404 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays

    Get PDF
    This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model

    Synchronization of Clifford-valued neural networks with leakage, time-varying, and infinite distributed delays on time scales

    Get PDF
    Neural networks (NNs) with values in multidimensional domains have lately attracted the attention of researchers. Thus, complex-valued neural networks (CVNNs), quaternion-valued neural networks (QVNNs), and their generalization, Clifford-valued neural networks (ClVNNs) have been proposed in the last few years, and different dynamic properties were studied for them. On the other hand, time scale calculus has been proposed in order to jointly study the properties of continuous time and discrete time systems, or any hybrid combination between the two, and was also successfully applied to the domain of NNs. Finally, in real implementations of NNs, time delays occur inevitably. Taking all these facts into account, this paper discusses ClVNNs defined on time scales with leakage, time-varying delays, and infinite distributed delays, a type of delays which have been relatively rarely present in the existing literature. A state feedback control scheme and a generalization of the Halanay inequality for time scales are used in order to obtain sufficient conditions expressed as algebraic inequalities and as linear matrix inequalities (LMIs), using two general Lyapunov-like functions, for the exponential synchronization of the proposed model. Two numerical examples are given in order to illustrate the theoretical results

    Finite-time stabilization of discontinuous fuzzy inertial Cohen–Grossberg neural networks with mixed time-varying delays

    Get PDF
    This article aims to study a class of discontinuous fuzzy inertial Cohen–Grossberg neural networks (DFICGNNs) with discrete and distributed time-delays. First of all, in order to deal with the discontinuities by the differential inclusion theory, based on a generalized variable transformation including two tunable variables, the mixed time-varying delayed DFICGNN is transformed into a first-order differential system. Then, by constructing a modified Lyapunov–Krasovskii functional concerning with the mixed time-varying delays and designing a delayed feedback control law, delay-dependent criteria formulated by algebraic inequalities are derived for guaranteeing the finite-time stabilization (FTS) for the addressed system. Moreover, the settling time is estimated. Some related stability results on inertial neural networks is extended. Finally, two numerical examples are carried out to verify the effectiveness of the established results

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks

    Get PDF
    In the present study, we deal with the stability and the onset of Hopf bifurcation of two type delayed BAM neural networks (integer-order case and fractional-order case). By virtue of the characteristic equation of the integer-order delayed BAM neural networks and regarding time delay as critical parameter, a novel delay-independent condition ensuring the stability and the onset of Hopf bifurcation for the involved integer-order delayed BAM neural networks is built. Taking advantage of Laplace transform, stability theory and Hopf bifurcation knowledge of fractional-order differential equations, a novel delay-independent criterion to maintain the stability and the appearance of Hopf bifurcation for the addressed fractional-order BAM neural networks is established. The investigation indicates the important role of time delay in controlling the stability and Hopf bifurcation of the both type delayed BAM neural networks. By adjusting the value of time delay, we can effectively amplify the stability region and postpone the time of onset of Hopf bifurcation for the fractional-order BAM neural networks. Matlab simulation results are clearly presented to sustain the correctness of analytical results. The derived fruits of this study provide an important theoretical basis in regulating networks
    • …
    corecore