ > 0 denote the bandwidth of
the adaptation kernel, and let {h(k)}k∗k=0 be an increasing sequence of pre-specified location
bandwidths with h(0) > 0. For the memory step, we choose the minimal memory effect η0 ∈ [0,1)
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The Propagation-Separation Approach

and the memory bandwidth τ > 0. Then, we call the weighted mean θ(k)i in Equation (2.6) with
w

(k)
ij :=Kloc

(
δ(Xi,Xj)/h(k)

)
the non-adaptive estimator of θi. Additionally, we recall the

notion N (k)
i = ∑

jw
(k)
ij .

The effect of different choices for the kernel functions is negligible. This follows from experience

and, for the location kernel Kloc, from the theoretical results in [Scott, 1992, §6.2.3]. One

possible choice is given in Equation (2.10) (page 19). The other quantities will be specified in

§ 2.2.2. Now we present the algorithm of the Propagation-Separation Approach. More details

can be found in [Polzehl and Spokoiny, 2006, §3].

Algorithm 1 (Propagation-Separation Approach with memory step).

1. Input parameters: Sequence of bandwidths {h(k)}k∗k=0, adaptation bandwidth λ,
the memory bandwidth τ , and the minimal memory effect η0.

2. Initialization: θ̂(0)
i := θ(0)

i and N̂ (0)
i :=N (0)

i for all i ∈ {1, ...,n}, k := 1.
3. Iteration: Calculate, for every i, j = 1, ...,n,

the non-adaptive weights w(k)
ij :=Kloc

(
δ(Xi,Xj)/h(k)

)
,

the statistical penalty s(k)ij := N̂ (k−1)
i KL(θ̂(k−1)

i , θ̂
(k−1)
j ),

the adaptive weights w̃(k)
ij := w(k)

ij ·Kad
(
s

(k)
ij /λ

)
,

the sum of the adaptive weights Ñ (k)
i :=∑

j w̃
(k)
ij ,

and the adaptive estimator

θ̃
(k)
i :=

n∑
j=1
w̃

(k)
ij T (Yj)/Ñ (k)

i .

4. Memory step: Calculate, for every i, j = 1, ...,n,
the sum of the non-adaptive weights N (k)

i := ∑
jw

(k)
ij ,

the memory penaltym(k)
i :=N (k)

i KL(θ̃(k)i , θ̂
(k−1)
i ),

the relaxation weight η(k)i := (1−η0)Kme
(
m

(k)
i /τ

)
,

the relaxed estimator θ̂(k)i := η(k)i θ̃
(k)
i + (1− η(k)i )θ̂(k−1)

i , and the relaxed sum of the
adaptive weights N̂ (k)

i := η(k)i Ñ
(k)
i +(1−η(k)i )N̂ (k−1)

i .
5. Stopping: Stop if k = k∗, and return θ̂(k

∗)
i for all i ∈ {1, ...,n}, otherwise increase k by 1.

We emphasize that the the data-driven statistical penalty s
(k)
ij makes the adaptive weights w̃

(k)
ij ,

their sum Ñ
(k)
i , and the relaxed sum N̂

(k)
i random. In contrast, we notice that the input

parameters, the non-adaptive weights w
(k)
ij , and their sum N

(k)
i are deterministic.

Corollary 2.15. If s(k)ij = 0 and η(k)i = 1 for all i, j ∈ {1, ...,n}, then it holdsKad
(
s

(k)
ij /λ

)
= 1

for all i, j, and the non-adaptive estimator coincides with the adaptive and the relaxed one,
θ̃

(k)
i = θ̂(k)i = θ(k)i .

2.2.2 Choice of the input parameters

Next we render the choices of the input parameters more precisely. As usual, the basic strategies

follow from mathematical arguments, while the precise choices within a certain range may be

arbitrary or follow from experience.
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2.2 Methodology of the Propagation-Separation Approach

First, we consider the increasing sequence of location bandwidths. Recall that the algorithm

is initialized by the non-adaptive estimator. A choice of the initial bandwidth h(0) such that

w
(0)
ij = 0 for all i, j ∈ {1, ...,n}with i �= j avoids smoothing among distinct homogeneity regions.

A theoretical drawback of this choice will be discussed in Remark 2.18. For the subsequent

bandwidths {h(k)}k∗k=1, there have been two proposals. Polzehl and Spokoiny [2006, §3.4]

recommended to set h(k) := akh(0) with a ≈ 1.251/d, where d denotes the dimension of the

design space X . For every Xi ∈ X , this choice ensures, up to boundary effects, an exponential

growth of the mean number of design points Xj with non-zero weights w
(k)
ij �= 0. Alternatively,

one could ensure a constant variance reduction of the non-adaptive estimator in Notation 2.14,

see Becker et al. [2012, 2013]. Motivated by Lemma 2.10 (2), we consider the quantities

qi(h) :=
∑n
j=1Kloc (δ(Xi,Xj)/h)2[∑n
j=1Kloc (δ(Xi,Xj)/h)

]2 , h > 0,

that satisfy qi(h) ∈ [n−1,1] for all h > 0, and qi(h)→ n−1 if h→∞. Starting with some fixed

initial bandwidth h(0) > 0, the subsequent values h(k), k ≥ 1, are determined by numerically

solving the equation

qi(h(k−1)) = 1.25 · qi(h(k)), h(k) > 0.
If the location kernel Kloc is non-increasing, continuous, and has the support [0,1) with

Kloc(0) = 1, then the existence of a unique solution h(k) is ensured for all iteration steps

k ∈ {1, ...,k0−1}, where

k0 := min
{
k ∈ {1, ...,k∗} : 1.25−1 · qi(h(k−1))< n−1

}
.

For all later iteration steps k ∈ {k0, ...,k∗}, we apply the formal choice h(k) := ∞, where

w
(k)
ij = 1 for all i, j ∈ {1, ...,n}. The first bandwidth choice has the drawback to depend on the

design dimension d via the factor a≈ 1.251/d. In both cases, the specific value 1.25 could be

replaced by any constant a > 1. For instance in [Li et al., 2011, 2012], the authors used the first

bandwidth choice with a= 1.11/d.

The maximal location bandwidth h(k∗) is determined by the maximal number of iterations k∗.
Polzehl and Spokoiny [2006] allowed an arbitrarily large choice which is only bounded by the

available computation time. Theoretically, this was motivated by the established stability of

estimates up to some constant [Polzehl and Spokoiny, 2006, Thm. 5.7], which results from the

memory step. Additionally, the numerical examples in Chapter 5 indicate that the adaptivity

itself provides an intrinsic stopping criterion. For further details concerning the choice of k∗,
we refer the reader to Section 5.4.3.

The amount of adaptivity is determined by the adaptation bandwidth λ, which can be specified

by the propagation condition independent of the observations at hand, see Chapter 3 and Polzehl

and Spokoiny [2006, §3.4 & 3.5]. For λ→∞, the algorithm results in non-adaptive estimates

as defined in Notation 2.14 (over-smoothing), while small values lead to adaptation to noise

(under-smoothing), where the estimation function just interpolates the observations.

The memory bandwidth scales the memory penaltym
(k)
i in a similar manner as the adaptation

bandwidth the statistical penalty. It can be chosen by the propagation condition after λ has been

fixed. Polzehl and Spokoiny [2006, §3.4] recommended the choice τ = max{τ1−τ2 logh(k), τ0}
for some τ0, τ1, τ2 ≥ 0, leading to a decreasing memory bandwidth during iteration. For

the minimal memory effect η0, they propose a default value of 0.25, without giving further

details. In their theoretical study, they set η0 = 0, mentioning that the extension to η0 < 1/2 is

straightforward.
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The Propagation-Separation Approach

FIX: Kloc,Kad, δ,θ �→ Pθ

START

INPUT: {(Xi,Yi)}ni=1,{h(k)}k∗k=0,λ

For i= 1 : n For j = 1 : n dij = δ(Xi,Xj)

k = 0

While k≤ k∗ For i= 1 : n For j = 1 : n If k == 0

sij = ÑiKL
(
θ̃

(k−1)
i , θ̃

(k−1)
j

)
sij = 0

w̃ij =Kloc(dij/h(k)) ·Kad(sij/λ)

Ñi=
n∑
j=1
w̃ij , θ̃

(k)
i =

n∑
j=1
w̃ijT (Yj)/Ñi

k = k+ 1

OUTPUT: {θ̃(k∗)
i }ni=1

STOP

Do

Then

Do

Then
Then

Do Do Do

FalseTrue

Then

Then

Then

Figure 2.1: Flowchart of the simplified Propagation-Separation Approach in Algorithm 2.

2.2.3 A simplified algorithm

In many applications of the Propagation-Separation Approach, see for example Becker et al.

[2012, 2013], Divine et al. [2008], Li et al. [2011, 2012], and Tabelow et al. [2008], the memory

step was omitted without considerable change of the general behavior. This raises the question

whether the memory step is really needed. Therefore, in this study, we will attempt to provide,

for the simplified Propagation-Separation Algorithm, similar results as stated by Polzehl and

Spokoiny [2006]. Additionally, we will examine the impact of the memory step within a

numerical study. The simplified version of the original Propagation-Separation Approach in

Algorithm 1 results from the formal choice η
(k)
i = 1 for all i ∈ {1, ...,n} and k ∈ {0, ...,k∗}.

The resulting procedure is introduced in Algorithm 2 and illustrated in Figure 2.1.

Algorithm 2 (Propagation-Separation Approach without memory step).

1. Input parameters: Sequence of bandwidths {h(k)}k∗k=0 and adaptation bandwidth λ.
2. Initialization: Set k := 0, and apply, for all i, j = 1, ...,n, Equation (2.7) with s(0)

ij := 0.
Then, increase k by 1.

3. Iteration: Calculate, for every i, j = 1, ...,n,
the statistical penalty s(k)ij := Ñ (k−1)

i KL(θ̃(k−1)
i , θ̃

(k−1)
j ),

the adaptive weights w̃(k)
ij :=Kloc

(
δ(Xi,Xj)/h(k)

)
·Kad

(
s

(k)
ij /λ

)
,
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2.2 Methodology of the Propagation-Separation Approach

the sum of weights Ñ (k)
i := ∑

j w̃
(k)
ij ,

and the adaptive estimator

θ̃
(k)
i :=

n∑
j=1
w̃

(k)
ij T (Yj)/Ñ (k)

i . (2.7)

4. Stopping: Stop if k = k∗, and return θ̃(k
∗)
i for all i ∈ {1, ...,n}, otherwise increase k by 1.

2.2.4 An illustrative example

In order to provide some intuition, we illustrate the general behavior of the simplified Propa-

gation-Separation Approach in Algorithm 2. Here, we used the R-package aws by Polzehl

[2012], where the memory step is omitted by default.

On X := {1, ...,1000}, we considered a piecewise constant function,

θ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if x ∈ {1, ...,200},
7 if x ∈ {201, ...,400},
1 if x ∈ {401, ...,550},
1.5 if x ∈ {551, ...,700},
2 if x ∈ {701, ...,850},
1.5 if x ∈ {851, ...,1000},

(2.8)

and a piecewise polynomial one,

θ(x) :=

⎧⎪⎪⎨⎪⎪⎩
7+x/250 if x ∈ {1, ...,250},
11+((x−450)/100)2/2 if x ∈ {251, ...,750},
6− (x−750)/200 if x ∈ {751, ...,1000}.

(2.9)

The statistically independent observations were sampled from a Gaussian distribution with

locally varying expectation, Yi ∼N (θ(Xi),1). Then, the plots were provided by the function

aws, using the default parameter choices and the following kernel functions,

Kloc(x) := (1−x2)+ and Kad(x) := min{1,2−2x}+. (2.10)

In the first row of Figure 2.2, we show the results for the piecewise constant function (2.8) with

increasing location bandwidths hmax = 10,90,2000. The second row of Figure 2.2 is based

on the piecewise smooth function (2.9), setting hmax = 10,50,2000. For both examples, the

intermediate bandwidth minimizes the mean absolute error.

We summarize the following heuristic observations.

• Homogeneous regions with sufficiently sharp discontinuities are separated by the algo-

rithm, leading to a consistent estimator, see x ∈ {1, ...,400} in the first row of Figure 2.2.

If the discontinuities or the sample size of the corresponding homogeneous regions are too

small, separation fails. Then, different homogeneous regions are treated as one, yielding

a bounded estimation bias. This is illustrated for x ∈ {401, ...,1000}. The variance of

the separation points where the algorithm creates a discontinuity for a sufficiently large

location bandwidth decreases with increasing contrast between the true homogeneous

regions.
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Figure 2.2: Results of Algorithm 2 (black solid line) on Gaussian observations (circles in the first column)

for the parameter function θ(.) (blue dashed line). Above: Results of the piecewise constant parameter

function (2.8) for increasing location bandwidths (from left to right) hmax= 10,90,2000. Below: Results

of the piecewise smooth function (2.9) for hmax = 10,50,2000.

• In the second row of Figure 2.2, we consider the case of model misspecification, that is

a parameter function θ(.) that is not piecewise constant. Here, the algorithm forces the

final estimator into a step function. The step size mainly depends on the smoothness of

the parameter function θ(.) and on the size of the adaptation bandwidth λ. However, the

estimation bias can be reduced by an accurate stopping.

Thus, the heuristic properties are clear. However, the iterative approach complicates a theoretical

verification considerably. As a consequence, some heuristic properties do not allow a definite

proof. Nevertheless, the following theoretical study will provide a deeper insight into the

behavior of the algorithm and the respective impact of the involved components, such as

the adaptation bandwidth or the smoothness properties of the unknown parameter function.

Together with the numerical study in Chapter 5 this will justify the omittance of the memory

step, confirming the above heuristic properties.

2.3 Related work

Polzehl and Spokoiny [2006] introduced the Propagation-Separation Approach as an extension

of their Adaptive Weights Smoothing (AWS) procedure [Polzehl and Spokoiny, 2000]. Essentially,

the algorithm of AWS works very similar to Algorithm 1 (page 16). The pointwise estimates in

both methods are defined by weighted means with iteratively updated weights and a subsequent

relaxation by a memory step. In AWS, the localization and memory kernels are based on

the uniform kernel, which leads to windows instead of monotonically decreasing weighting

schemes. However, the main difference is the restriction of AWS to an additive noise model. In

accordance to this model the statistical penalty of AWS compares the estimates of the previous

20



2.3 Related work

iteration steps by the standardized absolute value of their numerical difference, taking the already

achieved variance reduction into account. For instance, in the case of homoscedastic Gaussian

distributed observations, the resulting term (approximately) conforms with the statistical penalty

in Algorithm 1. The extension to the local likelihood model has two main benefits. First, it

enabled the justification of theoretical properties, and second it provided a considerable increase

of the application area.

The basic idea of the Propagation-Separation Approach is related to Lepski’s method [Lep-

skiı̆, 1990]. In [Lepski et al., 1997; Lepski and Spokoiny, 1997], this was adapted to kernel

based estimation of functions with inhomogeneous smoothness. It aims to stop smoothing

at structural borders in order to avoid the increasing estimation bias due to smoothing across

discontinuities. For this purpose, the method chooses the largest location bandwidth such that

the associated pointwise estimator does not considerably differ from the corresponding estimates

with smaller bandwidths. This is ensured by requiring a non-empty intersection of all corre-

sponding confidence intervals. Basically, the adaptive weights of the Propagation-Separation

Approach attempt to provide an intrinsic stopping criterion which resembles the model selection

by Lepski’s method. Here, the statistical penalty is used as a test statistic, that tests whether the

estimator θ̂
(k−1)
j lies in the confidence interval of the estimator θ̂

(k−1)
i from the last iteration

step. Hence, the adaptive weights depend, for the respective iteration step, on the estimation

results of all design points within the considered neighborhood, while Lepski’s method proceeds

independently at each point, considering the estimates of all previous steps.

Particularly in image denoising, there are several methods that use weighted means or weighted

likelihood estimators with signal-dependent weights. In the review by Katkovnik et al. [2010],

the authors give a brief overview. There are several approaches that can be considered as

special cases of the Propagation-Separation Approach with a single iteration step, such as the

Yaroslavsky filter [Yaroslavsky, 1985], the SUSAN algorithm [Smith and Brady, 1997], or the

bilateral filter [Tomasi and Manduchi, 1998]. All of them suffer from a lack of robustness when

comparing noisy observations in single points, see also Buades et al. [2005a,b]. In contrast, the

Propagation-Separation Approach benefits from the iteratively updated weights.

The non-local means algorithm [Buades et al., 2005a,b; Katkovnik et al., 2010] improves ro-

bustness by comparing not only the signals in single points, but in a whole neighborhood. This

requires a sufficient self-redundancy of the considered image in order to ensure a sufficient

number of similar neighborhoods. Additionally, in order to improve adaptation and accel-

erate computation a non-local means algorithm by blocks was proposed. Here, overlapping

neighborhoods provide several estimators for a single point, which are averaged to achieve the

final estimator. This aggregation can yield a drastically improved estimate compared to the

underlying single-window estimates. Katkovnik et al. [2010] reported several proposals for

further improvement of the original or the block-wise non-local means algorithm. Recently,

Deledalle et al. [2009] presented an iterative method for weighted maximum likelihood estima-

tion, combining the patch-based adaptation of the non-local means algorithm with the general

setting and the iterative procedure of the Propagation-Separation Approach. Despite this close

relation to the Propagation-Separation Approach, comparison was only reported with respect to

other smoothing methods.
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The Propagation-Separation Approach

2.4 Some auxiliary results

In our study, we will use some results by Polzehl and Spokoiny [2006], which do not base

on the memory step or the problematic Assumption (S0). Figure 2.3 illustrates the interde-

pendence of the theoretical results in [Polzehl and Spokoiny, 2006] and the application of

Assumption (S0). Here, we distinguish between general results and results with respect to

the original Propagation-Separation Approach. In the following, we will only use Lemma 5.2,

Theorem 2.1, and Theorem 2.2 from Polzehl and Spokoiny [2006], see Figure 2.3. The former

is a direct consequence of Assumption A1 (page 10). It is given in Lemma 2.8 (page 13). The

two theorems consider the non-adaptive estimator in Equation (2.6) (page 13). The first one is

given in Theorem 2.13 (page 14) and the second one will be stated in Theorem 2.24, at the end

of this section. It extends Theorem 2.13 to inhomogeneous parameter functions. Both theorems,

2.13 and 2.24, follow from a more general result, Theorem 2.19, that was stated in [Polzehl and

Spokoiny, 2006, Thm. 6.1]. The corresponding proofs are given in Section 2.5.

First, we give some details concerning the applicability of the technical Lemma 2.8 and the

related Equation (2.2) (page 11). The addressed challenges appear in [Polzehl and Spokoiny,

2006] as well, although this is not explicitly mentioned there. For several results, we will

apply Equation (2.2) and Lemma 2.8 not only with respect to the true parameters {θi}i, but as
well with respect to the transformed observations {T (Yi)}i or the associated estimates {θ̃(k)i }i,
k ∈ {0, ...,k∗}. There, we will need that T (Yi) ∈Θκ or at least θ̃

(k)
i ∈Θκ for all i ∈ {1, ....,n},

the respective iteration step k ∈ {0, ...,k∗}, and some constant κ ≥ 1, where κ and Θκ are as

in Notation 2.6. However, if κ > 1 and Pθ has unbounded support, this cannot be satisfied

with probability one. Therefore, we will restrict our analysis to the favorable realizations

{T (Yi) ∈ Θκ for all i}, and we will quantify the probability of its complementary set. For

every κ, we will use the most convenient choice of the set Θκ. We will restrict the range of θ(.)
by the subset Θ∗ ⊆Θ, which may influence the respective choice of Θκ and, as a consequence,

the corresponding value pκ which we introduce now.

Notation 2.16. We fix a subset Θ∗ ⊆Θ and a constant ϕ0 ≥ 0. Then, we recall Notation 2.6,
and we choose κ ≥ 1 sufficiently large such that Θ∗ ⊆Θκ. The function pκ : (Θ∗)n→ [0,1]
maps to the probability of the event T (Yi) /∈Θκ for some i, where Θκ is chosen such that pκ is
minimal. More precisely, we set

pκ ({θi}ni=1) := inf{P(∃ i ∈ {1, ...,n} : T (Yi) /∈Θκ) : Yi ∼ Pθi ,{θi}ni=1 ∈ (Θκ)n}.

Furthermore, we consider the worst choice of {θi}ni=1 ∈ (Θ∗)n with bounded Kullback-Leibler
divergence via

pκ := sup{pκ ({θi}ni=1) : {θi}ni=1 ∈ (Θ∗)n and max
i,j
KL(θi,θj)≤ ϕ2

0}.

The probability pκ is the smaller the larger we choose κ ≥ 1. The following example illustrates

the trade-off between κ and pκ. In practice, the consequences are attenuated since the effective

values of κ and pκ may be much smaller than the global ones.

Example 2.17.

• For Gaussian and log-normal distributed observations with P = {N (θ,σ2)}θ∈Θ and

P = {logN (θ,σ2)}θ∈Θ, respectively, it holds I(θ) = 1/σ2, leading to κ = 1. In this

case, Equation (2.2) and Lemma 2.8 hold for every subset Θ′ ⊆Θ without the restriction

to compact sets, and we get pκ = 0. This is the optimal scenario.
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2.4 Some auxiliary results

Figure 2.3: Structure of the original study by Polzehl and Spokoiny [2006]. The repeated application

of Lemma 5.2 (see the first line) is emphasized by the star (∗). Proposition 5.6 establishes the memory

property. Hence, Theorems 5.7, 5.8, and 5.9 rely on the memory step, which we omit in the simplified

algorithm (page 18). The propagation property and, as a consequence, the rate of convergence require the

problematic Assumption (S0).
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• For the Gamma, Erlang, scaled chi-squared, exponential, Rayleigh, Weibull, and Pareto

distributions, see Table 2.1 (page 12), it holds after reparametrization I(θ) = 1/θ2. This
leads to large values of κ and pκ. More precisely, every κ ≥ 1 implies that Θκ = [a,κa]
with an appropriate choice a > 0 which minimizes pκ. For P = {Exp(1/θ)}θ∈Θ and

Y ∼ Pθ, it follows

P(Y ∈Θκ) = e−a/θ−e−κa/θ.

For ϕ0 = 0 and Θ∗ = {θ}, this depends on the explicit choices of θ and Θκ via the

quotient a/θ only. Hence, we get by maximization of P(Y ∈Θκ) with respect to a/θ
for every θ the most favorable a > 0 and consequently the most favorable choice of Θκ.

Then, for each value of κ, the probability pκ equals 1−P(Y ∈Θκ)n, where P(Y ∈Θκ)
is given in Table 2.2. This probability pκ increases exponentially with n.

κ 5 8 20 50 100

P(Y ∈Θκ) 0.535 0.65 0.811 0.905 0.945

a/θ 0.402 0.297 0.158 0.08 0.047

Table 2.2: Maximization of P(Y ∈Θκ) with respect to a/θ for varying values of κ.

Remark 2.18. Alternatively, we could modify the algorithm, replacing the adaptive estima-

tor (2.7) in Algorithm 2 (page 18) by

θ̃
(k)
i := argmin

θ′∈Θκ

|θ′−
n∑
j=1
w̃

(k)
ij T (Yj)/Ñ (k)

i |.

This projects the adaptive estimator into the set Θκ. Here, it might be advantageous to decrease

the probability of θ
(0)
i /∈ Θκ by choosing the initial bandwidth h(0) such that the neighbor-

hood U
(0)
i := {Xj ∈ X : w(0)

ij > 0} contains more design points than Xi, U
(0)
i �= {Xi}, for

each i ∈ {1, ...,n}. Else, the projection may change the impact of the statistical penalty in later

iteration steps, leading to slightly shifted estimators. On the other hand, initialization with

U
(0)
i = {Xi}, i ∈ {1, ...,n}, avoids smoothing among distinct homogeneous regions before

adaptation starts. The projection complicates the theoretical analysis since the effect of the

projection would need to be quantified. Therefore, we prefer the first approach, that is the

restriction to the favorable realizations.

Next we recall an exponential bound by Polzehl and Spokoiny [2006, Thm. 6.1], from which

the later on applied Theorems 2.13 and 2.24 (pages 14 and 25) follow as special cases.

Theorem 2.19. Suppose Assumption A1, and reparametrize v := C(θ) and D(v) := B(θ).
Furthermore, let W i := {wij}nj=1 ∈ [0,1]n be a weighting scheme, and consider the corre-
sponding MLE θi in Equation (2.6) and its expectation θ̆i := Eθi = ∑

jwijθj/N i. We set
q(u|v) :=KL(v,v+u) and define, for a given constant z ≥ 0 and v̆i = C(θ̆i), the set

U
(
W i,z

)
:=

{
u ∈ R :

∫ u
0
xD′′(v̆i+x)dx= z/N i

}
,

where it holds
∫ u

0 xD
′′(v̆i+x)dx=KL(v̆i+u, v̆i). Finally, we assume the existence of some

constant α≥ 0 such that

q(μuwij |vj)≤ (1+α)μ2wijq(u|v̆i), j = 1, ...,n, (2.11)

for μ := (1+α)−1 ∈ (0,1] and all u ∈ U
(
W i,z

)
. Then, we get

P

(
N iKL

(
θi,Eθi

)
> z

)
≤ 2e−z/(1+α).
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Remark 2.20. Polzehl and Spokoiny [2006] assumed the sufficient statistic T in Assumption A1

to be the identity map. Fortunately, the recalled results depend on the probability distribution and

consequently on T via the Kullback-Leibler divergence only. This ensures with Lemma 2.5 (3)

that the choice of T does not have any effect, and the original results remain valid.

Finally, we extend Theorem 2.13 to parameter functions with bounded variability. In the

corresponding proof, Polzehl and Spokoiny [2006] used Equation (2.2) (page 11). Although not

stated in [Polzehl and Spokoiny, 2006, Thm. 2.2], this requires a restriction to the favorable

realizations. In order to quantify the probability of the complementary set, we proceed in

an analogous manner as in Notation 2.16. We consider a different set of realizations, whose

definition will be motivated in the proof of Theorem 2.24 (page 30).

Notation 2.21. Recall Notation 2.6. We fix a subset Θ∗ ⊆ Θ and a constant ϕ0 ≥ 0. Let
κ ≥ 1 be sufficiently large such that Θ∗ ⊆ Θκ. Then, for every i ∈ {1, ...,n}, we consider
the MLE θi in Equation (2.6) with weighting schemeW i := {wij}nj=1 ∈ [0,1]n. The function
p̆κ : (Θ∗)n→ [0,1] is given by

p̆κ ({θi}ni=1) := inf{P
(
∃ i, j ∈ {1, ...,n} : C−1[C(θj)+C(θi)−C(Eθi)] /∈Θκ

)
:

Yi ∼ Pθi ,{θi}ni=1 ∈ (Θκ)n }.
We consider the worst choice of {θi}ni=1 ∈ (Θ∗)n with bounded Kullback-Leibler divergence via

p̆κ := sup
{

p̆κ ({θi}ni=1) : {θi}ni=1 ∈ (Θ∗)n and max
i,j
KL(θi,θj)≤ ϕ2

0

}
.

For every i ∈ {1, ...,n}, let the weighting schemeW i := {wij}nj=1 ∈ [0,1]n be given as wii = 1
and wij = 0 for all i �= j. Then, it holds θi = T (Yi) for every i, and we set p̆κ,0 := p̆κ in order
to distinguish the specific weighting scheme.

Example 2.22. For Gaussian and log-normal distributed observations, it holds p̆κ = 0 since

κ = 1 for every set Θκ ⊆Θ. For the Gamma and its related distributions, the probability p̆κ
may be large, and it increases with decreasing values of κ as well as with increasing sample

sizes.

The probabilities p̆κ,0 in Notation 2.21 and pκ in Notation 2.16 are closely related.

Lemma 2.23. Suppose Assumption A1 and the setting of Notation 2.21. Then, it holds

max
i
θi ≤ max

i,j
C−1

[
C(θj)+C(θi)−C(Eθi)

]
and min

i
θi ≥ min

i,j
C−1

[
C(θj)+C(θi)−C(Eθi)

]
.

Furthermore, we have

Ω̆κ :=
n⋂
i,j=1

{
C−1 [C(θj)+C(T (Yi))−C(θi)] ∈Θκ

}
⊆
n⋂
i=1
{T (Yi) ∈Θκ}=: Ωκ,

and, as a consequence, we get p̆κ,0 ≥ pκ, where pκ is as in Notation 2.16.

Theorem 2.24. Suppose Assumption A1, and fix a subset Θ∗ ⊆ Θ and a constant ϕ0 ≥ 0
such that {θi}ni=1 ∈ (Θ∗)n and maxi,jKL(θi,θj)≤ ϕ2

0. Moreover, recall Notation 2.6, and let
κ ≥ 1 be sufficiently large such that Θ∗ ⊆Θκ. Finally, letW i := {wij}nj=1 ∈ [0,1]n denote a
weighting scheme, and recall the corresponding quantities θi and N i in Equation (2.6). Then,
for each i ∈ {1, ...,n} and every z > 0, it holds

P

(
N iKL(θi,Eθi)> z

)
≤ 2e−z/κ2 + p̆κ,

where p̆κ is as in Notation 2.21.
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2.5 Proofs

Proof of Lemma 2.5.

1. For every θ ∈Θ, it follows from Assumption A1 that

logp(Y,θ) = log(p(Y ))+T (Y )C(θ)−B(θ).

Due to B′(θ) = θC ′(θ), this leads to

∂
∂θ logp(Y,θ) = T (Y )C ′(θ)−B′(θ) = C ′(θ)[T (Y )−θ]

and ∂2

∂θ2 logp(Y,θ) = C ′′(θ)[T (Y )−θ]−C ′(θ).

Hence, Notation 2.4 and Equation (2.1) yield

I(θ) =−C ′′(θ)Eθ [T (Y )−θ]+C ′(θ) = C ′(θ).

2. The compactness of Θ′ and C ∈ C2(Θ,R) ensure by the extreme value theorem that the

derivative C ′ attains its minimum and maximum. Then, for every θ1,θ2 ∈Θ′, we get

I(θ1)
I(θ2) = C

′(θ1)
C ′(θ2) ≤

max{C ′(θ) : θ ∈Θ′}
min{C ′(θ) : θ ∈Θ′} =: κ

2 ∈ [1,∞)

since C ′ > 0.
3. For all θ,θ′ ∈Θ, we observe that

KL(θ,θ′) = Eθ

[
logp(Y,θ)− logp(Y,θ′)

]
= θC(θ)−B(θ)−θC(θ′)+B(θ′),

which leads to Equation (2.3). Next we consider the reparametrization v := C(θ) and

D(v) := B(θ), satisfying D′(v) = C−1(v) = θ and D′′(v) = 1/I(C−1(v)) = 1/I(θ).
Then, the quadratic expression follows from Taylor’s Theorem, where the remainder is

given in Lagrange form,

KL(θ,θ′) = C−1(v)(v−v′)+D(v′)−D(v) (2.12)

= C−1(v)(v−v′)+D′(v)(v′−v)+D′′(v0)(v′−v)2/2

= 1
2I(θ0)

[
C(θ′)−C(θ)

]2
(2.13)

= 1
2I(θ0)

[
C ′(θ∗)(θ′−θ)

]2
= [I(θ∗)]2

2I(θ0) (θ′−θ)2

with θ∗ between θ and θ′ and v0 between v and v′, leading by the monotonicity of C to θ0
between θ and θ′. Finally, the convexity of the Kullback-Leibler divergence with respect

to the first argument is satisfied since the second derivative is non-negative

∂2

∂θ2
KL(θ,θ′) = ∂

∂θ

[
C(θ)−C(θ′)

]
= C ′(θ)> 0.
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Proof of Lemma 2.8. The proof follows the same ideas as [Polzehl and Spokoiny, 2006, Lem.

5.2]. We use the reparametrization v := C(θ) andD(v) :=B(θ) as introduced in the proof of

Lemma 2.5 (3). This leads for all θ1,θ2,θ3 with v∗,v∗1,v∗3 appropriate to

KL1/2 (θ1,θ3) Eq. (2.13)=
√

1
2D
′′(v∗) |v1−v3|

≤
√

1
2D
′′(v∗) |v1−v2|+

√
1
2D
′′(v∗) |v2−v3|

Eq. (2.2)

≤ κ

√
1
2D
′′(v∗1) |v1−v2|+κ

√
1
2D
′′(v∗3) |v2−v3|

Eq. (2.13)= κ

[
KL1/2 (θ1,θ2)+KL1/2 (θ2,θ3)

]
and analogously for any sequence θ0,θ1, ...,θm ∈Θκ.

Proof of Lemma 2.10. We use the notations N i =
∑n
j=1wij and Si :=

∑n
j=1wijT (Yj).

1. Assumption A1 yields, for every θ ∈Θ, that

L(W i,θ) =
n∑
j=1
wij [log(p(Yj))+T (Yj)C(θ)−B(θ)] ,

and we have
∂

∂θ
L(W i,θ) = C ′(θ)

[
Si−θN i

]
,

where we used that B′(θ) = θC ′(θ). Since C ′(θ)> 0 for all θ ∈Θ, the only extremum

of L(W i,θ) is at the point θi = Si/N i. Additionally, we observe that the monotonicity

of the function C ensures that the second derivative

∂2

∂θ2
L(W i,θ) = C ′′(θ)

[
Si−θN i

]
−C ′(θ)N i

is negative at θ=Si/N i. Hence, the log-likelihood function has a unique global maximum

at θ = θi, and the weighted mean θi equals the maximum likelihood estimator θMLE
i .

2. Recall that the observations {Yi}ni=1 are statistically independent. Therefore, the variance

of the weighted MLE equals

Var
(
θMLE
i

)
= Eθ

⎡⎢⎣
⎛⎝ n∑
j=1
wij [T (Yj)−θj ]/N i

⎞⎠2
⎤⎥⎦

=
n∑
j=1
w2
ijEθ

[
(T (Yj)−θj)2

]
/N

2
i = σ2

n∑
j=1
w2
ij/N

2
i .

Finally, {wij}j ∈ [0,1]n implies that
∑
jw

2
ij/N

2
i ≤

∑
jwij/N

2
i = 1/N i.

Proof of Lemma 2.12. Let Si andN i be as in the proof of Lemma 2.10, and recall that Si=N iθi
as established in Lemma 2.10 (1). Then, for every θ ∈Θ, we get

L(W i,θi,θ) =
n∑
j=1
wij

[
T (Yj)C(θi)−B(θi)−T (Yj)C(θ)+B(θ)

]
= Si

[
C(θi)−C(θ)

]
−N i

[
B(θi)−B(θ)

]
= N iKL

(
θi,θ

)
,

where we used Equation (2.3) in Lemma 2.5 (3).
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The proofs of Theorems 2.13 and 2.24 are based on Theorem 2.19. Therefore, we prove the

latter first. For this purpose, we recall the exponential Chebyshev inequality, see for example

Durrett [2010, Thm 1.6.4, page 28].

Lemma 2.25 (Exponential Chebyshev inequality). Let Z denote a random variable with finite
exponential expected value. Then, it holds P(Z >z)≤ e−μzE[eμZ ] for all z > 0 and every μ> 0.

Proof of Theorem 2.19. Recall that the function C is strictly monotonic increasing. Therefore,

the parameter v is uniquely defined, and it holds by definition of the weighted MLE and the

fitted log-likelihood that

vi = argsup
v∈range(C)

L
(
W i,v

)
and L

(
W i,vi,v

′) = sup
v∈range(C)

L
(
W i,v

)
−L

(
W i,v

′)
for v′ ∈ range(C). We use the reparametrization v := C(θ) and D(v) :=B(θ), see the proof

of Lemma 2.5 (3). For all v ∈ range(C), Lemma 2.12 shows withD′(vi) = θi = Si/N i, where

Si =
∑
jwijT (Yj), that

L
(
W i,vi,v

)
Lem. 2.12= N iKL(vi,v)

Eq. (2.12)= Si(vi−v)−N i (D(vi)−D(v)) .

Then, we consider the function f(u) :=
[
z+N i (D(v̆i+u)−D(v̆i))

]
/u, which attains its

minimum at some point u ∈ U(W i,z), since

0 = f ′(u) ⇐⇒ 0 =
[
N iuD

′(v̆i+u)−z−N i (D(v̆i+u)−D(v̆i))
]
/u2

⇐⇒ z/N i = uD′(v̆i+u)− (D(v̆i+u)−D(v̆i))

and

KL(v̆i+u, v̆i) = uD′(v̆i+u)− (D(v̆i+u)−D(v̆i))

=
∫ u

0
xD′′(v̆i+x)+D′(v̆i+x)dx−

∫ u
0
D′(v̆i+x)dx

=
∫ u

0
xD′′(v̆i+x)dx.

The same holds for the function f∗(u) :=−f(u). Hence, for all z ≥ 0 and some appropriate

values u1,u2 ∈U(W i,z), it follows in the same manner as in the proof of [Polzehl and Spokoiny,

2006, Lem. 6.2] that{
L
(
W i,vi, v̆i

)
> z

}
=

{
sup

v∈range(C)

[
Si(v− v̆i)−N i (D(v)−D(v̆i))

]
> z

}

⊆
{
Si > inf

v>v̆i

z+N i (D(v)−D(v̆i))
v− v̆i

}
∪
{
−Si > inf

v<v̆i

z+N i (D(v)−D(v̆i))
v̆i−v

}

⊆
{
Si >
z+N i (D(v̆i+u1)−D(v̆i))

u1

}
∪
{
−Si > z+N i (D(v̆i+u2)−D(v̆i))

−u2

}
⊆

{
L
(
W i, v̆i+u1, v̆i

)
> z

}
∪
{
L
(
W i, v̆i+u2, v̆i

)
> z

}
,

For every u ∈ U(W i,z), we get from D′(v) = θ that

L
(
W i, v̆i+u, v̆i

)
= u

[
Si−N iθ̆i

]
−N i

[
D(v̆i+u)−D(v̆i)−uD′(v̆i)

]
= u

[
Si−N iθ̆i

]
−N iq(u|v̆i).
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Then, for μ > 0, Lemma 2.25 implies with the statistical independence of the observations that

logP

(
L(W i, v̆i+u, v̆i)> z

)
≤ −μz−μN iq(u|v̆i)−μuN iθ̆i+

n∑
j=1

logE

[
eμuwijT (Yj)

]
.

For every v,v∗ ∈ range(C), it holds (dPv/dPv∗)(y) = eT (y)[v−v∗]−[D(v)−D(v∗)], yielding, for
every j with aj := μuwij , that

E

[
eajT (Yj)

]
=

∫
eajT (y) dPvj

dPv∗
(y)dPv∗(y)

= e−[D(vj)−D(aj+vj)]
∫
eT (y)[(aj+vj)−v∗]−[D(aj+vj)−D(v∗)]dPv∗(y)

= e−[D(vj)−D(aj+vj)]
∫ dP(aj+vj)
dPv∗

(y)dPv∗(y)

= eq(aj |vj)+ajD
′(vj).

Finally, μ= (1+α)−1 and Equation (2.11) (page 24) lead to

logP

(
L(W i, v̆i+u, v̆i)> z

)
≤ −μz−μN iq(u|v̆i)−μuN iθ̆i+

n∑
j=1

[
q(μuwij |vj)+μuwijD′(vj)

]
≤ −μz−μN iq(u|v̆i)−μuN iθ̆i+(1+α)μ2N iq(u|v̆i)+μu

n∑
j=1
wijθj

= −z/(1+α),

which terminates the proof.

Proof of Theorem 2.13. Let q(u|v) =KL(v,v+u) be as in Theorem 2.19 and hence q(0|v) = 0.
We justify the assertions of Theorem 2.19. Since θ(.)≡ θ, it holds vj = v̆i for all i, j ∈ {1, ...,n}.
Recall that the Kullback-Leibler divergence is convex with respect to the first argument. For

every weighting schemeW i ∈ [0,1]n and all u ∈ U(W i,z), this yields

q(wiju|vj)≤ wijq(u|v̆i), j = 1, ...,n.

Hence, in the setting of Theorem 2.13, Equation (2.11) (page 24) is satisfied with α = 0 and

μ= 1, and the assertion follows from Theorem 2.19 with θ = Eθ.

Proof of Lemma 2.23. Recall that the function C is strictly monotonic increasing. Additionally,

the estimator θi is a weighted mean, and we get

max
j
C(θj)≥ C(Eθi) and min

j
C(θj)≤ C(Eθi)

for every i ∈ {1, ...,n}. Therefore, it holds

max
i,j
C−1

[
C(θj)+C(θi)−C(Eθi)

]
= C−1

[
max
j
C(θj)+max

i
{C(θi)−C(Eθi)}

]
≥ C−1

[
max
i
C(θi)

]
= max

i
θi
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and analogously

min
i,j
C−1

[
C(θj)+C(θi)−C(Eθi)

]
≤min

i
θi.

The other assertions follow as direct consequences by the definition of p̆κ,0 and the corresponding

weighting scheme.

Proof of Theorem 2.24. Let q(u|v) = KL(v,v+u) be as in Theorem 2.19. Equation (2.12)

(page 26) provides with the Taylor expansion that

q(u|v) =D(v+u)−D(v)−uD′(v) = u2D′′(v+ cu)/2,

where the remainder is in Lagrange form, and c ∈ [0,1] is chosen appropriately. We set

α := κ
2−1, and recall that w2

ij ≤ wij since wij ∈ [0,1]. For c1, c2 ∈ [0,1] appropriate and all

i, j ∈ {1, ...,n}, this yields Equation (2.11) (page 24) via

q(μuwij |vj) = (μuwij)2D′′(vj+ c1μuwij)/2
Eq. (2.2)

≤ μ2w2
ijκ

2u2D′′(v̆i+ c2u)/2≤ (1+α)μ2wijq(u|v̆i)

if C−1(vj+ c1wijμu),C−1(v̆i+ c2u) ∈Θκ. The function C is strictly monotonic increasing,

and the expectation satisfies v̆i ∈ [minj vj ,maxj vj ]. It holds by assumption that C−1(vi) ∈Θκ

for all i ∈ {1, ...,n} and, as a consequence, C−1(v̆i) ∈ Θκ. Therefore, it suffices to ensure

that C−1(vj+u) ∈Θκ for all j ∈ {1, ...,n} and u ∈ U(W i,z). The assertion of Theorem 2.19

remains valid if Equation (2.11) is only satisfied for u ∈ U(W i,z) with u := vi− v̆i. Hence,

we restrict our analysis to the favorable realizations, where C−1(vj + vi− v̆i) ∈ Θκ for all

i, j ∈ {1, ...,n} and some most favorable subset Θκ ⊆Θ. The probability of the complementary

set of realizations is bounded by the probability p̆κ in Notation 2.21, and we get by Theorem 2.19

that

P

(
N iKL(θi,Eθi)> z

)
≤ 2e−z/κ2 + p̆κ,

which leads to the assertion.
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Chapter 3

The propagation condition

We dwell on the choice of the adaptation bandwidth λ. This specifies the amount of adaptation

and is therefore crucial for the behavior of the Propagation-Separation Approach, see Algo-

rithms 1 and 2 (pages 16 and 18). For λ→∞, the algorithm behaves as non-adaptive smoothing.

In contrast, for a small adaptation bandwidth, that is if λ→ 0, the algorithm adapts to noise, and

the pointwise adaptive estimator equals the respective observation, θ̃
(k)
i = T (Yi). Hence, we

aim to find a bandwidth λ which allows as much smoothing as possible within homogeneous

regions, while still providing structural adaptation.

Polzehl and Spokoiny [2006, §3.5] suggested a parameter choice strategy for the adaptation

bandwidth, called propagation condition. The basic idea is that the impact of the statistical

penalty in the adaptive weights should be negligible under homogeneity, yielding almost

unhindered smoothing within homogeneous regions. More precisely, the authors proposed

to adjust λ by Monte-Carlo simulations in accordance with the following criterion, where an

artificial data set is considered.

"(...) the parameter λ can be selected as the minimal value of λ that, in the case of

a homogeneous (parametric) model θ(x)≡ θ, provides a prescribed probability to

obtain the global model at the end of the iteration process."

Here, we formally introduce a new criterion which allows the verification of propagation and

stability under (piecewise) homogeneity for the simplified procedure as given in Algorithm 2

(page 18). Additionally, it provides a better interpretability than earlier formulations, see for

example Polzehl et al. [2010]. Spokoiny and Vial [2009] formulated in the context of model

selection a propagation condition which is based on confidence intervals. Here, we consider

quantiles.

The chapter is divided in three sections. First, we will present our novel propagation condition

for the choice of the adaptation bandwidth, considering an artificial homogeneous setting.

