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GLOBAL STABILITY OF CLIFFORD-VALUED
TAKAGI–SUGENO FUZZY NEURAL NETWORKS
WITH TIME-VARYING DELAYS AND IMPULSES

Ramalingam Sriraman and Asha Nedunchezhian

In this study, we consider the Takagi–Sugeno (T-S) fuzzy model to examine the global
asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses.
In order to achieve the global asymptotic stability criteria, we design a general network model
that includes quaternion-, complex-, and real-valued networks as special cases. First, we de-
compose the n-dimensional Clifford-valued neural network into 2mn-dimensional real-valued
counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then,
we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-
Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the
reciprocal convex combination method. All the results are proven using linear matrix inequali-
ties (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved
results.

Keywords: global stability, T-S fuzzy, Clifford-valued neural networks, Lyapunov–
Krasovskii functionals, impulses

Classification: 92B20, 34D08, 35R12, 03E72

1. INTRODUCTION

Since the 1990s, neural networks (NNs) have received more and more attention because
of their wide range of applications in various areas such as associative memory, pattern
recognition, signal processing, optimal control, and so on [7, 14, 24, 36]. However, real-
valued NNs have several challenges when dealing with multidimensional information.
In particular, real-valued NNs are not appropriate for solving the symmetry detection
and XOR problems, but complex-valued NNs are well-suited for solving these issues [12,
26]. Furthermore, it has been demonstrated that complex-valued NNs perform better
than real-valued NNs when dealing with complex signals [38, 42]. On the other hand,
in numerous applications including color imaging, high-dimensional geometrical affine
transformation, and quantum physics, complex- and real-valued NNs cannot be used
directly, while quaternion-valued signals can be used to address these problems directly
[15, 23, 25]. Therefore, the investigation of quaternion-valued NNs has received rapid
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advances in recent years. In this regard, several dynamical investigations of quaternion-,
complex-valued NNs have been published [35, 37, 38, 42].

W. K. Clifford first introduced Clifford algebra [9] by extending complex and quater-
nion algebras. Clifford networks are generalizations of quaternion-, complex-, and real-
valued networks. Clifford-valued NNs have been successfully applied in various domains,
e. g. cognitive computing, computer and robot vision, control problems, and other areas
[13, 28]. Recent studies have proven that Clifford-valued NNs are better than complex-
and real-valued NNs; thus they have been a popular research topic in recent years
[3, 4, 6, 17, 19, 21, 29, 30, 31, 34, 43]. By converting Clifford networks into multidi-
mensional real networks, the issue of global asymptotic stability analysis for a class of
Clifford-valued NNs with impulsive and time delays was analyzed in [31]. The Lya-
punov function approach and the LMI method were used to study global stability with
respect to a class of Clifford-valued neutral-type NNs, which involved discrete time de-
lays [30]. The weighted pseudo almost automorphic issue pertaining to a class of fuzzy
Clifford-valued cellular NNs with neutral type and mixed time delays was explored in
[3]. However, Clifford-valued NN dynamics are difficult to investigate fully due to the
non-commutativity of Clifford numbers multiplication. Given the extensive history of
Clifford-valued NNs and their present state of development, it is vital to properly ex-
amine their global stability analysis, which is the motivation for our current research.

On the other hand, the fuzzy logic theory has been used to describe the nonlinear
systems in various mathematical modeling, which has been a substantial influence on
NNs dynamics [39]. As such, T-S fuzzy model is a potential strategy for accounting for
ambiguity while approximating a complicated nonlinear system. Furthermore, T-S fuzzy
NNs perform better than normal NNs in terms of their capacity to deal with ambiguous
input and reflect nonlinear dynamics. There are some research works on the dynamics
of T-S fuzzy NNs have been published [1, 2, 5, 16, 33, 41]. In 2010, the author of
[1] discussed T-S fuzzy delayed Hopfield NNs and proposed new delay-dependent state
estimation criteria. In 2011, Balasubramanian et al [5] proposed a sufficient criterion for
global stability of T-S fuzzy cellular NNs with leakage delays. In 2018, Jian and Wan
[16] investigated the global exponential convergence of fuzzy complex-valued NNs with
time-varying delays and impulsive effects.

Time delays are unavoidable in signal transmission between neurons in many real-
world systems. There is no doubt that the presence of time delays can lead to poor
system performance, including oscillation, instability, bifurcation, and so on [8, 20, 32].
As a result, time delays must be analyzed in order to determine the stability of NNs.
Recently, there have been extensive studies about the stability of NNs with various time
delays have been published [3, 4, 8, 17, 19, 20, 32, 34]. On the other hand, impulsive
differential equations are advantageous due to their potential applications in a variety
of sectors, such as biological systems, chemical processes, and others [10, 18]. Similar to
time delays, impulses cause stable systems to become unstable [11, 22]. As a result, the
dynamical analysis of impulsive NNs with time delays is crucial, and many researchers
have investigated this challenge [11, 18, 22, 40].

