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Abstract: Generalized Laguerre polynomials, L(α)
n , verify the well-known Rodrigues’ formula. Using

Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of
Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give
a new addition formula and an integral representation for these polynomials. Finally, we introduce
a new family of fractional Lebesgue spaces and show that some of these special functions belong
to them.

Keywords: Rodrigues’ formula; Laguerre functions; function spaces; fractional calculus

1. Introduction

In approximation theory, the classical orthogonal polynomials of Jacobi, Laguerre, and
Hermite have many properties in common, namely, the Rodrigues formula, the differential
equation, the derivative formula, and the three-term recurrence relation. Under some con-
ditions, these common properties are equivalent and characterize these classical orthogonal
polynomials. See more details, for example, in [1] [Chapter 12] and [2] [Chapter V].

Polynomial solutions in the differential equation

zw′′(z) + (α + 1− z)w′(z) + nw(z) = 0,

with n = 0, 1, 2 . . . and α ∈ C are called generalized Laguerre polynomial, L(α)
n . They verify

Rodrigues’ formula,

L(α)
n (x) =

x−αex

n!
dn

dxn (xn+αe−x), (1)

where we have

L(α)
n (x) :=

n

∑
m=0

(−1)m
(

n + α

n−m

)
xm

m!
,

with
(

n + α

n−m

)
=

Γ(n + α + 1)
Γ(α + m + 1)(n−m)!

, see, for example, [2] [p. 241] and [1] [Chapter 12].

In particular, they are

L(α)
0 (x) = 1,

L(α)
1 (x) = α + 1− x,

L(α)
2 (x) =

1
2

(
(α + 1)(α + 2)− 2(α + 2)x + x2

)
.
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Generalized Laguerre polynomials satisfy several recurrence equalities, see [2] [p. 241],
between them, for example,

xL(α+1)
n (x) = (n + α + 1)L(α)

n (x)− (n + 1)L(α)
n+1(x). (2)

Rodrigues’ formula was initially introduced for Legendre polynomials by Olinde
Rodrigues in 1816. The name “Rodrigues formula” was given by Heine in 1878, after
Hermite pointed out in 1865 that Rodrigues was the first to discover it instead of Ivory and
Jacobi. The term is also used to describe similar formulas for other orthogonal polynomials,
mainly Laguerre and Hermite polynomials and many other sequences of orthogonal
functions. These are also called the Rodrigues formula (or Rodrigues’ type formula) for
that case, especially when the resulting sequence is polynomial.

By means of fractional calculi, several generalizations of Rodrigues formula have
appeared in the literature in the last years. We present some of them in the next lines.

Several important special functions can be expressed as derivatives of complex order
of elementary function, see, for example, [3]. The derivative of a complex order ν of a
complex function f of a complex variable z is defined by the generalized Cauchy integral,

f (ν)(z) =
(

d
dz

)ν

f (z) =
Γ(ν + 1)

2πi

∫
γ

f (w)(w− z)−ν−1dw,

under some assumptions about ν, f and the path γ [3,4] [p. 113]. In the case of Laguerre
functions, we have

L(µ)
ν (z) =

z−µ

Γ(1 + ν)
ez
(

d
dz

)ν

(zν+µe−z),

which coincides with the Rodrigues’ Formula (1) for ν = n.
In [5], certain Laguerre polynomials of arbitrary orders are defined. The fractional

Caputo derivative Dα of order α ∈ (n− 1, n] of a function f is given there by

Dα f (x) =
1

Γ(n− α)

∫ x

0
(x− t)n−α−1 f (n)(t)dt, x ≥ 0,

see [5] [Definition 1.3]. The author defines the Laguerre polynomials Łβ
α of order α > 0 by

Łβ
α(x) =

x−βex

Γ(1 + α)
Dα(e−xxα+β), x > 0, β > −1,

and proves
lim

α→n+
Łβ

α(x) = lim
α→n−

Łβ
α(x) = L(β)

n (x).

A wide generalization of Rodrigues’ formula is treated in [6]. The author considers the
Riemann–Liouville integral to include a large numbers of special functions, in particular
Laguerre polynomials and functions [6] [Section 1].

In [7], authors use a generalization of the Rodrigues’ formula to define a new special
function. They study some of its properties, some recurrence relations, orthogonality
property, and the continuation to the Rodrigues’ formula of the Laguerre polynomials as a
limit case. In addition, the confluent hypergeometric representation is given.

In this paper, we consider the Weyl and Riemann–Liouville fractional calculi, Wα
+ and

Dα
+ with α ∈ R in the half real line in the second section. In Section 3, Theorem 1, we show

the following fractional Rodrigues’ formulae:

M(α, ν + 1, z) = Γ(ν+1)
Γ(−α+ν+1) z−νezD−α

+ (tν−αe−t)(z),
U(α, ν + 1, z) = z−νezW−α

+ (tν−αe−t)(z),
(3)
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where M(α, ν + 1, z) and U(α, ν + 1, z) are the confluent hypergeometric functions,

M(α, ν, z) :=
∞

∑
j=0

Γ(α + j)
Γ(α)

Γ(ν)
Γ(ν + j)

zj

j!
;

U(α, ν, z) :=
Γ(1− ν)

Γ(α + 1− ν)
M(α, ν, z) +

Γ(ν− 1)
Γ(α)

z1−ν M(α + 1− ν, 2− ν, z).