This choice will be justified by a detailed evaluation of its variability with respect to the fixed

parameter θ ∈Θ. The corresponding results in § 3.1.2 will be crucial for our subsequent study

of the simplified Propagation-Separation Approach in Section 4.2. Additionally, we will give

some hints concerning the application of the propagation condition in practice. Then, we

will extend the homogeneous propagation condition to bounded parameter functions. This

requires an increased adaptation bandwidth as we will specify in Claim 3.22. Although the

iterative procedure of the algorithm impedes a definite proof, this claim suggests the existence

of a bandwidth λ which is in accordance with the inhomogeneous propagation condition
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in Definition 3.15. The justification of Claim 3.22 will be based on some technical results,

namely Lemmas 3.19, 3.20, and Proposition 3.21. These results will deliver an insight in the

homogeneous propagation condition and the impact of the Kullback-Leibler divergence, where

it is based on. All proofs and the justification of Claim 3.22 are collected in the last part of the

chapter.

Throughout this chapter we will consider the local exponential family model in Assumption A1

(page 10). Additionally, we will concentrate on the simplified Propagation-Separation Approach

in Algorithm 2 (page 18), where the memory step is omitted. Our novel formulation of the

propagation condition is motivated by two results by Polzehl and Spokoiny [2006], which we

recalled in Chapter 2, namely Theorems 2.13 and 2.24.

3.1 Choice of the adaptation bandwidth

Under homogeneity, where θ(.)≡ θ, Theorem 2.13 shows that the non-adaptive estimator in

Notation 2.14 satisfies P(N (k)
i KL(θ(k)i ,θ)> z)≤ 2e−z for all i ∈ {1, ...,n} and every iteration

step k ∈ {0, ...,k∗}. This describes the probability of the Kullback-Leibler divergence between

the non-adaptive estimator θ
(k)
i and the true parameter θ ∈Θ to exceed the upper bound z/N

(k)
i .

Hence, in probability, the divergence KL(θ(k)i ,θ) decreases at least with rate N
(k)
i . The follow-

ing propagation condition is constructed to ensure a similar behavior for the adaptive estimator.

Recall the relation of the adaptive and the non-adaptive estimators, that we established in

Corollary 2.15.

3.1.1 Homogeneous propagation condition

For all k ∈ {0, ...,k∗}, p ∈ (0,1), θ ∈Θ, and i ∈ {1, ...,n}, Theorem 2.13 implies that

Z(k,p;θ, i) := inf
{
z > 0 : P

(
N

(k)
i KL(θ(k)i ,θ)> z

)
≤ p

}
≤ ln(2/p)

since p= 2e−z if and only if z = ln(2/p). However, this is a rough bound, and Z(k,p;θ, i) can

be smaller than ln(2/p). In fact, heuristic observations suggest that the function Z(.,p;θ, i)
is non-increasing with respect to the first argument, that is during iteration. We introduce the

adaptive analog of the non-adaptive function Z.

Notation 3.1. For every λ > 0, we consider the function

Zλ : {0, ...,k∗}× (0,1)×Θ×{1, ...,n}→ [0,∞)

defined by

Zλ(k,p;θ, i) := inf
{
z > 0 : P

(
N

(k)
i KL(θ̃(k)i (λ),θ)> z

)
≤ p

}
,

where θ̃(k)i (λ) denotes the adaptive estimator at the positionXi ∈X , resulting from Algorithm 2

(page 18) with the adaptation bandwidth λ and observations Yj
iid∼ Pθ for all j ∈ {1, ...,n}

with θ(.)≡ θ.

Note that we replaced the non-adaptive estimator θ
(k)
i by the adaptive one, but not the sum of the

non-adaptive weights N
(k)
i . This is crucial for our analysis as it requires the adaptive estimator

to provide a similar reduction of the Kullback-Leibler divergence as the non-adaptive one.
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3.1 Choice of the adaptation bandwidth

Definition 3.2 (Homogeneous Propagation condition). We say that the adaptation bandwidth λ
is chosen in accordance with the (homogeneous) propagation condition at level ε > 0 for
θ ∈Θ if the function Zλ(.,p;θ, i) in Notation 3.1 is non-increasing for all p ∈ (ε,1) and every
i ∈ {1, ...,n}.
Remark 3.3.

• In § 3.1.2, we will evaluate the variability of the propagation condition with respect to the

fixed parameter θ ∈Θ. There, we will show some examples of the propagation condition,

assuming a Gaussian, exponential, and Poisson distribution, see Figures 3.1, 3.2, and 3.3.

• The probability P(N (k)
i KL(θ̃(k)i (λ),θ)> z) cannot be calculated exactly. In § 3.1.3, we

will introduce an appropriate approximation which can be used in practice.

• The propagation level ε can be interpreted as the expected number of observations out of

one hundred to which the Propagation-Separation Approach adapts under homogeneity.

In practice, this number should be chosen such that the algorithm provides a certain

estimation quality that is appropriate for the respective application.

In general, it is advantageous to allow as much adaptation as possible, without violating the

propagation condition. Hence, the optimal choice of λ is given by the infimum over the values

which are in accordance with the propagation condition. In order to ensure that λ > 0, we

introduce an additional constant λmin > 0.

Notation 3.4. Let λmin > 0 be fixed, and consider the set

Λ(ε;θ) := {λ > 0 : Zλ(.,p;θ, i) is non-increasing for p ∈ (ε,1) and all i} .

Then, we introduce

λopt(ε,θ;λmin) := max{λmin, inf{λ ∈ Λ(ε;θ)}} .

3.1.2 Justification of the propagation condition

As in previous versions, the propagation condition in Definition 3.2 is formulated with respect

to some fixed parameter θ ∈ Θ. In practice, the parameter function θ(.) is unknown. Hence,

we need to ensure that the propagation condition is satisfied for the unknown values θi with

i ∈ {1, ...,n}. At best, the choice of λ by the propagation condition is invariant with respect to

the underlying parameter θ. The study below points out that this is the case for the Gaussian

and the exponential distribution and, as a consequence, for the log-normal, Rayleigh, Weibull,

and Pareto distributions. Else, we recommend to identify some least favorable parameter θ∗

which yields a sufficiently large choice of the adaptation bandwidth λ such that the propagation

condition remains valid for all values θi, i ∈ {1, ...,n}.
We start our analysis by introducing a general criterion for the invariance of the composition of

two functions with respect to some parameter θ.

Proposition 3.5. Let f : Ωf → R and g : Ωg → R be continuously differentiable functions
with open domains Ωf ,Ωg ⊆ R

2. We denote Ωfθ := {y : (y,θ) ∈ Ωf} and fθ : Ωfθ → R with
fθ(y) := f(y,θ) and analogously Ωg and gθ. Then, we suppose Ωgθ ⊆ Ωfθ and

∣∣∣∂gθ∂y ∣∣∣> 0, such

that the composition fθ ◦g−1
θ : gθ(Ωgθ)→ R is well-defined. The function

h(z,θ) := fθ
(
g−1
θ (z)

)
, z ∈ gθ(Ωgθ),
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is invariant with respect to θ if a variable ζ(y,θ) and functions f̃ and g̃ exist such that

f̃(ζ) = fθ(y) and g̃(ζ) = gθ(y). (3.1)

Now we are well prepared to evaluate the variability of the propagation condition with respect

to the parameter θ. Recall that the estimator of the Propagation-Separation Approach is defined

as a linear combination of the terms T (Yj), where the adaptive and the non-adaptive estimator

only differ in the definition of the weights. Thus, we approach the problem in three steps. We

start from the special case where the estimator is restricted to a single point T (Yj). Then, we

consider the non-adaptive estimator, describing its probability density as the convolution of the

respective densities corresponding to the weighted observations. Here, we take advantage of the

statistical independence of the involved random variables w
(k)
ij T (Yj)/N

(k)
i . In the case of the

adaptive estimator, we cannot follow the same approach. This would require the specification of

the probability distributions of the random variables w̃
(k)
ij T (Yj)/Ñ (k)

i , where the distributions of

the adaptive weights are unknown. Furthermore, these variables are not statistically independent.

In order to compensate the resulting lack of a theoretical proof, we illustrate by simulations

that the adaptive estimator shows almost the same behavior as the non-adaptive estimator if the

propagation condition is satisfied. This suggests that the probability distribution of KL(θ̃(k)i ,θ)
is invariant with respect to θ if the same holds for the non-adaptive estimator. The single

observation case is treated first.

Lemma 3.6. Suppose Assumption A1, and let P = {Pθ}θ∈Θ with Θ⊆R be a parametric family
of continuous probability distributions. Presume that Y ∼ Pθ with T (Y ) ∈ Θ almost surely
and that the density fYθ = dPθ/dP of Y is continuously differentiable. We consider the random
variable Z := gθ(Y ) :=KL(T (Y ),θ), and we require that gθ is continuously differentiable and
|∂gθ∂y |> 0 almost surely. The density fZθ of Z is invariant with respect to the parameter θ if a
variable ζ(y,θ) and functions f̃ and g̃ exist such that

f̃(ζ) = fYθ (y) ·
∣∣∣∣∂gθ∂y (y)

∣∣∣∣−1
and g̃(ζ) = gθ(y).

This lemma yields the desired results for Gaussian and Gamma distributed observations.

Example 3.7. We use the same notations as in Lemma 3.6. In the following cases, the density

of Z is invariant with respect to the parameter θ.

• P =
{N (θ,σ2)

}
θ∈Θ with σ > 0 fixed: We know from Example 2.7 that

gθ(y) =KL(y,θ) = (y−θ)2

2σ2 and we get
∂gθ
∂y

(y) = y−θ
σ2 .

Hence, gθ is strictly monotonic on the open sets V1 = (−∞,θ) and V2 = (θ,∞). Ad-

ditionally, it holds Pθ(Y = θ) = 0. Since fYθ (y) = exp
(
− (y−θ)2

2σ2

)
/
√

2πσ2, we get the

invariance with respect to θ from Lemma 3.6 by setting

ζ(y,θ) := y−θ, f̃(ζ) := σe
− ζ2

2σ2

ζ
√

2π
, and g̃(ζ) := ζ

2

2σ2 .

• P = {Γ(p,θ)}θ∈Θ with p > 0 fixed: Equation (2.3) (page 11) and Table 2.1 (page 12)

yield for the Kullback-Leibler divergence between Py,Pθ ∈ P the explicit formula

gθ(y) =KL(y,θ) = p [y/θ−1− ln(y/θ)] and hence
∂gθ
∂y

(y) = p
(1
θ
− 1
y

)
.
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The function gθ is monotonic on the open sets V1 = (0,θ) and V2 = (θ,∞), and it holds

Pθ(Y = θ) = 0. Lemma 3.6 leads with fYθ (y) = yp−1 e−y/θ
θpΓ(p) to

ζ(y,θ) := y
θ
, f̃(ζ) := ζp e−ζ

p(ζ−1)Γ(p) , and g̃(ζ) := p [ζ−1− lnζ] .

This extends to non-adaptive linear combinations as follows. Lemma 3.6 can be applied with

respect to the non-adaptive estimator in Notation 2.14, setting Y := θ(k)i and considering

the composition of the density f
θ

(k)
i
θ and the Kullback-Leibler divergence described by the

function gθ. While the latter depends on the assumed parametric family P only, the density f
θ

(k)
i
θ

is determined via convolution of the probability densities of w
(k)
ij T (Yj)/N

(k)
i , where Yj ∼ Pθ.

Hence, it depends on the observations via the sufficient statistic T . This will simplify the

proof (page 44), where it suffices to show the assertion for the Gaussian and the exponential

distribution.

Theorem 3.8. Suppose Assumption A1. We consider the random variable

Z := gθ(θ
(k)
i ) :=KL

(
θ

(k)
i ,θ

)
,

where θ(k)i denotes the non-adaptive estimator in Notation 2.14 for observations Yj
iid∼ Pθ with

j ∈ {1, ...,n} and θ ∈Θ. The density of Z is invariant with respect to the parameter θ if

• P =
{N (θ,σ2)

}
θ∈Θ with σ > 0 fixed,

• P =
{
logN (θ,σ2)

}
θ∈Θ with σ > 0 fixed,

• P = {Exp(1/θ)}θ∈Θ,
• P = {Rayleigh(θ)}θ∈Θ,
• P = {Weibull(θ,k)}θ∈Θ with k > 0,
• P = {Pareto(xm,θ)}θ∈Θ with xm ≥ 1.

The convolution of the densities of exponential distributions was studied, for instance, by

Akkouchi [2008]. We know from Example 3.7 that the density of the random variable

KL(T (Y ),θ) is invariant with respect to the parameter θ if the observations follow a Gamma

distribution. However, the probability distribution of the corresponding non-adaptive estimator

has a sophisticated form [Mathai, 1982; Moschopoulos, 1985], where the corresponding sum-

mands could not been proven to be invariant with respect to θ. Though, we get via Example 3.7

the following corollary.

Corollary 3.9. Let the location kernel only attain values in {0,1}, ensuring that w(k)
ij ∈ {0,1}

for all i, j ∈ {1, ...,n}. Then,

Yj
iid∼ Γ(p,θ) implies that θ(k)i ∼ Γ(N (k)

i p,θ/N
(k)
i ),

and, as a consequence, we get the invariance of the distribution of KL(θ(k)i ,θ) with respect to θ.
The same holds for the Erlang and the scaled chi-squared distribution, where

Erlang(k,θ) = Γ(k,θ), k ∈ N,

and
Y ∼ Γ(k/2,2θ/k) if kY/θ ∼ χ2(k) = Γ(k/2,2), k ∈ N.

35



The propagation condition

Figure 3.1: Plots of the propagation condition for the Gaussian distribution with (from left to right)

λ= 22.4,13.6,9.72. The isolines of the probability p, for values between 10−6 and 0.5, are plotted with

respect to the location bandwidth h(k) described by the iteration step k and the corresponding value

z = Zλ(k,p;θ = 1, i) for some i ∈ {1, ...,n}. The black solid lines represent the isolines of the adaptive

estimator, the red dotted lines correspond to the non-adaptive estimator.

The new propagation condition is included in the R-package aws by Polzehl [2012]. In Fig-

ures 3.1 and 3.2, we show some examples to illustrate the close relation of the adaptive and

the non-adaptive estimator under a satisfied propagation condition. The plots were realized

using the function awstestprop on a two-dimensional design with 5000× 5000 points and

the kernels in Equation (2.10) (page 19). The maximal location bandwidth h(k∗) was set to 50
requiring 38 iteration steps. Running the simulation with different parameters θ yield exactly

the same plots. In Figure 3.1, we show the results for the Gaussian distribution with three

different values of λ. In Figure 3.2, we consider the same setting with respect to the exponential

distribution. Together, Theorem 3.8 and the numerical simulations suggest the invariance of the

propagation condition with respect to the parameter θ.

Finally, we discuss how to proceed if the function Zλ in Notation 3.1 varies with the parameter θ.
We aim to ensure that our choice of the adaptation bandwidth λ is in accordance with the

propagation condition for all θi, i ∈ {1, ...,n}. Certainly, we do not know the exact parame-

ters {θi}i. Instead, we could analyze the monotonicity of the optimal choice λopt(ε,θ,λmin),
see Notation 3.4, for a fixed constant ε > 0 and varying parameters θ ∈ Θ. For the sake of

simplicity, we prefer to observe, for a fixed adaptation bandwidth λ and varying parameters θ,
for which probabilities p the propagation condition is satisfied. This can be done by the function

awstestprop in the R-package aws. Thus, for every θ, we get the corresponding value ελ(θ).
Then, ελ(θ)≥ ελ(θ′) indicates that the parameter θ requires a larger adaptation bandwidth than

the parameter θ′. Taking the range of our observations into account, we tempt to identify a

small number of parameters θ∗ ∈Θ such that every λ that satisfies the propagation condition

for these parameters θ∗ ∈Θ remains valid with high probability for the unknown parameters θi,
i ∈ {1, ...,n}. This approach can be nicely illustrated, considering some examples.
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3.1 Choice of the adaptation bandwidth

Figure 3.2: Plots of the propagation condition for the exponential distribution with (from left to right)

λ= 13.2,10.2,8.78.

Example 3.10.

• For observations which follow a Poisson distribution, it turned out that different param-

eters θ yield comparable propagation levels ελ(θ), even though the resulting isolines

differ clearly. This is illustrated in Figure 3.3, where we again consider the kernel

functions (2.10), a regular design with 5000×5000 points, and h(k∗) = 50.
• in the case of Bernoulli distributed observations, the propagation condition should be

ensured for θ∗ := 0.5.
• In § 6.5.3, we will show another example, applying the propagation condition to non-

central chi-distributed observations on the design space X = R
3×S

2.

By slightly shifting the estimator, the implemented algorithm avoids that the Kullback-Leibler

divergence between two Poisson or Bernoulli distributions becomes infinity.

3.1.3 Practical application

The propagation condition is based on the function Zλ in Notation 3.1. This depends on the prob-

ability P(N (k)
i KL(θ̃(k)i (λ),θ)> z) which cannot be calculated exactly. Therefore, in practice,

we need an appropriate approximation. Recall that the propagation condition depends on the

function Zλ via its behavior during iteration only. We know from Theorem 2.13 that the behavior

of the non-adaptive term N
(k)
i KL(θ(k)i ,θ) during iteration does not depend on the positionXi

within the design X . Since the observations are independent and identically distributed, we may

assume that this property extends to the adaptive estimator and consequently to the function

Zλ(.,p;θ, i). Then, we can estimate the above probability by the relative frequency of design

points Xi ∈ X with N
(k)
i KL(θ̃(k)i (λ),θ)> z as established in Definition 3.11. In Section 4.2,

we will justify the presented estimator providing exponential bounds for the estimation bias and
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The propagation condition

Figure 3.3: Plots of the propagation condition for the Poisson distribution with (from left to right)

θ = 1,10,100,1000 and (from top to bottom) λ= 13.2,9.88,7.69, yielding ε13.2(θ)≤ 10−6, ε9.88(θ)≈
5 ·10−5, and ε7.69(θ)≈ 5 ·10−4.
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3.2 Extension for locally varying parameter functions

the corresponding variance, see Lemma 4.5. In order to avoid boundary effects in the resulting

estimate, we restrict the approximation to the interior of the design space, that is to all design

pointsXi ∈ X where the final neighborhood U
(k∗)
i := {Xj ∈ X :w(k∗)

ij > 0} is not restricted by

the boundaries of the considered set {Xi}ni=1 ⊆X . This subset of {Xi}ni=1 is denoted by X 0.
Without loss of generality we assume that X 0 = {Xi}n0

i=1 for some n0 < n.

Definition 3.11. We consider the same setting as in Notation 3.1, and we set

M
(k)
λ (z) := {Xi ∈ X 0 :N (k)

i KL(θ̃(k)i (λ),θ)> z}.

Then we define the following estimator

p̂
(k)
λ (z) := n−1

0

n0∑
i=1

1
M

(k)
λ

(z)(Xi),

where 1 denotes the indicator function.

Remark 3.12. Simulations are carried out using an artificial data set which ensures a sufficiently

large number of effectively independent regions for estimating the propagation level on the basis

of a single realization. In practice, choices of k∗ withN
(k∗)
i � n are often sufficient or even rec-

ommendable, see Section 5.4. Here, we approximate the probability P(N (k)
i KL(θ̃(k)i (λ),θ)> z)

by the corresponding relative frequency. This estimate can be calculated for ε≥ 1/n only. Addi-

tionally, it becomes unstable if ε is close to 1/n. in the case of a regular design, the sample can

be extended in a natural way, allowing arbitrary sample sizes and, as a consequence, any ε > 0.
Otherwise, that is for random or irregular designs, one should evaluate carefully under which

conditions the propagation condition generalizes from the artificial data set to the data set at

hand.

3.2 Extension for locally varying parameter functions

The homogeneous propagation condition in Definition 3.2 bounds the probability of adaptation

to noise, supposing a constant parameter function. In the next chapter, this will be used to verify

propagation and a certain stability of estimates for (piecewise) constant parameter functions. In

order to extend these properties to (piecewise) bounded parameter functions, we will formulate

an inhomogeneous propagation condition. Like before under homogeneity, we will consider an

artificial data set, but this time we will allow local variability. Then, we aim to ensure a similar

behavior of the algorithm as for non-adaptive estimation for every locally varying function which

satisfies a pre-specified variability bound. Recall that we consider the local exponential family

model in Assumption A1 (page 10) and the simplified procedure in Algorithm 2 (page 18).

3.2.1 An inhomogeneous propagation condition

Our inhomogeneous propagation condition is motivated by Theorem 2.24. This can be con-

sidered as the inhomogeneous analog of Theorem 2.13, where the homogeneous propagation

condition was based on. For the non-adaptive estimator, Theorem 2.24 establishes the exponen-

tial bound

P(N (k)
i KL(θ(k)i ,Eθ

(k)
i )> z)≤ 2e−z/κ2 + p̆κ
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The propagation condition

for all z > 0, i ∈ {1, ...,n}, and k ∈ {0, ...,k∗}, where we refer the reader to the Notations 2.6

and 2.21 for the definitions of κ≥ 1 and p̆κ ∈ [0,1]. This result implies that the Kullback-Leibler

divergence KL(θ(k)i ,Eθ
(k)
i ) decreases, in probability, at least with rate N

(k)
i . We observe that

Eθ
(k)
i =

n∑
j=1

E

[
w

(k)
ij T (Yj)/N

(k)
i

]
=
n∑
j=1
w

(k)
ij θj/N

(k)
i ,

whereas

Eθ̃
(k)
i =

n∑
j=1

E

[
w̃

(k)
ij T (Yj)/Ñ (k)

i

]
�=
n∑
j=1
w̃

(k)
ij θj/Ñ

(k)
i .

Both sums can be considered as an adaptive analog of Eθ
(k)
i . Since the latter is much easier to

compute, we concentrate thereon. Recall that the adaptive weights and their sum are random.

Notation 3.13. We set

E θ̃(k)i :=
n∑
j=1
w̃

(k)
ij θj/Ñ

(k)
i .

Next we specify the considered inhomogeneous setting. Following Polzehl and Spokoiny [2006,

§5.2], we presume that the variability of the parameter function θ(.) is smaller in order than

the rate of convergence N
(k)
i in Theorem 2.24. Here, we even require the rate maxj′N

(k)
j′ in

order to ensure that N
(k)
i /maxj′N

(k)
j′ ≤ 1 for every i ∈ {1, ...,n}. More precisely, we require

the existence of a constant ϕ≥ 0 such that

KL(θi,θj)≤ ϕ2/max
j′
N

(k)
j′ for all Xj ∈ U (k)

i := {Xj ∈ X : w(k)
ij > 0} (3.2)

for every i ∈ {1, ...,n} and each k ∈ {0, ...,k∗}. In this chapter, we require Equation (3.2) with

k := k∗ for all i, j ∈ {1, ...,n}, but, in the next chapter, we will only consider the points in a

certain neighborhood, for instance all Xj ∈ U (k)
i with k ∈ {0, ...,k∗}. For brevity, we denote

ϕ0 := ϕ/maxi(N
(k∗)
i )1/2.

We proceed as under homogeneity, see § 3.1.1 for comparison. Hence, we aim to choose the

adaptation bandwidth independent of the data at hand. We introduce the following function,

which relates to Notation 3.1.

Notation 3.14. For every λ > 0, we consider the function

Ẑλ : {0, ...,k∗}× (0,1)×Θn×{1, ...,n}→ [0,∞)

defined by

Ẑλ(k,p;{θj}nj=1, i) := inf
{
z > 0 : P

(
N

(k)
i KL(θ̃(k)i (λ),E θ̃(k)i (λ))> z

)
≤ p

}
,

where E θ̃(k)i is as in Notation 3.13, and θ̃(k)i (λ) denotes the adaptive estimator at the position
Xi ∈ X , resulting from the simplified algorithm in Notation 2 with the adaptation bandwidth λ
and the statistically independent observations Yj ∼ Pθj ∈ P , j ∈ {1, ...,n}.

In order to enable the application of Equation (2.2) and Lemma 2.8, we restrict the range

of the parameter function θ(.). Thus, we introduce a subset Θ∗ ⊆ Θ, and we require that

{θj}nj=1 ∈ (Θ∗)n.
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3.2 Extension for locally varying parameter functions

Definition 3.15 (Inhomogeneous propagation condition). The adaptation bandwidth λ > 0
satisfies the inhomogeneous propagation condition at probability level ε > 0 and variability
level ϕ0 > 0 for the parameter set Θ∗ ⊆Θ if the function Ẑλ(.,p;{θj}nj=1, i) is non-increasing
for all p ∈ (ε,1), every i ∈ {1, ...,n}, and each parameter function θ(.) with {θj}nj=1 ∈ (Θ∗)n
and KL(θj ,θj′)≤ ϕ2

0 for all j,j′ ∈ {1, ...,n}.

Remark 3.16. For ϕ0 := 0 and Θ∗ := {θ}, the inhomogeneous propagation condition equals the

homogeneous propagation condition in Definition 3.2.

3.2.2 The inhomogeneous propagation condition in practice

In § 3.1.3, we explained how the homogeneous propagation condition can be applied in practice.

In contrast, the inhomogeneous propagation condition cannot be applied directly if ϕ0 > 0.
Here, we need to ensure that the criterion is fulfilled for every parameter function satisfying

{θi}ni=1 ∈ (Θ∗)n and KL(θi,θj) ≤ ϕ2
0 for all i, j ∈ {1, ...,n}. Therefore, we recommend to

choose some λ > 0 in accordance with the homogeneous propagation condition and to increase

it such that the inhomogeneous propagation condition holds as well. Apart from the Gaussian

and log-normal distribution, the practical use of our precise choice is questionable due to the

size of the involved constants. Nevertheless, it suggests the existence of an appropriate value.

Hence, the inhomogeneous propagation condition is in the first instance of theoretical interest.

In Section 4.2, it will provide the desired extension of the propagation and the stability property

to (piecewise) bounded functions. The justification of our choice will be based on a comparison

of the homogeneous and the inhomogeneous propagation condition. In order to avoid confusion,

we introduce the following notation.

Notation 3.17. Let the parametric family P satisfy Assumption A1 (page 10) with a strictly
monotonic sufficient statistic T . We fix some constant ϕ0 > 0 and a subset Θ∗ ⊆Θ. Then, we
consider two data sets {(Xi,Yi)}ni=1 and {(Xi,Yi)}ni=1, where

• Yi ∼ Pθi ∈ P with {θi}ni=1 ∈ (Θ∗)n and KL(θi,θj)≤ ϕ2
0 for all i, j ∈ {1, ...,n},

• Yi ∼ Pϑi ∈ P with ϑi ≡ ϑ for some ϑ ∈Θ∗ (homogeneity).

In the rest of this chapter, we will write Y and ϑ whenever we restrict to the special case of a

homogeneous setting. Else, we will write Y and θ, explicitly allowing locally varying parameter

functions which satisfy the variability bound in Notation 3.17. Now we look for a description

of the homogeneous propagation condition which enables an extension to the inhomogeneous

setting. For this purpose, we introduce some auxiliary functions.

Notation 3.18. Let the functions p(l)θ : (0,∞)→ [0,1], l = 1,2,3 and θ ∈Θ, be given as

p
(1)
θ (z) := P({T (Y )> θ}∩{KL(T (Y ),θ)> z}),
p

(2)
θ (z) := P({T (Y )≤ θ}∩{KL(T (Y ),θ)> z}), z > 0
p

(3)
θ (z) := P({T (Y )≤ θ}∩{KL(T (Y ),θ)≤ z}),

where Y ∼ Pθ.

Lemma 3.19. The functions p(l)θ , l = 1,2,3, in Notation 3.18 are invariant with respect to the
parameter θ ∈Θ for the Gaussian, log-normal, Gamma, Erlang, scaled chi-squared, exponential,
Rayleigh, Weibull, and Pareto distributions.
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The propagation condition

The study in § 3.1.2 suggests the invariance of the homogeneous propagation condition with

respect to the parameter θ for the Gaussian, log-normal, exponential, Rayleigh, Weibull, and

Pareto distribution. In the following lemma, we take advantage of this invariance. There, we

completely determine the corresponding function Zλ via the distribution of the positions of the

observations around the respective parameter ϑ ∈Θ given by the functions p
(l)
ϑ , l = 1,2,3.

Lemma 3.20. Assume the setting of Notation 3.17. If the homogeneous propagation condition
is invariant with respect to the parameter ϑ ∈Θ, then the corresponding function Zλ is uniquely
determined by the functions p(l)ϑ , l = 1,2,3, for every ϑ ∈Θ.

In other words, the homogeneous propagation condition is determined by the probability

distributions of KL(T (Y),ϑ) on {T (Y)> ϑ} and on {T (Y)≤ ϑ}. Under inhomogeneity, we

have to additionally compensate for the local variability of the parameter function. We investigate

the interplay of the observations via the distribution of KL(Yi,Yj), which we compare with

its homogeneous counterpart KL(Yi,Yj). For simplicity, we presume the sufficient statistic T
in Assumption A1 to equal the identity. Instead of that, we could replace in the following all

observations Yi and Yi by the transformed observations T (Yi) and T (Yi), leading, for every
strictly monotonic T , to the same results but more tedious terms. We restrict to the favorable

realizations, where the corresponding eventM0 is related to the event Ωκ in Lemma 2.23.

Proposition 3.21. Suppose the setting of Notation 3.17, T = Id, and let the functions p(l)θ ,
l = 1,2,3, be invariant with respect to the parameter θ ∈Θ∗. Additionally, recall Notation 2.6,
and let κ ≥ 1 satisfy {ϑ}∪{θi}ni=1 ∈ (Θκ)n+1, where Θκ ⊆ Θ maximizes the probability of
the event

M0 :=
n⋂
i=1
{Yi,Yi ∈Θκ}.

Then, for all z > κ
2ϕ2

0 and every i, j ∈ {1, ...,n}, it holds

P({KL(Yi,Yj)> z}|M0)≤ P

({
κ

2[κKL1/2(Yi,Yj)+ϕ0]2 > z
}
|M0

)
.

Now we propose a precise choice of the adaptation bandwidth for the case of a (piecewise)

bounded parameter function.

Claim 3.22. Let Assumption A1 be satisfied with T : Y → R strictly monotonic, and fix a
subset Θ∗ ⊆ Θ and some constant ϕ0 := ϕ/maxi(N

(k∗)
i )1/2 with ϕ > 0. Additionally, let

the homogeneous propagation condition and the functions p(l)θ , l = 1,2,3, be invariant with
respect to the parameter θ ∈Θ. Finally, we presume the adaptation bandwidth λ > 0 to be in
accordance with the homogeneous propagation condition at level ε > 0. Then, the choice

λϕ := κ
4
[√
λ+ϕ

]2

is in accordance with the inhomogeneous propagation condition at a probability level ε(λϕ)
with ε(λϕ) ≤ ε+ 2pκ and variability level ϕ0 for the parameter set Θ∗, where pκ is as in
Notation 2.16.

Admittedly, the iterative approach of the algorithm impedes a definite proof. Instead, we will

present in § 3.3 a justification of Claim 3.22, where we will follow an inductive argumentation

in order to overcome the remaining gap at least to a certain extent.
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3.3 Proofs

Remark 3.23. Recall that the parameter set Θ∗ ⊆Θ and the variability level ϕ0 influence the

sizes of the constant κ ≥ 1 and the corresponding probability pκ in Notation 2.16. Moreover,

we point out that the probability level ε+ 2pκ is an upper bound for the actual probability

level ε(λϕ), but this bound does not have to be sharp. Similarly, the proposed choice of λϕ is

based on a rough estimation, where the effectively required values of κ and ϕ may be much

smaller than supposed. Hence, in practice, one can always use a smaller bandwidth λ∗ < λϕ
with an unknown probability level if this seems to be advantageous. This may increase the risk of

adaptation to noise as usually ε(λ∗)≥ ε(λϕ), but the main property, propagation with probability

1− ε(λ∗), remains valid. In any case, one should use the homogeneous adaptation bandwidth λ
as a lower bound, λ≤ λ∗. Recalling Example 2.17 concerning the trade-off between κ and pκ,
we conclude the following.

• Claim 3.22 provides a reasonable choice of the adaptation bandwidth if κ = 1 and pκ = 0,
such as for Gaussian and log-normal distributed observations.

• For Gamma, Erlang, scaled chi-squared, exponential, Rayleigh, Weibull, and Pareto dis-

tribution, κ and pκ are large. For these distributions, Claim 3.22 justifies the existence of

an adaptation bandwidth λϕ which is in accordance with the inhomogeneous propagation

condition at level ε(λϕ)≤ ε+ 2pκ, but its practical use is questionable due to the sizes

of κ and pκ.

3.3 Proofs

Proof of Proposition 3.5. Substitution with y := g−1
θ (z) yields

h(gθ(y),θ) = f (y,θ) for all (y,θ) ∈ Ωf .

Hence, we get the total derivatives

dh

dθ
= ∂h
∂z

∂g

∂θ
+ ∂h
∂θ

= ∂f
∂θ

and
dh

dy
= ∂h
∂z

∂g

∂y
= ∂f
∂y
.

Then, it follows ∂h∂z = ∂f
∂y /
∂g
∂y and furthermore

∂f

∂y

∂g

∂θ
+ ∂h
∂θ

∂g

∂y
= ∂f
∂θ

∂g

∂y
.

This leads with
∣∣∣∂gθ∂y ∣∣∣> 0 to

∂h

∂θ
=
(
∂f

∂θ

∂g

∂y
− ∂f
∂y

∂g

∂θ

)
·
(
∂g

∂y

)−1
,

and we have
∂h

∂θ
= 0 if and only if

∂f

∂θ

∂g

∂y
= ∂f
∂y

∂g

∂θ
.

The chain rule implies with Equation (3.1) (page 34) that indeed

∂f

∂θ

∂g

∂y
= ∂f̃
∂ζ

∂ζ

∂θ

∂g̃

∂ζ

∂ζ

∂y
= ∂f̃
∂ζ

∂ζ

∂y

∂g̃

∂ζ

∂ζ

∂θ
= ∂f
∂y

∂g

∂θ
,

yielding that h is invariant with respect to θ.
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Proof of Lemma 3.6. We deduce the probability density of the random variable Z from the

probability density of Y via the usual change of variable, which leads to

fZθ (z) =
m(z)∑
l=1
fYθ

(
ĝ−1
θ,l (z)

)
·
∣∣∣∣∂gθ∂y

(
ĝ−1
θ,l (z)

)∣∣∣∣−1
,

where m(z) is the number of solutions for the equation gθ(y) = z, and ĝ−1
θ,l (z) denote these

solutions. Equivalently, we can divide the domain of gθ, that is Y ⊆ R, intom := maxzm(z)
disjoint regions where gθ is monotonic, leading to the formula

fZθ (z) =
m∑
l=1
fYθ

(
g−1
θ,l (z)

)
·
∣∣∣∣∂gθ∂y

(
g−1
θ,l (z)

)∣∣∣∣−1
·1gθ(Vl)(z),

where gθ,l : Vl → gθ,l(Vl) ⊆ [0,∞) denotes the bijective restriction of gθ to the region of

monotonicity Vl and 1 is the indicator function. Then, the invariance with respect to θ follows for

each summand l ∈ {1, ...,m} and, as a consequence, for fZθ , as a special case of Proposition 3.5

with

h(z,θ) := fYθ
(
g−1
θ,l (z)

)
·
∣∣∣∣∂gθ∂y

(
g−1
θ,l (z)

)∣∣∣∣−1
, z ∈ Vl.

This terminates the proof.

Proof of Theorem 3.8. The non-adaptive estimator is defined as the weighted mean of T (Yj)
with j = 1, ..,n. We get from Table 2.1 (page 12) that

• T (Y ) = ln(Y )∼N (μ,σ2) if Y ∼ logN (μ,σ2) with σ2 > 0;
• T (Y ) = Y 2 ∼ Exp

(
1

2θ2
)
if Y ∼ Rayleigh(θ);

• T (Y ) = Y k ∼ Exp
(

1
θk

)
if Y ∼Weibull(θ,k) with k > 0;

• T (Y ) = ln(y/xm)∼ Exp
(

1
θ

)
if Y ∼ Pareto(xm, 1θ ) with xm ≥ 1.

Hence, in each of these cases, the non-adaptive estimator follows the same distribution as for

Gaussian or exponentially distributed observations. Additionally, the corresponding Kullback-

Leibler divergences coincide with the respective divergences of the Gaussian or exponential

distributions. Therefore, it suffices to consider Gaussian and exponential distributed observa-

tions.

In the Gaussian case, Yj
iid∼ N (θ,σ2), it follows from the statistical independence of the obser-

vations that

θ
(k)
i ∼N

(
θ,σ2
i

)
, where σ2

i := σ2 ·
n∑
j=1

(
w

(k)
ij /N

(k)
i

)2
.

Hence, the non-adaptive estimator is Gaussian as well, and the invariance with respect to θ
follows as in Example 3.7, where ζ and g̃ remain unchanged, and

f̃(ζ) := σ2

ζσi
√

2π
exp

(
− ζ

2

2σ2
i

)
.

Next we consider the exponential distribution, supposing Yj
iid∼ Exp(1/θ). We distinguish two

cases. First, if all non-zero weights are equal and hence w
(k)
ij ∈ {0,1} as w

(k)
ii = 1 for all k, then

the non-adaptive estimator θ
(k)
i is Gamma-distributed, θ

(k)
i ∼ Γ

(
N

(k)
i ,θ/N

(k)
i

)
. This yields the
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3.3 Proofs

desired invariance with respect to θ via Example 3.7, setting Y := θ(k)i . Next in the general case,

we require the existence of non-zero weights w
(k)
ij �= w(k)

ij′ with j,j′ ∈ {1, ...,n}. For all aj > 0,
it holds ajYj ∼Exp(1/(θaj)) if Yj ∼Exp(1/θ), where we denote aj :=w(k)

ij /N
(k)
i . The linear

combination Y := a1Y1 +a2Y2 with a1 �= a2 has the density

fY (y) =
(
fa1Y1 ∗fa2Y2

)
(y)

=
∫ y

0

1
θa1
e
− y−z
θa1

1
θa2
e
− z
θa2 dz

= e
− y
θa1

θ2a1a2

∫ y
0
e
−z a1−a2
θa1a2 dz

= e
− y
θa1

θ2a1a2
· θa1a2
a2−a1

(
e
−y a1−a2
θa1a2 −1

)
= 1
θ(a1−a2)e

− y
θa1 − 1

θ(a1−a2)e
− y
θa2

= a1
a1−a2 f

a1Y1(y)− a2
a1−a2 f

a2Y2(y),

which is a weighted sum of the component densities. Therefore, this extends to the more

general case Y := a1Y1 + ...+ amYm with aj �= aj′ for all j �= j′. Subsequently including

the observations with equal weights aj = aj′ for some j,j′ ∈ {1, ...,n}, we conclude by the

commutativity, associativity, and distributivity of the convolution that

f
θ

(k)
i
θ =

M∑
j=1
cjfj , M ∈ N,

where the constants cj ∈ R again depend on a1, ...,am only. The densities fj follow the

distribution Γ(m̂,θaj), where m̂ ≤mj and mj denotes the number of observations Yj′ with

weights aj′ = aj . Thus, we get from Example 3.7 the invariance with respect to θ for each
summand cjfj , which yields the assertion for weighted sums of exponentials. We again refer

the reader to Akkouchi [2008] for further details concerning the density of the convolution of

exponential distributions.

Proof of Lemma 3.19. We recall from the proof of Theorem 3.8 the relationships of the log-

normal with the Gaussian distribution, and of the Rayleigh, Weibull, and Pareto distribution

with the exponential one. Additionally, it holds Exp(1/θ) = Γ(1,θ), Erlang(k,θ) = Γ(k,θ),
and Y ∼ Γ(k/2,2θ/k) if kY/θ ∼ χ2(k) = Γ(k/2,2), where k ∈ N. Since the associated

Kullback-Leibler divergences coincide, it suffices to show the assertion for the Gaussian and

the Gamma distribution, which satisfy Assumption A1 with T = Id. By Lemma 2.5 and due to

Assumption A1, the function gθ(y) =KL(y,θ), y ∈ Y , fulfills

dgθ
dy

(y) = C(y)−C(θ)

⎧⎪⎪⎨⎪⎪⎩
< 0 if y < θ,

= 0 if y = θ,
> 0 if y > θ.

(3.3)

Hence, {Y > θ} and {Y ≤ θ} restrict the random variable KL(y,θ) to its regions of monotonic-

ity. On each of these regions the assertion follows from Example 3.7.

Proof of Lemma 3.20. The parametric family of probability distributions P is known, and it

characterizes, for every ϑ ∈ Θ, the function gϑ : Y → [0,∞) given by gϑ(y) = KL(T (y),ϑ).
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The propagation condition

Moreover, the probability distribution of the observationsYi iid∼Pϑ ∈P determines the probability

distribution of the random quantities Ñ
(k)
i and ϑ̃

(k)
i and consequently of the random variables

{Ñ (k)
i KL(ϑ̃(k)

i ,ϑ)}i, on which the function Zλ is based. The function Zλ is invariant with

respect to the parameter ϑ∈Θ if and only if the homogeneous propagation condition is invariant

with respect to ϑ. Therefore, it suffices to show that, for every ϑ ∈Θ, the functions p
(l)
ϑ with

l = 1,2,3 allow exact reconstruction of Pϑ via the inverse of gϑ.

If the sufficient statistic in Assumption A1 satisfies T = Id, then it follows from Equation (3.3)

that the inverse g−1
ϑ has exactly one solution on {y < ϑ} and {y > ϑ}, respectively, and it holds

g−1
ϑ (0) = ϑ. If T �= Id, then we get

gϑ(y) :=KL(T (y),ϑ) = T (y) [C(T (y))−C(ϑ)]− [B(T (y))−B(ϑ)]

and

dgϑ
dy

(y) = T ′(y) [C(T (y))−C(ϑ)]+T (y)C ′(T (y))T ′(y)−B′(T (y))T ′(y)

= T ′(y) [C(T (y))−C(ϑ)]

in place of Equation (3.3). Here, the assumed strict monotonicity of T leads to the same

regions of monotonicity as described above, namely {T (y)> ϑ} and {T (y)< ϑ}. Furthermore,

knowledge of p
(l)
ϑ with l = 1,2,3 yields knowledge of P({T (Yi)> ϑ}∩{KL(T (Yi),ϑ)≤ z}),

i ∈ {1, ...,n}. Therefore, we can reconstruct Pϑ for every ϑ from p
(l)
ϑ , l = 1,2,3, which leads to

the assertion.

For the proof of Proposition 3.21, we recall the following basic result.

Lemma 3.24. Let a1,a2, b1, b2 ∈ R satisfy (a1− b1) · (a2− b2)≥ 0. Then it holds

|a1−a2| ≤ ||a1− b1|− |a2− b2||+ |b1− b2|.

Proof. We start by considering three points al ∈R, l= 1,2,3, with a1 ≤ a2 ≤ a3. Then it holds

(a2−a1) = (a3−a1)− (a3−a2) and (a3−a2) = (a3−a1)− (a2−a1).

More generally, for all a1,a2, b ∈ R with (b−a1) · (b−a2)≥ 0, we get

|a1−a2|= max{|a1− b|, |a2− b|}−min{|a1− b|, |a2− b|}= ||a1− b|− |a2− b||

since (b− a1) · (b− a2) ≥ 0 implies that either a1,a2 ≤ b or a1,a2 ≥ b. In the case where

(a1− b1) · (a2− b2)≥ 0, we just add the distance |b1− b2| to the right, which leads to the stated

upper bound.

Proof of Proposition 3.21. Lemma 2.8 provides onM0, for all i, j ∈ {1, ...,n}, that

KL(Yi,Yj)≤ κ
2
[
KL1/2 (Yi,θi)+KL1/2 (θi,θj)+KL1/2 (Yj ,θj)

]2
. (3.4)

On a certain set of realizations this upper bound can be improved by Lemma 3.24. For this

purpose, we distinguish the following sets

M1 := {(Yi−θi) · (Yj−θj)≥ 0} and M2 := {(Yi−θi) · (Yj−θj)< 0} (3.5)
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and analogously in the homogeneous setting

M3 := {(Yi−ϑ) · (Yj−ϑ)≥ 0} and M4 := {(Yi−ϑ) · (Yj−ϑ)< 0}. (3.6)

Now we separately reduce the Kullback-Leibler divergence KL(Yi,Yj) onM1 and onM2 to

appropriate terms which only depend on the divergences KL(Yi,θi) and KL(Yj ,θj). Then, the
invariance of the functions p

(l)
θ , l = 1,2,3, with respect to the parameter θ allows a comparison

with the homogeneous analogs, namelyKL(Yi,ϑ) andKL(Yj ,ϑ). Due to the separate handling

of the realizations onM1 and onM2, the resulting formulas can be reduced to the divergence

KL(Yi,Yj), which will lead to the assertion.