Based on the above motivation, our aim in this paper is to investigate the global
asymptotic stability of T-S fuzzy Clifford-valued NNs. The major contributions of our
research are as follows: (1) This is the first study to examine the global asymptotic
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stability of T-S fuzzy Clifford-valued NNs with time-varying delays and impulses. (2)
We established new sufficient conditions that ensure the global asymptotic stability of
the equilibrium point for the considered networks by constructing an appropriate LKFs
and by applying Jensen’s integral inequality together with reciprocal convex combination
method. All the results are presented in the form of LMIs which can be easily verified
using the MATLAB LMI toolbox. (3) The methods discussed in this paper is generic
and adaptable to investigating various dynamics of other T-S fuzzy Clifford-valued NNs.

The structure of this paper is as follows. Section 2 explains the proposed NNs. Section
3 introduces the new stability criteria, while Section 4 provides the numerical analysis.
Conclusions are shown in Section 5.

2. MATHEMATICAL FORMULATION AND PROBLEM DEFINITION

2.1. Notations

In the rest of this paper, Rn, An, Rn×m, An×m denote the n-dimensional real vector
space, n-dimensional real Clifford vector space, the set of all n×m real matrices and the
set of all n×m real Clifford matrices, respectively. The Clifford algebra over R is defined
as A with m generators. The transpose of matrix and conjugate transpose of matrix are
represented by T and ∗, respectively. A positive or negative definite matrix is denoted by
Q > 0 or Q < 0, respectively. The norm of Rn is defined as ‖y‖ =

∑n
i=1|yi|, we denote

‖M‖ = max1≤i≤n{
∑n
j=1|mij |} for M = (mij)n×n ∈ Rn×n, ‖y‖A =

∑
A∈Γ|yA| for

y =
∑
A∈Γy

AeA ∈ A and ‖W‖A = max1≤i≤n{
∑n
j=1|wij |A} for W = (wij)n×n ∈ An×n.

For ω ∈C([−τ, 0],An), we denote the norm ‖ω‖τ ≤ sup−τ≤s≤0 ‖ω(t+ s)‖.

2.2. Clifford Algebra

Clifford algebra over Rm is defined as

A =

{ ∑
A⊆{1,2,...,m}

aAeA, a
A ∈ R

}
,

where eA = er1er2 . . . erν with A = {r1, r2, . . . , rν}, 1 ≤ r1 < r2 < . . . < rν ≤ m.
The Clifford generators are also known as e∅ = e0 = 1 and er = e{r}, r = 1, 2, . . . ,m,

and they meet the following criteria{
eiej + ejei = 0, i 6= j, i, j = 1, 2, . . . ,m,

e2
i = −1, i = 1, 2, . . . ,m.

When an element represents the product of many Clifford generators, we combine the
associated subscripts for convenience, e. g. e4e5e6e7 = e4567.

Let Γ = {∅, 1, 2, . . . , A, . . . , 12 . . .m}, we have

A =

{∑
A

aAeA, a
A ∈ R

}
,

where
∑
A denotes

∑
A∈Γ and A is isomorphic to R2m .
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The involution of y for every Clifford number y =
∑
A y

AeA is defined by

ȳ =
∑
A

yAēA,

where ēA = (−1)
%[A](%[A]+1)

2 eA, and

%[A] =

{
0, if A = ∅,
ν, if A = r1r2 . . . rν .

We can deduce from the definition that eAēA = ēAeA = 1. When describing a Clifford-
valued function y =

∑
A y

AeA : R→ A, where yA : R→ R, A ∈ Γ, and its derivative is

given by dy(t)
dt =

∑
A
dyA(t)
dt eA.

In the following, eB ēA = (−1)
%[A](%[A]+1)

2 eBeA, we can write eB ēA = eC or eB ēA =
−eC , where eC is a basis of Clifford algebra A. For illustrate, er1r2 ēr2r3 = −er1r2er2r3 =
−er1er2er2er3 = −er1(−1)er3 = er1er3 = er1r3 . As a result, we can determine a unique
corresponding basis eC with respect to a given eB ēA. Define

%[B.Ā] =

{
0, if eB ēA = eC ,

1, if eB ēA = −eC ,

and then, eB ēA = (−1)%[B.Ā]eC .