This theorem extends [8] [Theorem 3] and completes the picture given in formulae [6]
[(8)–(12)], where the author only considers the Riemann–Liouville fractional calculus.

In the particular case −α = n ∈ N, the confluent hypergeometric functions are
essentially the Laguerre polynomials and we get a second fractional Rodrigues’ formula,

L(α−n)
n (x) =

(−1)n

n!
exWα

+(t
ne−t)(x), x ≥ 0,

in Theorem 2. As a consequence, we get a new integral addition formula for Laguerre
polynomials in Corollary 1. We also obtain a integral representation of Wα

+(t
ne−λt), i.e.,

Wα
+(r

ne−λr)(t) = λαe−λttn + λα
n

∑
k=1

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n
k

) ∫ ∞

t
(r− t)k−1rn−ke−λrdr,

and apply it to get a new integral representation of L(α−n)
n (t), i.e.,

L(α−n)
n (t) =

(−1)n

n!
et

n

∑
k=0

(−1)k Γ(α + k)
Γ(α)

(
n
k

)
W−k

+

(
rn−ke−r

)
(t), t > 0.

in Theorem 3. All of these results show the deep and interesting connection between
fractional calculi, in particular Weyl fractional derivation, and Laguerre polynomials.

In the last section, we introduce new fractional Lebesgue space T (α)
p (tµ + tα) which

are contained in Lp(R+) with 0 ≤ µ ≤ α and p ≥ 1. Note that we understand that
T (0)

p (t0 + t0) = Lp(R+). As in the classical case, we show that the space T (α)
p (tµ + tα)

for p > 1 is module for the algebra T (α)
1 (tµ + tα) (Theorem 4). This family of function

spaces contains as a particular case some spaces which have appeared previously in the
literature [9–13]. Finally, we present some special functions which belong to these fractional
Lebesgue spaces T (α)

p (tµ + tα) in Remark 2.

2. Weyl and Riemann–Liouville Fractional Calculi

We denote byD+ the set of test functions of compact support in [0, ∞),D+ ≡ C∞
c ([0, ∞))

and by S+ the Schwartz class on [0, ∞), i.e., functions which are infinitely differentiable,
which verifies

sup
t≥0

∣∣∣∣tm dn

dtn f (t)
∣∣∣∣ < ∞,

for any m, n ∈ N∪ {0}.

Definition 1. Given f ∈ S+, the Weyl fractional integral of f of order α > 0 is defined by

W−α
+ f (u) :=

1
Γ(α)

∫ ∞

u
(t− u)α−1 f (t)dt, u ≥ 0,

with α > 0. This operator W−α
+ : S+ → S+ is one to one, and its inverse, Wα

+, is the Weyl
fractional derivative of order α, and

Wα
+ f (t) =

(−1)n

Γ(n− α)

dn

dtn

∫ ∞

t
(s− t)n−α−1 f (s)ds, t ≥ 0,
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holds with n = [α] + 1; see, for example, [14,15].

It is easy to check that, if α = n ∈ N, then Wα
+ f = (−1)α f (α) = (−1)n dn

dtn and

Wα+β
+ f = Wα

+(W
β
+ f ) with α, β ∈ R, W0

+ = Id and f ∈ S+ and

Wα
+( fr) = rα(Wα

+ f )r, (4)

where fr(s) := f (rs) for r > 0; see more details in [14,15].

Example 1. Let λ ∈ C+ and eλ(s) := e−λs with s ≥ 0. It is clear that eλ ∈ S+ and

W−α
+ (eλ)(s) = λ−αe−λs, s ≥ 0.

Then, Wα
+eλ(s) = λαe−λs for α ∈ R and s ≥ 0. In Theorem 3, we give an integral expression of

Wα
+(r

ne−λr).

Proposition 1. Take α ∈ R and f ∈ S+ then :

Wα
+(s f (s))(t) = tWα

+ f (t)− αWα−1
+ f (t) t > 0.

Proof. If α < 0, it is shown in [14] [p. 246]; if α > 0, we have

W−α
+ (sWα

+ f (s)− αWα−1
+ f (s))(t) = t f (t) + αW−1

+ f (t)− αW−1
+ f (t) = t f (t)

with t > 0.

The usual convolution product ∗ on R+ is defined by

( f ∗ g)(t) :=
∫ t

0
f (t− s)g(s)ds, t ∈ R+,

for functions f , g which are “good enough”, for example, absolutely integrable functions.
For functions f , g ∈ S+, the following integral equality for the convolution product holds

Wα
+( f ∗ g)(s) =

∫ s
0 Wα

+g(r)
∫ s

s−r
(t+r−s)α−1

Γ(α) Wα
+ f (t)dt dr

−
∫ ∞

s Wα
+g(r)

∫ ∞
s

(t+r−s)α−1

Γ(α) Wα
+ f (t)dt dr

(5)

for s ∈ R+ ([10,12] [Proposition 1.2]).