On the setM2, we just use the upper bound (3.4). For the setM1, we recall Equation (2.13)

(page 26), where we established by Taylor’s Theorem for all θ1,θ2 ∈ Θ the existence of a

parameter θ∗ ∈Θ between θ1 and θ2 which satisfies

KL(θ1,θ2) = 1
2I(θ∗) [C(θ1)−C(θ2)]2 . (3.7)

Therefore, onM1∩M0 it follows from Lemma 3.24 and the monotonicity of the function C that

KL(Yi,Yj) ≤ 1
2I(θ∗) [||C(Yi)−C(θi)|− |C(Yj)−C(θj)||+ |C(θi)−C(θj)|]2

Eq. (2.2)

≤ κ
2
[∣∣∣KL1/2 (Yi,θi)−KL1/2 (Yj ,θj)

∣∣∣+KL1/2 (θi,θj)
]2
. (3.8)

Then, using the invariance of p
(l)
θ , l= 1,2,3, with respect to the parameter θ andKL(θi,θj)≤ϕ2

0
for all i, j ∈ {1, ...,n}, we can deduce that

P({KL(Yi,Yj)> z}∩M0)
= P(M1∩M0∩{KL(Yi,Yj)> z})+P(M2∩M0∩{KL(Yi,Yj)> z})
≤ P

(
M1∩M0∩

{∣∣∣KL1/2 (Yi,θi)−KL1/2 (Yj ,θj)
∣∣∣2 > [√z/κ−ϕ0

]2})
+P

(
M2∩M0∩

{[
KL1/2 (Yi,θi)+KL1/2 (Yj ,θj)

]2
>
[√
z/κ−ϕ0

]2})
= P

(
M3∩M0∩

{[
KL1/2 (Yi,ϑ)−KL1/2 (Yj ,ϑ)

]2
>
[√
z/κ−ϕ0

]2})
+P

(
M4∩M0∩

{[
KL1/2 (Yi,ϑ)+KL1/2 (Yj ,ϑ)

]2
>
[√
z/κ−ϕ0

]2})
.

Equation (3.7) leads onM3∩M0 with appropriate parameters ϑ∗1,ϑ∗2 ∈Θκ to[
KL1/2 (Yi,ϑ)−KL1/2 (Yj ,ϑ)

]2

Eq. (3.7)

≤ max
{ 1

2I(ϑ∗1) ,
1

2I(ϑ∗2)

}
[|C(Yi)−C(ϑ)|− |C(Yj)−C(ϑ)|]2

M3= max
{ 1

2I(ϑ∗1) ,
1

2I(ϑ∗2)

}
[(C(Yi)−C(ϑ))− (C(Yj)−C(ϑ))]2

Eq. (2.2)

≤ κ
2KL(Yi,Yj) .

OnM4∩M0, we get in a uniform manner[
KL1/2 (Yi,ϑ)+KL1/2 (Yj ,ϑ)

]2

M4≤ max
{ 1

2I(ϑ∗1) ,
1

2I(ϑ∗2)

}
[(C(Yi)−C(ϑ))+(C(ϑ)−C(Yj))]2

Eq. (2.2)

≤ κ
2KL(Yi,Yj) .
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Hence, we conclude that

P({KL(Yi,Yj)> z}∩M0) ≤ P

({
κ

2KL(Yi,Yj)>
[√
z/κ−ϕ0

]2}∩M0
)

= P

({
κ

2
[
κKL1/2 (Yi,Yj)+ϕ0

]2
> z

}
∩M0

)
.

This terminates the proof.

Justification of Claim 3.22. Recall Notation 3.17. For simplicity, we concentrate on the case

T = Id as presumed in Proposition 3.21. For T �= Id, the assertion follows just as for T = Id,
replacing in the proof of Proposition 3.21 and in the following formulas the observations Yi
and Yi by the transformed observations T (Yi) and T (Yi) for all i ∈ {1, ...,n}. Recall from the

proof of Lemma 3.20 that the assumed strict monotonicity of T ensures that the regions of

monotonicity in Equation (3.3) remain valid.

We know from Theorems 2.13 and 2.24 that the Kullback-Leibler divergence between the non-

adaptive estimator and its expectation converges, in probability, at least with rate N
(k)
i under

homogeneity and under inhomogeneity. The choice of λ is in accordance with the homogeneous

propagation condition by assumption. Hence, it compensates with probability 1− ε the impact

of the adaptivity under homogeneity, and it only depends on the functions p
(l)
ϑ , l = 1,2,3, see

Lemma 3.20. Due to the assumed invariance of p
(l)
ϑ with respect to ϑ, it holds p

(l)
θi

= p(l)ϑ
for every l = 1,2,3 and all i ∈ {1, ...,n}. Therefore, it suffices to increase the homogeneous

bandwidth λ pursuant to the maximal impact of the local variability of θ(.), but independent of
the precise definition of θ(.).

The local variability of θ(.) effects the interplay of the observations and hence the adaptive

weights, where we consider the random variables {s(k)ij }i,j , see Algorithm 2 (page 18). Proposi-

tion 3.21 provides, on the setM0, an upper bound for the augmentation of the random variable

KL(Yi,Yj) compared to KL(Yi,Yj). It justifies the given choice of λϕ for the iteration step

k = 1 if h(0) satisfies w
(0)
ij = 0 for all i, j ∈ {1, ...,n} with i �= j. We seek for a generalization

to other choices of h(0) and the subsequent iteration steps.

The adaptive estimator is defined as a weighted mean of the observations. Therefore, for all

k ∈ {0, ...,k∗}, it holds

M0 ⊆
n⋂
i=1
{θ̃(k)i , ϑ̃(k)

i ∈Θκ},

where M0 is as in Proposition 3.21. This enables on M0 the application of Equation (2.2)

(page 11) and Lemma 2.8 with respect to the adaptive estimates. We distinguish the same cases

as in the proof of Proposition 3.21, recall Equations (3.5) and (3.6) and the corresponding upper

bounds in Equations (3.4) and (3.8). For the sake of brevity, we summarize both cases in one

equation, using the operation ±. Then, we get on the setM0 in a uniform manner as in the proof

of Proposition 3.21 that

s
(k)
ij = Ñ

(k−1)
i KL

(
θ̃

(k−1)
i , θ̃

(k−1)
j

)
≤ κ

2Ñ
(k−1)
i

[∣∣∣KL1/2
(
θ̃

(k−1)
i ,E θ̃(k−1)

i

)
±KL1/2

(
θ̃

(k−1)
j ,E θ̃(k−1)

j

)∣∣∣
+KL1/2

(
E θ̃(k−1)
i ,E θ̃(k−1)

j

)]2
, (3.9)
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3.3 Proofs

where E θ̃(k)i is as in Notation 3.13. The variability of the parameter function θ(.) effects the third

summand, which satisfies by Equation (2.2) (page 11) and the convexity of the Kullback-Leibler

divergence with respect to the first argument that

max
i,j
KL

(
E θ̃(k−1)
i ,E θ̃(k−1)

j

)
≤ κ

2 max
i,j
KL(θi,θj)≤ κ

2ϕ2
0

with ϕ0 = ϕ/maxi
√
N

(k∗)
i . The remaining term√

Ñ
(k−1)
i

∣∣∣KL1/2
(
θ̃

(k−1)
i ,E θ̃(k−1)

i

)
±KL1/2

(
θ̃

(k−1)
j ,E θ̃(k−1)

j

)∣∣∣ (3.10)

forms the inhomogeneous analog of√
Ñ

(k−1)
i

∣∣∣KL1/2
(
ϑ̃

(k−1)
i ,ϑ

)
±KL1/2

(
ϑ̃

(k−1)
j ,ϑ

)∣∣∣ . (3.11)

However, the corresponding probability distributions cannot be compared as for the single obser-

vations since the probability distributions of ϑ̃
(k−1)
l and θ̃

(k−1)
l , l= i, j, may differ. Nevertheless,

it follows in the same lines as at the end of the proof of Proposition 3.21 that∣∣∣KL1/2
(
ϑ̃

(k−1)
i ,ϑ

)
±KL1/2

(
ϑ̃

(k−1)
j ,ϑ

)∣∣∣≤ κKL1/2
(
ϑ̃

(k−1)
i , ϑ̃

(k−1)
j

)
.

Hence, Equation (3.11) is controlled by
√
λ, up to the factor κ. Similarly, Equation (3.10)

mainly depends on the randomness of the observations. Admittedly, this cannot be proven due to

the impact of the adaptive weights which are influenced by the variability of the inhomogeneous

parameter function. For instance, for P = {N (θ,σ2)}θ∈Θ, it holds

KL
(
θ̃

(k)
i ,E θ̃(k)i

)
=

⎛⎝ n∑
j=1

(Yj−θj)w̃(k)
ij /Ñ

(k)
i

⎞⎠2

/2σ2

and, for P = {Exp(1/θ)}θ∈Θ, we get

KL
(
θ̃

(k)
i ,E θ̃(k)i

)
=

⎛⎝∑nj=1Yjw̃
(k)
ij /Ñ

(k)
i∑n

j=1 θjw̃
(k)
ij /Ñ

(k)
i

⎞⎠−1− ln

⎛⎝∑nj=1Yjw̃
(k)
ij /Ñ

(k)
i∑n

j=1 θjw̃
(k)
ij /Ñ

(k)
i

⎞⎠ .
These terms cannot be compared with their homogeneous counterparts, impeding a theoretical

proof of the parameter choice in Claim 3.22.

Instead, we follow an inductive argumentation, considering the relation to the non-adaptive

estimator. The initialization of the algorithm by the non-adaptive estimator serves as the

base clause. Assuming that the adaptive weights in iteration step k are, with high probability,

similar to the non-adaptive ones, we get that the divergence KL(θ̃(k)i ,E θ̃(k)i ) behaves similar

to KL(θ(k)i ,Eθ
(k)
i ). Additionally, we know from Theorems 2.13 and 2.24 that KL(ϑ(k)

i ,ϑ)
and KL(θ(k)i ,Eθ

(k)
i ) satisfy, in probability, the same rate of convergence. The divergence

KL(ϑ(k)
i ,ϑ) relates via the homogeneous propagation condition to the divergence KL(ϑ̃(k)

i ,ϑ)
and, as a consequence, to Equation (3.11), which we controlled by the constant κ

√
λ. In other

words, we construct a relation between the homogeneous and the inhomogeneous setting via

the non-adaptive estimates. This motivates together with Proposition 3.21 and the invariance

of the functions p
(l)
ϑ , l = 1,2,3, with respect to θ ∈ Θ, the supposition that the impact of the
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variability of the parameter function on Equation (3.10) is sufficiently small such that κ
√
λ can

still control it. Then, we may conclude that the choice

λϕ ≥ κ
4
[√
λ+ϕ

]2

ensures in the next iteration step k+ 1 the similarity of the adaptive and the non-adaptive

weights, yielding onM0 the desired behavior of Ẑλϕ . The restriction to the setM0 leads to an

increased probability level of ε+2pκ since P(M c0)≤ 2pκ.
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Chapter 4

The simplified algorithm under the
propagation condition

Next we will analyze the behavior of the simplified Propagation-Separation Approach, recall

Algorithm 2 (page 18). First, we will show the separation property, which illustrates the impact

of the adaptive weights and particularly of the adaptation bandwidth λ. Then, we will consider

a homogeneous setting, where the propagation property and a certain stability of estimates will

follow as direct consequences of the homogeneous propagation condition in Section 3.1. These

are the main properties of the algorithm, where the subsequent results will be based on.

For piecewise constant parameter functions with sufficiently sharp discontinuities, the separation

property restricts smoothing to the respective homogeneous regions. By the propagation condi-

tion, this will again yield a propagation property. This illustrates the coaction of propagation

and separation during iteration. We will need to ensure the separation property as well as

propagation on the whole design space and for all iteration steps. In practice, the effects may

be negligible, but the consequences of a failed separation at a certain number of design points

cannot be quantified exactly, which will lead to restrictive conditions. Taking advantage of

the inhomogeneous propagation condition in Section 3.2, we will establish similar results for

(piecewise) bounded parameter functions.

Then, we will consider the case of a misspecified structural assumption. In Section 4.3, we

will introduce an associated step function. The numerical examples in Chapter 5 suggest for

any piecewise smooth parameter function that the estimation function, which results from the

pointwise estimates of Algorithm 2, approaches the associated step function during iteration.

However, there are several reasons which impede a theoretical proof of the convergence of the

algorithm as we will discuss in Section 5.4.

Most of the results will be based on Assumption A1 (page 10). Therefore, in Section 4.4, we

will generalize the assumed exponential family model, and we will provide further details for

the application of the Propagation-Separation Approach on observations which satisfy the local

likelihood model in Notation 2.1, but where the parametric family of probability distribution

does not form an exponential family. We will assume throughout this chapter that we have

identified λ and ε such that the propagation condition holds. Longer proofs are collected in the

final Section 4.5.
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4.1 Separation

For considerably different parameter values, the corresponding adaptive weights become zero,

see Proposition 4.1 below. The result is similar to the first part of [Polzehl and Spokoiny, 2006,

Thm. 5.9]. It implies that different homogeneous regions with sufficiently sharp discontinuities

will be separated by the algorithm. In particular, we will see that the lower bound for the

discontinuities which allows exact separation of the distinct regions mainly depends on the

adaptation bandwidth λ and the achieved quality of estimation in the previous iteration step.

Recall that the adaptive weights w̃
(k)
ij and their sum Ñ

(k)
i are random. In the proof, we apply

Lemma 2.8, which requires that θ̃
(k)
i ∈Θκ.

Proposition 4.1 (Separation property). Suppose Assumption A1, and consider two design
points Xi1 ,Xi2 ∈ X . Assume that the realization at hand satisfies, at these points in iteration
step k, the estimation accuracy KL(θ̃(k)im ,θim)≤ z(k)m := z/N (k)

im for some constant z > 0 and

θim , θ̃
(k)
im
∈Θκ,m= 1,2, with κ ≥ 1 fixed and Θκ as in Notation 2.6. If additionally

KL1/2 (θi1 ,θi2)> κ

(√
λ/Ñ

(k)
i1 +

√
z

(k)
1 +

√
z

(k)
2

)
, (4.1)

then it holds w̃(k+1)
i1i2 = 0.

Proof. The support of the adaptation kernel Kad equals [0,1), see Notation 2.14. Therefore,

it suffices to show that the statistical penalty in Algorithm 2 satisfies s
(k+1)
i1i2 > λ. Lemma 2.8

yields, for KL(θ̃(k)im ,θim)≤ z(k)m withm= 1,2, that

KL1/2
(
θ̃

(k)
i1 , θ̃

(k)
i2

)
≥ κ

−1KL1/2 (θi1 ,θi2)−
√
z

(k)
1 −

√
z

(k)
2 ,

and we get

s
(k+1)
i1i2 ≥ Ñ (k)

i1

[
κ
−1
√
KL(θi1 ,θi2)−

√
z

(k)
1 −

√
z

(k)
2

]2
> λ

by Equation (4.1).

Remark 4.2. The lower bound (4.1) holds if

KL1/2 (θi1 ,θi2)> 3κ ·
max

{√
λ,
√
z
}

min
{√
Ñ

(k)
i1 ,

√
N

(k)
i1 ,

√
N

(k)
i2

} .
This emphasizes the impact of the involved sample sizes. In Section 5.3.1, we will show some

numerical examples which illustrate the separation property.

Example 4.3. For P :=
{N (θ,σ2)

}
θ∈R

, we know from Example 2.17 that κ = 1. Moreover, it

follows from Example 2.7 that the lower bound (4.1) is satisfied if and only if

|θi1−θi2 |> σ
√

2
(√
λ/Ñ

(k)
i1 +

√
z

(k)
1 +

√
z

(k)
2

)
,

where we used the notation of Proposition 4.1. Obviously, this scales with the noise standard

deviation σ.

52



4.2 Propagation and stability in the case of sharp discontinuities

4.2 Propagation and stability in the case of sharp discontinuities

We start by considering a homogeneous setting, that is the case of a parametric model. Then, we

will study piecewise constant functions with sharp discontinuities, and finally we will extend

our results to piecewise bounded functions.

4.2.1 Homogeneous setting

For a homogeneous setting, we show that the propagation condition in Definition 3.2 yields with

Theorem 2.13 an exponential bound for P(N (k)
i KL(θ̃(k)i ,θ)> z), the excess probability of the

Kullback-Leibler divergence between the adaptive estimator θ̃
(k)
i and the true parameter θ.

Proposition 4.4 (Propagation and stability under homogeneity). Suppose θ(.) ≡ θ, Assump-
tion A1, and let the adaptation bandwidth λ be chosen in accordance with the homogeneous
propagation condition at level ε for θ ∈ Θ. Then, for each i ∈ {1, ...,n}, k ∈ {0, ...,k∗}, and
all z > 0, it holds

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θ

)
> z

)
≤max

{
2e−z, ε

}
.

In particular, for all k′ ≤ k, we get

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θ

)
> z

)
≤max

{
P

(
N

(k′)
i KL

(
θ̃

(k′)
i ,θ

)
> z

)
, ε
}
. (4.2)

Proof. Equation (4.2) follows from the homogeneous propagation condition, which ensures

that the function Zλ(.,p;θ, i) in Notation 3.1 is non-increasing for all p ∈ (ε,1) and every

i ∈ {1, ...,n}. Since, see (2) in Algorithm 2, we have θ̃
(0)
i = θ(0)

i , this yields

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θ

)
> z

) Eq. (4.2)

≤ max
{

P

(
N

(0)
i KL

(
θ

(0)
i ,θ

)
> z

)
, ε
}

Thm. 2.13≤ max
{
2e−z, ε

}
,

which leads to the assertion.

Basically, this result provides the root-n consistency of θ̃
(k)
i up to a log-factor if z := μ log(n)

and ε := cεn−μ, where cε > 0 and μ > 2, and with h(k∗) sufficiently large such that N
(k∗)
i is of

order n. More precisely, these conditions provide with Proposition 4.4 that

P

(
∃ i : KL

(
θ̃

(k)
i ,θ

)
> μ log(n)/N (k)

i

)
≤max{2, cε} ·n−1,

and we recall the quadratic approximation of the Kullback-Leibler divergence in Equation (2.4)

(page 11). However, asymptotic results are problematic in this context as we will discuss in

§ 5.4.2. Therefore, we prefer to consider Proposition 4.4 as an error bound for the fixed iteration

step k. It provides exponential bounds for the estimation bias and the variance of the relative

frequency which we proposed in § 3.1.3 as estimator for the propagation condition.

Lemma 4.5. We consider the same setting as in § 3.1.3, and presume the conditions of Proposi-
tion 4.4 to be satisfied. Then, for every i ∈ {1, ...,n0}, it holds∣∣∣E[p̂(k)λ (z)

]
−P

(
N

(k)
i KL(θ̃(k)i (λ),θ)> z

)∣∣∣≤max{2e−z, ε}
and

Var
[
p̂

(k)
λ (z)

]
≤max{2e−z, ε}. (4.3)
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4.2.2 Piecewise constant functions

Next we consider a piecewise homogeneous setting with sharp discontinuities, formally de-

scribed in Assumption A2, below. In this case, the separation property restricts smoothing to the

homogeneous regions, and we get a certain propagation property. We introduce some auxiliary

notations.

Notation 4.6.

• For any setM , let C(M) be the smallest connected space which includes the respective
setM , that is

C(M) :=
⋂
{Mc :Mc is a connected space andM ⊆Mc} .

• We call the discrete setM := {Xj}mj=1 ⊆X connected if we have

Xj ∈M if and only if Xj ∈ C(M), Xj ∈ X .
• We call the connected setM := {Xj}mj=1 ⊆X convex if C(M) is convex.

Then, the setting is described by the following structural assumption.

Assumption A2. There is a non-trivial partition V := {Vi}i of X into maximal homogeneity
regions, that is for eachXi ∈X , there are a convex neighborhood Vi ⊆X and a constant φi > 0
such that {

KL(θi,θj) = 0 for all Xj ∈ Vi,
KL(θi,θj)> φ2

i for all Xj /∈ Vi.

The convexity of the neighborhoods {Vi}ni=1 ensures the comparability of the homogeneous

setting in Proposition 4.4 and the setting within each of these neighborhoods. A violation of

this condition may lead to a different behavior of the adaptive estimator due to the changed

impact of the non-adaptive weights. The specific form of the homogeneity regions does not

matter since Theorem 2.13 and hence the probability condition do not depend thereon.

We deduce the propagation property for the present case of piecewise homogeneity. Here,

we should take into account that the considered neighborhood U
(k)
i = {Xj ∈ X : w(k)

ij > 0}
might be much larger than the respective homogeneity region Vi. Obviously, the divergence

KL(θ̃(k)i ,θi) cannot converge with rate N
(k)
i in this case. Therefore, we introduce the notion of

the effective sample size n
(k)
i .

Notation 4.7. We define, for all i ∈ {1, ...,n} and every k ∈ {0, ...,k∗}, the effective sample
size and its local minimum

n
(k)
i :=

∑
Xj∈Vi∩U(k)

i

w
(k)
ij and n

(k)
i := min

Xj∈U(k)
i

n
(k)
j .

As it turns out, the quantities n
(k)
i determine a lower bound for the stepsizes φi which allows

the detection of the associated discontinuity by the algorithm. During the first iteration steps, it

holds n
(k)
i =N (k)

i . The quotient n
(k)
i /N

(k)
i decreases when U

(k)
i becomes larger than Vi. In

the following theorem, we consider two events. On the first one, B(k)(z), the estimation error is

bounded from above, and on the second one,M (k)(z), the discontinuities are sufficiently sharp

for separation.
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4.2 Propagation and stability in the case of sharp discontinuities

Notation 4.8. Let the constants φi > 0, i ∈ {1, ...,n}, be as in Assumption A2, and fix λ > 0
and z > 0. Additionally, we recall Notation 2.6 and choose κ ≥ 1 such that {θi}ni=1 ∈ (Θκ)n.
Then, we set

B(k)(z) :=
n⋂
i=1

{
n

(k)
i KL(θ̃(k)i ,θi)≤ z

}
, k ∈ {0, ...,k∗}, (4.4)

and

M (k)(z) :=

⎧⎪⎨⎪⎩
k−1⋂
k′=0

n⋂
i=1

{
φi > κ

[√
λ/Ñ

(k′)
i +2

√
z/n

(k′)
i

]}
, k ∈ {1, ...,k∗},

Ω, k = 0,
(4.5)

where Ω is as in Notation 2.1.

Theorem 4.9 (Propagation property under piecewise homogeneity). Suppose Assumptions A1
and A2, and let the bandwidth λ be chosen in accordance with the propagation condition
at level ε for all θi, i ∈ {1, ...,n}. Additionally, we choose h(0) > 0 sufficiently small such
that w(k)

ij = 0 for all i, j ∈ {1, ...,n} with i �= j. If z > 0 and k ∈ {0, ...,k∗} satisfy that
P(M (k)(z))> 0, then it holds

P

(
B(k)(z)|M (k)(z)

)
≥ 1− pκ +(k+1) max{2ne−z,nε}

P
(
M (k)(z)

) , (4.6)

where pκ is as in Notation 2.16 with Θ∗ ⊆Θ and ϕ0 > 0 appropriate.

Remark 4.10.

• In Equation (4.6), we observe an additional factor (k+ 1), which appeared in the prop-

agation property of Polzehl and Spokoiny [2006] as well, see Equation (5.4) in § 5.4.2,

below. This factor results from the proof only, and it might be avoidable. In partic-

ular, we notice that the given bound does not need to be sharp. The above theorem

provides a meaningful result for z ≥ q log(n) and small values of ε or, at best, ε := cεn−q
with cε > 0 and q > 1. It is the better the larger P(M (k)(z)), which increases with the

discontinuities φi and the minimal effective sample size n
(k)
i . Additionally, the lower

bound improves the smaller pκ. Recall from Example 2.17 that pκ = 0 for Gaussian and

log-normal distributed observations.

• The applied separation property depends via the statistical penalty on the estimation qual-

ity of all data within the local neighborhood U
(k)
i . Therefore, the extension of the smallest

homogeneous region, measured by the minimal effective sample size n
(k)
i , determines

the lower bound (4.5) for the discontinuities which provides an exact separation of the

distinct homogeneous regions. This bound is closely related to Equation (4.1) (page 52),

which only involves two points and where the term 2/(n(k)
i )1/2 from Equation (4.5) is

replaced by (
1/
√
N

(k)
i1 +1/

√
N

(k)
i2

)
,

having the same effect.

4.2.3 Piecewise bounded functions

By means of the inhomogeneous propagation condition in Definition 3.15 and Theorem 2.24,

we can establish similar results for (piecewise) bounded parameter functions. The following
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The simplified algorithm under the propagation condition

proposition provides the inhomogeneous analog of Proposition 4.4. It requires slightly different

assumptions and yields a different exponent in the exponential bound of the excess probability,

see Equation (4.7).

Proposition 4.11 (Propagation and stability under bounded variability). Let Assumption A1 be
fulfilled, and let the adaptation bandwidth λ be chosen in accordance with the inhomogeneous
propagation condition at probability level ε > 0 and variability level ϕ0 > 0 for some set
Θ∗ ⊆Θ satisfying {θi}ni=1 ∈ (Θ∗)n. Additionally, we recall Notation 2.6, and we choose κ ≥ 1
sufficiently large such that Θ∗ ⊆ Θκ. If KL(θi,θj) ≤ ϕ2/maxj′N

(k0)
j′ = ϕ2

0 holds for all
i, j ∈ {1, ...,n} and some fixed k0 ∈ {1, ...,k∗}, then we get

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θi

)
> z

)
≤max

{
2e−[√z/κ−ϕ]2

/κ2
, ε

}
+ p̆κ,0 (4.7)

for each i ∈ {1, ...,n}, k ∈ {0, ...,k0}, and all z > κ
2ϕ2, where p̆κ,0 is as in Notation 2.21. In

particular, for all k1 ≤ k2 ≤ k0, it holds

P

(
N

(k2)
i KL

(
θ̃

(k2)
i ,E θ̃(k2)

i

)
> z

)
≤max

{
P

(
N

(k1)
i KL

(
θ̃

(k1)
i ,E θ̃(k1)

i

)
> z

)
, ε
}
, (4.8)

where E θ̃(k)i = ∑
j w̃

(k)
ij θj/Ñ

(k)
i as in Notation 3.13.

Next let us consider piecewise bounded functions with sharp discontinuities.

Assumption A3. Suppose the existence of a non-trivial partition V := {Vi}i of X such that,
for every Xi ∈ X , there are constants φi > ϕ0 ≥ 0 and a convex neighborhood Vi ⊆X which
satisfy {

KL(θi,θj)≤ ϕ2
0 for all Xj ∈ Vi,

KL(θi,θj)> φ2
i for all Xj /∈ Vi.

Recall the effective sample size n
(k)
i and its minimum n

(k)
i in Notation 4.7, and the events

B(k)(z) andM (k)(z) in the subsequent Equations (4.4) and (4.5).

Theorem 4.12 (Propagation property under piecewise boundedness). Suppose Assumptions A1
and A3 to be satisfied. Additionally, let the adaptation bandwidth λ, the constant κ ≥ 1, and the
corresponding set Θκ⊆Θ be as in Proposition 4.11 and h(0) > 0 as in Theorem 4.9. Finally, we
fix some iteration step k0 ∈ {0, ...,k∗} and some constant ϕ≥ 0 such that ϕ2/maxin(k0)

i = ϕ2
0.

If z > κ
2ϕ2 satisfies P

(
M (k0)(z)

)
> 0, then it holds

P

(
B(k0)(z)|M (k0)(z)

)
≥ 1− p̆κ,0 +(k0 +1) max{2ne−[√z/κ−ϕ]2

/κ2
,nε}

P
(
M (k0)(z)

) ,

where p̆κ,0 is as in Notation 2.21.

We skip the proof since the assertion follows in the same manner as in the proof of Theorem 4.9,

using Proposition 4.11 instead of Proposition 4.4.

Remark 4.13. Theorem 4.12 yields a meaningful result for z ≥ κ
2[κ

√
q log(n)+ϕ]2 and small

values of ε or, at best, ε := cεn−q with q > 1 and cε > 0. The established lower bound is not

sharp.
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4.3 Consequences of a violated structural assumption

4.3 Consequences of a violated structural assumption

All previous results only hold for parameter functions with sharp discontinuities. What happens

in the case of a violated structural assumption? In § 2.2.4, we observed for simulated examples

with Gaussian distributed observations that the estimation function resulted in a step function

in the case of a piecewise constant parameter function and as well for a piecewise smooth

function. Therefore, we will introduce a specific step function, that we will call the associated
step function of the Propagation-Separation Approach. Then, we will establish an upper bound

for the pointwise Kullback-Leibler divergence between the adaptive estimator in Algorithm 2

(page 18) and the corresponding value of the associated step function.

Applying the simplified Propagation-Separation Approach with some fixed adaptation bandwidth

λ > 0 provides, for every k ∈ {0, ...,k∗}, a set of adaptive weights {w̃(k)
ij }ni,j=1. In particular,

this yields the subsets

H(k)
i :=

{
Xj ∈ X : w̃(k+1)

il > 0 if and only if w̃
(k+1)
jl > 0 for all Xl ∈ X

}
, (4.9)

where we set w̃
(k∗+1)
ij := w(k∗)

ij ·Kad(s(k
∗)
ij /λ). They are based on an equivalence relation, and

we get, for every parameter function θ(.), a well-defined partition {H(k)
l }ml=1 of the design

space X into m ≤ n regions. We introduce a step function whose steps match this parti-

tion {H(k)
l }ml=1.

Definition 4.14. Let 1 denote the indicator function, and let θ(k)l be the mean value of the nl esti-
mates θ̃(k)lj resulting from Algorithm 2 at the design points {Xlj}nlj=1 which form the regionH(k)

l .
Then, we call the piecewise constant function

θ̆(k)(Xi) :=
m∑
l=1
θ

(k)
l 1

H
(k)
l

(Xi) with θ
(k)
l := 1

nl

nl∑
j=1
θ̃

(k)
lj

(4.10)

the associated step function of θ(.) in step k. For i ∈ {1, ...,n} and k ∈ {1, ...,k∗}, we set
θ̆

(k)
i := θ̆(k)(Xi).

Lemma 4.15. Under the notation in Definition 4.14, it holds

KL
(
θ̆

(k)
i , θ̃

(k)
i

)
≤max{λ/Ñ (k)

j :Xj ∈H(k)
i }

for all i ∈ {1, ...,n} and k ∈ {0, ...,k∗}.

Proof. We know from Lemma 2.5 that the Kullback-Leibler divergence is convex with respect

to the first argument. Therefore, it holds

KL
(
θ̆

(k)
i , θ̃

(k)
i

)
≤max

{
KL

(
θ̃

(k)
j , θ̃

(k)
i

)
:Xj ∈H(k)

i

}
.

Since Xj ∈ H(k)
i implies w̃

(k+1)
ji > 0, we have KL

(
θ̃

(k)
j , θ̃

(k)
i

)
≤ λ/Ñ (k)

j , which leads to the

assertion.

In § 5.3.2, we will illustrate the formation of the associated step function during iteration. The

corresponding simulations suggest its immutability for sufficiently large bandwidths. Addition-

ally, we will see that, in the presented examples, the sets {Xj ∈X : w̃(k)
ij > 0} with i ∈ {1, ...,n}

form a well-defined partition of the design space X if h(k) is sufficiently large. However,

both heuristic observations could not be theoretically justified for reasons that we will discuss

in § 5.4.1.
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The simplified algorithm under the propagation condition

4.4 Generalization of the setting

We will extend our theoretical results to the case of a parametrized exponential family model.

Then, we will discuss further details concerning the application of the Propagation-Separation

Approach in the case of a local likelihood model without restrictions.

4.4.1 Parametrized exponential families

Assumption A1 (page 10) and hence the whole study were restricted to the parametrization

where Eθ [T (Y )] = θ. Which modifications and additional assumptions are required in order to

take the previous results over to the case where t(θ) := Eθ [T (Y )] is some invertible function?

Assumption A4 (Parametrized exponential family model). Consider the setting in Notation 2.1
and let t : Θ→Θ denote an invertible and continuously differentiable function. We assume that
the parametric family P(t) = {P(t)

ϑ }ϑ∈Θ is an exponential family with a convex parameter set Θ
and two functions Ct,Bt ∈ C2 (Θ,R) such that

pt(y,ϑ) := dP(t)
ϑ /dP(y) = p(y)exp[T (y)Ct(ϑ)−Bt(ϑ)] , ϑ ∈Θ,

where P denotes a dominating σ-finite measure, T : Y → R is a sufficient statistic, p is some
non-negative function on Y , and Ct is strictly monotonic increasing. For the parameter ϑ, it
holds ∫

pt(y,ϑ)P(dy) = 1 and E
(t)
ϑ [T (Y )] = B

′
t(ϑ)
C ′t(ϑ)

= t(ϑ).

Corollary 4.16. Let Assumption A4 be satisfied.

• Reparametrization with θ := t(ϑ) yields

KL(ϑ1,ϑ2) =KL(θ1,θ2) for all ϑ1,ϑ2 ∈Θ.

• If t(ϑ) is linear in ϑ, then it follows, for ϑ̃ := t−1
(
θ̃
)

, that

KL(ϑ̃,Eϑ̃) =KL(θ̃,Eθ̃),

where θ̃ denotes an estimate of θ.
• It holds for the weighted MLE θ(MLE)

i in Equation (2.5) (page 13) that θ(MLE)
i = t−1(θi),

where θi =
∑n
j=1wijT (Yj)/N i as in Equation (2.6).

Remark 4.17. In Assumption A1, we required the unbiasedness of the parameter, θ = Eθ [T (Y )]
for all θ ∈Θ. Under Assumption A4, this can be achieved via the reparametrization θ := t(ϑ),
where t(ϑ) = Eϑ [T (Y )]. Alternatively, the Propagation-Separation Approach can be used for

the estimation of the biased parameter ϑ, replacing the adaptive estimator θ̃
(k)
i in Equation (2.7)

(page 19) by ϑ̃
(k)
i := t−1(θ̃(k)i ) for all i ∈ {1, ...,n} and k ∈ {0, ...,k∗}. If t(ϑ) is linear in ϑ,

then it follows from Corollary 4.16 that all results in the Chapters 3 and 4 remain valid under

Assumption A4. In contrast, for non-linear functions t, the extension of the results is not trivial.

Many of our results relate to Theorems 2.13 and 2.24, which we recalled from Polzehl and

Spokoiny [2006, Thm. 2.1 & 2.2]. The proof of the underlying Theorem 2.19 (page 28) is

based on the identity N iθi = Si. Therefore, we lose the exponential bounds in Theorems 2.13

and 2.24 and in all related results if t is not linear.
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4.4 Generalization of the setting

4.4.2 Violation of the exponential family model

The presented theoretical results require a local exponential family model. Nevertheless,

the Propagation-Separation Approach can be applied on any local likelihood model, recall

Notation 2.1. For this purpose, some crucial decisions have to be made.

First, we need to choose an appropriate estimator. Basically, the Propagation-Separation

Approach can be based on any weighted pointwise estimator, replacing the non-adaptive weights

by the corresponding iteratively updated structural adaptive weights. The precise choice of

the estimator depends on the respective application. Under the local exponential family model

we established, for the case of non-adaptive weights, the equivalence of the weighted MLE

and the corresponding weighted mean, see Lemma 2.10. This equivalence may be violated

in the case of an unrestricted local likelihood model. Here, the weighted MLE provides an

estimate of the parameter θ, while the weighted mean refers to the expected value, where

possibly Eθ [T (Y )] �= θ. Additionally, the MLE does not need to have a (unique) solution or an

explicit representation. Then its computation may be impossible or computationally demanding.

Moreover, we should ensure that the estimator of the Propagation-Separation Approach remains

in the same distribution class as the observations. For instance, in § 6.2.3, we will use a weighted

quadratic mean instead of a weighted arithmetic mean.

Next we need a distance function on the observation space that can be used for the statistical

penalty, which determines the adaptive weights. Under the local exponential family model,

we use the Kullback-Leibler divergence. This relates, under Assumption A1 (page 10), to the

fitted log-likelihood. Additionally, in § 3.1.2, it provided the invariance of the homogeneous

propagation condition with respect to the fixed parameter θ ∈ Θ for several probability dis-

tributions. For other distribution classes, the application of the Kullback-Leibler divergence

requires an explicit representation or an appropriate approximation. Alternatively, one could use

another f -divergence or even a possibly asymmetric distance function on the observation space.

Here, a detailed evaluation of the impact of the Kullback-Leibler divergence and of possible

consequences of a replacement would be interesting. The basic properties of the algorithm can

be extended to any distance which satisfies a generalized triangle inequality as established for

the Kullback-Leibler divergence in Lemma 2.8. Only the exponential bounds in Theorems 2.13

and 2.24 are restricted to the local exponential family model. In Section 4.2, these were used to

bound the probabilities

P

(
N

(0)
i KL

(
θ

(0)
i ,θ

)
> z

)
and P

(
N

(0)
i KL

(
θ

(0)
i ,Eθ

(0)
i

)
>
[√
z/κ−ϕ]2)

in the proofs of Propositions 4.4 and 4.11.

Finally, the choice of the adaptation bandwidth needs to be revisited in the case of a violated

Assumption A1. Our new formulation of the propagation condition in Chapter 3 is motivated

by Theorems 2.13 and 2.24. Nevertheless, it can be applied whenever the local likelihood

model is satisfied. If no choice of λ leads to the desired monotonicity of the corresponding

function Zλ, the propagation condition can be weakened. For instance, the adaptation bandwidth

can be chosen as the smallest value of λ which ensures similar isolines as the non-adaptive

estimator for all p ∈ (ε,1), where ε > 0 denotes the corresponding weak propagation level. This
relates to the basic idea of the propagation condition, to ensure under homogeneity that the

adaptive estimator behaves similar to the non-adaptive one. The alternative requirement that

Zλ(0,p,θ, i) ≈ Zλ(k∗,p,θ, i) holds for all p ∈ (ε,1) and every i ∈ {1, ...,n} ensures a certain

stability of estimates. For practical purposes, this condition is usually appropriate. Anyway, a

careful evaluation of the variability with respect to the parameter θ ∈Θ is recommendable.
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4.5 Proofs

Proof of Lemma 4.5. Recall the notations in § 3.1.3, and note that the adaptive estimators

{θ̃(k)i }n0
i=1 are not identically distributed. For every j ∈ {1, ...,n0}, Proposition 4.4 yields∣∣∣E[p̂(k)λ (z)

]
−P

(
N

(k)
j KL(θ̃(k)j (λ),θ)> z

)∣∣∣
≤ n−1

0

n0∑
i=1

∣∣∣∣E[1M(k)
(λ) (z)(Xi)

]
−P

(
N

(k)
j KL(θ̃(k)j (λ),θ)> z

)∣∣∣∣
≤ max

i∈{1,...,n0}

{∣∣∣P(N (k)
i KL(θ̃(k)i (λ),θ)> z

)
−P

(
N

(k)
j KL(θ̃(k)j (λ),θ)> z

)∣∣∣}
≤ max

i∈{1,...,n0}
P

(
N

(k)
i KL(θ̃(k)i (λ),θ)> z

)
≤ max{2e−z, ε}.

Furthermore, the variance of any random variable can be described as an L2-norm. The

corresponding triangle inequality leads to

Var
[
p̂

(k)
λ (z)

]
=

∥∥∥∥∥n−1
0

n0∑
i=1

(
1
M

(k)
λ

(z)(Xi)−E

[
1
M

(k)
λ

(z)(Xi)
])∥∥∥∥∥

2

L2

≤
(
n−1

0

n0∑
i=1

∥∥∥∥1
M

(k)
λ

(z)(Xi)−E

[
1
M

(k)
λ

(z)(Xi)
]∥∥∥∥

L2

)2

≤ max
i∈{1,...,n0}

Var
[
1
M

(k)
λ

(z)(Xi)
]
.

For any random variable X with values in [0,1], we have Var[X]≤ E[X]. We get by Proposi-

tion 4.4 and the definition ofM
(k)
λ (z) that

max
i∈{1,...,n0}

E

[
1
M

(k)
λ

(z)(Xi)
]

= max
i∈{1,...,n0}

P

(
N

(k)
i KL(θ̃(k)i (λ),θ)> z

)
≤max{2e−z, ε},

which leads to Equation (4.3).

Proof of Theorem 4.9. Recall the event Ωκ in Lemma 2.23. The adaptive estimator is defined

as a weighted mean of the observations. Therefore, for all k ∈ {0, ...,k∗}, we get

Ωκ ⊆
n⋂
i=1

{
θ̃

(k)
i ∈Θκ

}
.

Now letM c denote the complement of the setM . We construct a disjoint union

[
B(k)(z)

]c
=

k⋃
k′=0

⎛⎝[B(k′)(z)
]c∩

⎡⎣k′−1⋂
k′′=0

B(k′′)(z)

⎤⎦⎞⎠ ,
where we set

k′−1⋂
k′′=0

B(k′′)(z) := Ω if k′ = 0. Then, we get

P

(
B(k)(z)

)
≥ 1−P(Ωcκ)−P

⎛⎝Ωκ∩
k⋃
k′=0

⎡⎣(B(k′)(z))c∩
⎛⎝k′−1⋂
k′′=0

B(k′′)(z)

⎞⎠⎤⎦⎞⎠
≥ 1−pκ−

k∑
k′=0

P

⎛⎝Ωκ∩
[
B(k′)(z)

]c∩
⎡⎣k′−1⋂
k′′=0

B(k′′)(z)

⎤⎦⎞⎠
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and analogously for the conditional probability

P

(
B(k)(z)|M (k)(z)

)
(4.11)

≥ 1−
⎡⎣pκ +

k∑
k′=0

P

⎛⎝M (k′)(z)∩Ωκ∩
[
B(k′)(z)

]c∩
⎡⎣k′−1⋂
k′′=0

B(k′′)(z)

⎤⎦⎞⎠⎤⎦/P(M (k)(z)
)
,

where we used that M (k)(z) ⊆M (k′)(z) for k′ ≤ k. The choice of h(0) ensures, for every

i ∈ {1, ...,n}, that U (0)
i \Vi = ∅. Moreover, it holds θ̃

(0)
i = θ(0)

i see Algorithm 2 (2) (page 18),

and it follows from Theorem 2.13 that

P

(
M (0)(z)∩Ωκ∩

[
B(0)(z)

]c) n
(0)
i =N(0)

i≤ n ·P
(
N

(0)
i KL(θ(0)

i ,θi)> z
)

≤ 2ne−z. (4.12)

By definition of the events B(k)(z), M (k)(z), and Ωκ, the conditions of Proposition 4.1 are

satisfied on the intersection

M (k′)(z)∩Ωκ∩
⎡⎣k′−1⋂
k′′=0

B(k′′)(z)

⎤⎦

for all k′ ∈ {1, ...,k}. There, it follows that w̃
(k′)
ij = 0 for allXj /∈ U (k′)

i ∩Vi. Hence, smoothing

is restricted to the homogeneous neighborhood Vi, and E [T (Yj)] = θi for every Xj with

w̃
(k′)
ij > 0. Then, we get by Proposition 4.4 that

P

⎛⎝{n(k′)
i KL

(
θ̃

(k′)
i ,θi

)
> z}∩M (k′)(z)∩Ωκ∩

⎡⎣k′−1⋂
k′′=0

B(k′′)(z)

⎤⎦⎞⎠≤max
{
2e−z, ε

}
(4.13)

for all k′ ∈ {1, ...,k}. Finally, Equations (4.11), (4.12), and (4.13) lead to

P

(
B(k)(z)|M (k)(z)

)
≥ 1− [pκ +(k+1)max

{
2ne−z,nε

}]
/P

(
M (k)(z)

)
.

This terminates the proof.

Proof of Proposition 4.11. The inhomogeneous propagation condition yields the monotonicity

of the function Ẑλ
(
k,p;{θj}nj=1, i

)
in k ≤ k0 for all p ∈ (ε,1) and every i ∈ {1, ...,n}. This

implies Equation (4.8). We turn to Equation (4.7), and we consider the event Ω̆κ in Lemma 2.23,

which satisfies

Ω̆κ ⊆
n⋂
i=1

{
θ̃

(k)
i ∈Θκ

}
for the same reasons as in the proof of Theorem 4.9. Then, we use the convexity of the Kullback-

Leibler divergence with respect to the first argument, see Lemma 2.5. Denoting the complement
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of the setM byM c, it follows from the initialization of Algorithm 2 (page 18) with θ̃
(0)
i = θ(0)

i

that

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θi

)
> z

)
Lem. 2.8≤ P

({
κ

2N
(k)
i

[
KL1/2

(
θ̃

(k)
i ,E θ̃(k)i

)
+KL1/2

(
E θ̃(k)i ,θi

)]2
> z

}
∩ Ω̆κ

)
+P

(
Ω̆cκ

)
Lem. 2.5≤ P

({
N

(k)
i KL

(
θ̃

(k)
i ,E θ̃(k)i

)
>
[√
z/κ−ϕ]2}∩ Ω̆κ

)
+ p̆κ,0

Eq. (4.8)

≤ max
{

P

({
N

(0)
i KL

(
θ

(0)
i ,Eθ

(0)
i

)
>
[√
z/κ−ϕ]2}∩ Ω̆κ

)
, ε
}

+ p̆κ,0
Thm. 2.24≤ max

{
2e−[√z/κ−ϕ]2

/κ2
, ε

}
+ p̆κ,0

since the event Ω̆κ is independent of the iteration step k.
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Chapter 5

Simulations and discussion

In the last chapter, we established several theoretical properties of the simplified Propagation-

Separation Approach in Algorithm 2 (page 18). Here, we will illustrate these properties by

simulated examples with Gaussian and exponentially distributed observations. In particular, we

will compare the results of the simplified algorithm with the original procedure in Algorithm 1

(page 16). Furthermore, we will simulate non-central chi-distributed observations, which violate

the local exponential family model in Assumption A1. Nevertheless, the algorithm yields, for the

considered examples, the same heuristic behavior as for exponential families. We will close with

a discussion of our theoretical and numerical results on the simplified Propagation-Separation

Approach. In Chapter 6, we will apply the simplified algorithm on experimental magnetic

resonance data.