Definition 2. Given f ∈ S+, Riemann–Liouville fractional integral of order α > 0 is defined by

D−α
+ f (t) :=

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t ≥ 0.

If α = n ∈ N, the Riemann–Liouville derivative Riemann–Liouville of order n, Dn
+, is the usual

derivative and, if α ∈ R+\N, Riemann–Liouville fractional derivative of order α is defined by

Dα
+ f (t) :=

1
Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1 f (s)ds, t ≥ 0,

with n = [α] + 1, see, for example, [14–16].
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If f ∈ S+, then D−α
+ D−β

+ f = D−(α+β)
+ f for α, β ≥ 0, but, in general, it is false that

Dα
+Dβ

+ f = Dα+β
+ f with α, β ∈ R. For example,

D−1
+ D1

+(e
−s)(t) = −

∫ t

0
e−sds = e−t − 1 6= e−t.

If α > 0 and f , g ∈ S+, we apply the Fubini theorem to get that∫ ∞

0
W−α

+ f (t)g(t)dt =
∫ ∞

0
f (t)D−α

+ g(t)dt

and, if we apply W−α
+ (Wα

+g) = g, we obtain the following “integration by parts” formula:∫ ∞

0
f (t)g(t)dt =

∫ ∞

0
D−α
+ f (t)Wα

+g(t)dt. (6)

We will use both equalities in the following sections. Note that Formula (6) shows the
dual behaviour between both fractional calculi.

3. Fractional Rodrigues’ Formulae for Confluent Hypergeometric Functions

Two linearly independent solutions of Kummer’s differential equation

zw′′(z) + (ν− z)w′(z)− αw(z) = 0, α, ν ∈ R

are given by confluent hypergeometric functions M(−α, 1 + ν, z) (also written by
1F1(−α, 1 + ν, z)) and U(−α, 1 + ν, z), see definitions in the Introduction, Formula (3).
In the particular case of −α = n ∈ N, we have that

L(ν)
n (z) =

Γ(ν + n + 1)
Γ(1 + ν)n!

M(−n, 1 + ν, z) =
(−1)n

n!
U(−n, ν + 1, z), z ∈ C.

There is a big amount of equalities which confluent hypergeometric functions verify.
We consider the following ones:

dn

dzn

(
e−zzc−1M(a, c, z)

)
= (−1)n(1− c)ne−zzc−n−1M(a− n, c− n, z),

dn

dzn

(
e−zzc−a+n−1U(a, c, z)

)
= (−1)ne−zzc−a−1U(a− n, c, z).

(7)

The following integral representations hold:

M(α, ν, z) = Γ(ν)z1−ν

Γ(α)Γ(ν−α)

∫ z
0 ettα−1(z− t)ν−α−1dt, <ν > <α > 0;

U(α, ν, z) = z1−ν

Γ(α)

∫ ∞
0 e−ttα−1(z + t)ν−α−1dt, <ν > 0,<z > 0,

(8)

and also the recurrence relation

U(α, ν, z)−U(α, ν− 1, z)− αU(α + 1, ν, z) = 0, (9)

see all these formulae and much more in [2] [Chapter VI].
The part (i) of the next theorem includes [8] [Theorem 3] for α < 0 and ν > −1 and for

α ∈ R and ν > α− 1 are presented in [6] [Section 1]. We include the proof of both parts to
avoid the lack of completeness.

Theorem 1. Given α ∈ R and <z > 0, the following equalities hold:

(i) M(α, ν + 1, z) =
Γ(ν + 1)

Γ(−α + ν + 1)
z−νezD−α

+ (tν−αe−t)(z), for ν > α− 1.

(ii) U(α, ν + 1, z) = z−νezW−α
+ (tν−αe−t)(z), for ν ∈ R.
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Proof. (i) Let ν > α − 1. For α = 0, M(0, ν + 1, z) = 1 and the equality holds. Take
α > 0 and

M(α, ν + 1, z) =
Γ(ν + 1)z−ν

Γ(α)Γ(ν + 1− α)

∫ z

0
ettα−1(z− t)ν−αdt

=
Γ(ν + 1)z−ν

Γ(α)Γ(ν + 1− α)
ez
∫ z

0
e−t(z− t)α−1tν−αdt

=
Γ(ν + 1)

Γ(−α + ν + 1)
z−νezD−α

+ (tν−αe−t)(z),

for z > 0 and by holomorphy <z > 0. Finally, take α < 0. We write n = [−α] + 1

D−α
+ (tν−αe−t)(z) =

dn

dzn (D−n−α
+ (tν−αe−t))(z),

and we apply the above equality for α > 0 to get

D−n−α
+ (tν−αe−t)(z) = e−zzν+n Γ(ν + 1− α)

Γ(ν + n + 1)
M(n + α, ν + n + 1, z),

for z > 0. We apply the first formula in (7) to get

D−α
+ (tν−αe−t)(z) =

Γ(ν + 1− α)

Γ(ν + n + 1)
dn

dzn

(
e−zzν+n M(n + α, ν + n + 1, z)

)
(z)

=
Γ(ν + 1− α)

Γ(ν + n + 1)
e−zzν(−1)n(−ν− n)n M(α, ν + 1, z)

=
Γ(ν + 1− α)

Γ(ν + 1)
e−zzν M(α, ν + 1, z),

and we get the equality for z > 0 and then <z > 0.
(ii) Let ν ∈ R. For α = 0, U(0, ν + 1, z) = 1 and the equality holds. Take α > 0. We apply
the second formula in (8) to get

U(α, ν + 1, z) =
z−ν

Γ(α)

∫ ∞

0
e−ttα−1(z + t)ν−αdt =

z−νez

Γ(α)

∫ ∞

z
e−t(t− z)α−1tν−αdt

= z−νezW−α
+ (tν−αe−t)(z),

for z > 0 and by holomorphy <z > 0. Finally, take α < 0 and n = [−α] + 1. Firstly, we
consider n = 1, i.e., −1 < α < 0. By the second formula in (7) for n = 1 and the above
equality for α > 0, we get that

U(α, ν + 1, z) = (−1)ezz−(ν−α−1) d
dz
(
e−zzν−αU(1 + α, ν + 1, z)

)
= (−1)ezz−(ν−α−1) d

dz

(
z−αW−(1+α)

+ (tν−α−1e−t)(z)
)

= αezz−νW−(1+α)
+ (tν−(1+α)e−z) + ezz−(ν−1)W−α)

+ (tν−1−α)e−z)

= αU(1 + α, ν + 1, z) + ezz−(ν−1)W−α
+ (tν−1−αe−z),

for z > 0. By the recurrence relation (9), we have that

U(α, ν + 1, z) = αU(1 + α, ν + 1, z) + U(α + 1, ν, z),

and we conclude that U(α, ν + 1, z) = ezz−(ν−1)W−α
+ (tν−1−αe−z), for z > 0 and <z > 0.

Now, we suppose that the equality holds for n + 1 > −α > n, and we claim that it also is
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true for n + 1 > −α > n. Again, by the second formula in (7) for n = 1 and our hypothesis,
we get that

U(α, ν + 1, z) = (−1)ezz−(ν−α−1) d
dz
(
e−zzν−αU(1 + α, ν + 1, z)

)
= αezz−νW−(1+α)

+ (tν−(1+α)e−z) + ezz−(ν−1)W−α
+ (tν−1−αe−z)

= αU(1 + α, ν + 1, z) + ezz−(ν−1)W−α
+ (tν−1−αe−z),

for z > 0. Again, by the recurrence relation (9), we conclude that

U(α, ν + 1, z) = ezz−(ν−1)W−α
+ (tν−1−αe−z),

for z > 0 and <z > 0, and the proof is finished.

4. Fractional Rodrigues’ Formulae for Laguerre Polynomials

Now, first we check L(α−n)
n (x) = (−1)n

n! exWα
+(t

ne−t)(x) with α ∈ R and x ≥ 0. In the
case α = 0, the equality holds directly (see [2] [p. 240]) since

L(−n)
n (x) =

(−x)n

n!
L(n)

0 (x) =
(−x)n

n!
,

and then
(−1)n

n!
exW0

+(t
ne−t)(x) =

(−x)n

n!
= L(−n)

n (x).

Analogously, we have L(α)
0 (x) = 1.

Theorem 2. Let α ∈ R, n ∈ N. Then,

L(α−n)
n (x) =

(−1)n

n!
exWα

+(t
ne−t)(x), x ≥ 0.

Proof. We give a proof by induction. Take α > 0; for n = 1, we apply Proposition 1 to get

Wα
+(te

−t)(x) = xWα
+(e
−t)(x)− αWα−1

+ (e−t)(x) = e−x(x− α) = −L(α−1)
1 (x).

Taking the case n + 1 and again by Proposition 1, we obtain

Wα
+(t

n+1e−t)(x) = xWα
+(t

ne−t)(x)− αWα−1
+ (tne−t)(x), x > 0

and, using induction hypothesis,

Wα
+(t

n+1e−t)(x) = e−xn!(−1)n
(

xL(α−n)
n (x)− αL(α−1−n)

n+1 (x)
)

, x > 0.

We apply the recurrence Formula (2) and

Wα
+(t

n+1e−t)(x) = e−xn!(−1)n(−1)(n + 1)L(α−n−1)
n+1 (x)

= e−x(−1)n+1(n + 1)!L(α−(n+1))
n+1 (x)

and we get the equality. In the case α < 0, we work in a similar way.

Remark 1. In the case α = m ∈ N, we obtain an equivalent formula to

L(β)
m (x) =

x−βex

m!
dm

dxm (xm+βe−x).

To check this, we use L(−k)
n (x) = (−x)k (n− k)!

n!
L(k)

n−k(x), 1 ≤ k ≤ n, ([2] p. 240).
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If λ > 0, we also get

Wα
+(t

ne−λt)(x) = λα−ne−λx(−1)nn!L(α−n)
n (λx)

= λαe−λx

(
n

∑
m=0

λm−n(−1)n−m
(

α

n−m

)
n!
m!

xm

)
.