5.1 Test functions

In this section, we will present all test functions that we will consider in the following numerical

study. The applied parameter choices will be specified together with the numerical results

in Section 5.3. Usually, we simulated data with n = 1000 observations. In some examples,

we changed the sample size n ∈ N. Then, we increased the cardinality of each region of

the introduced parameter functions by the same factor such that the design portions remain

unchanged.

First, we will demonstrate the separation and the propagation property. For this purpose, we

will consider a shifted and scaled indicator function, where we will vary, for Gaussian and

exponentially distributed observations, the step size, the variance, the sample size, and the

choice of the adaptation bandwidth λ. This piecewise constant setting coincides with the setting

which the original Propagation-Separation Approach in Algorithm 1 and its simplified version

in Algorithm 2 assume. Therefore, we expect the procedure to provide propagation, separation,

and a certain stability of estimates, see Sections 4.1 and 4.2. Let the sample size be even,

n ∈ 2N. Then, we split the design into two parts with equal cardinality, X1 := {Xi}n/2i=1 and

X2 := {Xi}ni=n/2+1. We will consider the test function

θ(x) := a1 +(a2−a1) ·1X2(x), x ∈ X , (5.1)

where 1 denotes the indicator function, and a1,a2 ∈ R are constants.
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Simulations and discussion

Next we will illustrate the formation of the associated step function in Definition 4.14. Here,

we applied three test functions where the structural Assumptions A2 and A3 are violated. First,

we reused the piecewise smooth function (2.9) (page 19). The corresponding smoothing results

at three different location bandwidths are shown in Figure 2.2 (page 20). Second, we will

consider a piecewise constant function with small discontinuities and three different regions of

monotonicity,

θ(x) := 0, x ∈ {1, ...,50}, θ(x) := 2.2, x ∈ {451, ...,500},
θ(x) := 0.5, x ∈ {51, ...,100}, θ(x) := 1.7, x ∈ {501, ...,550},
θ(x) := 1, x ∈ {101, ...,150}, θ(x) := 1.2, x ∈ {551, ...,600},
θ(x) := 1.5, x ∈ {151, ...,200}, θ(x) := 0.7, x ∈ {601, ...,650},
θ(x) := 2, x ∈ {201, ...,250}, θ(x) := 0.9, x ∈ {651, ...,750},
θ(x) := 2.5, x ∈ {251, ...,300}, θ(x) := 1.6, x ∈ {751, ...,800},
θ(x) := 3, x ∈ {301, ...,350}, θ(x) := 2.6, x ∈ {801, ...,900},
θ(x) := 3.2, x ∈ {351, ...,400}, θ(x) := 2.9, x ∈ {901, ...,1000}.
θ(x) := 2.7, x ∈ {401, ...,450},

(5.2)

This function is constructed to especially illustrate the consequences of close steps in distant

locations. Third, we will study the behavior of the simplified Propagation-Separation Approach

for the logarithmic function

θ(x) := log(x), x ∈ X . (5.3)

Here, the parameter values change slowly. Polzehl and Spokoiny [2006] introduced the memory

step in order to avoid the increase of the estimation bias for large location bandwidths, which

occurs in this case.

In § 5.3.3, we will concentrate on the impact of the memory step. For this purpose, we will

compare the results of the original and the simplified Propagation-Separation Approach applied

to the above mentioned test functions. In particular, we will vary the memory bandwidth in

order to illustrate the effects of an increasing amount of aggregation. Finally, we will show

some results of the simplified procedure for non-central chi-distributed observations. Here, we

will reuse the piecewise constant and the piecewise smooth functions in § 2.2.4, Equations (2.8)

and (2.9).

5.2 Methods

We used the implementation of the Propagation-Separation Approach in the R-package aws by
Polzehl [2012]. Here, the memory step is omitted by default. If desired, it can be included in

the procedure, setting memory=TRUE. For the sake of simplicity, we will only show univariate

examples where X ⊆ R. However, the R-package aws as well allows higher dimensions, where

X ⊆ R
d with d= 1,2,3.

Let n denote the sample size. For t := θ ∈ R
n, we generated the random observations via the

commands

tnoise <- t + rnorm(n, sd=1) if P := {N (θ,1)}θ∈Θ,

tnoise <- rexp(n,1/t) if P := {Exp(1/θ)}θ∈Θ,

tnoise <- sqrt(rchisq(n, df, ncp=tˆ2)) if P := {χdf(θ)}θ∈Θ,
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5.2 Methods

where df is the assumed degree of freedom of the non-central chi-distribution, here df = 4.
For the non-central chi-distribution, the expectation of the observations does not equal the

non-centrality parameter. Using the Equation (6.7), we calculate the associated expected values

via

et <- sqrt(pi/2)*hyperg_1F1(-0.5, df/2, -tˆ2/2)*gamma(df/2+.5)

/gamma(1.5)/gamma(df/2),

which requires the R-package gsl.

We applied the R-function aws, setting

that <- aws(tnoise, u=t, hmax=10000, lkern="Triangle",

homogen=FALSE, maxni=TRUE).

This function depends on the following arguments.

• The n-dimensional vector tnoise contains a realization of the random observations.

• The n-dimensional vector t contains the corresponding expected values, which are used

for comparison with the estimate that. IfP := {χdf(θ)}θ∈Θ, then we use the choice u=et
in the function aws in order to compare the adaptive estimate that with the expectation

et in place of the true parameter t.
• The argument hmax sets an upper bound for the location bandwidth.

• The choice lkern="Triangle" yields the location kernel in Equation (2.10) (page 19).

• The option homogen=TRUE leads to a modification of the algorithm, which reduces the

computation time. We set homogen=FALSE in order to avoid artifacts which result from

these modification, but not from the Propagation-Separation Algorithm itself.

• Via maxni=TRUE, we use a modified statistical penalty, setting

s
(k)
ij := max

k′≤k
N̂

(k′−1)
i KL(θ̂(k−1)

i , θ̂
(k−1)
j )

in Algorithm 1 (page 16) and analogously in Algorithm 2 (page 18). This modification

preserves an achieved quality of estimation during iteration. It will be further discussed in

§ 5.4.1.

For some examples, we used the following additional arguments for further adjustment.

• The argument family determines the underlying family of probability distributions P .

Here, we used family="Gaussian", family="exponential", and family="NCchi".
• The parameter ladjust scales the default choice of the adaptation bandwidth λ and hence

allows for an increase or reduction of the amount of adaptation.

• For Gaussian distributed observations, the assumed standard deviation can be specified via

sigma2=σ2, which influences the Kullback-Leibler divergence in the statistical penalty.

Else, the algorithm estimates the variance from the observations tnoise.
• In § 5.3.3 and § 5.3.4, we will include the memory step via the argument memory=TRUE.

This is implemented in the package aws for two different memory kernels, which can be

specified by aggkern="Triangle" or aggkern="Uniform".

For the other arguments of the function aws, we used the default values. The corresponding

adaptation bandwidths λ are in accordance with the propagation condition of the propagation

levels ελ given in Table 5.1.

By means of an additionally included function awsweights, we visualized the weighting

schemes of the resulting non-adaptive weights {w(k)
ij }i,j , the adaptive weights {w̃(k)

ij }i,j , and
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P {N (θ,1)}θ∈Θ {Exp(1/θ)}θ∈Θ {χ4(θ)}θ∈Θ
λ 14.6 12.8 30.2
ελ 0.001 5 ·10−4 0.001

Table 5.1: Propagation levels of the default adaptation bandwidths in the R-package aws.

the adaptation kernel {Kad(s(k)ij /λ)}i,j , which equals the quotient w̃
(k)
ij /w

(k)
ij =Kad(s(k)ij /λ) if

w
(k)
ij > 0. The values of these quantities are shown in grey scales, where zero corresponds to

black and one to white, respectively. Moreover, we included a scaling factor tadjust, which

allows a manipulation of the memory bandwidth τ , see Algorithm 1 (page 16) for the application

of τ and § 2.2.2 for its choice. In the package aws, this is given as

τ (k) := (2∗ τ1 + τ1 ∗max{kstar− log(h(k)),0}),

where the constant kstar depends on the family of probability distributions P , and

τ1 :=
{
ladjust*tadjust*20 if aggkern="Triangle",

ladjust*tadjust*8 if aggkern="Uniform"

with ladjust=1 and tadjust=1 by default.

5.3 Numerical results

Here, we will list our parameter choices, and we will show the results of our numerical study

in order to illustrate the separation and propagation property, the formation of the associated

step function, the impact of the memory step, and the stability of estimates. More precisely,

we will present several example plots for the realization seed=1, the corresponding weighting

schemes, and boxplots of the mean absolute error (MAE) over 1000 realizations, where seed=l
and l ∈ {1, ...,1000}. This set of realizations was chosen in order to ensure the reproducibility

of our results. The MAE is automatically provided by the function aws.

5.3.1 Separation and propagation

In Figure 5.1, we show four typical results, to which the Propagation-Separation Approach

may lead on a locally constant parameter function. From left to right we observe adaptation to

outliers (a), an (almost) perfect separation of the two homogeneity regions (b), a shifted step (c),

and over-smoothing (d), where the two different regions are treated as one. Results are shown

for Gaussian observations of the test function (5.1) with a1 := 1, and a2 := 2, using increasing

values of the adaptation bandwidth λ > 0 by ladjust=0.25,1,7,20. For a sufficiently large

adaptation bandwidth λ, the first case can be avoided with high probability. Then, the algorithm

yields similar plots as in Figure 5.1 (b-d) for decreasing step sizes (not shown).

The boxplots in Figure 5.2 support this heuristic observation. In the top left, we show the

change of the MAE for an increasing adaptation bandwidth, where we set ladjust=0.1,
0.25,0.5,1,4,6,10,20, considering the same test function as in Figure 5.1. At the boundaries,

the MAE increases considerably due to under-smoothing for small values of ladjust and due

to over-smoothing for large values. Similarly, we observe an increasing MAE in the top right
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Figure 5.1: The separation property on Gaussian observations for increasing adaptation bandwidths (from

left to right), where the blue dashed line represents the true parameter function, and the adaptive estimate

is shown as black solid line.
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Figure 5.2: MAE-boxplots concerning the separation property on Gaussian observations for increasing

adaptation bandwidths (upper left), decreasing step sizes (upper right), and varying sample sizes and

noise standard deviations (bottom).

panel of Figure 5.2, which we computed with ladjust=5, a1 := 1, and a2 := 20,5,2,1.8,1.6,
where small steps may assimilate. Finally, for a2 := 5 and ladjust=1, we illustrate the impact

of the sample size and the noise standard deviation, where we chose n= 250,1000,4000 and

σ = 0.5,1,2. In the bottom panel of Figure 5.2, we only assign the choices n �= 1000 and σ �= 1.
As suggested by Example 4.3, a smaller standard deviation σ as well as an increased sample

size n yield improved results, while an increased standard deviation or a reduced sample size

lead (on average) to a larger MAE. To some extent, these effects can be compensated by a

simultaneous change of σ2 and n, using the same scaling factor for both.

We produced similar plots for exponentially distributed observations, using different parameter

choices. For the boxplot in the top left panel of Figure 5.3, we set a1 := 1, a2 := 1/10,
and ladjust=0.2,0.25,0.5,1,4,6,10,20. For the top right panel, we used ladjust=1,
a1 := 1, and a2 := 1/20,1/10,1/2,1/1.6,1/1.4. The sample sizes were chosen as n=2000
(top) and n=250,1000,4000 (bottom). The standard deviation depends on the parameter

values θ, which we adjusted by the scaling factors 0.5 and 2. This choice led to the pairs

(a1,a2) ∈ {(1/2,1/10),(1,1/5),(2,2/5)}. We observe that the effect of the standard deviation
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Figure 5.3: MAE-boxplots concerning the separation property on exponentially distributed observations

for increasing adaptation bandwidths (top left), decreasing step sizes (top right), and varying sample

sizes and noise standard deviations (bottom).

is similar as for Gaussian observations, while the sample size has minor impact in this example.

The variance of the MAE decreases with increasing sample sizes, while its median remains

almost unchanged. Probably, much larger sample sizes would show stronger effects, but this

would lead to a considerable increase of the computation time.

5.3.2 Formation of the associated step function

Next we study the formation of the associated step function of the Propagation-Separation

Approach, which we introduced in Section 4.3. For this purpose, we visualize the resulting

weighting schemes.

In Figure 5.4, we consider the piecewise smooth function (2.9) (page 19) with Gaussian ob-

servations. In the first row, we provide the weighting schemes of the iteration step where the

MAE is minimized. The product of the adaptive term {Kad(s(k)ij /λ)}i,j (a) and the non-adaptive

weights {w(k)
ij }i,j (b) results in the adaptive weights {w̃(k)

ij }i,j (c). This illustrates the interaction

of adaptation and location. For hmax=2000, the algorithm results in the associated step func-

tion (d). Here, the adaptive weights (f) and the weighting scheme of the corresponding adaptive

term {Kad(s(k)ij /λ)}i,j (not shown) were visually indistinguishable due to the large size of the

considered local neighborhood, which is determined by the non-adaptive weighting scheme (e).

We present in Figure 5.5 the example plots and corresponding weighting schemes {w̃(k)
ij }i,j of

the step function (5.2) (page 64). The discontinuities are too small for separation. Therefore,

the algorithm forms a step function which differs from the original parameter function. The

minimal MAE is provided for hmax=30, where the considered local neighborhood is small and

separation does not yet occur (a+e). For hmax=120, we observe, in the example plot (b) as well

as in the weighting scheme (f), that the estimation function starts to form a step function. In (c),

the estimation function of hmax=600 resembles a step function, but the weighting scheme (g)

already indicates that the formed steps may change with increasing location bandwidths. Indeed,
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Figure 5.4: Formation of the associated step function for the piecewise smooth function (2.9) with

Gaussian observations.
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Figure 5.5: Formation of the associated step function for the step function (5.2) with Gaussian observa-

tions.
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Figure 5.6: Formation of the associated step function for the logarithmic function (5.3) with Gaussian

observations.
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Figure 5.7: Formation of the associated step function for the piecewise smooth function (2.9) and the

logarithmic function (5.3) with exponentially distributed observations, where n=1000 (top) and n=10000
(last row).

in (d), several steps in different locations have been assimilated as the weighting scheme (h)

points out. For the plots in the last column, we set hmax=20000.

Even for the logarithmic function (5.3), the simplified algorithm results in a step function with

disjoint regions (d). In Figure 5.6, we show the example plots for a small location bandwidth

hmax=10 (a), at hmax=60 (b), where the MAE is minimal, and at hmax=2000 (c).

Additionally, we studied the formation of the associated step function for exponentially dis-

tributed observations on several test functions. In Figure 5.7, we provide the results for the

parameter functions in Equations (5.3) (first row) and (2.9) (second row). Here again, for

sufficiently large location bandwidths, the algorithm results in the associated step function

with disjoint regions of non-zero adaptive weights (d+h). We show the example plots for a

small location bandwidth (a+e), where hmax=10, an intermediate iteration step with minimized

MAE (b+f), and a large location bandwidth hmax=20000 (c+g). As the resulting plots look

considerably worse than in the case of Gaussian observations, we repeated the computation on a

larger sample size, setting n=10000 instead of n=1000. In the last row, we show the results with

minimal MAE (i+k) and for hmax=20000 (j+l).
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Figure 5.8: MAE-boxplots for hmax=50,500,5000 with and without memory step, setting aggkern=
"Triangle" (Tr) and aggkern="Uniform" (Un).
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Figure 5.9: MAE-boxplots for hmax=50 (left) and hmax=10000 (right) for the indicator function (top)

and for the piecewise smooth function (bottom) with Gaussian observations. We applied the algorithm

without (no MS) and with memory step, setting aggkern="Triangle" (Tr) and aggkern="Uniform"
(Un), where tadjust=0.1,0.05,0.01 increases the amount of aggregation.

5.3.3 Impact of the memory step

In [Polzehl and Spokoiny, 2006, Thm. 5.7], the memory step provided a general result on

the stability of estimates, up to some constant. However, its practical use is questionable. No

situation has been reported to date where the memory step considerably improved the results

of the Propagation-Separation Approach. Therefore, we aim for a better understanding of its

impact on the resulting estimates. For this purpose, we compared the results of the original

and the simplified algorithm on the test functions in Section 5.1 for Gaussian and exponentially

distributed observations.

In Figure 5.8, we show the results for the piecewise smooth function (2.9) (page 19) with

Gaussian distributed observations. We applied three location bandwidths, hmax=50,500,5000,
each of them without memory step (memory=FALSE), with memory step, using a triangular

kernel (memory=TRUE, aggkern="Triangle"), and with memory step, using a uniform kernel

(memory=TRUE, aggkern="Uniform"). As for all other test functions with Gaussian or expo-

nentially distributed observations, there is (almost) no difference between the resulting boxplots

with and without memory step and for the two memory kernels. This raises the question whether

the memory step itself does not have any effect, or whether the default parameter choices in the

R-package aws are unfavorable.
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Figure 5.10: Example plots for the piecewise smooth function (top) and the step function (bot-

tom) at hmax=100000. We applied the algorithm without (a+e) and with memory step, setting

aggkern="Triangle" and (from left to right) tadjust=0.05,0.02,0.01.

In order to provide a deeper insight into the mode of action of the memory step, we increased the

amount of aggregation by means of the additionally implemented scaling factor tadjust of the

memory bandwidth τ > 0. In Figure 5.9, we present, for the indicator function (5.1) with a1 := 1
and a2 := 5 (top) and for the piecewise smooth function (2.9) (bottom), the MAE-boxplots at

some early iteration step with hmax=50 (left) and for hmax=10000 (right), assuming Gaussian

observations. The amount of aggregation increases due to the choices tadjust=0.1,0.05,0.01
with aggkern="Triangle" and aggkern="Uniform". For comparison, we show the result of

the simplified procedure as well, where memory=FALSE. For hmax=50, we observe an increase

of the MAE for both test functions at tadjust=0.01, while the MAE without memory step

coincides with the results for tadjust=0.1,0.05. For hmax=10000, this observation remains

valid for the indicator function (top right), where the locally constant model of the Propagation-

Separation Approach is satisfied.

In contrast, for the piecewise smooth function, we know from § 5.3.2 that the estimation function

approaches the associated step function, which leads to an increase of the MAE. As demonstrated

in the bottom right of Figure 5.9, the MAE decreases with increasing amount of aggregation,

that is with decreasing tadjust. Unfortunately, this increases the risk of adaptation to noise as

we illustrate on some example plots in Figure 5.10 for the piecewise smooth function (2.9) (top)

and for the step function (5.2) (bottom), both with Gaussian observations. Without memory

step as well as with memory step and tadjust=1, the algorithm results in the associated step

function (a+e). To some extent, this effect can be attenuated by increasing the amount of

aggregation, setting tadjust=0.05 (b+f) or even tadjust=0.02 (c+g). For tadjust=0.01
(d+h), we observe adaptation to noise, which indicates the increased risk of adaptation to outliers

due to the decreased memory bandwidth. Naturally, for other realizations, larger sample sizes or

different test functions, this could happen for larger values of tadjust as well. We got similar

results for the other test functions in Section 5.1 with Gaussian and as well with exponentially

distributed observations (not shown).
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Figure 5.11: Stability of estimates for Gaussian (top) and exponentially (bottom) distributed observations

for the indicator function (left) and for the piecewise smooth function (right).

5.3.4 Stability of estimates

The numerical results in § 5.3.2 suggest that the simplified Propagation Separation Approach

provides a certain stability of estimates, where the associated step function acts as an intrinsic

stopping criterion. In § 5.4.1, we will discuss the reasons which impede a theoretical proof of

this heuristic property. Here, we present some boxplots which indicate the immutability of the

MAE for sufficiently large location bandwidths.

We show results for Gaussian and exponentially distributed observations (Figure 5.11). We

set n=1000 and hmax=20,50,200,500,1000,10000,20000 for the former, and n=4000 and

hmax=50,200,500,2000,15000,20000 for the latter. Here again, we consider the indicator

function (5.1) with a1 := 1 and a2 := 5, where the structural assumption of the Propagation-

Separation Approach is satisfied. This leads to a decreasing MAE during iteration. As an

example for the case of a misspecified model, we again apply the piecewise smooth function (2.9).

Here, the MAE increases for larger location bandwidth as the estimator is forced into a step

function. Nevertheless, for both test functions and both probability distributions, the MAE

stabilizes for sufficiently large location bandwidths. For comparison, we show the MAE which

results from the choices memory=TRUE, aggkern="Triangle", tadjust=1.

5.3.5 Non-central chi-distributed observations

Finally, we apply the simplified algorithm to non-central chi-distributed observations. This

class of distributions violates Assumption A1, which is required in our theoretical results.

Therefore, it is no longer ensured that the algorithm provides the same behavior as for Gaussian

or exponentially distributed observations. We consider the same test functions as in § 2.2.4, that

is the piecewise constant function (2.8) and the piecewise smooth function (2.9), where n=2000.
In Figures 5.12 and 5.13, we observe the same behavior as before, namely the formation of the

associated step function, a final weighting scheme that forms a partition of the design space, and

the stability of the MAE for sufficiently large iteration steps.
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Figure 5.12: Results of the simplified Propagation-Separation Approach on non-central chi-distributed

observations for an optimal and for an extremely large bandwidth, where the true parameter function is

shown as blue dashed line and the corresponding estimation function is represented by a black solid line.

In (a) and (c), the observations are visualized by small circles.
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Figure 5.13: Stability of estimates and final weighting schemes for non-central chi-distributed observa-

tions using the same test functions as in Figure 5.12.

5.4 Discussion of the simplified Propagation-Separation Approach

Our study provides theoretical and numerical results for the simplified Propagation-Separation

Approach in Algorithm 2 (page 18), where the memory step is omitted. This helps for a better

understanding of the procedure as the impact and interaction of the involved components is

clarified. Furthermore, the presented results substantiate the reasons for omitting the memory

step and provide a detailed study of its impact.

Our theoretical results, see Chapter 4, rely on an advanced parameter choice for the adaptation

bandwidth λ, which we introduced and justified in Chapter 3. In practice, the corresponding

propagation condition yields a better interpretability of the adaptation bandwidth λ due to the

precise information of the propagation level. In theory, the propagation condition leads to the

propagation property and a certain stability of estimates for (piecewise) constant and (piecewise)

bounded functions. These results demonstrate that the behavior of the algorithm, and hence the

achievable quality of estimation, mainly depend on the sample size of the homogeneous regions,

on the local smoothness of the parameter function θ(.), on the contrast between different regions,
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5.4 Discussion of the simplified Propagation-Separation Approach

and via the adaptation bandwidth λ on the parametric family P = {Pθ}θ∈Θ of probability

distributions.

Next we will discuss the following two questions.

• Does the simplified Propagation-Separation Approach converge?

• (Where) do we need the memory step?

Finally, we will give a brief overview on possible topics for future research.

5.4.1 Does the Propagation-Separation Approach converge?

In Section 4.3, we introduced a specific step function, which approximates the estimation

function from the Propagation-Separation Approach. The formation of this associated step
function can be explained as follows.

Since support(Kad) = [0,1), the statistical penalty s
(k)
ij defined in Algorithm 2 (page 18)

ensures zero weights w̃
(k)
ij = 0 if the Kullback-Leibler divergence of the estimators from the

last iteration step KL(θ̃(k−1)
i , θ̃

(k−1)
j ) exceeds some lower bound λ/Ñ

(k−1)
i . Let us consider the

case where w
(k∗)
ij > 0 implies w̃

(k∗)
ij > 0 for all i, j ∈ {1, ...,n}. This means that separation did

not occur. The monotonicity of the sequence of location bandwidths {h(k)}k∗k=0 ensures that the

non-adaptive weights increase during iteration, and, without separation, all estimators approach

each other. With h(k∗) sufficiently large, this results in an almost constant estimation function.

However, in many cases, there are Xi,Xj ∈ X such that w
(k∗)
ij > 0, but w̃(k∗)

ij = 0.

We know from Proposition 4.1 that separation occurs if max{KL(θi,θj) : Xi,Xj ∈ X} is

sufficiently large, or if the algorithm adapts to outliers. The latter leads to separation of single

observations, probably together with some local neighborhood. If separation happens due to

the variability of the true parameter function θ(.), then it starts either at the boundaries of the

design space X or close to discontinuities and local extrema of θ(.) and θ′(.). This leads, by
subsequent attraction and repulsion of the estimators, to the formation of a step function which

approximates the associated step function in Definition 4.14.

On the test functions in Section 5.1, we observed for Gaussian, exponential, and non-central

chi-distributed observations that after separation has started, the algorithm behaves within each

separated region similar as under homogeneity as long as the increasing local neighborhood

does not reach a distant region with similar values. Additionally, for sufficiently large location

bandwidths, the algorithm resulted for every test function in an adaptive weighting scheme,

whose disjoint regions define a partition of the design space. This indicates the immutability of

the associated step function for sufficiently large location bandwidths.

Hence, the presented numerical results suggest the convergence of the algorithm, but we lack

for a theoretical justification. There are three main reasons for this.

• Each realization may yield another associated step function with slightly shifted steps.

• The improvement of the estimation quality during iteration is not ensured to be monotonic,

neither for the non-adaptive nor for the adaptive estimates. Several other iterative methods,

such as the expectation-maximization algorithm or the conjugate gradient method, rely

on the minimization or maximization of a certain criterion. This provides a monotonic

improvement of some quality criterion, which ensures the convergence of the algorithm.

In contrast, the Propagation-Separation Approach considers an increasing local neighbor-
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hood, where unfavorable, newly included or stronger weighted observations may worsen

the estimation quality in comparison to a previous iteration step.

• The immutability of the associated step function for sufficiently large iteration steps re-

quires the existence of some iteration step k0 <∞ such that the considered neighborhood

equals the complete design, that is w
(k0)
ij > 0 for all Xi,Xj ∈ X , and

{Xj ∈ X : s(k0)
ij ≤ λ}= {Xj ∈ X : s(k)ij ≤ λ}

for all k > k0 and every Xi ∈ X .

Let us consider the last reason in more detail. We know from the definition of the statistical

penalty, see Algorithm 2 (page 18), that a violation of the above condition can arise from

1. a reunion of previously separated regions due to a decrease of the factor Ñ
(k−1)
i ;

2. a reunion of previously separated regions due to a decrease of the Kullback-Leibler

divergence KL(θ̃(k−1)
i , θ̃

(k−1)
j );

3. a subsequent segmentation of a before created step due to an increase of the Kullback-

Leibler divergence KL(θ̃(k−1)
i , θ̃

(k−1)
j );

4. a too strong intensification of the statistical penalty by the factor Ñ
(k−1)
i .

We discuss these events case by case.

Recall that the non-adaptive sequence {N (k)
i }k

∗
k=0 is monotonically increasing, whereas its

adaptive counterpart {Ñ (k)
i }k∗k=0 does not need to be monotonic. Therefore, we propose a slight

modification of the statistical penalty in Algorithm 2 (page 18), setting

s
(k)
ij := max

k′≤k
Ñ

(k′−1)
i KL(θ̃(k−1)

i , θ̃
(k−1)
j ).

This modification preserves an already achieved adaptation quality. As a consequence, it avoids

that a design point switches all the time between two steps due to oscillation of the value

of Ñ
(k−1)
i during iteration.

A late segmentation and a reunion as described in (2) and (3) could be imposed by an appropriate

upper bound of

max
{
KL

(
θ̃

(k)
i1 , θ̃

(k)
i2

)
:Xi1 ,Xi2 ∈H(k)

i

}
and a lower bound of

min
{
KL

(
θ̃

(k)
i1 , θ̃

(k)
j1

)
:Xi1 ∈H(k)

i ,Xj1 ∈H(k)
j �=H(k)

i

}
,

whereH(k)
i is as in Equation (4.9) (page 57). Due to the factor κ in Lemma 2.5, the correspond-

ing discussion in Section 2.4, and the missing monotonicity of the Kullback-Leibler divergences

KL(θ̃(k−1)
i , θ̃

(k−1)
j ) in k > k0, this may lead to a criterion which is too restrictive to be satisfiable

with k0 <∞.

However, the main impediment of a theoretical proof results from (4). The statistical penalty

becomes more restrictive during iteration by the factor Ñ
(k)
i , but this factor is not guaranteed

to be always appropriate. For statistically independent observations {Yj}j with expected

values {θj}j and variance σ2, it may be explained as an upper bound of the achieved variance

reduction, see Lemma 2.10 for the case of the non-adaptive estimator. A generalization to

the adaptive estimator may be prohibitive due to the randomness of the adaptive weights.

Additionally, for other classes of probability distributions than the Gaussian one, the relation
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between the variance and the Kullback-Leibler divergence is complicated, and the variance

may be heteroscedastic. For instance, for exponentially distributed observations, the variance

depends on the locally varying parameter θ.

Therefore, we prefer to consider Ñ
(k)
i as the achieved improvement of the estimation quality in

terms of the Kullback-Leibler divergence. This is motivated by the Theorems 2.13 and 2.24 and

the propagation condition, which yield with high probability and in case of sharp discontinuities

for KL(θ̃(k)i ,E θ̃(k)i ) the rate of convergence Ñ
(k)
i , see Propositions 4.4 and 4.11. Nevertheless,

there remains a certain probability of unfavorable realizations, for which the intensification of

the statistical penalty is not justified. Furthermore, the mentioned propagation results do not

generalize to the case of model misspecification. They are based on the propagation condition

and this requires well separated regions. If the corresponding structural assumptions are violated,

the impact of the adaptivity may change such that propagation cannot be ensured anymore. In

fact, model misspecification leads to a decrease of the probability for propagation. Therefore,

we may still observe propagation in practice, but its probability cannot be quantified as the

established exponential bounds do not hold under model misspecification. As a consequence,

we cannot ensure neither the immutability of the associated step function nor the convergence

of the simplified Propagation Separation Approach.

5.4.2 (Where) do we need the memory step?

In order to clarify the impact of the memory step, we compare our theoretical results with the

original study by Polzehl and Spokoiny [2006]. There, the authors demonstrated propagation,

separation, and stability of estimates up to some constant. We will summarize these results

briefly. Here, we have shown similar properties for the simplified algorithm, where the memory

step is omitted.

Both studies include a certain separation property, see Polzehl and Spokoiny [2006, §5.5] and

Proposition 4.1. This justifies that, in case of sufficiently large discontinuities, smoothing is

restricted to the homogeneity regions.

For the propagation property, Polzehl and Spokoiny supposed, among other assumptions, the

statistical independence of the adaptive weights from the observations. Then, for θ(.)≡ θ and
all k ∈ {0, ...,k∗}, they showed that

P

(
N

(k)
i KL

(
θ̂

(k)
i ,θ

)
≤ μ log(n) ∀i

)
> 1−2k/n, μ≥ 2, (5.4)

where θ̂
(k)
i denotes the adaptive estimator after modification by the memory step, see Algorithm 1

(page 16). For locally bounded parameter functions, the authors established a similar result.

Equation (5.4) could be improved by Proposition 4.4, taking advantage of the new propagation

condition in Section 3.1. For z := μ log(n) and ε := cεn−q, Proposition 4.4 implies

P

(
N

(k)
i KL

(
θ̃

(k)
i ,θ

)
≤ μ log(n) ∀i

)
> 1−max{2, cε}/n, μ,q ≥ 2,

where the additional factor k is avoided.

Theorems 4.9 and 4.12 shed light on the interplay of propagation and separation during iteration.

Here, we do not restrict the analysis to the respective homogeneity region as in [Polzehl and

Spokoiny, 2006] and Propositions 4.4 and 4.11. Instead, we use the separation property to

verify the propagation property for piecewise constant and piecewise bounded functions with

sharp discontinuities. Setting z ≥ μ log(n) and ε := cεn−μ with cε > 0 and μ≥ 2, the resulting
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exponential bound (4.6) (page 55) differs from Equation (5.4) by the terms pκ and P(M (k)(z)).
These are required for the separation of distinct homogeneity regions.

The results on the stability of estimates are difficult to compare. Our corresponding results

are stated in Proposition 4.4 for constant parameter functions and in Proposition 4.11 for

bounded parameter functions. Under weak assumptions, Polzehl and Spokoiny proved stability

of estimates up to some constant. More precisely, they showed that

N
(k)
i KL

(
θ̂

(k)
i ,θi

)
≤ μ log(n)

implies with probability one that

N
(k)
i KL

(
θ̂

(k∗)
i ,θi

)
≤ c log(n), c := κ

2
(√
c1Cτ +√μ

)2
, (5.5)

where κ is as in Notation 2.6, τ := Cτ log(n) denotes the bandwidth of the memory kernel, and

c1 := κ
2ν(1−√ν)−2 depends on the constant ν satisfying ν1 ≤N (k−1)

i /N
(k)
i ≤ ν for every

k ∈ {1, ...,k∗} and ν1,ν ∈ (2/3,1). Hence, the constant c might be large. Under smoothness

conditions on the parameter function θ(.), this result allowed Polzehl and Spokoiny [2006] the

verification of the optimal rate of convergence, up to a log-factor. Equation (5.5) is based on

Lemma 2.8 and consequently requires that θi, θ̂
(k)
i , θ̂

(k∗)
i ∈Θκ for some compact and convex

subset Θκ ⊆ Θ as in Notation 2.6. This again leads to the discussion in Section 2.4, not

mentioned by Polzehl and Spokoiny [2006].

Here, we did not study the asymptotic behavior of the Propagation-Separation Approach. This

has the following reason. An asymptotic study requires to decrease the propagation level ε
with increasing sample size n, lim

n→∞ε(n) = 0. However, the adaptation bandwidth λ depends

on the propagation level ε. For a fixed sample size, the simulations in § 3.1.2 suggest that

lim
ε→0
λ(ε) = ∞ holds under weak conditions. As large values of λ yield similar results as

non-adaptive smoothing, this leads to a setting which is not convenient to study properties

of the Propagation-Separation Approach. The adaptation bandwidth is the crucial parameter

which distinguishes the Propagation-Separation Approach from non-adaptive smoothing. Hence,

an asymptotic study provides little insight if lim
n→∞λ(n) =∞ or if we do not know how the

increasing sample size affects the choice of the adaptation bandwidth given by the propagation

condition.

In summary, there are two theoretical properties of the original Propagation-Separation Ap-

proach which could not be justified for the simplified version yet. First, our approach is not

constructed to provide asymptotic results. Second, our stability results hold for constant and

bounded parameter functions only. In other words, we lose the general stability of estimates in

Equation (5.5). Nevertheless, the essential properties of the algorithm remain valid as these are

propagation and separation. Both properties follow from the adaptivity of the estimator, but not

from the memory step. Hence, for a piecewise bounded parameter function with sufficiently

sharp discontinuities, the memory step is not needed.

From a practical point of view, the benefits of the memory step are still questionable. In § 5.3.3,

we illustrated the impact of the memory step for several test functions. Using the default

parameter choices of the R-package aws by Polzehl [2012], we could not observe any effect of

the memory step. However, these choices are not arbitrary. The memory bandwidth was chosen

in accordance with a former version of the propagation condition, and, indeed, we observed an

increased risk of adaptation to noise for considerably smaller bandwidths. On the one hand,

this emphasizes the importance of a sufficiently large memory bandwidth to avoid adaptation to
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outliers. On the other hand, we got a smaller MAE by increasing the amount of aggregation,

which slightly attenuated the formation of a step function during iteration. In any case, we found

the best results by restricting the maximal location bandwidths appropriately. The omittance

of the memory step provides a better interpretability of the procedure and, as a consequence,

of the results since the memory step introduces additional interactions between the involved

components, which are not fully understood yet.

5.4.3 Future research

There are several topics for future research that arise from this thesis. For instance, one could

study the impact of the Kullback-Leibler divergence. Especially in Chapter 3, we took advantage

of its properties. Are there other (possibly asymmetric) distance functions or f-divergences

which provide similar results? Moreover, it could be interesting to study consequences of a

random or irregular design. Which additional assumptions are required to extend the propagation

condition from the artificial data set to the data at hand in this case? Is it still reasonable to

estimate the propagation level on the basis of a single realization as proposed in Remark 3.12

for regular designs?

Here, we would like to concentrate on another question concerning the consequences of a vio-

lated structural assumption. As indicated by our numerical results in Section 5.3, an appropriate

stopping of the iterative procedure may reduce the resulting estimation bias considerably by

avoiding the formation of a step function. For the presented univariate examples, a choice by

visual inspection seems to be promising. In all observed cases, the iteration step where the

formation of the step function started to dominate the smoothing result could be easily identified.

Additionally, we always observed a certain range of iteration steps where the estimation quality

is very similar. However, on more complicated test functions or for higher dimensional design

spaces, an automatic choice of the maximal number of iterations is desired or even required. In

the context of local polynomial regression and locally weighted maximum likelihood estimation,

there is a large amount of literature concerning the choice of the location bandwidth. For

instance, the maximal location bandwidth h(k∗) could be chosen such that the non-adaptive

estimator in Notation 2.14 behaves well within regions without discontinuities. Then, assuming

an appropriate choice of the adaptation bandwidth λ, Algorithm 2 would yield similar results as

non-adaptive smoothing within these regions, while smoothing among distinct regions would

be avoided as sharp discontinuities could be detected by the adaptive weights. To evaluate the

appropriateness of the different approaches for the Propagation-Separation Algorithm would

form a promising research project for the future. Alternatively, one could search for a criterion

which takes advantage of the involved components of the method. The evaluation of the behavior

of the statistical penalty or of the sum of the adaptive weights could provide useful information

about the iteration step where the formation of a step function negatively affects the smoothing

results.
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Chapter 6

Application to magnetic resonance
imaging

In this chapter we will demonstrate the practical value of the Propagation-Separation Approach

with the example of diffusion-weighted magnetic resonance images (dMRI). This is a versatile

technique for the in-vivo examination of microstructures in the body, such as muscle tissue

[Sinha et al., 2006], the spinal cord [Clark et al., 1999], or neuronal fibers in the human brain

[Le Bihan, 2003]. In medicine, it is used for the diagnosis of diseases and for presurgical

planning. The neuroscientific community is interested, for instance, in the connectivities of the

brain and in changes due to aging and diseases [Johansen-Berg and Behrens, 2009; Jones, 2010;

Mori, 2007].

The application of the Propagation-Separation Approach requires a description of the data

in accordance with the local likelihood model in Notation 2.1. Therefore, we need some

information about the measurement process. DMRI data are acquired on a three-dimensional

grid of volume elements, called voxels, applying varying diffusion-weighting magnetic field

gradients. These are fully described by their direction and the corresponding b-value b > 0 which

relates to the magnetic field strength, its duration, and the diffusion time before application of a

transverse gradient [Johansen-Berg and Behrens, 2009, Eq. (3.2)]. In practice, measurements are

usually performed with a small number of b-values. For each b-value, the data can be described

as a real valued function on the measurement space R
3×S

2, specifying the (voxel) position and

(gradient) direction, see § 6.1.2 for more details. This is a specific perspective on the data. Its

advantages will be discussed in § 6.6.4.

The diffusion-weighted images provide information about the diffusion profile in each voxel.

This reveals intra-voxel information at a micron level, although the data are acquired at a

millimeter scale, see for instance Mitra and Sen [1992]. For the analysis of dMRI data, a wide

range of diffusion models have been introduced, such as the diffusion tensor model (DTI), tensor

mixture models, diffusion spectrum imaging (DSI), and many more. Some of them can be

evaluated based on a single q-shell, that is on measurements with a single b-value. Other models

require multi-shell data, where varying b-values are applied. This kind of data is becoming

increasingly popular for the exploration of the white matter anatomy, where diffusion models

beyond the diffusion tensor should be used, see Johansen-Berg and Behrens [2009, Ch. 6] and

Jones et al. [2013]. To date, there is no model which is generally satisfactory. In § 6.1.3, we will

give an overview of the most common diffusion models.
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As all imaging techniques, dMRI suffers from random noise. This may render the subsequent

analysis and medical decisions more difficult by creating artifacts or a systematical bias of

model features [Basser and Pajevic, 2000; Jones and Basser, 2004]. Recently, the interest

in high spatial resolution imaging has increased as this is believed to improve the resolution

of complex fiber bundles in the human body [Heidemann et al., 2010; Kamali et al., 2013;

Kleinnijenhuis et al., 2012; Zhan et al., 2012]. Increasing the spatial resolution inherently

reduces the signal-to-noise ratio (SNR), which is defined as the mean signal value divided by the

noise standard deviation. Hence, attempts to achieve a higher image resolution collide with the

deterioration of the acquired images [Johansen-Berg and Behrens, 2009; Lohmann et al., 2010].

Similarly, large b-values, as used for multi-shell measurements, lead to a very low SNR due to

the resulting signal attenuation. Thus, the noise negatively affects the modeling and analysis of

dMRI data in general, but for high spatial resolution and multi-shell data in particular.

In order to reduce the noise in dMRI data, a number of different approaches have been developed.

The most common and simplest method is Gaussian filtering [Westin et al., 1999]. However,

isotropic smoothing blurs fine structures. Therefore, more sophisticated methods have been

developed, which we will discuss in § 6.6.5. It is generally preferable to smooth the diffusion-

weighted images directly, rather than model dependent derived quantities. This has several

advantages. First, direct smoothing of the MR images avoids the bias of model dependent

estimates induced by the noise. Second, this approach enables a subsequent analysis with any

diffusion model. Additionally, a previous noise reduction can stabilize modeling, such as for

DTI, where smoothing reduces the probability of estimating a degenerated tensor [Tabelow

et al., 2008].

In this chapter, we develop a position-orientation adaptive smoothing method (POAS) for single-

shell data and a generalization for multi-shell data, called msPOAS. These methods directly

smooth the diffusion-weighted images prior to any modeling. Both procedures benefit from the

whole information of the data by considering the measurement space R
3×S

2, that is positions
and orientations. The method msPAOS gains additional efficiency by a simultaneous smoothing

of all q-shells, that is for all applied b-values. To our best knowledge, this is the first algorithm

which is constructed to smooth the diffusion-weighted images of multi-shell dMRI data, using

the whole information in position and orientation and a vector structure of the data from the

different shells.

The algorithm of (ms)POAS is based on the simplified Propagation-Separation Approach, see

Algorithm 2 (page 18). In the context of dMRI, the Propagation-Separation Approach is of

special interest as it is constructed to smooth piecewise polynomial functions without blurring at

discontinuities. Moreover, it applies to any real valued function whose domain is endowed with

a distance function, see § 2.1.1. Hence, in order to apply the Propagation-Separation Approach

on dMRI data, we need a metric on R
3×S

2 which we can use for the location kernel.

The outline of the chapter is as follows. The first section will summarize the general concepts of

dMRI. Readers who feel familiar with this topic may concentrate on the graphical abstract in

Figure 6.4 (page 91). In Section 6.2, we will introduce our smoothing method msPOAS and its

special case POAS. Then, we will follow an approach by Duits and Franken [2011], embedding

the space R
3× S

2 into the special Euclidean motion group SE(3). This approach enables

the application of orientation score theory, and it provides a criterion for the appropriateness

of an operator for processing dMRI data. We will prove (ms)POAS to satisfy the required

properties. In Section 6.4, we will present two distance functions on R
3×S

2 which can be

used in (ms)POAS. This is the crucial point to make (ms)POAS applicable. Then, we will

demonstrate on simulated and experimental data that (ms)POAS significantly improves the
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quality of the diffusion-weighted data. As it turns out, the method is suitable even for very

low SNR. We will finish with a discussion of the presented results, a brief comparison to other

smoothing methods and further comments on advantages, drawbacks and pitfalls occurring

when using (ms)POAS. The chapter is closely related to the recent publications [Becker et al.,

2012] and [Becker et al., 2013].

6.1 General concepts of diffusion-weighted MRI

We aim to provide a better understanding of dMRI. For this purpose, we will review the physical

foundation of the measurement process and recent modeling concepts. In particular, we will

present a specific description of the measured data and discuss their probability distribution. For

the smoothing method (ms)POAS, Equations (6.2), (6.6), and (6.7) will be of particular interest.