The addition formula for Laguerre polynomials states that

L(α+β+1)
n (t + r) =

n

∑
j=0

L(α)
j (t)L(β)

n−j(r), t, r ∈ R.

([2] [p. 249]). The following corollary shows a new integral addition formula for Laguerre polynomials.

Corollary 1. Let α ∈ R and n, m ∈ N. Then,

e−sL(α−(n+m+1))
n+m+1 (s) =

∫ ∞

s
e−rL(α−n)

n (r)
∫ ∞

s

(t + r− s)α−1

Γ(α)
e−tL(α−m)

m (t)dt dr

−
∫ s

0
e−rL(α−n)

n (r)
∫ s

s−r

(t + r− s)α−1

Γ(α)
e−tL(α−m)

m (t)dt dr

for s ∈ R+.

Proof. We write pn(s) =
sn

n!
e−s for s ∈ R+. Note that pn ∗ pm = pn+m+1 for n, m ∈ N. By

Theorem 2, Wα(pn)(s) = (−1)ne−sL(α−n)
n (s) for α, s ∈ R and n ∈ N. Finally, we apply

Formula (5) to conclude the equality.

Now, we want to give another representation, an integral representation of Wα
+(t

ne−λt)

and L(α−n)
n . To do this, we check the following Lemma about the Pochhammer symbol

(α)j, where

(α)j := α(α + 1) . . . (α + j− 1) =
Γ(α + j)

Γ(α)
, j ∈ N, α ∈ C.

Lemma 1. Let l ∈ N and α ∈ C. Then,

l

∑
k=1

(−1)k (α)k
(k− 1)!

(
l
k

)
=

(−α)l
(l − 1)!

. (10)

Proof. Since
(−α)l
(l − 1)!

= (−1)l α(α− 1) . . . (α− l + 1)
(l − 1)!

,

it is enough to prove that Pl is a polynomial in α of degree l, the leading coefficient (−1)l/l!
and roots {0, 1, . . . , l − 1} where

Pl(α) :=
l

∑
k=1

(−1)k (α)k
(k− 1)!

(
l
k

)
=

l

∑
k=1

(−1)k α(α + 1) . . . (α + k− 1)
(k− 1)!

(
l
k

)
.

Let j ∈ {1, . . . , l − 1} and we consider the polynomial:

xj−1(1− x)l = (−1)l
l

∑
k=0

(
l
k

)
(−1)kxk+j−1.
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We derive j times and evaluate in x = 1 to obtain

l

∑
k=0

(
l
k

)
(−1)k(k + j− 1) . . . k = 0,

and then

Pl(j) =
l

∑
k=1

(−1)k j(j + 1) . . . (j + k− 1)
(k− 1)!

(
l
k

)

=
1

(j− 1)!

l

∑
k=0

(−1)kk(k + 1) . . . (j + k− 1)
(

l
k

)
= 0,

and we conclude the proof.

Theorem 3. If n ∈ N and λ, α > 0, we have that

Wα
+(r

ne−λr)(t) = λα
n

∑
k=0

(−1)k Γ(α + k)
Γ(α)

(
n
k

)
W−k

+

(
rn−ke−λr

)
(t), t > 0,

and

L(α−n)
n (t) =

(−1)n

n!
et

n

∑
k=0

(−1)k Γ(α + k)
Γ(α)

(
n
k

)
W−k

+

(
rn−ke−r

)
(t), t > 0.

Proof. By Lemma 1, we have that

n!
j!l

l

∑
k=1

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
l
k

)
= (−1)l n!

j!

(
α

l

)
,

for l ≥ 1 and 0 ≤ j ≤ n. By the second remark in Theorem 2 and taking in the last
expression l = n− j, we have that

λ−αeλtWα
+(r

ne−λr)(t) = tn +
n−1

∑
j=0

λj−n(−1)n−j
(

α

n− j

)
n!
j!

tj

= tn +
n−1

∑
j=0

λj−ntj n!
j!(n− j)

n−j

∑
k=1

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n− j

k

)

= tn +
n

∑
k=1

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n
k

) n−k

∑
j=0

λj−ntj
(

n− k
j

)
(n− 1− j)!

due to
n!
j!

(
n− j

k

)
= (n− j)!

(
n
k

)(
n− k

j

)
.

In the other hand, we apply Newton’s formula, to get the equality:

∫ ∞

t
(r− t)k−1rn−ke−λrdr =

n−k

∑
j=0

(
n− k

j

)
tj
∫ ∞

t
(r− t)n−j−1e−λrdr

= e−λt
n−k

∑
j=0

(
n− k

j

)
tjλj−n(n− 1− j)!

with t ≥ 0. From here, we have that

Wα
+(r

ne−λr)(t) = λαe−λttn + λα
n

∑
k=1

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n
k

) ∫ ∞

t
(r− t)k−1rn−ke−λrdr,
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and we obtain the equality. As a consequence, we apply Theorem 2 and the first equality to
obtain the second one.

As a corollary of this theorem, we show an equality considered in [14] [p. 315].
However, first, we need to comment some aspects about Laplace transform. Given f ∈ S+,
the Laplace transform of f , L( f ), is given by

L( f )(z) :=
∫ ∞

0
f (t)e−ztdt, <z ≥ 0,

see, for example [17]. If f is a function in two variables f = f (t, s), L( f ; t) and L( f ; s) are
Laplace transforms, if there exist, in each parameter.

If we apply equality (6) in the integral representation of the Laplace transform, we get
that, for α > 0

L( f )(z) =
∫ ∞

0
Wα

+ f (t)Sα(t, z)dt, <z ≥ 0, (11)

with f ∈ S+ and where

Sα(t, z) := D−α
+ (ez)(t) =

1
Γ(α)

∫ t

0
(t− s)α−1e−zsds <z, t ≥ 0.

In fact, function Sα(t, z) may be defined for any z ∈ C and

Sα+β(t, z) =
1

Γ(β)

∫ t

0
(t− s)β−1Sα(s, z)ds, z ∈ C, t > 0. (12)

Corollary 2. Let a, α > 0, λ > a and n ∈ N∪ {0}. Then, we have that

1
(λ− a)n+1 =

λα

n!

n

∑
k=0

(−1)k
(

n
k

)
Γ(α + k)

Γ(α)
L(Sα+k(r,−a)rn−k)(λ).

Proof. By the equality (6) and Theorem 3, we get that

1
(λ− a)n+1 =

∫ ∞

0

tn

n!
eate−λtdt =

1
n!

∫ ∞

0
Wα

+(r
ne−λr)(t)D−α

+ (ear)(t)dt

=
λα

n!

n

∑
k=0

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n
k

) ∫ ∞

0
Sα(t,−a)

∫ ∞

t
(r− t)k−1rn−ke−λrdrdt.

We apply the Fubini theorem to get

1
(λ− a)n+1 =

λα

n!

n

∑
k=0

(−1)k Γ(α + k)
Γ(α)Γ(k)

(
n
k

) ∫ ∞

0
rn−ke−λr

∫ r

0
(r− t)k−1Sα(t,−a)dtdr

=
λα

n!

n

∑
k=0

(−1)k Γ(α + k)
Γ(α)

(
n
k

) ∫ ∞

0
rn−ke−λrSα+k(r,−a)dr,

and we conclude the equality.

5. Fractional Lebesgue Spaces

The well-known Hardy inequality states that

∫ ∞

0
|W−α

+ f (t)|pdt ≤
(

Γ( 1
p )

Γ(α + 1
p )

)p ∫ ∞

0
tαp| f (t)|pdt, (13)

for p ≥ 1 and α ≥ 0, see, for example, [18] [pp. 244–245].
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For 0 ≤ µ ≤ α, we introduce a family of subspaces T (α)
p (tµ + tα) that are contained in

Lp(R+).

Definition 3. For α > 0, let the Banach space T (α)
p (tµ + tα) be defined as the completion of the

Schwartz class S+ in the norm

|| f ||(µ,α),p :=
1

Γ(α + 1)

(∫ ∞

0
|Wα

+ f (t)|p(tµ + tα)pdt
) 1

p
.

We understand that T (0)
p (t0 + t0) = Lp(R+) and || ||(0,0),p = || ||p. The case p = 1,

µ = 0 and α ∈ N were introduced in [9], and, for p = 1, 0 ≤ µ ≤ α and α > 0 in [10]
[Section 1]. Finally, the case p > 1, µ = α and α > 0 were considered in [11] [Definition 2.1]
and [13] [Section 1.2]. In [19], other families of function spaces are studied connected with
a kernel function k on [0, ∞).

In the next proposition, we present some results for spaces T (α)
p (tµ + tα) which ex-

tends [11] [Proposition 2.2].

Proposition 2. Take p ≥ 1 and β > α ≥ µ > 0.

(i) The operator Dµ,α : T (α)
p (tµ + tα)→ Lp(R+) defined by

Dµ,α f (t) :=
1

Γ(α + 1)
(tµ + tα)Wα

+ f (t), t ∈ R+, f ∈ T (α)
p (tµ + tα),

is an isometry whose inverse operator (Dµ,α)−1 : Lp(R+)→ T (α)
p (tµ + tα) is given by

(Dµ,α)
−1 f (t) = W−α

+ ((tµ + tα)−1 f )(t), t ∈ R+ f ∈ T (α)
p (tµ + tα).

(ii) T (β)
p (tµ+β−α + tβ) ↪→ T (α)

p (tµ + tα) ↪→ Lp(R+).

(iii) If p > 1 and p′ satisfies 1
p + 1

p′ = 1, then the dual of T (α)
p (tµ + tα) is T (α)

p′ (tµ + tα), where
the duality is given by

〈 f , g〉µ,α =
1

Γ(α + 1)2

∫ ∞

0
Wα

+ f (t)Wα
+g(t)(tµ + tα)2dt = 〈Dµ,α f , Dµ,αg〉0

for f ∈ T (α)
p (tµ + tα), g ∈ T (α)

p′ (tµ + tα).