6.1.1 Physical foundation and data acquisition

DMRI measures the diffusion of water in the human body to deduce the underlying tissue

structure. The sensitivity on molecular diffusion results from a signal attenuation as diffusion

disturbs the reproduction of the signal during the pulsed-gradient spin echo (PGSE) sequence,

which we will introduce in the next subsection. First, we take a very basic look at the underlying

physics. In principle, magnetic resonance imaging (MRI) is based on quantum mechanics, but

Bohr’s correspondence principle allows a semi-classical description [Oppelt, 2005, §7.2.2]. The

signal acquisition is consistent for all MR techniques, such as diffusion-weighted MRI (dMRI),

T1-, and T2-images, functional MRI (fMRI), and MR angiography (MRA), see Oppelt [2005, §7

& 15]. The specifics of dMRI follow from the mentioned PGSE sequence. For more details, we

refer the reader to Johansen-Berg and Behrens [2009, §I] and in addition to Callaghan [2007],

and Minati and Weglarz [2007].

The human body consists, at great expense, of water and consequently of protons. These protons

possess a spin, creating a local magnetic field. In the case of an additional external magnetic

field B, the spins of the protons align themselves with its main direction. Their precession is

then effected at an angular frequency of ω = γB, called the Lamor frequency. The constant γ
denotes the gyromagnetic ratio which depends on the respective atomic nucleus, here the proton.

By excitation with a transverse π/2 (90◦) radiofrequency magnetic wave (rf-pulse) at the Lamor

frequency of the spins, they can be tilted into the plane which is orthogonal to the magnetic

field B. The resulting synchronized precession around the magnetic field direction is known

as the Lamor precession phenomenon. The excited spins realign themselves with the main

direction of the magnetic field B in exponential time with constant T1, and the precession part

of the spin magnetization decays exponentially with a time constant T2. This is called relaxation.

Both, T1 and T2 depend on the tissue [Bottomley et al., 1984]. The former provides excellent

morphological information, describing the form and structure of organisms, such as organs or

tumors. The latter is often used for lesion characterization, having broad application in the

context of diseases with accumulation of fluid, such as in edemas or cysts. More details and

references can be found in [Oppelt, 2005, §15.2].

Additional to the relaxation, the synchronized spins start to dephase. The resulting dephasing

can be compensated via a subsequent application of a π (180◦) rf-pulse, which changes the spin

direction. Then, under consistent conditions and in the case of only small inhomogeneities, the

spins refocus with the result that the original signal magnitude is reproduced, except for the T1
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and T2 decay. Coherently precessing spins induce a current which may be measured in one or

more receiver antennas, known as magnetic resonance coils. From this spin echo the MR image

is generated.

In MRI, we take advantage of the fact that excitation of the spins only occurs if the rf-pulse is

applied at the respective Lamor frequency. This allows to relate the signals to their corresponding

volume elements (voxels) by labeling the spins in dependence of their location. The MR

tomograph generates a homogeneous magnetic field B0 with the result that the proton spins

precess at a homogeneous frequency. Then, we apply three magnetic field gradients. Each of

them creates a linear change of the homogeneous field B0 and consequently implies a linear

change in the precessional frequency ω of the spins along the direction of the respective gradient.

One gradient is applied simultaneously to the π/2 rf-pulse. Then, the given frequency of this

pulse only corresponds to one plane (slice) of spins. This plane is perpendicular to the applied

gradient and contains all spins which precess with the respective Lamor frequency. Hence, a

change of the rf-pulse frequency enables the selection of varying slices. The slice thickness is

determined by the gradient strength and the frequency bandwidth of the rf-pulse. By convention,

the excited slice is perpendicular to the z-axis. For each selected slice, that is for each rf-pulse

frequency, two other gradients are applied in directions of the x- and y-axes, labeling the

in-plane locations by a dephasing of the spin precession. The three gradients vary over time.

More precisely, they are rapidly turned on and off and lead to an inhomogeneous magnetic field

[Johansen-Berg and Behrens, 2009, Eq. (2.2)],

B =B0 +Gx(t)x+Gy(t)y+Gz(t)z.

For a fixed slice (one rf-pulse frequency), each signal measured in a receiver coil equals the

integral over the signals from all excited spins in the (x,y)-plane [Johansen-Berg and Behrens,

2009, Eq. (2.6)],

F (kx,ky) =
∫
f(x,y)ei2π(kxx+kyy) dxdy, (6.1)

where f(x,y) denotes the net magnetization across the excited slice, and 2π(kxx+kyy) equals

the location dependent phase which each excited spin accumulates over time with

kx := γ
∫
Gx(t)dt and ky := γ

∫
Gy(t)dt.

The function F equals the Fourier transform of the net magnetization f , which can be recon-

structed by an inverse Fourier transform if F (kx,ky) was measured for sufficiently many values.

The domain of the measured signal F as a function of kx and ky is called k-space, and f is

known as MR image. Here, the edges and details in the MR image f are represented by the

values of F at higher values of k, while low values of k relate to regional values of f .

Hence, a magnetic resonance scan does not directly yield the MR image. Instead, it generates

complex valued data in k-space. For measurements with a single receiver coil, this leads to

the MR image via the inverse Fourier transform. In the case of more than one receiver coil,

that is for parallel imaging, the image reconstruction combines the signals of all coils. The

details depend on the respective acquisition method, such as SENSE [Pruessmann et al., 1999]

or GRAPPA [Griswold et al., 2002] among others. In the image space, one typically considers

the absolute value of the resulting complex signal [Aja-Fernández et al., 2009; Dietrich et al.,

2008; Lohmann et al., 2010]. This equals the magnitude and neglects the phase information. In

summary, we get for each volume element (voxel), described by its center �v ∈ R
3, a real valued

signal S(�v) ∈ R.
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Figure 6.1: Schematic of the pulsed-gradient spin echo (PGSE) sequence.

6.1.2 Measurement process

The power of magnetic resonance imaging lies in the variability of the MR pulse sequence.

This is a unique feature in medical imaging which enables easy adjustment of the measure-

ment process. Many modifications have been designed which optimize the image quality and

provide different information, such as tissue contrast, blood flow or diffusion properties. In

diffusion-weighted MRI, we aim to examine not only the underlying tissue, but the direction

and connectivity of possibly existing fibers. This is enabled by the fact that, within a fibrous

structure, the diffusion of water is anisotropic with diffusion maxima in direction of the present

fibers, see Moseley et al. [1990] or Johansen-Berg and Behrens [2009, Ch. 6]. Hence, we

use additional diffusion-weighting gradients, applied in various directions, to attenuate the

signal S(�v) in dependence of the diffusion properties within the respective voxel.

The measurement process of dMRI follows the pulsed-gradient spin echo (PGSE) sequence,

introduced by Stejskal and Tanner [1965] and summarized, for example, by Johansen-Berg and

Behrens [2009, Ch. 2]. Its schematic is shown in Figure 6.1. We go through the sequence step by

step. As before, the MR tomograph generates a homogeneous magnetic fieldB0. A π/2 rf-pulse

excites the proton spins within the thereby selected slice in dependence of the simultaneously

applied localization gradient Gz . Then, a diffusion-weighting magnetic field gradient G is

applied for a short time δ. Similar to the localization gradients, this diffusion-weighting gradient

introduces a phase shift in the precession of the excited spins. Subsequent excitation with

a π (180◦) rf-pulse changes as before the spin direction. Then, reapplication of the diffusion-

weighting gradient G reverses the dephasing by the magnetic field inhomogeneity. The spin

precession is refocused as in the spin echo experiment. Thus, in a completely unchanged

setting, the diffusion-weighting gradient would not have any effect. However, the permanent

diffusion of the water molecules causes a rearrangement of the labeled spins before the second

rf-pulse is applied. The hindered resynchronization after excitation with the π rf-pulse leads to

a considerable signal attenuation. In order to minimize the diffusion effect during application

of the diffusion-weighting gradients, the application time δ should be much smaller than the

diffusion time Δ between the two gradients, δ�Δ. After performance of the whole PGSE

sequence, the data are collected by the localization gradients Gx and Gy described above.

Each diffusion-weighting gradient yields a diffusion-weighted image on R
3 whose data acqui-

sition follows the procedure which we described in § 6.1.1. The directions of the diffusion-

weighting gradients can be identified with elements of the 2-sphere

S
2 := {�g ∈ R

3 : ‖�g‖= 1}.

Additionally, the diffusion-weighting gradients depend on the applied magnetic field strength,

its duration, and the diffusion time δ, which together define the b-value b > 0 [Johansen-Berg
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a) b) c)

Figure 6.2: Diffusion-weighted data: a) slice of the non-diffusion-weighted image {S0(�v)}�v∈R3 ,

b) same slice of the diffusion-weighted image {Sb(�v,�g∗)}�v∈R3 for a single (arbitrarily selected)

diffusion-weighting gradient direction �g∗ ∈ Gb with b-value b = 1000s/mm2, c) diffusion-weighted

data {Sb(�v∗,�g)}�g∈Gb for all diffusion gradients in a single voxel �v∗ ∈ R
3 in corpus callosum. For better

visibility, the diffusion-weighted image in (b) has been scaled. The unscaled image is very dark due to

the signal attenuation. The single voxel visualization in (c) is created from a three-dimensional plot of

the data, where the diffusion-weighted values are shown in their corresponding gradient direction.

and Behrens, 2009, Eq. (3.2)]. Then, for each b-value, the data can be considered as a real

valued sample on the measurement space R
3×S

2, given as

Sb : V ×Gb � (�v,�g) �→ Sb(�v,�g) ∈ R, V ×Gb ⊆ R
3×S

2, (6.2)

where V denotes the voxel space and Gb the set of applied diffusion-weighting gradient di-

rections at b-value b > 0. Alternative approaches will be discussed in § 6.6.4. We include the

non-diffusion-weighted images into this notation, setting b= 0,Gb= {�0}, and S0(�v,�0) :=S0(�v).
Then, each three-dimensional MR image corresponds to some data set {Sb(�v,�g∗)}�v∈R3 , where

the b-value b≥ 0 and the diffusion-weighting gradient direction �g∗ ∈Gb ⊆ S
2∪{�0} are fixed.

Conversely, for every voxel �v∗ ∈ R
3, we have one value per gradient direction {Sb(�v∗,�g)}�g∈Gb ,

where the b-value b ≥ 0 is fixed. Both cases are visualized in Figure 6.2. The data set was

provided by H.U. Voss (Weill Cornell Medical College, New York, USA).

The PGSE sequence results in a signal attenuation due to relaxation and diffusion. While T1-
and T2-images concentrate on the relaxation effects, dMRI is targeted on the consequences of

diffusion. The relaxation-related attenuation mainly depends on the location, but it is almost

independent of the applied diffusion gradients. Therefore, we may (almost) eliminate its effects

by considering the quotient Sb(�v,�g)/S0(�v) of the diffusion-weighted signal Sb(�v,�g) and the

non-diffused signal S0(�v), where no magnetic field gradient was applied. It can be shown

[Johansen-Berg and Behrens, 2009, Eq. (1.8)] that for fixed Δ, δ > 0 the resulting signal

attenuation equals

Sb(�v,�g)/S0(�v) =
∫
x1∈�v

∫
x2∈R3

e−iq(�g,b)(x2−x1)P (x1,x2,Δ)dx2ρ(x1)dx1. (6.3)

This depends on the following components. The spin density ρ describes the probability of

finding a proton at location x1 at the time of application of the first rf-pulse. The diffusion

propagator P represents the probability that a proton diffuses from location x1 to x2 in time Δ.

The Fourier kernel e−iq(�g,b)(x2−x1) relates to the frequency response of the signal, depending on

the constant q(�g,b) := γδG(�g,b) with magnetic field gradient G(�g,b) and γ, δ as introduced above.

Hence, together with at least one non-diffusion-weighted image, each diffusion-weighted image

reveals information about the diffusion in the corresponding direction at each voxel. In the

starting time of magnetic resonance imaging, a single diffusion-weighted image was acquired.

Later on, it was recognized that the derived quantities should be invariant with respect to the
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rotation of the sample in the scanner. Additionally, it turned out that it is more practical to

uniformly sample the diffusion directions from a small number of spheres with different radii,

which depend on the corresponding b-values, than using samples on a Cartesian grid. Then,

measuring a certain number of gradient directions allows to examine the fibrous structure at

a micron level, although the data are acquired at a millimeter scale. The power of diffusion-

weighted MRI lies in this intra-voxel information which may be carved out via appropriate

diffusion models, see below. Generally, a local minimum of the signal indicates a diffusion

maximum and hence the presence of a fiber bundle which follows the corresponding direction.

6.1.3 Modeling

We are interested in the diffusion propagator P in Equation (6.3), which provides information

about the microstructural features of the examined object. For this purpose, we distinguish

between model-based and non-parametric approaches. The former models distinct fiber pop-

ulations separately, and the latter considers the probability distribution of the fiber directions.

For recent reviews of MRI modeling, we refer the reader to Assemlal et al. [2011]; Minati and

Weglarz [2007] and Johansen-Berg and Behrens [2009, Ch. 4].

The most popular and simple model is called diffusion tensor imaging (DTI). It supposes a single

fiber direction per voxel with Gaussian diffusion. This can be justified either by the random

walk theory or via Fick’s (empirical) laws on water diffusion, supposing free and unrestricted

diffusion within the fibers, see Hagmann [2005], Minati and Weglarz [2007] or Johansen-Berg

and Behrens [2009, Ch. 3]. Then, it follows [Basser et al., 1994b,a] that

Sb(�v,�g)/S0(�v) = exp
(
−b�gTD−1

�v �g
)
,

where D�v denotes the diffusion tensor in voxel �v, which is represented by a symmetric and

positive definite 3×3 matrix. From this equation, the diffusion tensor can be estimated using

different methods. This allows to derive important quantities from the corresponding eigenval-

ues λ1,λ2,λ3 ∈ R, such as the mean diffusivity Dmean := (λ1 +λ2 +λ3)/3 or the fractional

anisotropy

FA :=
√

3
2

√
(λ1−Dmean)2 +(λ2−Dmean)2 +(λ3−Dmean)2

λ2
1 +λ2

2 +λ2
3

. (6.4)

DTI is used for a wide range of clinical and neuroscience applications [Johansen-Berg and

Behrens, 2009; Jones, 2010; Mori, 2007]. However, for the more realistic case of inhomogeneous

and restricted diffusion, it only provides an approximation, spurring interest in models beyond

DTI.

The main drawback of DTI is its restriction to a single fiber per voxel. Neuronal fibers have a

diameter at a micrometer scale and a length of up to several centimeter, but the measurements

are realized at a millimeter scale, see for instance Mitra and Sen [1992]. Hence, in many voxels,

there are not only one fiber, but a whole fiber bundle and possibly even crossings of fiber bundles

with distinct directions [Johansen-Berg and Behrens, 2009, Ch. 6]. This is known as the partial

volume effect [Johansen-Berg and Behrens, 2009, Ch. 9 Box 9.1]. A direct generalization

of DTI takes this effect into account. Assuming that diffusion is Gaussian along all present

fibers and that the signal adds independently, the tensor mixture model [Assaf and Basser, 2005;

Behrens et al., 2003; Tuch et al., 2002] describes the signal by the weighted sum

Sb(�v,�g)/S0(�v) =
n∑
i=1
fi(�v)exp

(
−b�gTD−1

(�v,i)�g
)
,
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a) b) c)

Figure 6.3: Different diffusion models in a fixed voxel of the data set in Figure 6.2: a) Diffusion tensor,

b) Mixed tensor, c) Q-ball.

where fi(�v) and D(�v,i) are the volume fractions and diffusion tensors corresponding to the n
fiber bundles in voxel �v. Often, n is chosen a priori. An adaptive and voxel dependent choice

can be found in [Tabelow et al., 2012]. Sometimes, an additional term is added which describes

isotropic diffusion.

Higher order tensor models [Liu et al., 2003; Özarslan and Mareci, 2003] and diffusion kurtosis

imaging (DKI) [Jensen et al., 2005] treat the restriction of DTI to Gaussian diffusion. DKI

considers the cumulant expansion of Equation (6.3), which requires data acquisition with at least

two non-zero b-values [Tabesh et al., 2011]. It includes DTI when terminating the expansion at

the second term. The additional terms model deviation of Gaussian behavior.

In order to deduce the diffusion propagator P in Equation (6.3), one may fit mathematical

models to the acquired data using Equation (6.3). The missing knowledge of the spin density ρ
can be handled by introducing a net displacement variable �x= x2−x1 ∈R

3 with the result, see

Johansen-Berg and Behrens [2009, Eqs. (1.12) & (1.13)], that

Sb(�v,�g)/S0(�v) =
∫

R3
P (�x,Δ)e−iq�xd�x=: E(q), (6.5)

where the ensemble average propagator (EAP) in voxel �v equals

P (�x,Δ) :=
∫
x1∈�v
P (x1,x1 +�x,Δ)ρ(x1)d(x1) �x ∈ R

3,Δ> 0.

Then, the EAP follows by inverting the Fourier transformation in Equation (6.5), providing

the required information for the reconstruction of the diffusion spectra. However, diffusion

spectrum imaging (DSI) requires, for the inverse Fourier transform, data acquisition with

diffusion-weighting gradients on a sufficiently large three-dimensional grid of points, that

is with varying directions �g ∈ S
2 and varying b-values b > 0. This leads to an overly long

acquisition time.

In contrast, QBall imaging (QBI) estimates the well-known orientation distribution function

(ODF) on the basis of data measured with a single b-value. Here, we use the Funk Radon

transform and spherical interpolation to estimate the ODF which equals the radial summation of

the above EAP,

ODF (�u) =
∫ ∞

0
P (r�u,Δ)dr, u ∈ S

2,Δ> 0,

as introduced by Tuch [2002, 2004], but see also Johansen-Berg and Behrens [2009, Eq. (4.4)].

In other words, the ODF measures the amount of diffusion for directions �u ∈ S
2. However, this

approach relies on the unrealistic assumption of infinitely short pulses, leading to a considerable

blurring of the derived ODF [Johansen-Berg and Behrens, 2009, Ch. 4 p. 62]. Hence, the
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acquisition requirements are more manageable than for DSI, while the precision of the peak

direction is questionable.

Other approaches use spherical deconvolution [Tournier et al., 2004] or other projections onto

the sphere as the persistent angular structure (PAS) introduced by Jansons and Alexander [2003].

The methods by Aganj et al. [2010], Cheng et al. [2010], and Descoteaux et al. [2011] again

require multi-shell data for estimation of the full diffusion propagator or its radial part.

Then, the deduced diffusion models can be used for the analysis of the data. This is often done

by assigning a local anisotropy or diffusivity measure or by determining the main diffusion

direction to produce fiber tracks. In Figure 6.3, we show a visualization of the diffusion tensor

model, the mixed tensor model, and QBI for a single voxel of the dataset in Figure 6.2.

6.1.4 Random noise and other artifacts

The data acquisition suffers from several artifacts which require an appropriate pre-processing

before the modeling and analysis of the data. For instance, motion, magnetic field inhomo-

geneities, eddy currents, and random noise may disturb the MR image [Johansen-Berg and

Behrens, 2009, Ch. 3]. The respective methods are applied at different points of the processing

pipeline. In this study, we will concentrate on the reduction of the random noise. This requires

the specification of the probability distribution of the observations.

For simplicity, we denote both the realizations of our observations and the associated random

variables by Sb with b≥ 0 fixed. The complex dMRI signal in k-space is usually assumed to be

Gaussian distributed. In general experimental setups, this is justified by the central limit theorem

since we measure integral values on the respective voxels. Hence, the final measurement error

equals the sum of many independent random errors. The Gaussian distribution is invariant with

respect to the inverse Fourier transformation [Bracewell, 1978, Ch. 7 Ex. 3]. Therefore, as well

the complex reconstructed MR image f is Gaussian distributed. We assume the variance σ2 of

the imaginary part Im[f(�v,�g)] and of the real part Re[f(�v,�g)] of the signal f to be the same.

With a single receiver antenna (MR coil), L = 1, this leads, for the standardized magnitude

image,

Sb(�v,�g)/σ =
√

Im[f(�v,�g)]2 +Re[f(�v,�g)]2/σ,

to a non-central chi-distribution with two degrees of freedom and non-centrality parameter

θ =
√

E
[
S2
b (�v,�g)

]
/σ2−2.

In the case of parallel imaging, that is for L > 1 MR coils, the probability distribution of the

reconstructed signals S follows from the applied reconstruction algorithm. The simplest one is

the sum-of-squares (SoS) formula [Aja-Fernández et al., 2009; Roemer et al., 1990] defined by

Sb(�v,�g) :=

√√√√ L∑
c=1
S2
b,c(�v,�g) with Sb,c(�v,�g) =

√
Im[fc(�v,�g)]2 +Re[fc(�v,�g)]2,

where the b-value b > 0 is fixed and S2
b,c(�v,�g) equals, for the receiver coil c ∈ {1, ...,L}, the

absolute value of the inverse Fourier transformed signal fc. Generally, the SoS formula does

not require any assumptions on the magnetic fields of the different receiver coils. With a

homogeneous variance σ2 for all receiver coils, it yields

Sb(�v,�g)/σ ∼ χ2L(θ) with θ =
√

E
[
S2
b (�v,�g)

]
/σ2−2L. (6.6)
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Here, the non-centrality parameter follows from the second moment E
[
S2
b (�v,�g)

]
of the sig-

nal Sb(�v,�g). In our method (ms)POAS, we consider instead the expected value E [Sb(�v,�g)],
which relates to the parameter θ via the function

μ(θ) :=
√
π

2
Γ(L+ 1

2)
Γ(3

2)Γ(L) 1F1

(
−1

2 ,L,−
θ2

2

)
=
√
π

2 L
(L−1)
1/2

(
−θ

2

2

)
= E [Sb(�v,�g)]/σ, (6.7)

where L
(L−1)
1/2 denotes the generalized Laguerre polynomial, Γ is the Gamma function, and 1F1

the confluent hypergeometric function. For their relation, which we used in Equation (6.7), see

for example El-Sayed [2000, Eq. 11] and Olver et al. [2010, Eq. 13.3.4].

However, the SoS reconstruction is inefficient since it does not reflect the location dependent

sensitivity of the different MR coils. Instead, we may combine location dependent subsets

of images, using a weighted SoS with weights equal to zero or one. Then, the non-central

chi-distribution remains a valid model, with lower number of degrees of freedom. More

sophisticated reconstruction algorithms like SENSE and GRAPPA lead to correlated noise with

heteroscedastic variance and consequently slight changes in the distribution [Thunberg and

Zetterberg, 2007]. Dietrich et al. [2008] demonstrated that the non-central chi-distribution is

also approximately valid for these reconstruction methods.

For the sake of simplicity, we assume a fixed number of effectively utilized MR coils L′ ≤ L.
Additionally, we assume the variance σ2 to be known or an appropriate approximation σ̂2 to

be achievable. Variance estimation for dMRI data is a challenging problem which is beyond

the scope of this study. A survey of estimation procedures can be found in [Aja-Fernández

et al., 2009]. Most of them are performed on the background of the MR image. Unfortunately,

this cannot be defined for every data set. The approach in [Becker et al., 2012, App. C] is

based on the Propagation-Separation Approach. It has the advantage to be also feasible for low

signal-to-noise ratio and if no background can be defined in the image.

6.1.5 In a nutshell

Summing up, we recall the crucial steps. For a graphical abstract, we refer the reader to

Figure 6.4.

The data acquisition takes advantage of the fact that coherently precessing proton spins provide

a measurable signal, which can be localized via spin dephasing, using magnetic field gradients.

Then, the PGSE sequence provides information on the diffusion characteristics, allowing the

examination of the environmental structure at a micron level as diffusion is anisotropic within

fibers. For each b-value, the measured signals can be described by a real valued function on the

measurement space R
3×S

2. The data suffer from random noise, leading (approximately) to

non-central chi-distributed observations. However, the respective degree of freedom may vary

locally as it depends on the effective number of receiver coils. Usually, the variance is unknown

and needs to be estimated.

The presented diffusion models provide information about the diffusion characteristics and

principal fiber directions of the examined tissue, where the derived quantities should be invariant

with respect to the rotation of the sample in the scanner. However, no model is generally

satisfactory as all of them have some drawbacks. Most of the methods developed to overcome

the limitations of diffusion tensor imaging (DTI) require a larger number of diffusion-weighting

gradients and hence a longer acquisition time. This can be reduced by our smoothing method

(ms)POAS as we will demonstrate in Section 6.5.
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6.2 Adaptive smoothing of diffusion-weighted MRI

a) b) c) d)

Figure 6.4: Graphical abstract of Section 6.1: a) Data acquisition (§ 6.1.1), using the PGSE sequence

(§ 6.1.2) in a magnetic resonance tomograph; b) data in k-space as described in Eq. (6.1); for better

visibility, we show the logarithmic absolute value of the complex signals; c) diffusion-weighted data

reconstructed from k-space, see also § 6.1.4 for more details about possible artifacts and random noise;

d) modeling and analysis of the data (§ 6.1.3), here represented by a fiber track.

6.2 Adaptive smoothing of diffusion-weighted MRI

Now we present the methods position-orientation adaptive smoothing (POAS) and multi-shell
POAS (msPOAS) which are both based on the Propagation-Separation Approach. Additionally,

we will give further details concerning the parameter choices. A flowchart of the msPOAS

algorithm is shown in Figure 6.8 at the end of this section (page 101).

The Propagation-Separation Approach is a general approach for nonparametric estimation. For

a specific application, some important preparations have to be made. First, an embedding of

the data into the setting of Notation 2.1 is required. In (ms)POAS, we take advantage of the

whole information of the diffusion-weighted MRI data, in position and orientation. Therefore,

in Equation (6.2) (page 86), we presented a specific perspective on the data. The following

notation summarizes the description of the dMRI data as introduced in § 6.1.2.

Notation 6.1 (Setting). Let B ⊆ (0,∞) be the set of applied b-values b > 0 and B := |B| ∈ N

its cardinality. Additionally, let V ⊆ R
3 denote the voxel space and Gb ⊆ S

2 the set of applied
diffusion-weighting gradient directions at b-value b, called the q-shell of b. For b= 0, we set
G0 := {�0} and S0(�v,�0) := S0(�v), where S0 is the mean image of all acquired non-diffusion-
weighted images. Then, the whole data set is given by the B+1 functions

Sb : V ×Gb �m �→ Sb(m) ∈ R, b ∈B0 :=B∪{0}.

We call measurements with only one value b > 0 single-shell and data with more b-values
multi-shell.

POAS is based on this interpretation of the data for a single-shell, B = 1, while msPOAS

considers the B+1 q-shells simultaneously, including the non-diffusion-weighted S0-image.

Pursuant to § 6.1.4, we assume the signals to follow a non-central chi-distribution.

Assumption A5. In the setting of Notation 6.1, we assume, for every m ∈ V ×Gb and all
b ∈B0, that

Sb(m)/σ ∼ χ2L′(θb,m) with θb,m =
√

E
[
S2
b (m)

]
/σ2−2L′,

where σ2 > 0 denotes the variance of the observations, and L′ ∈ N is the effective number of
MR receiver coils.
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Remark 6.2. Obviously, this violates Assumption A1 (page 10) since the non-central chi-distri-

butions do not form an exponential family. Additionally, the expected value E [Sb(m)] does not
equal the non-centrality parameter θb,m, see Equation (6.7) (page 90). As a consequence, the

theoretical results in Chapters 2, 3, and 4 do not apply to dMRI data, and a generalization of

the proofs is impeded by the missing explicit formula of the Kullback-Leibler divergence in the

case of non-central chi-distributions. However, the univariate examples in Section 5.3.5 give

sufficient evidence, that the general behavior of the algorithm remains unchanged. We refer the

reader to § 4.4.2 for further details concerning the application of the Propagation-Separation

Approach in the case of a violated exponential family model.

As explained in Section 2.2, the Propagation-Separation Approach focuses on a suitable local

definition of adaptive weights at a sequence of spatial scales. There, we need two distance

functions, one on the design space and another one on the observation space. The resulting

weights are then used in a weighted mean of the observations in order to estimate a parameter

function which relates to the locally varying expected value. In order to accelerate and stabilize

the estimation procedure, we again concentrate on the simplest version of the algorithm, which

assumes a local constant model. For dMRI data, to some extent, this can be justified by

visual inspection of the diffusion-weighted images shown in Figures 6.2 (page 86), where we

observe similar values in the neighborhood of any voxel separated by sharp discontinuities, for

example, at tissue borders. However, in gradient space just as for some spatial regions, this is an

approximation of the more appropriate locally polynomial model only. Possible consequences

of a violated structural assumption are therefore considered in § 6.5.3 and § 6.6.1.

6.2.1 The multi-shell POAS procedure

It follows from the measurement process that the diffusion characteristics will be comparable on

all q-shells. More precisely, in each voxel, the spherical directions of observed signal extrema

will coincide for all shells, while the signal size decreases with increasing b-values. Therefore,
for each diffusion gradient direction, we will construct a vector of observations with varying

b-values, including the non-diffusion-weighted image with b = 0. As the gradient schemes

Gb ⊆ S
2 do not necessarily coincide for all b-values b > 0, we will fill in missing data values

in this vector description, using spherical interpolation. This approach allows the use of the

information of all q-shells for adaptation and consequently improves efficiency as illustrated in

Section 6.5. After presenting the spherical interpolation, we will adjust the statistical penalty of

the Propagation-Separation Approach, where the impact of the previously applied interpolation

will be taken into account. Then, we will introduce the algorithm of the msPOAS procedure,

and we will briefly justify the proposed estimator.

Description of the data and spherical interpolation

In the case of identical gradient schemes Gb = Gb′ , for all applied b-values b,b′ ∈ B, the
measured data can be easily arranged in a vector

S(�v,�g) := (S0(�v),Sb1(�v,�g), ...,SbB (�v,�g))T ∈ R
B+1 for all (�v,�g) ∈ V ×Gb. (6.8)

This vector will not be complete if there are b-values b,b′ ∈B with Gb �=Gb′ . Then, for every
�g ∈Gb′ \Gb, we use spherical interpolation to fill the missing value Sb(�v,�g). The resulting data

structure is visualized in Figure 6.5.
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Figure 6.5: Visualization of the multi-shell data described in § 6.5.1. a) An arbitrarily selected slice of the

non-diffusion-weighted data S0. (b+c) Same slice taken with some arbitrarily selected diffusion-weighting

gradient �g ∈ S
2 at b= 800s/mm2 and b= 2000s/mm2, respectively. The intensity of (b+c) has been

up-weighted to make (a),(b), and (c) visually feasible at once. d) Data within a single voxel �v ∈ R
3

(see arrow) as a three-dimensional plot for all measured diffusion gradients at b= 800s/mm2 (red) and

b = 2000s/mm2 (green). Additionally, the non-diffusion-weighted value S0(�v) (blue) is repeatedly

shown on each gradient, leading to the vector description {S(�v,�g)}�g∈G ⊆ R
3 in Equation (6.8). The

distance of the points to the center of the sphere equals the corresponding signal value.

Let b ∈B be fixed and �g ∈Gb′ \Gb for some b′ ∈B. Then, we search for a triple of measured

gradients {g(l)
(b,�g)}3

l=1 ⊆Gb which span a spherical triangle which contains �g with minimal total

angular distance, that is �g ∈�(g(1)
(b,�g),g

(2)
(b,�g),g

(3)
(b,�g)) and

3∑
l=1

arccos(〈�g,g(l)
(b,�g)〉) = min

{ 3∑
l=1

arccos(〈�g,�gl〉) : �gl ∈Gb for l = 1,2,3
}
,

where 〈·, ·〉 denotes the Euclidean scalar product. The spherical Bary-coordinates {c(l)(b,�g)}3
l=1

of �g ∈�(g(1)
(b,�g),g

(2)
(b,�g),g

(3)
(b,�g)) are given as

c
(l)
(b,�g) :=

area(�(�g,g(l1)
(b,�g),g

(l2)
(b,�g)))

area(�(g(1)
(b,�g),g

(2)
(b,�g),g

(3)
(b,�g)))

, where l1, l2 ∈ {1,2,3}\{l}, l1 �= l2, (6.9)

see Carfora [2007, 3.1(c)]. The missing value Sb(�v,�g) can then be generated by the linear

spherical interpolation

Sb(�v,�g) :=
3∑
l=1
c

(l)
(b,�g)Sb(�v,g

(l)
(b,�g)).

For a visualization of the Bary coordinates and the corresponding spherical triangles, we refer

the reader to Figure 6.6.

For smoothing of the non-diffusion-weighted image S0, we create a vector S ∈ R
B+1, see

Equation (6.8), with gradient �g :=�0. Recall that G0 = {�0}, but �0 /∈Gb for all b > 0. We fill the

missing values with the mean value of the signals on each shell

Sb(�v,�0) := |Gb|−1 ∑
�g∈Gb
Sb(�v,�g), b ∈B,
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)

� (
�g, g(1), g(2)
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Figure 6.6: Visualization of the spherical interpolation: For each b ∈B and every gradient �g ∈Gb′ \Gb,
b′ ∈B, there is a spherical triangle formed by the gradients g

(1)
(b,�g),g

(2)
(b,�g),g

(3)
(b,�g) ∈Gb. The interpolation

weights c
(l)
(b,�g), l = 1,2,3, in Equation (6.9) are determined by the respective proportion of the surface

area of the partial triangles�(�g,g(l1)
(b,�g),g

(l2)
(b,�g)) with l1, l2 �= l. On the right, we illustrate the case where

the triangle with minimal total angular distance does not contain the gradient �g. For simplicity, the figure

shows planar triangles instead of spherical triangles.

where |Gb| ∈ N is the number of gradients measured on the shell with b-value b. By averaging

all signals of the respective shell, the impact of the corresponding diffusion-weighting gradients

is removed.

Finally, we consider the union G :=⋃
b∈B0Gb ⊆ S

2∪{�0} of all gradient directions measured

for any b-value b ∈B0, and we define the desired vector function

S : V ×G � (�v,�g) �→ (S0(�v),Sb1(�v,�g), ...,SbB (�v,�g))T ∈ R
B+1, (6.10)

where, for every b > 0, we set

Sb(�v,�g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Sb(�v,�g) if �g ∈Gb,

3∑
l=1
c

(l)
(b,�g)Sb(�v,g

(l)
(b,�g)) if �g ∈Gb′ \Gb, b′ > 0,

|Gb|−1 ∑
�g∗∈Gb

Sb(�v,�g∗) if �g ∈G0.

(6.11)

Hence, we distinguish, for b-values b > 0, between measured values Sb(�v,�g) with �g ∈ Gb,
interpolated values with �g ∈G\Gb, and the mean signal for �g ∈G0.

In the following, we do no longer distinguish between the original signals S and the interpolated

values S , denoting both by S. Additionally, we apply the interpolation in Equation (6.11) to the

adaptive estimates S̃
(k)
b , defined in Equation (6.18) (page 97) below, replacing Sb by S̃

(k)
b in the

respective formulas. Once again, we denote the resulting values S̃(k)
b by S̃

(k)
b .

Extension of the statistical penalty

For the adaptive estimator of our method, we take advantage of the whole information contained

in the data vector (6.10). This requires an appropriate extension of the statistical penalty in

Algorithm 2 (page 18).

In Chapter 2, the statistical penalty was based on the Kullback-Leibler divergence due to its

relation to the fitted log-likelihood in the case of a local exponential family model. Although

this model is violated for dMRI data, we continue to use the Kullback-Leibler divergence. This
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is motivated by the following reasons. First, this divergence is a widely-used measure for

the difference between two probability distributions. Second, the approximation at the end of

this section provides an explicit expression which accelerates the computation considerably.

Third, under statistical independence, the Kullback-Leibler divergence can be easily extended

to multivariate densities as we will see in Equation (6.12). In Chapter 3, the Kullback-Leibler

divergence provided for several probability distributions the very useful invariance of the

propagation condition with respect to the fixed parameter. Therefore, we hope to get at most a

weak variability for non-central chi-distributions. This would allow a choice of the adaptation

bandwidth independent of the data at hand. Finally, in Section 5.3.5, the univariate examples

of the Propagation-Separation Approach for non-central chi-distributed observations behaved

as expected, using the Kullback-Leibler divergence for the definition of the statistical penalty.

Nevertheless, it could be a nice piece of future research to evaluate the impact of the Kullback-

Leibler divergence on the (ms)POAS method and possible consequences of a replacement by

another f -divergence or by a possibly asymmetric distance function on the observation space. We

introduce an abbreviatory notion for the Kullback-Leibler divergence between two non-central

chi-distributions. This compensates the bias between the expected value E [Sb(m)], which

we estimate by msPOAS, and the target parameter θb,m, which determines the corresponding

probability distribution, see Assumption A5 (page 91).

Notation 6.3. For every pair of expected values η1,η2 > 0, we set

KL(η1,η2) :=KL
(
P(μ−1(η1)),P(μ−1(η2))

)
,

where Pθ = χ2L′ (θ) and the function μ−1 is defined via Equation (6.7) (page 90) for all
η >

√
2Γ(L′+1/2)/Γ(L′) and μ−1(η) = 0, else.

Below, we will replace, with a slight abuse of notation, the unknown standardized expected

value η := ESb(m)/σ by its estimate η̃ := S̃(k)
b (m)/σ̂, using the adaptive estimator S̃

(k)
b (m) in

Equation (6.18) below and the estimated standard deviation of the observations σ̂ > 0. Here, the

notion S̃
(k)
b (m) refers to the realization S̃

(k)
b (m) ∈ R, but not to the random variable S̃

(k)
b (m).

Next we observe that the measurement errors for different b-values are statistically independent

since each q-shell is measured on its own. Consequently, the joint probability density fS/σ of

the standardized random vector S in Equation (6.10) equals the product of the corresponding

marginal densities fSb/σ, b ∈B0, where S := S is as in Equation (6.10). Hence, it holds

fS/σ(u) =
B∏
l=0
fSbl/σ

(ul), u= (u0, ...,uB)T ∈ R
B+1, b0 := 0.

For the Kullback-Leibler divergence between fS̃(k−1)(m)/σ̂ and fS̃(k−1)(n)/σ̂, this yields

KL
(
S̃(k−1)(m)
σ̂

,
S̃(k−1)(n)
σ̂

)
=

∑
b∈B0

KL
(
S̃

(k−1)
b (m)
σ̂

,
S̃

(k−1)
b (n)
σ̂

)
, (6.12)

where we use Notation 6.3.

Therefore, we redefine the statistical penalty as

s(k)mn :=
∑
b∈B0

Ñ
(k−1)
m,b KL

(
S̃

(k−1)
b (m)
σ̂

,
S̃

(k−1)
b (n)
σ̂

)
. (6.13)
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Here, Ñ
(k−1)
m,b relates, as before, to the achieved variance reduction, using the adaptive weights

{w̃(k)
mn}n∈V×Gb in Equation (6.16) (page 97). In order to compensate the impact of the spherical

interpolation, we distinguish the same cases as for the interpolation formula (6.11). Additionally,

for b = 0, we down-weight the influence of the S0-images. Otherwise, the S0-images would

dominate the adaptation in an undesirable manner due to the already achieved variance reduction

by taking the mean of all non-diffusion-weighted images. Hence, form= (�vm,�gm), we set

Ñ
(k)
m,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
k′≤k

( ∑
n∈V×Gb

w̃
(k′)
mn

)
if b > 0∧�gm ∈Gb,

max
k′≤k

(∑3
l=1 c

(l)
b,�gm
/Ñ

(k′)
(�vm,g(l)

b,�gm
),b

)−1

if b > 0,�gm ∈Gb′ ,0< b′ �= b,

max
k′≤k

(∑
�g∈Gb 1/Ñ

(k′)
(�vm,�g),b

)−1 · |Gb| if b > 0∧�gm ∈G0,

max
k′≤k

( ∑
n∈V×G0

w̃
(k′)
mn

)
· |S0|−1 if b= 0,

(6.14)

where |S0| is the number of acquired non-diffusion-weighted images which form the mean

image S0. Note that we consider the maximal variance reduction Ñ
(k)
m,b := max

k′≤k
(·) until step k

in order to preserve the already achieved adaptation quality as proposed in § 5.4.1.

The algorithm

Finally, we summarize the algorithm for multi-shell position-orientation adaptive smoothing

(msPOAS). It differs from the simplified Propagation-Separation Approach in Algorithm 2

(page 18) by the definition of the statistical penalty, which requires the interpolation of missing

values as described above. Due to the interpolation, the resulting data {Sb(�v,�g)}�g∈G are

statistically dependent. Therefore, in the estimator of msPOAS, we only include the measured

signals {Sb(�v,�g)}�g∈Gb . The interpolated values {Sb(�v,�g)}�g∈G\Gb are solely used to determine

the adaptive weights.

The kernel functionsKloc,Kad, the adaptation bandwidth λ > 0, and the sequence of location

bandwidths {h(k)}k∗k=0 can be chosen as in Section 2.2. For further details concerning the

parameter choices for dMRI data, we refer the reader to § 6.2.2. There, we will introduce

an additional dependence of {h(k)}k∗k=0 on the respective gradient �g ∈Gb ⊆ S
2 to compensate

possible inhomogeneities of the gradient schemes.

As before, we use for initialization of the algorithm a non-adaptive estimator. Basically, the

non-adaptive weights could be determined by any distance function δ on R
3×S

2. Here, we

just assume that an appropriate distance has been fixed, two specific examples will be given

in Section 6.4. In dMRI, the voxel and the gradient space are not intrinsically related by the

measurement process. More precisely, the physical measurement units differ, and there is no

natural relation between the spatial distance and the applied magnetic field gradient directions.

Therefore, we introduce an additional parameter κ which allows a balance between the spatial

and the spherical part. Hence, we consider a family of distance functions δ := {δκ}κ>0, where

the choice of κ will be specified in § 6.2.2. For b = 0, the following notation reduces any

distance δκ on R
3×S

2 to the corresponding distance on the voxel space. This enables the

application of δκ on the S0-image.

Notation 6.4. LetKloc and h(k) be as in Notation 2.14 and let δκ : (R3×S
2)× (R3×S

2)→R

denote a distance function with balancing parameter κ > 0. For every m,n ∈ R
3× S

2 we
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consider the non-adaptive weights w(k)
mn :=Kloc(δκ(m,n)/h(k)). Then, form,n ∈ V ×G0, we

setw(k)
mn :=w(k)

m�gn�g , wherem= (�vm,�0) impliesm�g = (�vm,�g) and n= (�vn,�0) yields n�g = (�vn,�g)
for some arbitrary but fixed gradient �g ∈G.

Algorithm 3 (Multi-shell position-orientation adaptive smoothing).

1. Input parameters: Sequence of location bandwidths {h(k)}k∗k=0, balancing parameter κ,
adaptation bandwidth λ.

2. Initialization: Set k := 0, and apply, for allm,n ∈ V ×Gb and every b ∈B0,
Equations (6.16), (6.17), and (6.18) with s(0)

mn := 0. Then, increase k by 1.
3. Iteration: For each b ∈B0 andm := (�vm,�gm) ∈ V ×Gb, do the following.

Interpolate the missing values of S̃(k−1)
b′ (n) and Ñ (k)

n,b′ , b
′ ∈B \{b} and n ∈ V ×Gb,

according to Equations (6.11) and (6.14). Then, calculate the statistical penalty

s(k)mn :=
∑
b∈B0

Ñ
(k−1)
m,b KL

(
S̃

(k−1)
b (m)
σ̂

,
S̃

(k−1)
b (n)
σ̂

)
, n ∈ V ×Gb, (6.15)

the adaptive weights

w̃(k)
mn :=Kloc

(
δκ(m,n)/h(k)

)
·Kad

(
s(k)mn/λ

)
, n ∈ V ×Gb, (6.16)

the sum of the adaptive weights

Ñ
(k)
m,b := max

k′≤k

⎛⎝ ∑
n∈V×Gb

w̃(k′)
mn

⎞⎠ , (6.17)

and the adaptive estimator

S̃
(k)
b (m) :=

∑
n∈V×Gb

w̃(k)
mnSb(n)/Ñ

(k)
m,b. (6.18)

4. Stopping: Stop if k = k∗, and return S̃(k∗)
b (m) for each b ∈B0 and allm ∈ V ×Gb,

else set k := k+1.

Definition 6.5. The non-adaptive estimator S(k)
b (m) corresponding to msPOAS is defined by

Equation (6.18), setting s(k)mn := 0 in Equation (6.16).

Justification of the estimator

In Assumption A5 (page 91), we described the probability distribution of the standardized dMRI

data by a non-central chi-distribution with 2L′ degrees of freedom and varying non-centrality

parameter θ, that is Sb(m)/σ ∼ χ2L′(θb,m). Obviously, this violates Assumption A1 (page 10)

and hence the setting where the Propagation-Separation Approach was motivated. The assumed

probability distribution of the data effects two parts of the algorithm, the definition of the

estimator and the Kullback-Leibler divergence in the statistical penalty.

For the estimator, we should ensure that it remains in the same distribution class as the obser-

vations. Basically, for non-central chi-distributed observations, this requires the application of

a quadratic mean in place of the arithmetic mean in Equation (6.18). Instead, we introduce a

Gaussian approximation of the non-central chi-distribution in Assumption A5. This justifies the
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Figure 6.7: Densities of non-central chi-distributions with 4 degrees of freedom and the corresponding

approximating Gaussian densities with coinciding first and second moments.

usage of an arithmetic mean to some extent since the weighted mean of Gaussian distributed

observations is Gaussian.

We approximate the non-central chi-distribution χ2L′(θb,m) by a Gaussian distribution N (η,v),
where the choices

η(θ,2L′) :=
√
π

2 L
(L′−1)
1/2

(
−θ

2

2

)
and v(θ,2L′) := 2L′+θ2−η2(θ,2L′)

ensure that the first and second moments of the original and the approximating distribution coin-

cide, see Equation (6.7) (page 90). Then, the associated densities show a very similar behavior

as illustrated in Figure 6.7 for L′ = 2, where we compared various non-central chi-distributions

with their corresponding Gaussian approximation. Other values of L′ yield comparable results.

We emphasize that this approximation still differs from the Gaussian regression model in Ex-

ample 2.2 since the expectation and the variance of the approximating Gaussian distribution

depend both on the target parameter θ.

Additionally, this approach allows an approximation of the Kullback-Leibler divergence between

two non-central chi-distributions by

K̃L(χ2L′(θ1),χ2L′(θ2)) = [η(θ1,2L′)−η(θ2,2L′)]2
[v(θ1,2L′)+v(θ2,2L′))]

, (6.19)

which can be interpreted as the symmetrized Kullback-Leibler divergence between the approx-

imating Gaussian distributions. This approximation improves and accelerates the results in

[Becker et al., 2012, App. B], where a numerical approximation was used. In [Becker et al.,

2013, Fig. 5], the relative and absolute error of the Gaussian approximation are given, where

the exact Kullback-Leibler divergence is calculated via a numerical integration. This would be

prohibitive in msPOAS due to the computational workload.

6.2.2 Parameter choices

In § 2.2.2, we discussed the impact and choices of the parameters in the Propagation-Separation

Algorithm. As it turned out, most of them can be chosen in reasonable ranges without causing

trouble if varied slightly. We now adapt this choices to the msPOAS procedure. Here, we

concentrate on the adaptation bandwidth λ and the sequence of location bandwidths {h(k)}k∗k=0.
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6.2 Adaptive smoothing of diffusion-weighted MRI

Moreover, we discuss the additional parameter κ, which appears in the distance δκ on R
3×S

2.
The maximal number of iteration k∗ can be chosen as before, see § 2.2.2 and Section 5.4. We

recall that the precise choice of the kernel functionsKloc andKad have minor impact only. In

the implementation of (ms)POAS in the R-package dti by Tabelow and Polzehl [2013], the

kernels in Equation (2.10) (page 19) were used.

The sequence {h(k)}k∗k=0 should be increasing with h(0) > 0. In the implementation of the

method msPOAS, the following choice ensures a constant variance reduction of the non-adaptive

estimate by 25%, up to boundary effects in the voxel space, see § 2.2.2 for comparison. This

introduces a dependence of the b-value b ∈ B0 and the gradient �g ∈ Gb under consideration
due to possible inhomogeneities within the respective gradient scheme Gb on the q-shell with

b-value b. The bandwidths are measured in units of voxel counts with respect to the smallest of

the three voxel extensions. Then, we fix some voxel �vm close to the center of the voxel space V ,
and we choose h(0) = 1, which equals one unit of the shortest edge of the voxel. This restricts

smoothing to the sphere and hence avoids blurring at structural borders in the voxel space in the

initial iteration step k = 0. Subsequently, for every b ∈ B0 and all �gm ∈Gb, we calculate the

sequence of location bandwidths {h(k)(b,�gm)}k∗k=1 by numerically solving the equation

∑
n∈V×Gb

(w(k−1)
mn )2

(N (k−1)
m,b )2

= 1.25
∑

n∈V×Gb

(w(k)
mn)2

(N (k)
m,b)2
, (6.20)

wherem= (�vm, �gm). The sequences {h(k)(b,�gm)}k∗k=0 with b ∈B0 and �gm ∈Gb are then used

for all voxels �v ∈ V . We emphasize that the resulting non-adaptive weights w
(k)
mn depend on the

respective b-value b ∈B0 via the applied location bandwidth h(k)(b,�gm).

We assumed the distance δκ : (R3×S
2)× (R3×S

2)→ R to depend on an additional parame-

ter κ > 0, which we introduced in order to balance between spatial and spherical smoothing

in V ⊆ R
3 and Gb ⊆ S

2, b ∈B. Smoothing on the sphere increases the maximally achievable

variance reduction, and it ensures a stabilization of the estimates for the first steps of the method,

although it introduces a bias. Therefore, we recommend to choose κ such that the amount of

smoothing on the sphere is constant in the considered voxel �vm for all k ∈ {0, ...,k∗}. This

choice compensates the spherical bias during iteration since the statistical penalty becomes

stricter while the location bandwidths {h(k)}k∗k=0 are increasing. This leads to a decreasing

amount of spherical smoothing in comparison with the amount of spatial smoothing in the voxel

space. The precise choice of κ should balance between the amount of required stabilization

in the first steps and the possibility of bias correction. The latter depends via the statistical

penalty on the unknown sample size of the homogeneous regions in the voxel space. The former

requires κ to be the larger the lower the signal-to-noise ratio and the smaller the larger the mean

number of applied gradient directions per shell, given as Ng := ∑
b∈B
|Gb|/B.

For our specific distances in Notation 6.63 and 6.64, the above arguments lead to the choice

κ(h(k)) := κ0/h(k) with κ0 > 0 fixed. Then, form= (�vm,�gm) and n= (�vn,�gn) with �vm = �vn,
we get w

(k)
mn =Kloc (d(�gm,�gn)/κ0) for all k ∈ {0, ...,k∗}, where the definition of the spherical

distance d(�gm,�gn) follows from Notation 6.63 or 6.64, respectively. For δκ as in Notations 6.64,

the quantity Ng(1− cos(κ0)) determines the mean number of gradient directions with positive

weights for h(0) = 1. We suggest to select κ0 such that this number is between 5 and 10.

Finally, the adaptation bandwidth λ determines the amount of adaptation. Its choice follows

from the propagation condition in § 3.1.1. We aim to ensure, for the adaptive estimator of non-

central chi-distributed observations, the same rate of convergence as shown for the non-adaptive
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estimator in the case of an exponential family, see Theorem 2.13. Hence, for single-shell data

with some fixed b-value b ∈B0, we simulate data

{m,Sb(m)}m∈V×Gb ⊆ R, Sb(m) iid∼ Pθb ,

for some least favorable θb ∈Θ, where b ∈B0 is fixed. In particular, by considering a worst case

scenario, we avoid the dependence on the variance of the data, setting σ2 := 1, as the variance

only influences the range of the non-centrality parameters. Then, we choose the minimal

value λb which satisfies the propagation condition in Definition 3.2 at the desired propagation

level ε > 0 for this fixed parameter θb, considering the transformed adaptive estimator

θ̃
(k)
b (m,λ) :=

⎧⎨⎩μ−1
(
S̃

(k)
m,b

)
if S̃

(k)
m,b >

√
2Γ(L′+1/2)/Γ(L′),

0, else,

where the function μ is as in Equation (6.7) (page 90).

For multi-shell data, the same strategy was implemented with Zλ depending on the sum∑
b∈B
N

(k)
m,bKL(θ̃(k)b (m,λ),θb) in place of N

(k)
m,bKL(θ̃(k)b (m,λ),θb), (6.21)

where the missing values of θ̃
(k)
b (m,λ) and N

(k)
m,b are again constructed by the interpolation in

Equations (6.11) and (6.14) (page 94 and 96). As the natural design spaces of the S0-image

and the diffusion-weighted images differ, we consider the corresponding propagation levels ε0
and εb separately, while the algorithm still uses a coupling of all q-shells, including b = 0.
Equation (6.21) is motivated by the equivalent modification of the statistical penalty presented in

Equation (6.13) (page 95). Selection of λ is then done, using the gradient schemes and b-values
at hand and specifying appropriate values of θb for the different shells. For instance, one may

fix a non-centrality parameter θ0 which is applied to the S0-image. Then, the corresponding

parameters θb for varying b-values b > 0 can be calculated by modeling a standard diffusion

situation as usually observed in the human brain, leading to exponentially decreasing values.

Here again, the adaptation bandwidth λ is chosen as the minimal value which satisfies the

propagation condition at certain propagation levels ε0 and εb on the S0-image and the coupled

diffusion-weighted images, respectively.

The implementation of this propagation condition in the R-package dti by Tabelow and Polzehl

[2013] is based on Algorithm 3 (page 97) and the above choices of {h(k)}k∗k=0 and κ. In

Section 6.5, we will show by numerical simulations that the propagation level is quite robust

against the fixed parameter θ0, the number of diffusion-weighting gradients per q-shell, the
effective number of receiver coils L′, and the realization of the sample seed. Additionally, we

will give precise choices of λ for the presented data sets. The mentioned invariances of the

propagation level and the mutual effects of the adaptation bandwidth λ and the noise variance σ
in the algorithm will be discussed in § 6.6.2 in more detail.

6.2.3 Special case: The single-shell POAS procedure

Before the development of the msPOAS procedure, we proposed a method for position-orienta-

tion adaptive smoothing (POAS) which is applied to each q-shell separately. Basically, POAS

can be considered as a special case of the msPOAS algorithm. However, for msPOAS, we

introduced several changes in order to improve and accelerate the procedure in comparison
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6.2 Adaptive smoothing of diffusion-weighted MRI

FIX: Kloc,Kad, δ,κ0,h0,k∗,λ

START

INPUT: {(mi,Si)}ni=1,σ,L
′

For i= 1 : n For j = 1 : n Wij(h) = Kloc
(
δκ0/h(mi,mj)/h

)
,h > 0

k = 0

While k≤ k∗ If k == 0

For i= 1 : n For l = 0 : B

Interpolate S̃bl(mi)
and Ñmi,bl by
Eqs. (6.11) and

(6.14) using {s̃i}i
and {wij}i,j

For i= 1 : n If k == 0

Compute h
by Eq. (6.20)

For j = 1 : n

sij =
B∑
l=0
Ñmi,blKL

(
S̃bl(mi)/σ, S̃bl(mj)/σ

)
,

wij = Wij(h) ·Kad (sij/λ)

For j = 1 : n

wij =Wij(h0)

ni =
n∑
j=1
wij , s̃i =

n∑
j=1
wijSj/ni

k = k+ 1

OUTPUT: {s̃i}ni=1

STOP

Do

Then

Do

Then
Then

Do

False

Do Do

ThenThen
Then

True

Do

False

True

DoThen
DoThen

Then

Then

Then

Figure 6.8: Flowchart of the msPOAS procedure as described in Algorithm 3 (page 97), using the

parameter choices in § 6.2.2 and a simplified notation. Here, the dMRI data are given by the sequence

{(mi,Si)}ni=1, where n :=
∑
b∈B0

|V ×Gb|.
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with the previously implemented POAS method. We refer the reader to § 6.6.3 for a detailed

comparison of both methods.

In general, POAS is applied B + 1 times, first to the B = |B| diffusion-weighted images

{Sb(m)}m∈V×Gb with b ∈B fixed, and then to the non-diffusion-weighted image {S0(�v)}�v∈V .
The procedure follows Algorithm 3 (page 97), up to the following modifications.

1. In order to consider a single b-value b≥ 0, we set B0 := {b}.
2. The statistical penalty in Equation (6.15) is replaced by

s(k)mn := Ñ (k−1)
m,b KL(P(m),P(n)) , n ∈ V ×Gb, (6.22)

with P(i) := χ2
2L′(max[0,(S̃(k−1)

b (i))2/σ̂2−2L′]), i=m,n.
3. The adaptive estimator in Equation (6.18) is replaced by a weighted quadratic mean,

S̃
(k)
b (m) :=

√ ∑
n∈V×Gb

w̃
(k)
mnS2

b (n)/Ñ
(k)
m,b. (6.23)

Note that S̃
(k)
b (m) estimates the expectation E

[
Sb(m)2]1/2 instead of the target parameter θb,m

in Assumption A5 (page 91). This is compensated by a slight abuse of notation in the above

statistical penalty, see Equation (6.22) and the subsequent comment. The quadratic mean in

Equation (6.23) ensures that the estimator remains in the same distribution class as the signals,

see the discussion in § 6.2.1.

6.3 Theoretical properties

In Notation 6.1 (page 91), we described diffusion-weighted magnetic resonance data as real

valued functions on the measurement space R
3×S

2. Such functions are known as orientation

scores, and an embedding of R
3×S

2 into the special Euclidean motion group SE(3) allows the

application of well-known concepts from differential geometry and Lie group theory, see Duits

and Franken [2011], Duits et al. [2011], and Franken [2008]. This approach can be considered as

a natural lifting of an orientation score on R
3×S

2 to an orientation score on SE(3). In order to

ensure invertibility, this lifting requires a certain invariance property on SE(3). Then, the specific
geometry of the measurement space can be examined, providing a general approach for the

processing of oriented structures. This approach is a nice example of an abstract mathematical

concept which provides very descriptive and useful tools for a real application, here medical

imaging. In [Duits and Franken, 2011; Duits et al., 2011; Franken, 2008], the authors applied

anisotropic diffusion on orientation scores. Here, we seek for a theoretical justification of the

(ms)POAS method in Section 6.2. Additionally, the orientation score approach provides a

natural distance on the measurement space, which we will introduce and analyse in Section 6.4.

We start with a brief summary about the special Euclidean motion group and motivate its

definition as a semidirect product of two groups. Then, we will consider the parametrizations

of R
3×S

2 and SE(3), leading to the already mentioned embedding. Moreover, we will recall

some basic results about three-dimensional orientation scores. In particular, this provides

information about the type of operations which are recommendable for the processing of

dMRI data without violating the observed structure. In Theorem 6.38, this will be used for

the theoretical justification of (ms)POAS. The main results of this section are summarized in

Figure 6.12 (page 112). We will skip the proofs of well-known differential geometric results

as they are beyond the scope of this thesis. Instead, we will refer the reader to the respective

literature.
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6.3.1 The special Euclidean motion group

The special Euclidean motion group is a semidirect product of two groups. The following

Definition and the proximate lemma can be found in [Hewitt and Ross, 1979, (2.6)].

Definition 6.6. Let G := N ×H = {(n,h) : n ∈ N,h ∈H} denote the Cartesian product of
the groups (N, ·N ) and (H, ·H). Every homomorphism φ :H →Aut(N) defines a semidirect
product ·φ on G, where

(n1,h1) ·φ (n2,h2) = (n1 ·N φ(h1)(n2),h1 ·H h2).

We denote the semidirect product of N and H by N �H .

Lemma 6.7. For groups N and H , the Cartesian product G := N ×H together with the
semidirect product ·φ forms the group (N �H, ·φ). The identity is (eN ,eH), where eN and eH
denote the identities of N and H , respectively. The inverse of (n,h) ∈ N �H is given as
(φ(h−1)(n−1),h−1).

In contrast to the direct product, the two groups H and N have different roles in the semidirect

product, as indicated by the notation N �H . Here, H acts via φ on N . Now we specify the

abstract concept of a semidirect product for the well-known special Euclidean motion group.

Definition 6.8. Let (Rd,+) denote the translation group and (SO(d), ·SO(d)) the special or-
thogonal group, where ·SO(d) denotes the matrix product and

SO(d) :=
{

R ∈GL(d,R) : RT = R−1,det(R) = 1
}

is a subgroup of the general linear groupGL(d,R) := {M ⊆R
d×d : det(M) �= 0}. The special

Euclidean motion group SE(d) := R
d

� SO(d), d ∈ N, is defined as a semidirect product of
(Rd,+) and (SO(d), ·SO(d)), induced by the homomorphism φ(R)(�v) := R�v.

Corollary 6.9. For g1,g2 ∈ SE(d) with gi := (�vi,Ri), i = 1,2, the group operation ·SE(d)
of SE(d) is given by

g1 ·SE(d) g2 := (�v1 + R1�v2,R1R2), (6.24)

leading to e= (�0,1) and g−1 = (−R−1�v,R−1) for g = (�v,R).

Example 6.10. The special Euclidean motion group describes Euclidean motions, that is rota-

tions and translations. First, we concentrate on the two-dimensional special Euclidean motion

group SE(2). The special orthogonal group SO(2) describes rotations of two-dimensional

vectors. The counter-clockwise rotation of �v := (x,y)T ∈ R
2 with rotation angle θ ∈ (−π,π] is

defined by

Rθ�v =
(
xcosθ−y sinθ
xsinθ+y cosθ

)
, where Rθ :=

(
cosθ −sinθ
sinθ cosθ

)
∈ SO(2), (6.25)

see for instance Rossmann [2002, §2.1 Ex. 5]. An illustration is shown in Figure 6.9. The

translation operator T is given by T�v2(�v1) := �v1 +�v2 for all �v1,�v2 ∈ R
2. Then, for �v1,�v2 ∈ R

2

and Rθ ∈ SO(2), the rotation of �v1 by θ with subsequent translation by �v2 equals

T�v2(Rθ�v1) = Rθ�v1 +�v2 =
(
x1 cosθ−y1 sinθ+x2
x1 sinθ+y1 cosθ+y2

)
,
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Figure 6.9: 2-dimensional rotation

where �vi = (xi,yi)T , i= 1,2. The same operation can be described via the matrix representation

of g = (�v2,Rθ) ∈ SE(2) setting

g ≡Mg :=
(

Rθ �v2
�0T 1

)
with the result that Mg ·

(
�v1
1

)
=
(

Rθ�v1 +�v2
1

)
.

Then, for all g1,g2 ∈ SE(2) with gi = (�vi,Rθi) ∈ SE(2), i= 1,2, matrix multiplication yields

Mg2 ·Mg1 =
(

Rθ2Rθ1 Rθ2�v1 +�v2
�0T 1

)
= M(g2·SE(2)g1),

and the group product of two elements g1,g2 ∈ SE(2) equals the subsequent application of the

corresponding Euclidean motions. Generalization to SE(d) with d ∈ N is straight forward with

SE(d) � (�v,R) =: g ≡Mg :=
(

R �v
�0 1

)
∈GL(d+1,R) (6.26)

and M(g2·SE(d)g1) = Mg2 ·Mg1 for all g1,g2 ∈ SE(d).

6.3.2 Embedding of R
3×S

2 into SE(3)

The embedding of R
3×S

2 into SE(3) follows from the corresponding parametrizations. Let us

recall some related definitions, which can be found, for example, in [Rossmann, 2002, §4.1].

Definition 6.11. A d-dimensional analytic manifold is a Hausdorff spaceM together with an
atlas A := {(Mi,ϕi)}i which satisfy the following conditions:

1. For every point g ∈M , there is some chart (Mi,ϕi) ∈ A with g ∈Mi andM = ⋃
iMi.

2. Each chart (Mi,ϕi) ∈ A defines a bijective map ϕi :Mi→ ϕi(Mi)⊆ R
d, where ϕi(Mi)

is open in R
d.

3. For all charts (Mi,ϕi),(Mj ,ϕj)∈A withMi∩Mj �= ∅, it holds that ϕj(Mi∩Mj)⊆R
d

is open, and the composition ϕj ◦ϕ−1
i : ϕi(Mi∩Mj)→ ϕj(Mi∩Mj) is analytic.

The inverse functions {(ϕ−1
i )}i are known as parametrizations ofM .

The definition of a d-dimensional manifold is illustrated in Figure 6.10.
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ϕi ϕj

ϕi(Mi) ϕj(Mj)

R
d

M
Mk

ϕj ◦ ϕ−1
i

R
d

MjMi

Figure 6.10: Schematic of a d-dimensional manifold

Example 6.12.

1. The 2-sphere S
2 forms a 2-dimensional manifold [Sagle and Walde, 1973, §2.1 Ex. (5)].

2. The special Euclidean motion group SE(3) forms a 6-dimensional manifold. This follows

directly from the results in [Rossmann, 2002, §4.1].

In the following, we do not consider the complete atlas of the respective manifold, but single

parametrizations in a generalized sense without the restriction to open sets in the conditions (2)

and (3) of Definition 6.11. We give the parametrizations of SO(3) and S
2 as stated by Duits and

Franken [2011].

Example 6.13. The special orthogonal group SO(3) describes rotations in R
3. Hence, any

element of SO(3) can be described by subsequent counter-clockwise rotations around the z-, y-
and x-axis via

R�exθ =

⎛⎜⎝ 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎞⎟⎠ , R�eyθ =

⎛⎜⎝ cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎞⎟⎠ , R�ezθ =

⎛⎜⎝ cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎞⎟⎠ ,
where θ ∈ (−π,π]. This leads to the parametrization

R(α,β,γ) = R�exγ R�eyβ R
�ez
α for β �=±π/2, (6.27)

where

R(α,β,γ) =

⎛⎜⎝ cosαcosβ −sinαcosβ sinβ
sinαcosγ+cosαsinβ sinγ cosαcosγ− sinαsinβ sinγ −cosβ sinγ
sinαsinγ− cosαsinβ cosγ sinαsinβ cosγ+cosαsinγ cosβ cosγ

⎞⎟⎠ .
Another parametrization is given by the Euler angles. Here, counter-clockwise rotations around

the z-, y-, and again the z-axis lead to

Ř(α̌,β̌,γ̌) = R�ezγ̌ R
�ey

β̌
R�ezα̌ for β �= 0,π.

A nice illustration of both parametrizations can be found in [Duits and Franken, 2011, Fig. 4].

The corresponding conversion formula can be deduced from

R�exγ R�eyβ R
�ez
α

!= Ř
�ez
γ̌ Ř
�ey

β̌
Ř
�ez
α̌ , β, β̌ ∈ (−π,π)\{−π/2,0,π/2}.
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In the same manner, we parametrize the 2-sphere S
2, which describes directions in R

3. Every
direction in R

3 can be constructed via a 3D-rotation of a vector, for instance, the z-axis
�ez = (0,0,1)T . Therefore, we may deduce the following parametrizations of S

2, setting

�u(β,γ) := R(α,β,γ)�ez = R�exγ R�eyβ �ez =

⎛⎜⎝ sinβ
−cosβ sinγ
cosβ cosγ

⎞⎟⎠ for β �=±π/2

and

�̌u(β̌, γ̌) := Ř(α̌,β̌,γ̌)�ez = Ř
�ez
γ̌ Ř
�ey

β̌
�ez =

⎛⎜⎝ sin β̌ cos γ̌
sin β̌ sin γ̌

cos β̌

⎞⎟⎠ for β̌ �= 0,π.

In this study, we concentrate on the parametrization of SO(3) in Equation (6.27) since this is

well-defined at the identity.

For the given parametrizations, all elements of the 2-sphere S
2 are invariant with respect to the

rotation angle α of the corresponding SO(3)-parametrizations. This provides an embedding

of S
2 into SO(3) and hence of R

3×S
2 into SE(3) = R

3
�SO(3). For this purpose, we introduce

left coset spaces.

Definition 6.14. Let (G, ·) be a group and (H, ·) a subgroup of G. The left coset or orbit gH is
defined to be the set

gH := [g]H := {g ·h : h ∈H}, g ∈G,
leading to the left coset space G/H := {gH : g ∈G}.

This definition and the following lemma have been stated, for instance, in [Franken, 2008,

§7.3.2.] and in a more general setting in [Rossmann, 2002, §4.2].

Lemma 6.15. The left coset spaceG/H defines a partition ofG via the equivalence relation∼,
where g1 ∼ g2 if and only if g1H = g2H .

Let us consider the same example as Franken [2008, §7.3.2.].

Notation 6.16. Let stab(�ez)⊆ SO(3) denote the subgroup of rotations around the z-axis,

stab(�ez) := {R�ezα : α ∈ (−π,π]}.

Example 6.17. The left coset space SO(3)/stab(�ez) defines a partition of SO(3) via

(α1,β1,γ1)∼ (α2,β2,γ2) if and only if β1 = β2 and γ1 = γ2.

Then, we have [
R(α,β,γ)

]
stab(�ez)

= {R(α′,β,γ) : α′ ∈ (−π,π]}.

Now we state the main result of this section. The proof is given in Section 6.7.

Proposition 6.18. For the subgroup ({�0}� stab(�ez)) ⊆ SE(3) with translation �0, the space
R

3× S
2 is isomorphic to the left coset space SE(3)/({�0}� stab(�ez)), and their respective

elements can be identified via

R
3×S

2 � (�v,�u)≡ [(�v,R)]({�0}�stab(�ez)) ∈ SE(3)/({�0}� stab(�ez)), where R�ez = �u.
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Notation 6.19. We set R
3
�S

2 := SE(3)/({�0}� stab(�ez)).

We emphasize that the left coset space does not form a group. In particular, the group operation

of SE(3) is not well-defined on R
3
�S

2. Here, we will avoid its application by instead using the

left-regular action of SE(3) on R
3×S

2 and R
3
�S

2, respectively, see § 6.3.4 and Corollary 6.62.

Lemma 6.20. The group operation of SE(3) is not well-defined on the corresponding equiva-
lence classes of the left coset space R

3
�S

2.

6.3.3 Orientation scores

In diffusion-weighted magnetic resonance imaging, we examine fibrous structure. Hence, we

should preserve the orientational information when processing such data. In this section, we

will deduce from the embedding of R
3×S

2 into SE(3) a criterion for the appropriateness of

operations on dMRI data. For this purpose, we will follow Franken and Duits, see Duits and

Franken [2011]; Duits et al. [2011]; Franken [2008], by introducing formal definitions of images,

orientation scores, and group representations.

Definition 6.21. A d-dimensional image, d ∈ N, is a square-integrable function f ∈ L2(Rd,R)
with compact support in the image domain Ω := ⊗d

i=1 [0,Xi], where Xi > 0.

Operations on images should be invariant with respect to translations and rotations. Since

the positions of patients in a tomograph may vary, a standardization of the acquired images

is important. However, it should not matter what we apply first, the processing operator or a

transformation by translations and rotations. Formally, this is described as follows.

Definition 6.22. An operator Γ : L2(Rd,R)→ L2(Rd,R) is Euclidean invariant if it is transla-
tion and rotation invariant, that is if

E(�v,R) ◦Γ = Γ◦E(�v,R)

for all �v ∈ R
d and every R ∈ SO(d), where E(�v,R) =RR ◦T�v with (RRf)(�v0) = f(R−1�v0) and

(T�vf)(�v0) = f(�v0−�v).

Adding the orientation as an additional dimension to the domain of an image allows to distinguish

structures with different local orientations within the image. This corresponds to the biological

visual system, which separates objects with different orientations. In Figure 6.11, we show two

examples.

Definition 6.23. Let d ∈ N be fixed.

• Any function U ∈ L2(Rd×S
d−1,R) is called standard d-dimensional orientation score.

• Any function U ∈ L2(SE(d),R) is called general d-dimensional orientation score.

Example 6.24.

• For every 2-dimensional image f , a 2-dimensional orientation scoreUf can be constructed.

Appropriate construction and reconstruction formulas are given by Franken [2008, Eq.

(2.6) & (2.9)], where the author proposed to correlate the image f with the complex

conjugated rotation of an anisotropic kernel ψ ∈ L2(R2,R), that is

Uf (�v,Rθ) :=
∫

R2
RRθ [ψ](�v0−�v)f(�v0)d�v0, (�v,Rθ) ∈ SE(2),
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Application to magnetic resonance imaging

Figure 6.11: Two examples of 2-dimensional orientation scores and their corresponding images as

projection on the plane.

where RRθ is as in Definition 6.22 with Rθ from Equation (6.25) (page 103). Any

invertible construction formula allows to define the image operation

Γ : L2(R2,R)→ L2(R2,R) as Γ[f ] := (W∗0 ◦Φ◦W0)[f ],

whereW0 denotes the construction formula of the orientation score Uf from f , Φ the

orientation score operation, andW∗0 the inverse ofW0 which reconstructs f from Uf .
• Diffusion-weighted magnetic resonance imaging yields data in form of a standard three-

dimensional orientation score U, see Equation (6.2) (page 86) and Notation 6.1 (page 91).

For d= 2, we may identify the two types of orientation scores since S
1 and SO(2) are isomorphic.

For higher dimensions, general orientation scores benefit from the group structure of SE(d).
By the following property, 3-dimensional standard orientation scores can be identified with

general orientation scores. This can be considered as a lifting, where a certain invariance ensures

the invertibility. Then, most of the following concepts hold for both, standard and general

orientation scores. However, for standard orientation scores U, we always need to ensure that an

applied transformation U �→ Φ(U) is well-defined on the left coset space R
3
�S

2.

Definition 6.25. The function F : SE(3)→ R is α-right invariant if

F (�v,R(α′+α,β,γ)) = F (�v,R(α,β,γ)) for all α′ ∈ (−π,π].

Corollary 6.26. For every standard orientation score U : R
3×S2 → R, there is a unique

α-right invariant general orientation score U : SE(3)→ R given by

U(�v,R) := U(�v,�u) if R�ez = �u.

Vice versa, for every α-right invariant general orientation score U , there is a unique standard
orientation score U with

U(�v,�u(β,γ)) := U(�v,R(α,β,γ)) for all α ∈ (−π,π].

For data which are measured in form of an orientation score, the orientation marginal yields an

associated image.
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Definition 6.27. The orientation marginal of a general d-dimensional orientation score U is
defined by

W∗ [U ] (�v) :=
∫

SO(d)
U(�v,R)dμ(R), U ∈ L2(SE(d),R),�v ∈ R

d,

where μ denotes a Haar measure on SO(d).

Example 6.28. The data vector S(�v,�g) with �g ∈G0 is constructed in Equation (6.11) (page 94)

by the orientation marginals of the corresponding orientation scores or diffusion-weighted

signals Sb : �v×Gb→ R with b ∈B0.

Next we aim to answer the following question. How to choose the orientation score operation Φ
in order to ensure the Euclidean invariance of the image (or orientation marginal) operation Γ?

For this purpose, we consider representations of groups, see Dungey et al. [2003, §2.2 p. 13] or

Rossmann [2002, §6.1],

Definition 6.29. Let G denote a group, H a finite dimensional vector space, and B(H) the
space of all linear, bounded, and invertible operators H →H . The map A :G→B(H) with
g �→ Ag is called representation of G on B(H) if A is a group homomorphism, that is if e �→ I ,
g1 ·g2 �→ Ag1 ◦Ag2 , and g−1 �→ (Ag)−1.

Example 6.30. Let G denote a locally compact group and μ a Haar measure on G. The

left-regular representation LG of G on the square-integrable functions L2(G,μ) is defined by

(LG(g2)φ)(g1) := (φ◦L−1
g2 )(g1) := φ(g−1

2 g1)

for all g2 ∈G, φ ∈ L2(G,μ) and μ-almost every g1 ∈G. The right-regular representation QG
of G on L2(G,μ) equals

(QG(g2)φ)(g1) := (φ◦Qg2)(g1) := φ(g1g2).

The operator g �→ Eg, g ∈ SE(d), in Definition 6.22 equals the left-regular representation

of SE(d) on L2(Rd,R).
Notation 6.31. An orientation score operator Φ : L2(SE(d),R) → L2(SE(d),R) is called
left-invariant (right-invariant) if it is invariant with respect to the left-regular (right-regular)
SE(d)-representation, that is if

Lg ◦Φ = Φ◦Lg or Qg ◦Φ = Φ◦Qg, respectively,

where Lg := LSE(d)(g) and Qg := QSE(d)(g) are as in Example 6.30. Moreover, we call a
distance δ : SE(d)×SE(d)→ [0,∞) left-invariant (right-invariant) if

δ(n1,n2) = δ(L−1
m [n1],L−1

m [n2]) or δ(n1,n2) = δ(Qm[n1],Qm[n2]), respectively,

for all n1,n2,m ∈ SE(3) with Lm and Qm as in Example 6.30.

We study the relationships between the mentioned group representations of SE(d) on images

and orientation scores.

Lemma 6.32. LetW∗ be as in Definition 6.27, Lg = LSE(d)(g), Qg =QSE(d)(g), and Eg as in
Example 6.30. Then, for all g ∈ SE(d) and every definition of F̃g, it holds

W∗ ◦Lg ◦U = Eg ◦W∗ ◦U and W∗ ◦Qg ◦U �= F̃g ◦W∗ ◦U. (6.28)

Additionally, for d= 2, let Γ =W∗0 ◦Φ◦W0 denote an image operator, whereW0 andW∗0 are
as in [Franken, 2008, Eqs. (2.6) & (2.9)]. Then, Γ is Euclidean invariant if and only if the
corresponding orientation score operator Φ is left-invariant.
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Equation (6.28) follows in the same manner as in [Franken, 2008, §7.4.3], where the same result

is considered supposing d= 3. The last assertion of Lemma 6.32 was proven by Franken [2008,

§2.7.1]. This lemma establishes together with Proposition 6.33, below, that orientation score

operations Φ should be left-invariant. For operators on dMRI data, this ensures the Euclidean

invariance in the voxel space R
3 and the rotation invariance in the gradient space S

2.

Proposition 6.33. Let Φ : L2(SE(d),R)→ L2(SE(d),R) be an orientation score operator, and
consider the corresponding orientation marginal operator Γ : L2(Rd,R)→ L2(Rd,R) with
Γ[W∗(U)] :=W∗[Φ(U)], where W∗ is as in Definition 6.27. Then, Γ is Euclidean invariant
if Φ is left-invariant, that is

[Lg ◦Φ = Φ◦Lg for all g ∈ SE(d)] implies [Eg ◦Γ = Γ◦Eg for all g ∈ SE(d)] ,

where Lg = LSE(d)(g) and Eg are given in Example 6.30.

There is a nice relation between left-invariant and convolution operators on L2(SE(d),R). The
proof is based on the important Dunford-Pettis Theorem.

Proposition 6.34. Every linear, bounded, and left-invariant operator

Φ : L2(SE(d),R)→ L∞(SE(d),R)

can be represented as an SE(d)-convolution with some kernelK, that is

[ΦU ](g) = (K ∗SE(d)U)(g) =
∫

SE(d)
K(h−1g)U(h)dμ(h),

where μ denotes a Haar measure on SE(d). Moreover, every convolution operator ΦK with
ΦKU :=K ∗SE(3)U , U ∈ L2(SE(d),R), is left-invariant.

For standard orientation scores, we need to ensure that ΦU is α-right invariant. The following

result was proven for d= 2 by Franken [2008, §7.4.5]. The extension to larger dimensions d > 2
is straight forward.

Lemma 6.35. Let the general orientation score U be α-right invariant. Then, K ∗SE(3)U is
α-right invariant if the convolution kernelK is α-right and α-left invariant, that is if

K = L(�0,R�ez−α′′ )
◦Q(�0,R�ez

α′ )
◦K for all α′,α′′ ∈ (−π,π].

6.3.4 Left-invariance of (ms)POAS

Finally, we justify that POAS and msPOAS are left-invariant as required in § 6.3.3. For this

purpose, we adapt Notation 6.31 to operators on dMRI data. For the sake of notational simplicity,

we avoid the embedding of R
3×S

2 into SE(3), using instead the left-regular action of SE(3)
on R

3×S
2. We emphasize that the following notation could be formulated in an analogous

manner with the left coset space R
3
�S

2 in place of R
3×S

2.

Notation 6.36.

• The left-regular action L of SE(3) on R
3×S

2 is given by

L−1
m [n] := (R−1(�v− �w),R−1�g)∈R

3×S
2, m := (�w,R)∈ SE(3),n := (�v,�g)∈R

3×S
2.
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• We define the left-regular action L of SE(3) on L2(R3×S
2,R) by

Ln[U ](m) := U(L−1
n (m)) = U(R−1(�v− �w),R−1�g),

where U ∈ L2(R3×S
2,R),m= (�v,�g) ∈ R

3×S
2, and n= (�w,R) ∈ SE(3).

• Then, we call the operator Φ : L2(R3×S
2,R)→ L2(R3×S

2,R) left-invariant if, for all
n ∈ SE(3), it holds Ln ◦Φ = Φ◦Ln.

• A distance δ : (R3×S
2)× (R3×S

2)→ [0,∞) is called left-invariant if

δ(n1,n2) = δ(L−1
m [n1],L−1

m [n2])

for all n1,n2 ∈ R
3×S

2 and everym ∈ SE(3).

Additionally, we introduce the following operators.

Notation 6.37. Let the POAS procedure be defined as in § 6.2.3 and the msPOAS method as in
Algorithm 3 (page 97), using some distance δκ : (R3×S

2)× (R3×S
2)→ [0,∞). Additionally,

assume λ > 0 to be fixed and the sequence of location bandwidths {h(k)}k∗k=0 and the balancing
parameter κ to be chosen as described in § 6.2.2. For k ∈ {0, ...,k∗}, we define two operators

φk,ϕk : L2(R3×S
2,R)→ L2(R3×S

2,R),

where φk describes the POAS procedure, and ϕk equals the msPOAS method. More precisely,
the operator φk is defined by

φk[Sb](m) := S̃(k)
b (m), Sb ∈ L2(V ×Gb,R), b ∈B0,m ∈ V ×Gb,

where S̃(k)
b (m) is as in Equation (6.23) (page 102). Similarly, the operator ϕk is defined by

ϕk[Sb](m) := S̃(k)
b (m), Sb ∈ L2(V ×Gb,R), b ∈B0,m ∈ V ×Gb,

where S̃(k)
b (m) is as in Equation (6.18) (page 97).

Theorem 6.38. We consider the setting in Notation 6.1 (page 91) and suppose the gradient
schemes Gb, b ∈ B, of all q-shells to be identical. The operators φk and ϕk in Notation 6.37
are left-invariant for every k ∈ {0, ...,k∗} if and only if the applied distance δκ is left-invariant.
In the case that the distance δκ is based on the left coset space R

3
� S

2, it holds that the
operators φk and ϕk are well-defined with respect to the embedding of R

3×S
2 into SE(3) for

every k ∈ {0, ...,k∗} if and only if δκ is well-defined.

The proof is given in Section 6.7.

6.4 Distance functions on the measurement space

For application of the (ms)POAS procedure, we seek for a distance on R
3×S

2. Basically, there

are two canonical approaches. Motivated by the description of dMRI data as an α-right invariant
orientation score on the special Euclidean motion group SE(3), we will first consider the natural

distance on a Lie group G, see § 6.4.2. Then, we will compare in § 6.4.3 the resulting distance

with the natural metric on R
3×S

2.

For our first approach, we will recall in § 6.4.1 some basic concepts of differential geometry,

such as Lie groups and Lie algebras, different kinds of coordinates and left-invariant vector
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• Left-invariant operations on dMRI data ensure Euclidean invariance in the voxel

space R
3 and rotation invariance in the gradient space S

2.
• The isomorphism

R
3×S

2 � (�v,�u) �→ [(�v,R�u)]({�0}�stab(�ez)) ∈ SE(3)/({�0}� stab(�ez))

embeds R
3×S

2 into SE(3), where R�u�ez = �u.
• For every standard orientation score U : R

3×S2 → R, there is an α-right invariant
general orientation score U : SE(3)→ R and vice versa, where

U(�v,�u(β,γ)) = U(�v,R(α,β,γ)) for all α ∈ (−π,π].

• Let, in Notation 6.1 (page 91), the gradient schemes of all q-shells be identical.

The method (ms)POAS is left-invariant and well-defined with respect to the

embedding of R
3×S

2 into SE(3) if and only if the distance δκ in the location

kernel is left-invariant and well-defined.

Figure 6.12: Section 6.3 in a nutshell

fields. Using a criterion by Duits et al. [2011, App. E], we will prove in § 6.4.2 the Carnot-

Carathéodory distance in Definition 6.56 to be left-invariant and well-defined on the left coset

space R
3
�S

2. Its approximation in Notation 6.63 has been used in the implementation of the

POAS method, see § 6.2.3, Becker et al. [2012], and Tabelow and Polzehl [2013]. However, this

is a rough approximation which violates the required rotation invariance in the gradient space.

Therefore, in the implementation of the msPOAS procedure, see § 6.2.1, Becker et al. [2013],

and Tabelow and Polzehl [2013], we followed another approach.

By definition of the group product on SE(3), the rotation group SO(3) acts on the translation

group R
3, not vice versa. Hence, R3 and SO(3) play different roles. These roles carry over to the

left coset space R
3
�S

2 by the embedding, see Corollary 6.62. Nevertheless, the approximated

distance Δκ on R
3×S

2, see Notation 6.63, depends on two well separated parts, the squared

Euclidean metric in Equation (6.32) (page 121) and a term which solely depends on the two

gradients �u1,�u2 ∈ S
2. Against the comprehensible belief that both parts would interact, this

implies that the Euclidean and the spherical distances of voxels and gradients, respectively,

can be considered on their own. This will be done in our second proposal, see Notation 6.64,

where we will introduce a left-invariant pseudometric on R
3×S

2, which does not rely on the

embedding into SE(3).

6.4.1 A differential geometric approach

The embedding of R
3×S

2 into SE(3) enables the application of useful tools from Lie group

theory, providing several distance functions on SE(3). On Lie groups a distance can be defined,

using the algebraic basis of the corresponding Lie algebra. For simplicity, we will restrict to the

present case of linear Lie groups as considered by Rossmann [2002]. We will summarize some

important definitions and properties stated in [Rossmann, 2002] on the pages 2, 12, 14, 23, 30,

44–46, and 132–137. The following results will be used for the definition and justification of

our first distance in Notation 6.63. The second proposal in Notation 6.64 does not rely on the

embedding into SE(3).
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Definition 6.39.

1. A group (G, ·G) which forms an analytic manifold is called Lie group if the group
operations

G×G � (g1,g2) �→ g1 ·G g2 ∈G and G � g �→ g−1 ∈G

are analytic.
2. A group G is linear if all of its elements can be represented by invertible matrices and if

the group operation is given by the matrix multiplication.
3. The tangent space Tg(G) of a linear Lie group G at the point g ∈ G consists of all

matrices X for which a continuously differentiable curve a : I → G exists, such that
I ⊂ R is an interval, 0 ∈ I , a(0) = g, and a′(0) =X .

4. The space g := (Te(G), [., .]) is called Lie algebra of G with Lie bracket or Lie commuta-
tor [., .] given by

[X,Y ] :=XY −Y X for all X,Y ∈ Te(G).

Example 6.40. We know from Example 6.12 that the special Euclidean motion group SE(d)
is an analytic manifold. Additionally, its group operations are analytic. Hence, for SE(d),
all conditions to be a linear Lie group are satisfied. More generally, the group of affine

transformation R
d
�GL(d,R) forms a linear Lie group [Rossmann, 2002, §4.1 Ex. 2].

Proposition 6.41. We use the notation of Definition 6.39.

1. The binary operator [., .] : Te(G)×Te(G)→ Te(G) satisfies, for allX,Y,Z ∈ Te(G) and
a,b ∈ R, the following properties:

• Bilinearity: [aX+ bY,Z] = a [X,Z]+ b [Y,Z], [Z,aX+ bY ] = a [Z,X]+ b [Z,Y ],
• Anticommutativity: [X,Y ] =− [Y,X],
• Jacobi identity: [X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]] = 0.

2. The tangent space Te(G) is a real vector space,

X,Y ∈ Te(G) implies aX+ bY ∈ Te(G) for all a,b ∈ R.

Moreover, Te(G) is closed under the Lie bracket operation,

X,Y ∈ Te(G) implies [X,Y ] ∈ Te(G).

3. The exponential function exp : g→G describes the relationship between the Lie algebra
g = (Te(G), [., .]) and the Lie group G. It is defined by

exp(X) := 1d×d+
∞∑
n=1

Xn

n! ∈G, X ∈ g,

and it carries a neighborhood g0 ⊆ g of 0 ∈ g one-to-one onto a neighborhood G1 ⊆G
of 1 ∈G. Then, the local inverse log :G1 → g0 of exp |g0 is given by

log(M) :=
∞∑
n=1

(−1)k−1(M −1)k/k ∈ g0, M ∈G1.

If XY = Y X , then it holds exp(X)exp(Y ) = exp(Z) with Z := X +Y . Else, there
is a unique solution Z = C(X,Y ), given as a series of repeated brackets of X and Y ,
which converges if X,Y,Z ∈ g are sufficiently close to zero. This is known as Campbell-
Hausdorff formula.
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We have seen that every Lie algebra is a vector space. Next we define an algebraic basis of a Lie

algebra as a subset of its vector space basis, see Dungey et al. [2003, §II.2 p. 14]. In § 6.4.2, we

will use a weighted algebraic basis of SE(3) in order to approximate the Carnot-Carathéodory

distance.