Proof. (i) By definition, we have

‖Dµ,α f ‖p =
1

Γ(α + 1)

(∫ ∞

0
((tµ + tα)|Wα

+ f (t)|)pdt
)1/p

= ‖ f ‖(µ,α),p.

(ii) Let f ∈ S+ and 0 < µ ≤ α < β. For p = 1, see [10] [Section 1, p. 16]. Let 1 < p < ∞,
then

‖ f ‖p
(µ,α),p =

1
(Γ(α + 1))p

∫ ∞

0
(tµ + tα)p|(W−(β−α)(Wβ f ))|p(t)dt

≤
(

Γ( 1
p )

Γ(α + 1)Γ(β− α + 1
p )

)p ∫ ∞

0
t(β−α)p(tµ + tα)p|Wβ f |p(t)dt

≤
(

Γ( 1
p )Γ(β + 1)

Γ(α + 1)Γ(β− α + 1
p )

)p

‖ f ‖p
(µ+β−α,β),p
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where we have used Hardy’s inequality (13). The part (iii) is a straightforward consequence
of (i) and the duality of Lp(R+).

Note that, in fact,

‖ f ‖(µ,α),p = ‖Dµ,α f ‖p, 〈 f , g〉ν,α = 〈Dµ,α f , Dµ,αg〉0, (14)

for f ∈ T (α)
p (tµ + tα), g ∈ T (α)

p′ (tµ + tα) with 1
p + 1

p′ = 1.

Example 2. In this example, we consider some functions which belong (or not) to T (α)
p (tα + tµ)

for p ≥ 1 and 0 ≤ µ ≤ α.

(i) Note that tβ 6∈ T (α)
p (tα + tµ) for β ∈ C due to tβ does not belong to Lp(R+).

(ii) For 0 < γ < δ and a > 0, it is well known that W−γ
+ (a + t)−δ = Γ(δ−γ)

Γ(δ) (t + a)γ−δ; see, for
example, [20] [p. 201]. With this formula, it is easy to check that

Wα
+(a + t)−β =

Γ(α + β)

Γ(β)
(t + a)−(α+β).

Write f (t) := (a + t)−β and then

|| f ||p
(µ,α),p = Cα,p

∫ ∞

0

(tα + tµ)p

|(t + a)(α+β)p|
dt ≤ Cα,p

∫ ∞

0

1
(t + a)pβ

dt < ∞,

and we conclude functions (a + t)−β ∈ T (α)
p (tα + tµ) for β > 1/p and a > 0.

(iii) We define functions jc(t) :=
(1− t)c−1

Γ(c)
χ(0,1)(t) for t ≥ 0. It is easy to check that W−α

+ (jc) =

jα+c for α > 0. Then, jc ∈ T (α)
p (tα + tµ) if and only if c > α + 1− 1

p .

Note that, for f ∈ T (α)
p (tα + tµ) for p, α ≥ 1, then f ∈ C(R+), limt→∞ f (t) = 0 and

sup
t>0

tp| f (t)| ≤ Cα,p‖ f ‖(µ,α),p, f ∈ T (α)
p (tα + tµ),

where Cα,p is independent of f , compare with [11] [Proposition 2.4].
The following theorem extends the case β = α, which was proved in [13] [Proposition

4.1.9] and p = 1 in [10] [Proposition 1.4].

Theorem 4. Take p ≥ 1 and α ≥ µ > 0. Then,

T (α)
p (tµ + tα) ∗ T (α)

1 (tµ + tα) ↪→ T (α)
p (tµ + tα),

i.e., ‖ f ∗ g‖(µ,α),p ≤ Cα,p‖ f ‖(µ,α),p‖g‖(µ,α),1 for f ∈ T (α)
p (tµ + tα), and g ∈ T (α)

1 (tµ + tα),
where Cα,p is a constant independent of f and g.

Proof. Take p > 1 and f , g ∈ S+. Then, we apply Formula (5) to get

|Wα( f ∗ g)(s)|p ≤ Cα,p

(∫ s

0
|Wαg(r)|

∫ s

s−r
(t + r− s)α−1 |Wα f (t)| dt dr

)p

+Cα,p

(∫ ∞

s
|Wαg(r)|

∫ ∞

s
(t + r− s)α−1 |Wα f (t)| dt dr

)p

for s ≥ 0. From now, we write all constants by Cα,p, which may be different in each line.
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We start with the second summand. By the Minkowski inequality ([21] [p. 200]), we
get that

(∫ ∞

0
(sα + sµ)p

(∫ ∞

s
|Wαg(r)|

∫ ∞

s
(t + r− s)α−1 |Wα f (t)| dt dr

)p
ds
) 1

p

≤
∫ ∞

0
|Wαg(r)|

(∫ r

0
(sα + sµ)p

(∫ ∞

s
(t + r− s)α−1 |Wα f (t)| dt

)p
ds
) 1

p

dr.

In the inner integral, we apply the Hölder integral with
1
p
+

1
q
= 1 to obtain:

∫ ∞

s
(t + r− s)α−1 |Wα f (t)| dt

≤
(∫ ∞

s

(t + r− s)(α−1)q

(tα + tµ)q dt

) 1
q(∫ ∞

s
(tα + tµ)p |Wα f (t)|p dt

) 1
p

≤ ‖ f ‖(µ,α),p

(∫ ∞

s

(t + r− s)(α−1)q

tαq dt

) 1
q

.