Definition 6.42. Let G be a linear Lie group and g the Lie algebra of G with vector space basis
B := {Xi ∈ Te(G) : i = 1, ...,d}. The subset B′ := {X1, ...,Xd′}, d′ ≤ d, forms an algebraic
basis with rank r ∈ N if

g1 := span{X1, ...,Xd′}, g2 := span{g1∪ [g1,g1]},
... gr := span{gr−1∪ [gr−1,gr−1]}= g,

where [gl,gl] := {[X,Y ] :X,Y ∈ gl} for every l ∈ N. The algebraic basis B′ is weighted if a
weight wi ∈ [1,∞) is given for every Xi ∈ B′.

The following proposition [Rossmann, 2002, §2.4 Prop. 3] allows to distinguish two kinds

of coordinates as considered, for instance, by Rossmann [2002, §2.3 & 4.1 Probl. 11] and

Dungey et al. [2003, II.4.17]. Here, we use the equivalence between connectedness and path

connectedness on linear groups. We emphasize that the exponential map of an arbitrary Lie

group G does not need to be surjective.

Proposition 6.43. LetG be a linear Lie Group with Lie algebra g. The connected componentG0
of the identity e ∈G is given as the set of finite products of elements of the subset exp(g)⊆G
and its inverses,

G0 :=
{
k∏
i=1
gi : gi = exp(Xi) or g−1

i = exp(Xi),Xi ∈ g for all i= 1, ...,k and k ∈ N

}
.

It is the unique open connected subgroup of G. For every g ∈G, the left coset gG0 equals the
connected component of g, that is the set of all elements g1 ∈G which can be joined to g by
a continuous path φ : [0,1]→ G with φ(0) = g and φ(1) = g1. The corresponding left coset
space G/G0 forms a non-linear group.

Definition 6.44. LetG be a linear Lie Group and g the Lie algebra ofG with vector space basis
B := {Xi ∈ Te(G) : i= 1, ...,d}. For every element g ∈G0, with G0 as in Proposition 6.43, we
define two types of coordinates (if existing),

• {ρi}i=1,...,d with g = exp(∑di=1 ρiXi) (first kind),
• {ζi}i=1,...,d with g = ∏d

i=1 exp(ζiXi) (second kind).

The coordinates of the first kind are also known as the exponential or canonical coordinates ofG.
If G0 does not cover the whole Lie group, that is if G\G0 �= ∅, these coordinates can be defined

for g ∈G\G0 with respect to the connected component gG0. Note that the coordinates do not

need to be unique. Additionally, the coordinates do not need to exist if the Campbell-Hausdorff

formula diverges, see Proposition 6.41 (3) and Rossmann [2002, §1.3]. We apply the introduced

concepts to the special Euclidean motion group SE(3), where both kinds of coordinates exist

for every g ∈ SE(3).

114



6.4 Distance functions on the measurement space

Example 6.45. We consider the three-dimensional special Euclidean motion group SE(3). Its
matrix representation is given in Equation (6.26) (page 104). The corresponding matrix Lie

algebra g = (Te(SE(3)), [., .]) is spanned by the basis [Duits and Franken, 2011, Eq. (52)]

X1 =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ X2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ X3 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠

X4 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎟⎠ X5 =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ X6 =

⎛⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
This leads to the following table of Lie brackets [Duits and Franken, 2011, Eq. (53)]

[Xi,Xj ]i,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 X3 −X2
0 0 0 −X3 0 X1
0 0 0 X2 −X1 0
0 X3 −X2 0 X6 −X5
−X3 0 X1 −X6 0 X4
X2 −X1 0 X5 −X4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We observe that the subsets {X3,X4,X5} and {X1,X4,X6} are examples for an algebraic basis

of g.

For g = ((x,y,z)T ,R(α,β,γ)) ∈ SE(3), the coordinates of the second kind with respect to the

above basis are given as

(ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) := (x,y,z,γ,β,α).

This follows from the series expansion of sine and cosine since

exp(ζ4X4) =
(

R�exζ4 �0
�0T 1

)
, exp(ζ5X5) =

(
R�eyζ5 �0
�0T 1

)
,

exp(ζ6X6) =
(

R�ezζ6 �0
�0T 1

)
,

3∏
i=1

exp(ζiX) =

⎛⎜⎜⎜⎝
1 0 0 ζ1
0 1 0 ζ2
0 0 1 ζ3
0 0 0 1

⎞⎟⎟⎟⎠ .
By Equation (6.27) (page 105), we get

6∏
i=1

exp(ζiXi) =

⎛⎜⎜⎜⎝ R(ζ6,ζ5,ζ4)
ζ1
ζ2
ζ3

0 0 0 1

⎞⎟⎟⎟⎠ = Mg ≡ g ∈ SE(3),

which is in accordance with the matrix representation in Equation (6.26) (page 104). The

coordinates of the first kind will not be used in this study. Therefore, we omit their explicit

representations, which are quite extensive to compute. There existence is ensured since the map

exp : g→ SE(3) is bijective [Rossmann, 2002, §2.1 p. 43 & 2.5 Thm. 1].

For the denoising of dMRI data, we are especially interested in left-invariant operations on

orientation scores, see Proposition 6.33 and Figure 6.12 (page 112). For this purpose, we define
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left-invariant vector fields on a linear Lie group G. We refer the reader to Franken [2008, §2.8.1

& 7.5.1] for the special cases SE(d), d= 2,3. Sagle and Walde [1973] consider a more general

setting, where the following definitions and properties can be found on the pages 47, 68, 74,

78–79, 82, 115–116.

Definition 6.46. LetG be a linear Lie group. The set T (G) :=⋃
g∈GTg(G) is called the tangent

bundle of G. A (tangential) vector field X :G′→ T (G′) on a subset G′ ⊆G is a map which
assigns a tangential vector Xg ∈ Tg(G′) to each point g ∈G′.

There is a close relation between vector fields and derivations.

Definition 6.47. Let G be a linear Lie group and F (G) the set of all real valued analytic
functions onG. The mappingX : F (G)→ F (G) is a derivation of the algebra F (G) into F (G)
if, for all f1,f2 ∈ F (G) with intersecting open domains Ul ⊆G, l = 1,2, and every a,b ∈ R, it
holds

• X(af1 +bf2) = aX(f1)+bX(f2) with (af1 +bf2)(h) := af1(h)+bf2(h), h∈U1∩U2,
• X(f1f2) =X(f1)f2 +f1X(f2) with (f1f2)(h) := f1(h)f2(h), h ∈ U1∩U2.

Proposition 6.48. Let G and F (G) be as in Definition 6.47. The map X : G→ T (G) is a
vector field on G if and only if X is a derivation of F (G) into F (G).

Then, we may define the following.

Definition 6.49. Let G be a linear Lie group and D(G) the set of all vector fields on G.

• The differential of an analytic map f :G→G at g ∈G is a map df(g) : Tg(G)→ Tf(g)(G)
which is defined by [df(g)(X)](φ) =X(φ◦f), where φ ∈ F (G) and X ∈ Tg(G).

• A vector field X ∈ D(G) is called invariant if [dLg(e)][X(e)] = X(g) for all g ∈ G,
where Lg(h) := g ·G h is as in Example 6.30.

• A vector field X ∈D(G) is left-invariant if [dLg(h)][X(h)] =X(gh) for all g,h ∈G.

Proposition 6.50. Every left-invariant vector field X ∈D(G) is invariant. Moreover, for every
tangent vector Xe ∈ Te(G), there is a unique left-invariant vector field X̃ ∈ D(G) which is
defined, for every f ∈ F (G), via

(X̃f)(g) =Xe(f ◦Lg) for all g ∈G.
Then, it holds X̃(e) =Xe, and the space of all left-invariant vector fields on G is isomorphic to
the Lie algebra Te(G) of G.

For an illustrative description of left-invariant vector fields, we follow Franken [2008, §2.8.1].

LetG be a linear Lie group with Lie algebra basis {Xi ∈ Te(G) : i= 1, ...,d}, and let φ : R→G
be a curve onGwith tangential vectorXe=∑

i ciXi ∈Te(G) at the identity e∈G. Then, by left-

multiplication with g ∈G, we get the curve gφ with tangential vector Xg = dLg(Xe) ∈ Tg(G)
at g. In other words, the map dLg : Te(G) → Tg(G), known as the push-forward of the

left-multiplication, transports Xe in a left-invariant manner to Xg, that is Xg = ∑
i cidLgXi,

where the constants ci remain unchanged in comparison with Xe, while the basis {Xi}di=1 is

transformed appropriately.

Example 6.51. We consider the linear Lie group SE(2) whose Lie algebra equals the three-

dimensional Euclidean space R
3. Therefore, we identify the vector space Te(SE(2)) with

R
3 = span{�ex,�ey,�eθ}, where �ex := (1,0,0)T , �ey := (0,1,0)T , and �eθ := (0,0,1)T . Left-multi-

plication of a curve φ : R−→ SE(2) with g := (�v,R) ∈ SE(2) leads to a translated and rotated
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curve gφ= �v+Rφ, where R is as in Equation (6.25) (page 103). Hence, the push-forward of

the left-multiplication rotates the Lie algebra basis, and we have

{(Lg)∗�ex,(Lg)∗�ey,(Lg)∗�eθ}= {cosθ�ex+sinθ�ey,−sinθ�ex+cosθ�ey,�eθ} .

The left-invariant basis has two advantages. First, the basis vectors have a clear interpretation

as (Lg)∗�ex is tangential to the orientation θ, and (Lg)∗�ey is orthogonal to (Lg)∗�ex. Second, all
linear and non-linear combinations of the tangential vectors (Lg)∗�ex,(Lg)∗�ey,�eθ, which are

independent of the coordinates, are left-invariant.

For the three-dimensional special Euclidean motion group SE(3), we get the following [Duits

and Franken, 2011, Eq. (25)].

Example 6.52. Let {Xi}6
i=1 be as in Example 6.45. Then, the left-invariant vector fields with

respect to the parametrization of SE(3) in Equation (6.27) (page 105) are given as

A1 = cosαcosβX1 +(cosγ sinα+cosαsinβ sinγ)X2

+(sinαsinγ− cosαcosγ sinβ)X3,

A2 =−sinαcosβX1 +(cosαcosγ− sinαsinβ sinγ)X2

+(sinαsinβ cosγ+cosαsinγ)X3,

A3 = sinβX1− cosβ sinγX2 +cosβ cosγX3,

A4 =−cosαtanβX6 +sinαX5 +(cosα/cosβ)X4,

A5 = sinαtanβX6 +cosαX5− (sinα/cosβ)X4,

A6 =X6.

6.4.2 First proposal for a distance on the measurement space of dMRI

For the application on R
3×S

2, a distance on SE(3) should be well-defined on the left coset

space R
3
�S

2 and left-invariant as motivated in § 6.3.3. Duits et al. [2011, App. E] provided a

sufficient criterion for a Riemannian metric to satisfy both requirements. We recall some related

results that can be found in [Jost, 2011, Def. 1.4.1 & Lem. 2.1.1] under a more general setting.

Definition 6.53. A Riemannian metric on a linear Lie group G is given by a map

T :G→ (TgG×TgG→ R),

which maps each point g ∈G to a scalar product Tg(., .) on TgG which smoothly depends on g.

Lemma 6.54. A Riemannian metric on a linear Lie group G with Lie algebra basis {Xi}di=1
can be defined by a two times covariant, symmetric, and positive definite tensor on G, where

Tg =
d∑
i,j=1
pij(g)dX i⊗dXj

for every g ∈G with pij :G→R smooth. Here,⊗ denotes the tensor product, and dX i ∈ T ∗g (G)
is an element of the dual space T ∗g (G) of Tg(G), that is 〈dX i,Xj〉 := δij .

Then, we state the mentioned criterion by Duits et al. [2011, Eq. (7) & App. E].
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Proposition 6.55. Let {Ai}6
i=1 denote the left-invariant basis of SE(3) given in Example 6.52.

A metric tensor T on SE(3) is left-invariant and well-defined on the left coset space R
3
�S

2 if
and only if

T(�v,R) =
6∑
i,j=1
pij(�v,R)dAi|(�v,R)⊗dAj |(�v,R), (�v,R) ∈ SE(3),

with constants

{pij(�v,R)}ij ≡ {pij}ij = diag{p11,p11,p33,p44,p44,0} (6.29)

for all (�v,R) ∈ SE(3).

Here, p6j and pj6 are set to zero for j ∈ {1, ...,6} in order to avoid possible short cuts via the

direction of the left-invariant vector field A6 associated to the rotation angle α.

Next we present a distance function on a linear Lie group G which resembles the well-known

L2-norm. As it turns out, this distance is in accordance with the above criterion.

Definition 6.56. Let G be a connected linear Lie group with algebraic basis B′ := {Ai}d′i=1 of
left-invariant vector fields. For τ > 0, we set

C(τ) := {φ : [0,1]→G absolutely continuous with φ̇(s) =
d′∑
i=1
φi(s)Ai|φ(s)

almost everywhere and
∫ 1

0

⎛⎝ d′∑
i=1
φi(s)2

⎞⎠1/2

ds≤ τ}.

Then, for g1,g2 ∈G, we define the distance

Δ(g1,g2) := inf{τ > 0 : there is a curve φ ∈ C(τ) with φ(0) = g1 and φ(1) = g2}

and the corresponding norm

|.| :G→ [0,∞) with |g| := Δ(g,e).

For further details concerning this norm, we refer the reader to Dungey et al. [2003, §II.4].

In [Jost, 2011, Lem. 1.4.1] and [Dungey et al., 2003, §II.4], Δ is introduced as the natural

definition of a distance on any connected Lie group G or, more general, on any manifold G. It
is called Carnot-Carathéodory distance [Varopoulos et al., 1992, §III.4], and the corresponding

norm |.| is known as Riemannian 2-norm [Duits, 2005]. The proof of the following lemma is

given in Section 6.7.

Lemma 6.57. Recall the notations of Definition 6.56 with G= SE(3), d′ = 5, and {Ai}5
i=1 as

in Example 6.52. The distance Δ : SE(3)×SE(3)→ [0,∞) in Definition 6.56 is symmetric,
satisfies the triangle inequality, and locally dominates the Euclidean distance induced by a
chart. Additionally, it is well-defined on the left-coset space R

3
�S

2 and left-invariant. For Δ
and |.| as in Definition 6.56, we get

Δ(g1,g2) = |g−1
2 ·SE(3) g1|, g1,g2 ∈ SE(3).
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The distance Δ is defined via integral curves. For practical application, a local approximation

is more feasible. Following Dungey et al. [2003, II.4.17], we introduce some norms, using an

algebraic basis of the corresponding Lie algebra g. Here, we concentrate on the coordinates of

the second kind, which lead to simpler formulas than the coordinates of the first kind.

Definition 6.58. Let G be a connected linear Lie group with Lie algebra g and exponential
function exp : g→G. We consider the basis B := {Ai}di=1 of left-invariant vector fields with
weights

wi := j if Ai ∈ gj \gj−1,

where g0 := ∅, g1 := {Ai}d′i=1 denotes some algebraic basis of g and gl := gl−1∪ [gl−1,gl−1]
for all l ∈ {2, ..., r} with gr = g. Then, we define the norms ‖.‖k :G→ [0,∞) by∥∥∥∥∥

d∏
i=1

exp(ζiAi)
∥∥∥∥∥
k

:=
(
d∑
i=1
|ζi|k/wi

)1/k

, where k ∈ {1}∪2N.

For the last result of the following proposition, we assume the Lie group G to be nilpotent

[Dungey et al., 2003, Eq. (II.1)].

Definition 6.59. Let G be a connected linear Lie group with Lie algebra g. The lower central
series of g is given as

g1 = g and gj+1 = [g,gj ] .
Then, the Lie algebra g and its Lie group G are called nilpotent if gr = {0} for some r ∈ N.

Proposition 6.60. Using the notation from Definitions 6.56 and 6.58, we get the following
properties.

1. For all k,k′ ∈ {1}∪2N, there is some constant c > 0 which satisfies

c−1 ‖X‖k ≤ ‖X‖k′ ≤ c‖X‖k for all X ∈ g.

2. Let B1 and B2 denote distinct bases of g. Then, the associated norms |.|(1) and |.|(2) are
equivalent. In other words, there is some constant c > 0 with

c−1|g|(1) ≤ |g|(2) ≤ c|g|(1) for all g ∈G.
3. Suppose the linear Lie group G to be simply connected and nilpotent. Then, for all
k ∈ {1}∪2N there is some constant c > 0 with

c−1 ‖g‖k ≤ |g| ≤ c‖g‖k for g :=
d∏
i=1

exp(ζiAi),

where the first inequality is restricted to the case that |g| ≥ 1.

For the proofs of assertions (2) and (3) with k = 1, we refer the reader to Dungey et al. [2003,

II.4.1 and II.4.17]. The generalization of the latter for k ∈ 2N and assertion (1) hold since
1
2(|a|+ |b|)2 ≤ a2 + b2 ≤ (|a|+ |b|)2 for all a,b ∈ R. This leads, for every k ∈ N, to the

existence of some constant c > 0 which satisfies

c−1
(
d∑
i=1
|ζi|2k/wi

)1/(2k)

≤
d∑
i=1
|ζi|1/wi ≤ c

(
d∑
i=1
|ζi|2k/wi

)1/(2k)

.

For dMRI data, a slight modification of the distance Δ in Definition 6.56 is recommendable

as discussed in § 6.2.1. There, we introduced an additional parameter κ in order to balance

between spatial and spherical smoothing.
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Definition 6.61. Let {Ai}6
i=1 denote the left-invariant basis of SE(3) given in Example 6.52.

For τ,κ > 0, we set

Cκ(τ) := {φ : [0,1]→ SE(3) absolutely continuous with φ̇(s) =
5∑
i=1
φi(s)Ai|φ(s)

almost everywhere and
∫ 1

0

( 3∑
i=1
|φi(s)|2 +κ−2

5∑
i=4
|φi(s)|2

)1/2

ds≤ τ}.

Then, for g1,g2 ∈ SE(3), we define

ΔSE(3),κ(g1,g2) := inf{τ > 0 : there is a curve φ ∈ Cκ(τ) with φ(0) = Mg1 ,φ(1) = Mg2}
and |g1|SE(3),κ := ΔSE(3),κ(g1,e), where we used the matrix representation Mg of g ∈ SE(3) in
Equation (6.26) (page 104).

Corollary 6.62. Using the notation in Proposition 6.55, the distance ΔSE(3),κ in Definition 6.61
can be described by a metric tensor with constants {pij}i,j := diag{1,1,1,κ−2,κ−2,0}. The
associated norm |.|SE(3),κ induces, via the embedding of R

3×S
2 into SE(3), a left-invariant

distance Δ(R3×S2),κ : (R3×S
2)× (R3×S

2)→ [0,∞). For all gi = (�vi,�ui) ∈R
3×S

2, i= 1,2,
this distance is given by

Δ(R3×S2),κ(g1,g2) := |
(

R−1
�u2

(�v1−�v2),R−1
�u2

R�u1

)
|SE(3),κ,

where R�ui ∈ SO(3) is any rotation with R�ui�ez = �ui as introduced in Proposition 6.18.

The distance Δ(R3×S2),κ is defined on R
3× S

2, and it satisfies all required properties. For

practical application, it will be approximated by the norm ‖.‖2 given in Definition 6.58. Here,

the additional constant κ can be interpreted as a change of coordinates, setting

Âi :=
{
Ai if i= 1,2,3,
κAi if i= 4,5,

and

Â6 :=
[
Â4, Â5

]
= κ2 [A4,A5] = κ2A6.

Then, {Ai}6
i=1 and {Âi}6

i=1 span isomorphic Lie algebras, and it holds

6∑
i=1
ρ̂iÂi =

6∑
i=1
ρiAi and

6∏
i=1

exp
(
ζ̂iÂi

)
=

6∏
i=1

exp(ζiAi)

with

ρ̂i :=

⎧⎪⎪⎨⎪⎪⎩
ρi if i= 1,2,3,
κ−1ρi if i= 4,5,
κ−2ρi if i= 6,

and ζ̂i :=

⎧⎪⎪⎨⎪⎪⎩
ζi if i= 1,2,3,
κ−1ζi if i= 4,5,
κ−2ζi if i= 6.

(6.30)

We introduce the following notation.

Notation 6.63. Let Mg, g ∈ SE(3), be the matrix representation of SE(3) in Equation (6.26)

(page 104), and let {Ai}6
i=1 denote the left-invariant basis matrices given in Example 6.52

(page 117). For g1,g2 ∈ R
3×S

2 with gi = (�vi,�ui), i= 1,2, we define the distance

Δκ(g1,g2) := inf

⎧⎨⎩
( 3∑
i=1
ζ2i +κ−2(ζ24 + ζ25 + |ζ6|)

)1/2

:
6∏
i=1

exp(ζiAi|ĝ) = Mĝ

⎫⎬⎭ , (6.31)

where ĝ :=
(

R−1
�u2

(�v1−�v2),R−1
�u2

R�u1

)
∈ SE(3) with R�u�ez = �u.
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This can be considered as an ad-hoc approximation of the modified Carnot-Carathéodory

distance Δ(R3×S2),κ in Corollary 6.62, using the change of coordinates in Equation (6.30).

Recall that this distance has been proven to be left-invariant and well-defined on the left coset

space R
3
�S

2. The following considerations justify this rough approximation to some extent.

In Proposition 6.60 (3), we stated, for nilpotent Lie groups, the equivalence of the Carnot-

Carathéodory distance Δ and the norms ‖.‖k, k ∈ {1}∪2N, in Definition 6.58. These norms

remind of the well-known Lp-norms, where p= 2 is often preferred since L2 forms a Hilbert

space. To some extent, the missing nilpotence of SE(3) can be compensated by a homogeneous

contraction, providing a nilpotent group (SE(3))0 which locally approximates SE(3), see
Dungey et al. [2003, §II.6, § IV], Duits and van Almsick [2008], Duits et al. [2011], and ter Elst

and Robinson [1998]. However, a detailed proof of the relation between Δ and ‖.‖2 is much

beyond the scope of this study as it requires sophisticated concepts of differential geometry.

Below, we will see that Equation (6.31) is closely related to the geodesics on R
3 and S

2. This
follows by a slight modification, which will be motivated by the following computations.

We determine the coordinates {ζi}6
i=1 with

6∏
i=1

exp(ζiAi|ĝ) =
(

R(α̂,β̂,γ̂) v̂
T

0 0 0 1

)
= Mĝ ≡ ĝ =

(
R−1
�u2

(�v1−�v2),R−1
�u2

R�u1

)
.

In Lemma 6.57, we proved the Carnot-Carathéodory distance to be well-defined on the left

coset space R
3
�S

2. Supposing that the approximation Δκ inherits (locally) this property, we

can freely choose αi ∈ (−π,π]. Hence, we set α1 = α2 = α̂= 0, yielding, for the left-invariant

basis {Ai|g}6
i=1, an easier form than given in Example 6.52 (page 117). Then, it holds

v̂ = R−1
(0,β2,γ2)(�v1−�v2),

β̂ = arcsin[sinβ1 cosβ2− cosβ1 sinβ2 cos(γ1−γ2)],
γ̂ = arcsin[cosβ1 sin(γ1−γ2)(cos β̂)−1].

Furthermore, we get

3∏
i=1

exp(ζiAi|ĝ) =
(

1 R(0,β̂,γ̂) · (ζ1, ζ2, ζ3)T
�0T 1

)

and
6∏
i=4

exp(ζiAi|ĝ) =
(

N(ζ4,ζ5,ζ6) �0
0 0 0 1

)
,

where N(ζ4,ζ5,ζ6) denotes an appropriate matrix which only depends on

A4|ĝ = (cos β̂)−1X4− tan β̂X6, A5|ĝ = X5, A6|ĝ = X6.

It follows

(ζ1, ζ2, ζ3)T = R−1
(0,β̂,γ̂)v̂ = R−1

(0,β1,γ1)(�v1−�v2)

and consequently
3∑
i=1
ζ2i = ‖R−1

(0,β1,γ1)(�v1−�v2)‖2 = ‖�v1−�v2‖2 (6.32)

since RT = R−1 for all R ∈ SO(3). The equation N(ζ4,ζ5,ζ6) = R(0,β̂,γ̂) is solved numerically,

yielding the coordinates ζ4, ζ5 and ζ6 by minimizing ζ24 + ζ25 + |ζ6| over the set of solutions.
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6.4.3 Second proposal for a distance on the measurement space of dMRI

The results in the last subsection motivate the definition of a simplified distance on R
3×S

2.
This accelerates the algorithm, and it avoids artifacts which may appear for our first proposal Δκ
in Notation 6.63 as this is a rough approximation of the left-invariant and well-defined Carnot-

Carathéodory distance only.

The Euclidean metric in Equation (6.32) as a distance in the voxel space complies with our

intuition, but the term ζ24 + ζ25 + |ζ6| violates the required rotation invariance in the gradient

space, see Figure 6.13. Hence, we replace this term by the squared great circle distance, which

equals the spherical geodesics [Jost, 2011, §1.4 pp. 25–27]. This distance is given by the radian,

that is the arc length between the vectors �u1,�u2 ∈ S
2 on the corresponding unit circle

dS2(�u1,�u2) := arccos〈�u1,�u2〉 ∈ [0,π),

where 〈.., .〉 denotes the Euclidean scalar product, and the range of arccos is restricted to [0,π),
considering the real axis modulus π. In general, for dMRI data, one does not distinguish between

one direction �u and its opposite −�u as justified by the (approximate) symmetry of the diffusion

process. Therefore, we take the absolute value of the scalar product in dS2 , leading to the

bijective function arccos : [0,1)→ [0,π/2). Additionally, the distance was implemented, using

the L1-analog instead of the L2-analog by just summing the corresponding metrics of R
3 and S

2,
respectively. Other choices would be possible as well, since this choice has minor impact on the

results. Finally, we introduce the following notation.

Notation 6.64. For g1,g2 ∈ R
3×S

2 with gi := (�vi,�ui), i= 1,2, we set

δκ(g1,g2) := ‖�v1−�v2‖+κ−1 arccos |〈�u1,�u2〉|.

Disregarding the additionally introduced absolute value, the same distance function was proposed

by Hagmann et al. [2006]. The distance δκ in Notation 6.64 does not rely on the embedding

of R
3×S

2 into SE(3). Therefore, it is not necessary that it is well-defined with respect to the

embedding, but we still require left-invariance. The following theoretical properties justify the

appropriateness of the distance δκ. The associated proof is given in Section 6.7.

Proposition 6.65. The function δκ : (R3× S
2)× (R3× S

2) → [0,∞) in Notation 6.64 is a
left-invariant pseudometric on R

3×S
2 in terms of Notation 6.36. In particular, it holds

δκ [g1,g2] = 0 if and only if g1 = g2 or g1 = (�v,�u) and g2 = (�v,−�u).

Recall that, in contrast to a metric, a pseudometric allows the case δκ(g1,g2) = 0 with g1 �= g2.
In Figure 6.13, we compare our two proposals, Δκ in Notation 6.63 and δκ in Notation 6.64.

This shows that Δκ violates the required rotation invariance on the gradient space, yielding

different results for pairs of gradients with a constant angle. This gets worse the larger the

distance Δκ.

6.5 Numerical results

We applied the algorithms POAS and msPOAS to simulated and experimental dMRI data. First,

we will describe the considered data sets and applied methods, before showing the smoothing

results in § 6.5.3. A detailed discussion can be found in Section 6.6.
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6.5 Numerical results
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Figure 6.13: Pairwise scatterplot of the distances δκ and Δκ for κ= 0.5. We concentrate on the spherical

parts of the two distances, setting ‖�v1−�v2‖= 0. The distance δκ equals by definition the angle between

two gradients, which is rotation invariant as established in Proposition 6.65. In contrast, Δκ takes

different values for varying pairs of gradients with constant angle. Each point corresponds to a gradient

pair out of 150 gradients. The line where δκ equals Δκ is shown in red. Recall that the range of δκ equals

[0,π/2), while Δκ can take larger values.

6.5.1 Data

In this subsection, we describe the simulated and experimental data in more detail. First, we

investigated two artificial diffusion-weighted data sets by J. Polzehl (WIAS Berlin), where a

receiver coil system with L′ = 8 coils is mimicked. We emphasize that the data generation by

a specific diffusion model, see § 6.1.3, does not work in favor of (ms)POAS since the model

does not effect the smoothing procedure. The experimental data contain one single-shell and

one multi-shell data set. Both data sets have a very low signal-to-noise ratio due to their high

spatial resolution and the large b-value in the outer shell of the second data set.

Artificial data 1. For our first example, we consider a voxel space with 32×32×32 voxels.

The 42 gradient directions were chosen to minimize symmetrized Coulomb forces on a sphere

as proposed by Jones et al. [1999]. Using a tensor mixture model, see § 6.1.3 and Tabelow

et al. [2012], we created a data set with fiber bundles along the x- and y-coordinate axes. Each

bundle completely crosses the cube with a width of four voxels and intermediate areas between

the bundles of again four voxels width. Hence, there are 22528 voxels with two fiber bundles,

8320 voxels with one fiber bundle, and 1920 voxels without fibers. Single fiber bundles are

characterized by the typical diffusion tensor for white matter, choosing the eigenvalues as

(1.4,0.35,0.35) ·10−3 mm2/s, see Alexander et al. [2001]. The SNR equals 10. In Figure 6.16

(page 129), we show the exact data (a) and the noisy data (b).

Artificial data 2. For our second data set, we created signals for 32×32×11 voxels and again

42 gradient directions. In each voxel, we simulated two fiber directions by a tensor mixture

model of order two, again using prolate tensors with eigenvalues (1.4,0.35,0.35) ·10−3 mm2/s.
The data are separated into two homogeneous regions. The volume fractions of the fibers in

the first region are 0.4 and 0.6, where the tensors are oriented along the x- and y-axes. In the

second region, the volume fractions equal 0.5, and the tensor orientations are chosen such that

both regions coincide with respect to the corresponding diffusion tensor model. Hence, the two

regions contain different fiber crossings which yield the same tensor when fitting a diffusion

tensor model to noiseless data. This is the worst case for smoothing methods which use the
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diffusion tensor model for adaptation. Here, we simulated an SNR equal to 32. The data set is

shown in Figure 6.17 (page 130) for exact data (a) and for noisy data (b).

Experimental data 1 (single-shell). Our first experimental data set was provided by A. An-

wander and R.M. Heidemann (Max Planck Institute for Human Cognitive and Brain Sciences,

Leipzig, Germany). The technical details are the following. The MR experiment was per-

formed on a 7T whole body MR scanner (MAGNETOM 7T, Siemens Healthcare, Erlangen,

Germany). For signal reception, a single channel transmit with a 24-channel receive phased

array head coil (Nova Medical, Wilmington, MA, USA) was used. The scans were performed

on a healthy adult volunteer in one session. Written informed consent was obtained in ac-

cordance with the ethical approval from the University of Leipzig. The data were acquired,

using an optimized monopolar Stejskal-Tanner sequence [Morelli et al., 2010] together with

the ZOOPPA approach by Heidemann et al. [2012]. Here, 91 slices were measured with 10%
overlap and 800μm isotropic resolution at a field-of-view (FoV) of 143× 147mm2, setting
TR= 14.1s, TE= 65ms, BW= 1132Hz/pixel, and ZOOPPA acceleration factor 4.6. For

diffusion-weighting, 60 diffusion-weighting gradients were applied at a b-value of 1000s/mm2.
Additionally, seven interspersed S0-images were acquired. For averaging, the scan was repeated

four times, leading to a total acquisition time of 65 minutes.

Experimental data 2 (multi-shell). Our second experimental data set was acquired by N.

Weiskopf and S. Mohammadi (Wellcome Trust Centre for Neuroimaging, London, UK) on a

3T MAGNETOM Trio scanner (Siemens AG, Healthcare Sector, Erlangen, Germany). One

healthy adult volunteer participated in the study approved by the local ethics committee after

giving written informed consent. Here, a reduced field-of-view technique by Heidemann et al.

[2010] was used, considering 161× 58mm centered about the motor cortex. Measuring 34
slices of 1.2mm slice thickness with 10% gap, this resulted in an isotropic in-plane resolution

of 1.2mm. For diffusion-weighting, two different b-values were applied, b= 800s/mm2 and

b = 2000s/mm2, each with 100 gradient directions as suggested by Caruyer et al. [2011].

Additionally, 21 interspersed S0-images were acquired. The total scan time was 22 minutes,

setting TR= 6.1s, TE= 97ms.

6.5.2 Methods

The artificial data sets were smoothed by the POAS method. To the experimental data, we

applied both methods, POAS and msPOAS. The algorithm (ms)POAS requires the effective

number of coils L′ ∈ N and the noise standard deviation σ > 0 to be homogeneous and known.

The former is very difficult to estimate from the data. Fortunately, (ms)POAS is relatively

robust against misspecification of L′ as we will show in Figure 6.20 (page 133). For the first

experimental data set, we mimicked an average influence of two coils, setting L′ = 2. For the
second experimental data set, we compared the results of msPOAS for L′ = 1,4,16, and we

applied POAS with L′ = 4. The standard deviation σ was estimated by the method described

in [Becker et al., 2012, App. C]. These estimates are rather independent of L′, consistently
yielding values around 75 for the first data set and values around 30 for the second data set. A

comparison with the methods "Bk-M1-χ" and "Bk-M2-χ" in [Aja-Fernández et al., 2009] can

be found in [Becker et al., 2013, §3.2]. On the single-shell data, POAS was applied with σ = 66
since this value resulted from a previous variance estimation in [Becker et al., 2012].

The method parameters were fixed in agreement with § 6.2.2. For all examples, we set h(0) = 1.
For the experimental data, we used k∗ = 12, while the first artificial example was stopped at

k∗ = 18 and the second one at k∗ = 25. The balancing parameter κ0 was chosen in dependence
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of the mean number of gradient directions per q-shell, where 0.5 for the first and 0.3 for the

second data set have shown best performance of msPOAS. For POAS, we increased the first

value since Δκ yields (on average) larger values than δκ, especially for large angles between the

involved gradients, see Figure 6.13 (page 123). Therefore, we used for POAS κ0 = 0.6 for the

first and κ0 = 0.3 for the second experimental data set. To the artificial data sets, we applied

POAS with κ0 = 0.6.

We will see in § 6.5.3 that the choice of the adaptation bandwidth given by the propagation

condition is almost robust against the number of applied diffusion-weighting gradients and

the degrees of freedom 2L′. For msPOAS, we used, for all data sets, the bandwidth λ = 20.
Recall that the implementation of the propagation condition in the R-package dti by Tabelow

and Polzehl [2013] is based on the msPOAS procedure, see Algorithm 3 (page 97), using the

simplified approximation of the Kullback-Leibler divergence in Equation (6.19) (page 98), the

modified distance in Notation 6.64, and a weighted arithmetic mean for the estimator. For this

reason, we did not choose the adaptation bandwidth of POAS by the propagation condition.

Instead, we used the value of λ which provided optimal results of POAS such that a fair

comparison between POAS and msPOAS could be made. More precisely, we set λ= 6 for the

multi-shell data, while using λ= 10 for the first experimental and both artificial data sets.

For comparison, we additionally applied the structural adaptive smoothing method by Tabelow

et al. [2008], which can be considered as a previous version of POAS. It is as well based on

the Propagation-Separation Approach, using the diffusion tensor model for adaptation and the

Euclidean metric in the voxel space for location. We applied this method to the second artificial

and the first experimental data sets in order to show how (ms)POAS outperforms this previous

approach. Here, we used the default parameters of the implementation in the R-package dti,
setting λ := 25 and hmax := 4 as an upper bound of the location bandwidth h(k∗) for the artificial
example and hmax := 3 for the experimental data. In order to avoid confusion, we refer to this

method as DTI-smoothing since it is based on the diffusion tensor model.

The results are presented in various forms. For the first artificial and the first experimental

data sets, we estimated the diffusion tensor model, see § 6.1.3, using a non-linear method by

Polzehl and Tabelow [2009]. Here, we show the corresponding color-coded FA maps, where the

fractional anisotropy (FA) is defined in Equation (6.4) (page 87), and the three colors, namely

red, blue, and green, refer to the main fiber direction. The second artificial data set is illustrated

via the resulting orientation distribution functions (ODF) estimated in a tensor mixture model

[Tabelow et al., 2012]. Here, other models could have been chosen for visualization with

similar results. For the second experimental data set, we present the diffusion-weighted images.

Additionally, we calculated fiber tracks, using a streamline FACT algorithm by Mori et al.

[1999], which is implemented in the package dti. Again, this is based on the diffusion tensor

model.

Further examples can be found in [Becker et al., 2012, 2013]. There, we additionally investigated

a phantom data set [Becker et al., 2012, Fig. 7] and the reduction of the mean angular deviation

in a 1-stick-1-ball model [Becker et al., 2013, Fig. 10] for the multi-shell data set described

above. For the single-shell data set, the original and smoothed diffusion-weighted images and

corresponding fiber tracks are presented in [Becker et al., 2012, Fig. 9&10]. Finally, we refer to

the univariate examples in Figures 5.12 (page 74) and 5.13, where we illustrated the general

behavior of the Propagation-Separation Approach in the case of non-central chi-distributed

observations. The algorithm differs from msPOAS only by the implemented design spaces and

the corresponding distances.

125



Application to magnetic resonance imaging

For data preprocessing, motion and eddy-current correction of the second experimental data set,

we applied SPM by Friston et al. [2006] and the ACID-toolbox by Mohammadi et al. [2010].

To the first experimental data set, we did not apply any method for pre-processing, instead we

used the raw data. The computations of (ms)POAS, the DTI-smoothing method by Tabelow

et al. [2008], the diffusion tensor estimates, the FA maps, the fiber tracks, and the propagation

condition were performed with the R-package dti by Tabelow and Polzehl [2013], see also

Polzehl and Tabelow [2011]. In this implementation, processing of the second experimental

data set by msPOAS took 15 minutes on a single core of a HP SL390s compute server with an

Intel Xeon, Six-Core 3467 MHz. Applying POAS to each shell separately required more than

one hour. The single-shell data set is much larger. Here, msPOAS used 3 hours and 18 minutes,

while POAS required 4 hours and 37 minutes computation time on a single core of the same

machine. The implementation is parallelized, using OpenMP. This significantly speeds up the

computation compared with the mentioned single core results.

6.5.3 Results

First, we consider the results of the propagation condition for the choice of the adaptation

bandwidth λ, that we described in § 6.2.2. The R-package dti provides by the function

dwi.smooth.testprop plots of the isolines of the probability p with respect to the iteration

steps k= 0, ...,k∗ and the corresponding values z = Zλ(k,p,θ0,m), wherem ∈R
3×S

2 is fixed

and θ0 denotes the homogeneous non-centrality parameter on the simulated S0-image. The

isolines are plotted for all p∈ {v ·10−w : v= 1,2,5,w= 1,2,3,4,5}. Therefore, the propagation
levels, which we report in the following, are restricted to this set of probability values.

In Figure 6.14, we illustrate the results of our final choice λ= 20, using the same parameters (if

possible) as for our experimental data sets. More precisely, we simulated single-shell data with

b-value b1 = (1000) and gradn = 60 diffusion-weighting gradients. Additionally, we simulated

multi-shell data with b2 = (800,2000) and gradn = 100 gradients on each q-shell. The voxel

space was created with an isotropic extension of n= 80, providing n3 = 512000 voxels. Then,

we set κ0 = 0.5 for the single-shell and κ0 = 0.3 for the multi-shell data. The maximal number

of iterations k∗ := 20 is larger than for our subsequent examples in order to ensure a reliable

propagation level. The effective number of receiver coils was chosen as L′ = 2 and the non-

centrality parameter of the S0-image as θ0 = 16, which yields θb = (4.36) for b= (1000) and

θb = (5.66,1.19) for b= (800,2000), respectively.

For λ = 20, the resulting propagation level of the single-shell data equals ε0 ≈ 5 · 10−5 for

the S0-image and εb ≤ 10−5 for the diffusion-weighted image at b-value b1 = (1000). For the
multi-shell data, we got the same values, that is ε0 ≈ 5 ·10−5 for the S0-image and εb ≤ 10−5

for the combined diffusion-weighted image at b-values b2 = (800,2000), see Equation (6.21)

(page 100). Note, that the slight increase of the z-values can be neglected. Probably, it results

from the approximation of the considered probabilities P( ∑
b∈B0
N

(k)
m,bKL(θ̃(k)b (m,λ),θb)> z).

Next we evaluate the variability of the propagation level with respect to the fixed parameter θ0,the
effective number of receiver coils L′, the realization of the sample given by the argument

seed, the number of diffusion-weighting gradients gradn per q-shell, and the number of q-
shells. The corresponding results are summarized in Table 6.1. Here, we consider a varying

number of q-shells, choosing b1 = (800), b2 = (800,2000), b3 = (800,1400,2000), and, in the

Subtables (a) and (b), b′1 = (2000). If not mentioned differently, the other parameters were

fixed at λ = 15, θ0 = 16, gradn = 60, κ0 = 0.5, L′ = 2, and seed = 1. In the Subtables (a)
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Figure 6.14: Results of the propagation condition (f.l.t.r): Single-shell data on the S0- and the Sb-images,

multi-shell data on the S0- and the combined Sb-images. The isolines of the probability p for values
between 10−5 and 0.5 are plotted with respect to the iteration steps k = 0, ...,k∗ and the corresponding

values z = Zλ(k,p,θ0,m), where θ0 := 16 andm ∈ R
3×S

2 is fixed.

and (b), we report pairs of values (εb,p∗), where p∗ equals the minimal probability which

satisfies Zλ(k∗,p,θ0,m)≈ Zλ(0,p,θ0,m), where the corresponding isoline does not need to be

non-increasing. This generalized propagation level is usually sufficient for practical purposes.

In the Subtables (a) and (b), we report both propagation levels, εb and ε0. Else, we concentrate

on the propagation levels εb of the (combined) diffusion-weighted images since (ms)POAS is

constructed especially for smoothing on R
3×S

2. In the Subtables (e) and (f), we adjusted κ0
in dependence of gradn in order to enable a fair comparison. Pursuant to § 6.2.2, we used

the formula κ0 = arccos(1−u/gradn), where u := 60[1− cos(0.5)]≈ 7.345 follows from our

default choices with gradn = 60 and κ0 = 0.5. Additionally, for gradn = 60, we study the

robustness of the propagation level with respect to κ0 by reporting the propagation levels for the

extreme choices κ0 = 0.01, where u≈ 0.003 and κ0 = 0.8, yielding u≈ 18.2. Recall that very

small values of κ0 restrict (ms)POAS to smoothing on R
3.

We observe that the propagation level is quite robust against the fixed parameter θ0, the effective

number of receiver coils L′, the realization seed of the sample, and the number of diffusion-

weighting gradients gradn per q-shell. Only for varying numbers of q-shells and the choice

κ0 = 0.01, we get a certain variability of the corresponding propagation level. Therefore, we

recommend to choose the adaptation bandwidth on an artificial data set whose number of

q-shells and corresponding b-values correspond with the data at hand. Fortunately, these values

are usually known. The function Zλ(k,p,θ0,m), p ∈ {ε0, εb,p∗0,p∗b}, provided, for all examples,

values within the interval [3,10].

Before we present the smoothing results on the simulated and real data sets, we illustrate the

behavior of the distances on R
3×S

2 which we introduced in Section 6.4. For this purpose,

we show in Figure 6.15 the non-adaptive weighting schemes w
(k)
ij =Kloc(Δκ(m,n)/h(k)) of

the first experimental data set, where Δκ is as in Notation 6.63, and m = (�vm,�gm) is fixed.

The balancing parameter κ = κ0/h(k) and the location bandwidths {h(k)}k∗k=0 are chosen in

agreement with § 6.2.2. In order to demonstrate the impact of the balancing parameter and the
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θ0 8 32 160 1600

b1 (0.001,2 ·10−4) (0.001,2 ·10−4) (0.001,2 ·10−4) (0.001,2 ·10−4)
b′1 (2 ·10−4,5 ·10−5) (5 ·10−4,10−4) (5 ·10−4,10−4) (5 ·10−4,10−4)
b2 (0.001,5 ·10−4) (0.002,5 ·10−4) (0.002,5 ·10−4) (0.002,5 ·10−4)
b3 (0.005,0.001) (0.01,0.002) (0.01,0.002) (0.01,0.002)
b1 on S0 (5 ·10−4,10−4) (5 ·10−4,5 ·10−5) (5 ·10−4,5 ·10−5) (5 ·10−4,10−4)
b′1 on S0 (5 ·10−4,10−4) (5 ·10−4,5 ·10−5) (5 ·10−4,5 ·10−5) (5 ·10−4,5 ·10−5)
b2 on S0 (5 ·10−4,10−4) (5 ·10−4,5 ·10−5) (5 ·10−4,10−4) (5 ·10−4,10−4)
b3 on S0 (5 ·10−4,10−4) (5 ·10−4,5 ·10−5) (5 ·10−4,10−4) (5 ·10−4,10−4)

(a) (εb,p∗) with λ= 15 and varying θ0.