We change the variable t− s = u to have that

∫ ∞

s

(t + r− s)(α−1)q

tαq dt =
∫ ∞

0

(
u + r
u + s

)αq( 1
u + r

)q
du ≤

∫ ∞

0

rαq

sαq
1

(u + r)q du = Cq
rαq

sαq r
q
p

,

where we have applied that (u + r)/(u + s)−1 ≤ r/s for u > 0 and 0 ≤ s ≤ r. Finally, as
0 ≤ µ ≤ α, we get that

(∫ r

0
(sα + sµ)p

(∫ ∞

s
(t + r− s)α−1 |Wα f (t)| dt

)p
ds
) 1

p

≤ Cα,p‖ f ‖(µ,α),p rα.

Now, we consider the first integral in the bound of |Wα( f ∗ g)(s)|p. Again, by the
Minkowski inequality, we obtain that

(∫ ∞

0
(sα + sµ)p

(∫ s

0
|Wαg(r)|

∫ s

s−r
(t + r− s)α−1 |Wα f (t)| dt dr

)p
ds
) 1

p

≤
∫ ∞

0
|Wαg(r)|

(∫ ∞

r
(sα + sµ)p

(∫ s

s−r
(t + r− s)α−1 |Wα f (t)| dt

)p
ds
) 1

p

dr.

We split the interval (r, ∞) in two parts (r, 2r) ∪ [2r, ∞). In the first summand, as
s ≤ 2r, then (sα + sµ)p ≤ 2αp (rα + rµ)p, and

(∫ 2r

r
(sα + sµ)p

(∫ s

s−r
(t + r− s)α−1 |Wα f (t)| dt

)p
ds
) 1

p

≤ 2α(rα + rµ)

(∫ 2r

r

(∫ s

s−r
(t + r− s)α−1 |Wα f (t)| dt

)p
ds
) 1

p

.

We change the variable s− r = x, and by the Hardy inequality (13), we get that

≤ 2α(rα + rµ)

(∫ ∞

0

(∫ ∞

x
(t− x)α−1 |Wα f (t)| dt

)p
dx
) 1

p

≤ Cα,p(rα + rµ)‖ f ‖(µ,α),p.
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In the second summand, we change the variable x = s− r ≥ r, and then

(∫ ∞

r
((x + r)α + (x + r)β)p

(∫ r+x

x
(t− x)α−1 |Wα f (t)| dt

)p
dx
) 1

p

≤ 2α

(∫ ∞

r
(xα + xβ)p

(∫ r+x

x
(t− x)α−1 |Wα f (t)| dt

)p
dx
) 1

p

.

We change the variable t − x = u, in the inner integral, and we apply the Minkowski
inequality to get

2α

(∫ ∞

r
(xα + xβ)p

(∫ r

0
uα−1 |Wα f (u + x)| du

)p
dx
) 1

p

≤ 2α
∫ r

0
uα−1

(∫ ∞

r
(xα + xβ)p |Wα f (u + x)|p dx

) 1
p

du,

≤ 2α
∫ r

0
uα−1

(∫ ∞

r
((x + u)α + (x + u)β)p |Wα f (u + x)|p dx

) 1
p

du,

≤ 2α
∫ r

0
uα−1

(∫ ∞

u+r
(sα + sβ)p |Wα f (s)|p ds

) 1
p

du ≤ Cα,prα‖ f ‖(µ,α),p.

Finally, we join every summand to get that

‖ f ∗ g‖(µ,α),p ≤ ‖ f ‖(µ,α),p‖g‖(µ,α),1,

and the proof is finished.

Remark 2. (a) We consider the confluent hypergeometric functions U(α, ν, z) treated in Section 3,
and we defined

uα,ν(z) := zνe−zU(α, ν, z), z > 0.

By Theorem 1 (ii), functions uα,ν ∈ T (α)
p (tµ + tα) for ν > α− µ− 1

p with α ≥ µ ≥ 0 and p ≥ 1.

(b) For n ≥ 0, we write functions qn(t) :=
tn

n!
e−t. Note that q0(t) = e−t and qn = (qn−1 ∗ q0)

for n ≥ 1. It is straightforward to check that q0 ∈ T
(α)

1 (tµ + tα),

||q0||(µ,α),1 = 1 +
Γ(µ + 1)
Γ(α + 1)

,

q0 ∈ T
(α)

p (tµ + tα) and

||q0||(µ,α),p ≤
2

Γ(α + 1)pµ

(
2Γ(αp + 1)

p

) 1
p
,

for p > 1. By Theorems 2 and 4, we conclude that

(∫ ∞

0
(tα + tµ)pe−tp|L(α−n)

n (t)|pdt
) 1

p
≤ Cn

α,p
2
pµ

(
2Γ(αp + 1)

p

) 1
p
(

1 +
Γ(µ + 1)
Γ(α + 1)

)n
,

for p ≥ 1, n ∈ N and α ≥ µ ≥ 0.
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