θ0 8 32 160 1600

b1 (10−5,10−5) (10−5,10−5) (10−5,10−5) (10−5,10−5)
b′1 (10−5,10−5) (10−5,10−5) (10−5,10−5) (10−5,10−5)
b2 (10−5,10−5) (10−5,10−5) (10−5,10−5) (10−5,10−5)
b3 (2 ·10−4,2 ·10−5) (5 ·10−4,5 ·10−5) (5 ·10−4,5 ·10−5) (5 ·10−4,5 ·10−5)
S0 (all bl) (5 ·10−5,10−5) (5 ·10−5,10−5) (5 ·10−5,10−5) (5 ·10−5,10−5)

(b) (εb,p∗) with λ= 20 and varying θ0.

seed 13 83 987 2407

b1 5 ·10−4 5 ·10−4 0.001 5 ·10−4

b2 0.001 0.001 0.001 0.001
b3 0.01 0.01 0.01 0.01

(c) εb with λ= 15 and varying realizations.

L′ 1 4 8 16

b1 5 ·10−4 5 ·10−4 5 ·10−4 5 ·10−4

b2 0.002 0.005 0.002 0.005
b3 0.005 0.005 0.005 0.005

(d) εb with λ= 15 and varying L′.

gradn 40 60 80 100 60 60 min max
κ0 0.616 0.5 0.432 0.386 0.01 0.8
b1 5 ·10−4 5 ·10−4 5 ·10−4 5 ·10−4 0.001 5 ·10−4 5 ·10−4 0.001
b2 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002
b3 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

(e) εb with λ= 15 and varying gradn.

gradn 40 60 80 100 60 60 min max
κ0 0.616 0.5 0.432 0.386 0.01 0.8

b1 10−5 10−5 10−5 10−5 10−4 10−5 10−5 10−4

b2 10−5 10−5 10−5 10−5 2 ·10−4 2 ·10−5 10−5 2 ·10−4

b3 5 ·10−5 5 ·10−5 5 ·10−5 5 ·10−5 5 ·10−4 5 ·10−5 5 ·10−5 5 ·10−4

(f) εb with λ= 20 and varying gradn.

Table 6.1: Propagation levels εb for the combined Sb-images, where the smallest reported propagation

level is 10−5. In the Subtables (a) and (b), we report pairs of values (εb,p∗), where p∗ equals the minimal

probability which satisfies Zλ(k∗,p,θ0,m) ≈ Zλ(0,p,θ0,m). Moreover, we give the corresponding

results of the S0-image.
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a) b) c) d)

Figure 6.15: Non-adaptive weighting schemes for a fixed point m = (�vm,�gm) ∈ R
3×S

2, using the

distance Δκ in Notation 6.63. The length of lines represents the weight, the direction corresponds to the

respective gradient direction �gn in n ∈ R
3×S

2, and the location follows from the Euclidean distance

‖�vm−�vn‖. From left to right: k∗ = 8 with κ0 = 0.3,0.7 (a+b), and κ0 = 0.5 with number of iterations

k∗ = 4,12 (c+d).

a) b) c) d)

Figure 6.16: Color-coded FA maps of the first artificial example a) for exact data, b) for noisy data,

c) after smoothing the noisy data with POAS, but using non-adaptive weights only, d) after smoothing

the noisy data with POAS, using adaptive weights.

behavior during iteration, we show the weighting schemes for several bandwidths and varying

values of κ0. The distance Δκ behaves as expected, yielding for all voxels with the same spatial

distance to voxel �vi the same amount of smoothing on the sphere. This amount decreases with

increasing spatial distance of the involved voxels. Within each voxel, we observe monotonically

decreasing weights on the sphere. This property can be violated for larger angles between the

involved gradients due to the missing rotation invariance of Δκ, see Figure 6.13 (page 123). The

same figure shows that the distances δκ and Δκ approximate each other if the angles between

the involved gradients are sufficiently small. Therefore, we do not show the weighting schemes

of the distance δκ, which look very similar to Figure 6.15.

Next we consider the results for the first artificial example. Figure 6.16 illustrates the corre-

sponding color-coded FA maps for a central slice of the exact, the noisy and the smoothed data.

For comparison, we additionally show the results of non-adaptive smoothing, where POAS was

applied, setting λ= 2e20. This clearly indicates a loss of information due to blurring.

In Figure 6.17, we concentrate on the difference between the POAS algorithm and the DTI-

smoothing method by Tabelow et al. [2008]. Here, we observe, for the second artificial data set,

that POAS removes the distortions by the noise without blurring the structural border, while

DTI-smoothing lacks sensitivity at the discontinuity, leading to similar results as non-adaptive

smoothing. We recall that this method uses the diffusion tensor model for adaptation. Therefore,

the two regions cannot be distinguished in this special situation. The differences between POAS

and the approach by Tabelow et al. [2008] can be quantified by estimating the standardized

mean absolute error of the smoothed signals S̃(k∗)(m) adjacent to the structural border, that

is |M|−1∑
m∈M |S̃(k
)(m)−ES(m)|/σ, where M is the set of all points m = (�vm,�gm) ∈
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c) d)

a) b)

Figure 6.17: Orientation distribution functions (ODF) of the second artificial example, estimated in

a tensor mixture model a) for exact data, b) for noisy data, c) after smoothing with POAS, d) after

DTI-smoothing.

k� 0 4 8 12 16 20 25 30

POAS 0.902 0.359 0.277 0.233 0.186 0.156 0.133 0.122

DTI-smoothing 0.902 0.446 0.291 0.241 0.240 0.250 0.264 0.272

Table 6.2: Standardized mean absolute error of the smoothed signals S̃(k∗)(m) adjacent to the structural

border for POAS and the DTI-smoothing method by Tabelow et al. [2008] with varying number of

iteration steps k∗.

R
3× S

2 where �vm is located next to the structural border, and |M| denotes its cardinality.

The results are summarized in Table 6.2. Recall that the mean absolute error provides better

robustness than the mean squared error.

The first experimental data set is special due to its high spatial resolution which leads to a very

low SNR. In Figure 6.18, we show the color-coded FA maps of some axial slice. As for the

simulated data, we observe that POAS reduces the noise without blurring effect on borders (c).

The algorithm msPOAS provides very similar results (e), while the DTI-smoothing by Tabelow

et al. [2008] is not able to remove much of the noise (g). Obviously, the diffusion tensor model

fails for very low SNR. For comparison, we use the averaged image from the four repeated

scans as a kind of ground truth (d). By visual inspection, the smoothing results of POAS and

msPOAS compare well with the mean image of the repeated data, which required a four times

longer acquisition time. For further improvement of the SNR, we may smooth also the averaged

data, here shown after smoothing with POAS (b) and the DTI-smoothing (h). An alternative

smoothing method which we will discuss in § 6.6.5 is the Lohmann filter [Lohmann et al., 2010].

This was applied by the originators to the first experimental data set, see the result in (f).

Additionally, in Figure 6.19, we visualize the behavior during iteration, showing the results for

increasing iteration steps in a region of interest in the same slice as chosen for Figure 6.18. As

for the univariate examples in Section 5.3.5, we observe that the estimates are forced into the

local constant model for large iteration steps.

In Figure 6.20, we provide the results for the multi-shell data set, presenting the diffusion-

weighted images before and after smoothing with msPOAS and POAS. Simultaneously, we

demonstrate that the result of msPOAS is rather robust against misspecification of the effective

number of coils L′. The adaptive smoothing effect of msPOAS is apparent for both shells, while

separate application of POAS leads to blurring on the outer shell at b = 2000s/mm2 when
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a)

Single data - original

b)

Avg. data - POAS

c)

Single data - POAS

d)

Avg. data - original

e)

Single data - msPOAS

f)

Single data - Lohmann

g)

Single data - DTI-Sm.

h)

Avg. data - DTI-Sm.

Figure 6.18: Color-coded FA maps of the single-shell data in some arbitrarily selected slice.
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a) Original b) k� = 4 c) k� = 8 d) k� = 12

e) k� = 16 f) k� = 20 g) k� = 25 h) k� = 30

Figure 6.19: Visualization of the behavior of POAS during iteration for a selected region of interest from

the slice in Figure 6.18.

choosing λ = 6 for POAS, where the inner shell at b = 800s/mm2 resembles the msPOAS

results. Consequently, msPOAS indeed leads to improved results compared to the single-shell

POAS approach. This is additionally confirmed by Figure 6.21, where we show the fiber

track reconstructions for the multi-shell data after smoothing with msPOAS and POAS. After

msPOAS, the reconstruction of the fibers even with this very simple algorithm is much richer

than the one obtained from separate smoothing of each shell with POAS. The occurrence of the

U-Fibers at the outer parts of the fiber tracks after msPOAS coincide with the anatomic structure

in the brain.

6.6 Discussion of the application

We have developed a novel algorithm, called (ms)POAS, for noise reduction in diffusion-

weighted MRI data. In this section, we will discuss its properties, alternatives, and future trends.

First, we will summarize the advantages and challenges of our procedure. Then, we will analyze

the impact of the parameters, and we will compare the results of the single-shell position-

orientation adaptive smoothing method (POAS) with its generalization to multi-shell data,

namely msPOAS. The crucial point of our approach is the description of the diffusion-weighted

data as a standard orientation score, that is as a real valued function on the measurement space

R
3×S

2 of the (voxel) positions and (gradient) directions. Therefore, in § 6.6.4, we will consider

alternative perspectives on diffusion-weighted data. Moreover, we will give a brief overview of

the current smoothing methods for dMRI and their differences to (ms)POAS. We will close with

some proposals for future research.

6.6.1 Advantages and challenges of (ms)POAS

The power of POAS and msPOAS lies in their structural adaptivity. Both methods are based on

the Propagation-Separation Approach. In an iterative procedure they accumulate information on
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original

msPOAS (L′ = 1)

msPOAS (L′ = 4)

msPOAS (L′ = 16)

POAS

a)

b)

c)

d)

e)

Figure 6.20: Diffusion-weighted data for some arbitrarily selected slice of the multi-shell experiment

with b= 800s/mm2 (left) and b= 2000s/mm2 (right).

Figure 6.21: Fiber tracks of the multi-shell data after POAS (left) and msPOAS (right), using a FACT

algorithm. For better visibility, we only show fibers with a minimal length of 25 segments.
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the size and shape of the spatial structure at small scales and use this information to improve the

pointwise estimates at coarser scales. As a consequence, the noise reduction with (ms)POAS

avoids blurring by naturally adapting to the anisotropic structures observed in dMRI. This is

essential as dMRI aims to examine fine fibrous structures in the human body.

Another important strength of (ms)POAS is its independence of any diffusion model, see § 6.1.3

for an overview. It is applied to the diffusion-weighted data. Consequently, the procedure

does not introduce a bias towards any model, and it can be flexibly combined with the various

diffusion models for subsequent data analysis. Additionally, modeling benefits from smoothed

data since smoothing stabilizes modeling and avoids artifacts due to noise, see for example

Parker et al. [2000] and Tabelow et al. [2008]. Finally, modeling usually results in a loss of

information, which may complicate the adaptation.

(Ms)POAS forms a left-invariant operation since it is Euclidean invariant in the voxel space

and rotation invariant in the gradient space. In other words, standardization of the smoothed

MR image by Euclidean operations, that is rotation and translation, yields the same result as

smoothing of the standardized image. This is a common requirement for image processing

operations.

The conspicuous efficiency of (ms)POAS results from using the whole information of the

measurement space R
3× S

2. This enables a simultaneous smoothing in the voxel and the

gradient space. Especially in the first iteration steps, smoothing on the sphere considerably

stabilizes the procedure without blurring at structural borders. This makes the method feasible

for experimental data with a very low signal-to-noise ratio. In the case of high SNR, (ms)POAS

leaves the data almost unchanged as we demonstrated in Figure 6.18 (b). In Section 6.5, a series

of examples with simulated and experimental data illustrated the effectiveness of (ms)POAS.

As it turned out, the procedure yields similar results as the averaged image of repeated scans.

Therefore, the method (ms)POAS allows a reduction of acquisition time, while still providing a

similar data quality.

However, smoothing on the sphere possibly introduces a bias since extrema may be weakened.

Therefore, (ms)POAS benefits from a high number of applied diffusion-weighting gradient

directions, which limits the spherical bias and stabilizes adaptation in the first iteration steps. For

a low number of applied gradients, say less than 20, the parameter κ0 should be chosen such that

(ms)POAS restricts smoothing to the voxel space. This requires a sufficient image contrast to

compensate for the missing stabilization of adaptation by spherical smoothing. The multi-shell

procedure msPOAS additionally benefits from sampling different q-shells. Particularly for large

b-values, the additional information from the inner q-shells improves adaptation. On the one

hand, application of identical gradient schemes for all b-values renders spherical interpolation
unnecessary, which allows to accelerate the method. On the other hand, varying gradient

schemes provide a higher spatial resolution, although the interpolation of missing values may

slightly bias the statistical penalty.

We should critically discuss the assumption of statistically independent data. Many methods for

pre-processing use registration to compensate for artifacts which are caused by motion and eddy

currents, for instance. The registration matches via affine transformations and interpolation

different slices, scans, or brains in order to provide comparability [Mohammadi et al., 2010].

Generally, this introduces spatial correlation, but it avoids spurious discontinuities, which

(ms)POAS could identify in the case of unregistered data. In our experience, (ms)POAS benefits

from registered data, while the effects of the spatial correlation seem to be negligible. A

combination of registration methods with (ms)POAS could further improve the results since

registration and adaptive smoothing may benefit from each other.
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Another questionable assumption is the structural assumption of the underlying Propagation-

Separation Approach, which supposes a locally constant model. This is certainly not satisfied, but

it can be considered as approximation of a piecewise polynomial model, which is more realistic.

The univariate example in Figure 5.12 (page 74) of a piecewise polynomial parameter function

with non-central chi-distributed observations shows that the Propagation-Separation Approach

forces the estimation function into a step function if the maximal location bandwidth h(k∗) is
sufficiently large. A similar behavior can be observed for (ms)POAS in Figure 6.19 (page 132),

where we consider the behavior of the estimator during iteration in a region of interest of the first

experimental data set. The same figures also show that intermediate steps of the iteration yield

good results in accordance with the locally polynomial model. As in Section 5.4, we conclude

that an appropriate choice of k∗ might improve the results. Usually, it is distinguishable by

visual inspection of the diffusion-weighted images whether the algorithm reduces noise, or

whether it started to create artificial steps in order to force the smoothed estimation function

into the locally constant model. The numerical results suggest that, even without stopping, the

estimation bias is bounded by the resulting step function for large values of k∗.

As mentioned in § 6.1.3, there are many voxels which contain crossings of several fiber bundles

with distinct directions. In this case, the measured signal is determined by all fibers present in the

respective voxel. This leads to different signal intensities in voxels with varying numbers of fiber

directions. Hence, at best, a homogeneous region as detected by (ms)POAS includes all voxels

which contain a certain combination of fiber directions, which is a subset of all voxels which

contain one of the involved fiber bundles completely. This reduces the size of the homogeneous

regions and consequently the amount of smoothing in comparison with the unrealistic situation

where we had complete knowledge of the partial volume effects. Nevertheless, (ms)POAS

avoids blurring at these structural borders with the only effect of a non-optimal amount of

smoothing.

6.6.2 Impact of the parameters

In § 6.2.2, we specified the choices of the various method parameters. Most of them can be

chosen in reasonable ranges without causing trouble if varied slightly. In the R-package dti
by Tabelow and Polzehl [2013], the kernel functions Kloc and Kad, the sequence of location

bandwidths {h(k)}k∗k=1, and the balancing parameter κ are fixed in agreement with § 6.2.2. Then,

we recommend to choose h(0) = 1, k∗ = 12, and κ0 ∈ (0,1) such thatNg(1−cos(κ0)) ∈ [5,10],
where Ng = ∑

b∈B
|Gb|/B denotes the mean number of applied gradients per shell.

In the following, we discuss the impact of the adaptation bandwidth λ and the data dependent

input parameters σ and L′, denoting the noise standard deviation and the effective number of

MR receiver coils, respectively. Recall that σ and L′ are used in the adaptive weights of the

estimator to determine the statistical penalty, which depends via the Kullback-Leibler divergence

on the probability distribution of the standardized observations S/σ. If σ and L′ are unknown,

they should be estimated separately by an appropriate method.

In this thesis, we assumed σ and L′ to be homogeneous over the voxel space. This assumption

may be violated, for instance, in the case of parallel imaging, whereL′> 1, see § 6.1.4. Basically,

(ms)POAS could be extended to heteroscedasticity as we will discuss in § 6.6.6. As we observe

in Figure 6.20 (page 133), (ms)POAS is relatively robust against misspecification of L′. This is
a very helpful property since L′ is usually unknown and even more difficult to estimate from the

data than the standard deviation.
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The adaptation bandwidth λ is the crucial parameter of the procedure. In § 6.2.2, we proposed a

choice given by the propagation condition. This choice is determined by the probability distribu-

tion of the observations as demonstrated in Chapter 3. In Table 6.1 (page 128), we observed that

the propagation condition is (almost) invariant with respect to the fixed parameter θ0. Therefore,
we can choose λ independent of the noise standard deviation σ, which only influences the

size of the true parameter function θ(.). Additionally, we observe in the same table that the

propagation condition is almost robust against the realization of the sample, the number of

applied diffusion-weighting gradients per q-shell, and the degrees of freedom 2L′. The latter

follows from the small impact of L′ in the Gaussian approximation of the Kullback-Leibler

divergence, see Equation (6.19) (page 98). Only the number of applied b-values noticeable

influenced the propagation level.

In the (ms)POAS algorithm, the adaptation bandwidth λ interacts with the standard deviation σ
since both parameters only appear in the adaptive weights, see Equations (6.15) (page 97)

and (6.16). More precisely, they influence the procedure in a similar manner. Therefore, to some

extent, a misspecification of σ can be balanced by a subsequent adjustment of λ. Similarly, a

data-dependent adjustment of λ can help to compensate possibly violated assumptions or other

uncertainties which may influence the procedure. Then, the choice of λ given by the propagation

condition serves as a starting point or, if the propagation level ε of λ is sufficiently small, as an

upper bound which covers the worst case.

6.6.3 Comparison of POAS and msPOAS

The method POAS is a special case of msPOAS, where a single b-value b≥ 0 is fixed. In contrast,

for smoothing of data with various b-values, we would apply POAS to each shell separately,

while msPOAS allows simultaneous smoothing of all shells. To our knowledge, msPOAS is the

first algorithm which combines information in position, orientation, and from all shells. This

includes an explicit coupling of the S0-image with the other shells. As a consequence, msPOAS

on single-shell data does not equal POAS, where the S0-image is smoothed separately.

The implementations of POAS and msPOAS in the R-package dti show additional differences

due to some changes which we introduced to improve and accelerate msPOAS compared to

the previously implemented POAS algorithm. Nevertheless, we emphasize that all resulting

differences between POAS and the restriction of msPOAS to a single-shell can be considered to

be exchangeable modules or building blocks of the procedure. This is an important feature of

the algorithm, which enables to meet specific properties of data. First, in the implementation

of msPOAS, we use another distance function, see Notation 6.64. This is a left-invariant

pseudometric, which ensures the Euclidean invariance in the voxel space and the rotation

invariance in the gradient space. Additionally, it is much simpler than the distance function

in the implementation of POAS, see Notation 6.63, which was based on the left-invariant

vector fields of the special Euclidean motion group SE(3). Second, we introduced a simplified

approximation of the Kullback-Leibler divergence which appears in the statistical penalty of

the adaptive weights. This can be considered as the symmetrized Kullback-Leibler divergence

between the approximating Gaussian distributions with coinciding first and second moments. It

considerably accelerates the computations, while also yielding better results than the numerical

approximation used in POAS, see Becker et al. [2012, App. B]. Additionally, the Gaussian

approximation motivated the usage of a weighted arithmetic mean in msPOAS instead of the

weighted quadratic mean for the estimator in POAS.
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The superiority of the multi-shell approach becomes obvious when comparing the results of

POAS and msPOAS on experimental data. Particularly for the multi-shell data set, msPOAS

outperforms POAS as shown in Figures 6.20 and 6.21 (page 133). Here, the large b-value in the

outer shell yields a considerable signal attenuation. As a consequence, discontinuities are scaled

down, while the noise levels are comparable. Obviously, the resulting very low SNR does not

suffice for successful adaptation by POAS. In contrast, msPOAS benefits from the high SNR on

the S0-image and the additional information of the inner shell. In Figure 6.18 (page 131), we

see, for a single-shell data set, that both procedures behave similar.

6.6.4 Alternative perspectives on diffusion-weighted data

The presented approach for adaptive smoothing of dMRI data is based on a specific perspective

on the data. In this chapter, we described the data by a standard orientation score, that is by a

real valued function on the measurement space R
3×S

2. To our knowledge, only McGraw et al.

[2009] followed the same approach, but they applied spatial and spherical smoothing separately.

Hagmann et al. [2006] and later on Duits and Franken [2011], Duits et al. [2011], Franken

[2008] and Jonasson et al. [2007] considered real valued functions on R
3×S

2 in order to derive

fiber tracks. However, these functions were derived from diffusion models which yield, for each

voxel, a real valued function on the sphere, such as the diffusion tensor or QBI, see § 6.1.3. In

contrast, we consider the diffusion-weighted images prior to any modeling. Of course, this is

not the only possible perspective on dMRI data.

For instance, we could restrict (ms)POAS to spatial smoothing by choosing the balancing

parameter κ0 sufficiently small. This coincides with a description of the data by the function

S(b,�g) : R
3 → R, where b ≥ 0 and �g ∈ Gb are fixed. It leads to a loss of efficiency due to the

missing stabilization of the adaptation by spherical smoothing and a smaller maximal achievable

variance reduction, as a consequence, of the reduced sample size. Hence, spatial smoothing

with fixed gradients requires a sufficiently high SNR. There again, we could restrict (ms)POAS

to spherical smoothing by choosing κ0 sufficiently large and h(0) sufficiently small. However,

spherical smoothing of dMRI data introduces a bias, which is compensated in (ms)POAS by the

increasing amount of spatial smoothing.

Alternatively, the diffusion-weighted data can be described as a map Sb : R
3 → (S2 → R). This

maps each voxel to a real valued function on the sphere, where the b-value b > 0 is fixed. Various

diffusion models are based on this description of the signal function, which allows voxelwise

estimation of quantities such as the diffusion tensor or the ODF in QBI. Tournier et al. [2004]

used it for voxelwise estimation of a certain fiber orientation density function by spherical

deconvolution via a spherical and rotational harmonic decomposition for regularization. These

approaches only use the voxelwise information. Nevertheless, this setting again combines

the whole information of the measurement space in position and orientation. Application of

the Propagation-Separation Approach would require the replacement of the Kullback-Leibler

divergence in the statistical penalty by a distance between functions on the sphere. Here,

one could follow the approach by Rozenholc et al. [2010] which is based on adaptive testing

[Spokoiny, 1996]. The approach can be extended to dMRI data of the above form, using

spherical wavelets as introduced, for instance, by Lounsbery [1995], and Schröder and Sweldens

[1995]. In comparison with (ms)POAS, the above description of the data is less efficient due to

the missing stabilization by spherical smoothing and probably smaller homogeneous regions as

the adaptation criterion is more restrictive. Therefore, we would not expect improved smoothing

results by describing the dMRI data in the form Sb : R
3 → (S2 → R).
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6.6.5 Other approaches for smoothing of diffusion-weighted MRI

The comparison of different smoothing methods for dMRI data is difficult. First, there have

been many proposals from different research areas, making it very hard, or even impossible,

to come to know of all of them. Second, many proposals are complex, and the associated

software is not always available. Third, all procedures should be applied to the same data

sets. Here, it is recommendable to consider a certain number of different settings with low

and high SNR, small and large sample sizes, varying numbers of applied diffusion-weighting

gradients, different numbers of MR receiver coils and so forth. However, experimental data and

in particular data with a specific setting are not freely accessible. Additionally, many procedures

are sensitive to the choice of parameters. Therefore, a fair comparison can often only be made in

cooperation with the originator. Finally, there is no general quality criterion. Several smoothing

methods induce artifacts, but their consequences for a subsequent modeling and analysis have

not been studied yet. The efficiency of the method, its capability of edge preservation, the

computation time, and the robustness of parameter choices are important aspects. Which one is

more important and how should they be weighted for a final rating?

In principle, we can state the following. As mentioned above, it is advantageous to smooth the

diffusion-weighted data before modeling. Among these smoothing methods, the Gaussian filter

is the most widely-used procedure in the neuroimaging community [Westin et al., 1999]. It is

easy to handle and has very short computation time. However, isotropic smoothing blurs the

fine structure observed in dMRI. This requires very small bandwidths which reduces efficiency.

In order to overcome this problem, many more sophisticated methods have been proposed.

There are several approaches using wavelets, where the choice of the applied wavelet basis is

crucial for the efficiency of the procedure [Anand and Sahambi, 2010; Delakis et al., 2007;

Nowak, 1999; Pizurica et al., 2006]. The corresponding algorithms are fast, but they introduce

artifacts which are known as Gibbs phenomenon. Therefore, they are often combined with

other methods to compensate for these artifacts [Lohmann et al., 2010; Manjón et al., 2008].

Similarly, the efficiency of Bayesian approaches mainly depends on the a priori assumption

[Awate and Whitaker, 2007]. However, they are very time consuming and computationally

demanding and therefore less widely-used. Other methods are based on the total variation norm

or modifications of it, see, for instance, Blomgren and Chan [1998], Guo and Huang [2009],

and Rudin et al. [1992]. McGraw et al. [2009] demonstrated that a total variation based scheme

for spatial smoothing of dMRI data benefits from previous spherical smoothing. Probably, a

coupling of spatial and spherical smoothing could further improve the results.

Anisotropic diffusion is often and successfully used for noise reduction of dMRI data, see Aja-

Fernández et al. [2009], Ding et al. [2005], Lysaker et al. [2003], Parker et al. [2000], and Perona

and Malik [1990]. This is also time consuming, although it is usually faster than the Bayesian

procedures. The results strongly depend on the stopping parameter since infinite diffusion

results in a homogeneous setting. Blurring of structural boarders is reduced, but cannot be fully

avoided. Admittedly, the anisotropy requires the calculation of derivative gradients, which may

fail in the case of a very low SNR. Heuristically, the Propagation-Separation Approach and, as a

consequence, (ms)POAS yield similar results as methods based on anisotropic diffusion without

the need for gradient values. Another possibility to overcome this problem was proposed by

Lohmann et al. [2010], where wavelet filtering and anisotropic diffusion are combined. Then,

the wavelet induced artifacts are compensated by subsequent anisotropic diffusion, which is in

turn stabilized by the previous wavelet smoothing. On the single-shell data set, the method by

Lohmann et al. [2010] yield similar results as (ms)POAS, see Figure 6.20 (page 133). On an

unpublished data set with even lower SNR, the (ms)POAS algorithm was the superior method.
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Finally, there are several procedures using non-local means [Aja-Fernandez et al., 2008; Buades

et al., 2005a; Coupé et al., 2008, 2013; Wiest-Daesslé et al., 2008] or non-local maximum

likelihood estimates [He and Greenshields, 2009; Rajan et al., 2011]. In Section 2.3, we com-

pared the Propagation-Separation Approach with the non-local means method. For smoothing

of diffusion-weighted MRI data, the Propagation-Separation Approach seems to be more in-

tuitive. It is constructed to detect discontinuities in a locally polynomial setting, providing

propagation within homogeneous regions and separation at structural borders. The adaptation

criterion of the non-local means method requires similar blockwise neighborhoods. For a

three-dimensional image with fine structure, this is a restrictive criterion, which possibly reduces

the maximal achievable variance reduction considerably without obvious benefit. In compar-

ison with weighted means, maximum likelihood estimates have the advantage of providing

the non-centrality parameter instead of the expected value. However, through an (estimated)

noise standard deviation σ and a known (or approximated) effective number of MR receiver

coils L′, the non-centrality parameters can be calculated by Equation (6.7) (page 90), using the

estimated expected value. Probably, this is more advantageous than direct estimation by the

computationally demanding maximum likelihood approach, which as well requires knowledge

of σ and L′.

The structural adaptive smoothing algorithm by Tabelow et al. [2008] is also based on the

Propagation-Separation Approach. Nevertheless, there are two important differences to the

(ms)POAS procedure. First, the method by Tabelow et al. [2008] is restricted to spatial smooth-

ing in the voxel space. Second, it uses the diffusion tensor model for adaptation. This leads

to a loss of information with the result that separation fails in certain situations as illustrated

in Figure 6.17 (page 130). Additionally, for a very low SNR, the estimation of the diffusion

tensor model becomes considerably unstable, which negatively affects smoothing as shown in

Figure 6.18 (c) (page 131).

In a nutshell, (ms)POAS can be considered as a very promising algorithm for the denoising

of diffusion-weighted MRI data. Its main drawbacks are its computation time, and that the

various mutual reactions in the underlying Propagation-Separation Approach can be confusing

initially. Nevertheless, its advantages are apparent. It is very efficient due to the simultaneous

smoothing in position and orientation and, for msPOAS, the coupling of all measured q-shells
for adaptation. The algorithm provides satisfactory results for experimental data with a very

low SNR, where other smoothing procedures fail. Its capability of edge preservation was

confirmed on simulated and on experimental data, where possible artifacts can be controlled

by an appropriate stopping. Finally, its implementation in the R-package dti by Tabelow and

Polzehl [2013] is freely available, and its parameter choices are robust.

6.6.6 Future research

The presented study raises several questions for future research.

As discussed in the last subsection, there is a lack of an appropriate quality criterion which

allows a meaningful and detailed comparison of various smoothing methods. Therefore, it would

be very interesting to review and analyze existing quality measures and to develop and justify

new ones. This would allow a detailed comparison and evaluation of the existing approaches for

the denoising of dMRI data. Additionally, one could study the impact of a coupling between

spherical and spatial smoothing or between different shells for other denoising methods than the

Propagation-Separation Approach.
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In order to further improve the smoothing results of (ms)POAS, the method could be extended to

a heteroscedastic setting with a locally varying noise standard deviation σ and varying effective

numbers of receiver coils L′. Samsonov and Johnson [2004] proposed a denoising method for

spatially varying noise levels, using non-linear diffusion. Guo and Huang [2009] and Manjón

et al. [2010] generalized total variation based denoising and non-local means methods to the

case of a heteroscedastic variance. Of course, this requires local estimates of both values, which

is still a challenging problem. Here, the Propagation-Separation Approach could be used for

simultaneous variance estimation and position-orientation adaptive smoothing.

Additionally, the impact of the Kullback-Leibler divergence could be studied. In § 6.2.1, we gave

several reasons for its application. However, a simpler distance could provide similar or even

better results, especially as (ms)POAS only uses a rough approximation of the Kullback-Leibler

divergence between two non-central chi-distributions.

Alternatively, the weighted mean in (ms)POAS could be replaced by a locally weighted maxi-

mum likelihood estimator. This is computationally demanding, but it provides the non-centrality

parameter instead of the expected value. We recall that the measured signals S correspond to the

expected values of the data, while the feature of interest is the non-centrality parameter θ of the
associated non-central chi-distribution. Basically, this bias can be corrected, using Equation (6.7)

(page 90). However, for satisfactory results, this requires local estimates of σ and L′. As a

first step, the advantages and drawbacks of both approaches should be evaluated by a detailed

comparison of methods which estimate the non-centrality parameter and methods that estimate

the expected value from which the non-centrality parameter is calculated.

Another avenue for future research would be the combination of data registration and noise

reduction by (ms)POAS. As mentioned above, (ms)POAS benefits from registered data, while

registration can be improved, using smoothed data. Hence, registration could be updated in

each iteration step of (ms)POAS, using the smoothing results of the last iteration step. Then,

registration could benefit from smoothing and vice versa. Possible challenges of this approach

might be the introduced statistical dependence of the observations and the computation time as

such a combination would result in an elaborate procedure.

Finally, we mention some implications of the presented results for the regularization of inverse

problems on geometrical structures. Particularly in the context of image processing, there

appear several inverse problems such as deconvolution or the estimation of derivatives. These

are often ill-posed, and hence require regularization, as many imaging modalities suffer from

significant random noise. For instance, in the case of a linear ill-posed problem with additive

noise, one aims to reconstruct the component f from the noisy observations g = Af + ε,
where the invertibility is impeded since g /∈ range(A) is not in the non-closed range of the

linear, compact, and bounded operator A. Then, smoothing of the observation g can provide a

component gsmooth ∈ range(A) and hence a reconstruction of the unknown component f via

fsmooth :=A−1gsmooth. The presented results suggest that smoothing of geometrical structures

can benefit from an appropriate handling of the specific geometry of the observed objects. In

the case of oriented objects, the applied operations should be left-invariant and at best structural

adaptive. We apply our left-invariant smoothing method (ms)POAS as preparation for the

solution of the respective inverse problem for the subsequent analysis or the modeling of the

data. A different approach modifies the inverse operator A−1 instead of the observation g,
where regularization methods as Tikhonov regularization or the spectral cut-off may be applied.

This raises the question whether the usual regularization methods, see Engl et al. [1996] for an

overview, allow an appropriate handling of a specific geometry, and which modifications are

possibly required for the respective application.
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Proof of Proposition 6.18. The map

SO(3)/stab(�ez) � {R(α′,β,γ) : α′ ∈ (−π,π]} �→ �u(β,γ) ∈ S
2

defines an isomorphism since R(α′,β,γ)�ez = �u(β,γ) for all α′ ∈ (−π,π], which ensures that

this map and its inverse are bijective and continuously differentiable, see also Bröcker and tom

Dieck [1995, (4.7)]. Additionally, for all �v ∈ R
3, it holds [�v]�0 = {�v+�0} and consequently

R
3/{�0} ∼= R

3. Hence, we get the isomorphy

R
3×S

2 ∼= (R3/{�0})� (SO(3)/stab(�ez)) = SE(3)/({�0}� stab(�ez)).

Proof of Lemma 6.20. We show the existence of g1,g2 ∈ SE(3) with

[g1]stab(�ez) ·SE(3) [g2]stab(�ez) �= [g1 ·SE(3) g2]stab(�ez),

where ·SE(3) denotes the group operation of SE(3). For this purpose, we consider the rotation

matricesR(1)
z ,R(2)

z ∈ stab(�ez) and the group elements g1,g2 ∈ SE(3) with gi= (�vi,Ri), i= 1,2.
It holds[
g1 ·SE(3)

(
�0,R(1)

z

)]
·SE(3)

[
g2 ·SE(3)

(
�0,R(2)

z

)]
=

(
�v1,R1 ·R(1)

z

)
·SE(3)

(
�v2,R2 ·R(2)

z

)
=

(
�v1 +R1 ·R(1)

z ·�v2,R1 ·R(1)
z ·R2 ·R(2)

z

)
and, for all Rz ∈ stab(�ez), we have[

g1 ·SE(3) g2
]
·SE(3)

(
�0,Rz

)
= (�v1 +R1 ·�v2,R1 ·R2 ·Rz) .

This yields the assertion with �v2 �= �ez and R(1)
z �= 1.

Proof of Proposition 6.33. First, we show that W∗[L2(SE(d),R)] = L2(Rd,R). Jensen’s in-

equality yields, for every U ∈ L2(SE(d),R), that

∫
Rd

[W∗[U ](�v)]2 d�v =
∫

Rd

[∫
SO(d)
U(�v,R)dμ(R)

]2

d�v ≤
∫

Rd

∫
SO(d)

[U(�v,R)]2 dμ(R)d�v <∞

and consequently W∗[U ] ∈ L2(Rd,R). This verifies that W∗[L2(SE(d),R)] ⊆ L2(Rd,R).
Vice versa, for every f ∈ L2(Rd,R), there is an orientation score Uf ∈ L2(SE(d),R) given

by Uf (�v,R) := f(�v) for all R ∈ SO(3), and we have W∗[L2(SE(d),R)] ⊇ L2(Rd,R). This

leads to the above assertion. Additionally, for all g ∈ SE(d) and every U ∈ L2(SE(d),R), the
left-invariance of Φ implies by definition of Γ and Equation (6.28) that

Eg ◦Γ◦W∗ ◦U = Eg ◦W∗ ◦Φ◦U = W∗ ◦Lg ◦Φ◦U
= W∗ ◦Φ◦Lg ◦U = Γ◦W∗ ◦Lg ◦U = Γ◦Eg ◦W∗ ◦U,

which terminates the proof.
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Proof of Proposition 6.34. The first assertion follows in the same manner as the special case

d= 2 that was proven by Franken [2008, §2.7.3]. Hence, we concentrate on the second assertion.

By definition of ΦK , for every U ∈ L2(SE(d),R) and all g,m ∈ SE(d), it holds

Lm ◦ [ΦK ◦U ](g) = [ΦKU ](m−1g)

=
∫

SE(3)K(h−1m−1g)U(h)dμ(h) n:=mh=
∫

SE(3)
K(n−1g)U(m−1n)dμ(n)

=
∫

SE(3)K(n−1g)[Lm ◦U ](n)dμ(n) = ΦK ◦ [Lm ◦U ](g),

and we have Lm ◦ΦK = ΦK ◦Lm.

Proof of Theorem 6.38. First, we show the left-invariance of the operator φk, k ∈ {0, ...,k∗},
in Notation 6.37, which relates to the POAS procedure. Let the applied distance δκ be left-

invariant. For all Sb ∈ L2(V ×Gb,R) with b ∈B0 and every v ∈ SE(3) andm ∈ R
3×S

2 with

L−1
v [m] ∈ V ×Gb, we observe that

(Lv ◦φk) [Sb](m) = φk[Sb](L−1
v [m]) = (

∑
n∈V×Gb

w̃
(k)
L−1
v [m],nS

2
b (n)/Ñ

(k)
L−1
v [m])

1/2,

and

φk[Lv ◦Sb](m) = (
∑

z:L−1
v [z]∈V×Gb

w̃(k)
mzS

2
b (L−1
v [z])/Ñ (k)

m )1/2

n:=L−1
v [z]= (

∑
n∈V×Gb

w̃
(k)
m,Lv [n]S

2
b (n)/Ñ (k)

m )1/2.

We show that the adaptive weights of POAS satisfy

w̃
(k)
L−1
v [m],n[Sb] = w̃(k)

m,Lv [n][Lv ◦Sb] for allm,n ∈ R
3×S

2 and every v ∈ SE(3), (6.33)

where we explicitly distinguish whether the weights are calculated with respect to the estimator

of Sb or with respect to Lv ◦Sb. Then, it follows Ñ
(k)
L−1
v [m][Sb] = Ñ (k)

m [Lv ◦Sb] as
∑

n∈V×Gb
w̃

(k)
L−1
v [m],n[Sb] =

∑
n∈V×Gb

w̃
(k)
m,Lv [n][Lv ◦Sb]

z:=Lv [n]=
∑

z:L−1
v [z]∈V×Gb

w̃(k)
mz[Lv ◦Sb],

which leads to the left-invariance of the operator φk via

(Lv ◦φk) [Sb](m) = (
∑

n∈V×Gb
{w̃(k)
L−1
v [m],n[Sb]}S

2
b (n)/{Ñ (k)

L−1
v [m][Sb]})

1/2

Eq. (6.33)= (
∑

n∈V×Gb
{w̃(k)
m,Lv [n][Lv ◦Sb]}S2

b (n)/{Ñ (k)
m [Lv ◦Sb]})1/2

= φk[Lv ◦Sb](m).

Hence, it remains to show Equation (6.33), where we proceed by induction, starting at k = 0.
It holds, for all m,n ∈ R

3×S
2, that w̃

(0)
mn = w(0)

mn. Additionally, the choices of h(0) and κ(0)

satisfy, for everym∈R
3×S

2, that h(0)(b,�gm)≡ 1 and κ(0)(b,�gm)≡ κ0 for some κ0 > 0. Thus,
it follows from the left-invariance of δκ that

w̃
(0)
L−1
v [m],n =Kloc

(
δκ0(L−1

v [m],n)
)

=Kloc (δκ0(m,Lv[n])) = w̃(0)
m,Lv [n].
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Supposing that the assertion is valid at iteration step k−1, we may deduce the following. It

holds h(k)(b,�gL−1
v [m]) = h(k)(b,�gm) since h(k) is determined by solving the equation

∑
n∈V×Gb

[Kloc(δκ0/h(k)(m,n)/h(k))]2

[ ∑
n∈V×Gb

Kloc(δκ0/h(k)(m,n)/h(k))]2
!= 1.25−k

∑
n∈V×Gb

[Kloc(δκ0(m,n))]2

[ ∑
n∈V×Gb

Kloc(δκ0(m,n))]2 ,

which only depends onm via the left-invariant distance δκ. Then, for the non-adaptive weights,

we get with κ(k)(b,�gm) := κ0/h(k)(b,�gm), that

w
(k)
L−1
v [m],n = Kloc

(
δκ(k)(b,�g

L−1
v [m])

(L−1
v [m],n)/h(k)(b,�gL−1

v [m])
)

= Kloc
(
δκ(k)(b,�gm)(m,Lv[n])/h(k)(b,�gm)

)
= w

(k)
m,Lv [n].

The induction hypothesis yields

w̃
(k)
L−1
v [m],n[Sb]

= w
(k)
L−1
v [m],n ·Kad

(
Ñ

(k−1)
L−1
v [m][Sb] ·KL

(
φk−1[Sb](L−1

v [m]),φk−1[Sb](n)
)
/λ

)
= w

(k)
m,Lv [n] ·Kad

(
Ñ (k−1)
m [Lv ◦Sb] ·KL

(
Lv ◦φk−1[Sb](m),L−1

v ◦φk−1[Lv ◦Sb](n)
)
/λ
)

= w
(k)
m,Lv [n] ·Kad

(
Ñ (k−1)
m [Lv ◦Sb] ·KL(φk−1[Lv ◦Sb](m),φk−1[Lv ◦Sb](Lv[n]))/λ

)
= w̃

(k)
m,Lv [n][Lv ◦Sb].

The left-invariance of the operator ϕk, which relates to msPOAS, follows in an analogous manner.

In msPOAS, we use a weighted arithmetic mean instead of the weighted quadratic mean in

POAS. Additionally, we use a simplified approximation of the Kullback-Leibler divergence

and a modified statistical penalty, which sums the Kullback-Leibler divergences of all b-values.
These modifications do not effect the proof of left-invariance. Recall that we assumed to have

identical gradient schemes. Hence, the interpolation does not apply.

Conversely, the left-invariance of the operator φk implies Equation (6.33) and furthermore

δκ(L−1
v [m],n) = δκ(m,Lv[n])

for every κ> 0, allm,n∈R
3×S

2, and each v ∈ SE(3). This is equivalent to the left-invariance

of the applied distance. The same holds with ϕk instead of φk.

Finally, we emphasize that the bandwidths {h(k)(b,�gm)}k∗k=0 do not use the embedding of

R
3×S

2 into SE(3). Additionally, we recall that the balancing parameter κ only depends on the

gradient �gm via the location bandwidths, and it follows that POAS and msPOAS are well-defined

with respect to the embedding if and only if the distance δκ is well-defined.

Proof of Lemma 6.57. The first assertion was proven by Varopoulos et al. [1992, §III.4]. The

notation of Proposition 6.55 yields with {pij}ij := diag{1,1,1,1,1,0} that

5∑
i=1
|φi(s)|2 = Tϕ(s)(φ̇(s), φ̇(s)).

143



Application to magnetic resonance imaging

Then, it holds

Δ(g1,g2) = inf{
∫ 1

0

[
Tϕ(s)(φ̇(s), φ̇(s))

]1/2
ds : φ : [0,1]→ SE(3) absolutely continuous,

φ(0) = g1,φ(1) = g2, and φ̇(s) =
5∑
i=1
φi(s)Ai|φ(s) almost everywhere},

and the assertion follows from Proposition 6.55, where the left-invariance yields

Δ(g1,g2) = Δ(g−1
2 ·SE(3) g1,e) = |g−1

2 ·SE(3) g1|

for all g1,g2 ∈ SE(3).

Proof of Proposition 6.65. The metric properties of ‖�v1−�v2‖+κ−1 arccos〈�u1,�u2〉 were jus-

tified by Hagmann et al. [2006]. The distance δκ depends on the absolute value of 〈�u1,�u2〉,
which reduces δκ to a pseudometric. Hence, it remains to justify the left-invariance of δκ.
Let m := (�w,R) ∈ SE(3) and gi := (�vi,�ui) ∈ R

3×S
2, i = 1,2. Then, we get by the rotation

invariance of the Euclidean metric and of the scalar product that

δκ
(
L−1
m [g1],L−1

m [g2]
)

= δκ
[
(R−1(�v1− �w),R−1�u1),(R−1(�v2− �w),R−1�u2)

]
= ‖R−1(�v1− �w−�v2 + �w)‖+κ−1 arccos |〈R−1�u1,R−1�u2〉|
= ‖�v1−�v2‖+κ−1 arccos |〈�u1,�u2〉|
= δκ (g1,g2) ,

leading to the assertion.
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