Furthermore, for any G ∈ A, there is a unique G C that fulfills GB.Ā = (−1)%[B.Ā]G C

for eB ēA = (−1)%[B.Ā]eC . Thus

GB.ĀeB ēA = GB.Ā(−1)%[B.Ā]eC = (−1)%[B.Ā]G C(−1)%[B.Ā]eC = G CeC .

and G =
∑
C G CeC ∈ A.

2.3. Problem definition

Consider the following Clifford-valued NN model with time-varying delays:

ẏi(t) = − diyi(t) +

n∑
j=1

aijgj(yj(t)) +

n∑
j=1

bijgj(yj(t− τj(t))) + ui, t ≥ 0, (1)

where i = 1, . . . , n; yi(t) = (y1(t), . . . , yn(t))T ∈ An represents the neuron state vector;
di ∈ R+ is the rate at which it resets its potential to the resting state in isolation;
aij , bij ∈ A denotes the connection weight matrix and delayed connection weight matrix
between cells i and j, respectively. gj(·) : A→ A is the Clifford-valued neuron activation
function; ui is the external input vector. The transmission delay is denoted by τj(t) ∈
R+.

The initial condition of (1) is as follows:

yi(t) = ωi(t), t ∈ [−τ, 0], i = 1, 2, . . . , n. (2)
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We can express NN (1) as a vector model, as follows.

ẏ(t) = −Dy(t) + Ag(y(t)) + Bg(y(t− τ(t))) + U, t ≥ 0, (3)

where y(t) = (y1(t), . . . , yn(t))T ∈ An, D = diag(d1, . . . , dn) ∈ Rn×n, A = (aij)n×n ∈
An×n, B = (bij)n×n ∈ An×n, U = (u1, . . . , un)T ∈ An, g(y(t)) = (g1(y1(t)), . . . ,
gn(yn(t)))T ∈ An, g(y(t− τ(t))) = (g1(y1(t− τ(t))), . . . , gn(yn(t− τ(t))))T ∈ An.

(A1) In NN (3), the transmission delay τ(t) is a continuous and differentiable function
that satisfies

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ µ < 1,

where τ and µ are real constants.

(A2) For every j = 1, 2, . . . , n, the neuron activation function gj(·) ∈ C(A,A) is
bounded and Lipschitz continuous. There exist positive real numbers kj

|gj(`)− gj(˜̀)|A ≤ kj |`− ˜̀|A, j = 1, 2, . . . , n,

for all `, ˜̀ ∈ A. There exist constant K > 0, such that |gj(`)|A ≤ K, j =
1, 2, . . . , n.

It is obvious from assumption (A2) that,

(g(`)− g(˜̀))∗(g(`)− g(˜̀)) ≤ (`− ˜̀)∗KTK(`− ˜̀), (4)

where K = diag{k1, . . . , kn}.

Remark 2.1. In general, Clifford-valued networks aim to investigate new capabilities
and improve accuracy by addressing issues that cannot be resolved with quaternion-
valued, complex-valued, and real-valued NNs. As of now, Clifford-valued networks are
the most generalized forms of quaternion-valued, complex-valued, and real-valued net-
work models. For example, Clifford-valued networks (1) can be viewed as a general
case of real-valued (m = 0), complex-valued (m = 1), and quaternion-valued (m = 2)
network models.

Definition 2.2. (Song et al. [38]) Under assumption (A2), there exist an equilibrium
point y∗ ∈ An for the Clifford-valued NNs (3) if it meets the following condition

−Dy∗ + Ag(y∗) + Bg(y∗) + U = 0.

For convenience, we use the transformation z(t) = y(t) − y∗ to shift the equilibrium
point to the origin. As such, NN (3) can be re-written as

ż(t) = −Dz(t) + Ah(z(t)) + Bh(z(t− τ(t))), t ≥ 0, (5)



Global stability of Clifford-valued T-S fuzzy neural networks ... 503

where z(t) is the state vector, φ(t) = ω(t)−y∗ is the initial condition, and the transformed
activation function h(z(·)) = g(y(·) + y∗ + U)− g(y∗ + U) satisfies

|hj(`)− hj(˜̀)|A ≤ kj |`− ˜̀|A, ∀ `, ˜̀∈ A, ` 6= ˜̀, j = 1, 2, . . . , n.

To describe a nonlinear system, the continuous fuzzy system was introduced in [39] and
this concept well discussed in [41]. In addition, the T-S fuzzy model was devised to
design complex-valued NNs in [16]. Based on [34, 39, 41], the T-S fuzzy Clifford-valued
NNs with time delays can be described, as follows.

Plant Rule p:
If {χ1(t) is $p1}, {χ2(t) is $p2}, . . . , {χg(t) is $pg}.
Then {

ż(t) = −Dpz(t) + Aph(z(t)) + Bph(z(t− τ(t))), t ≥ 0,

z(t) = φ(t), t ∈ [−τ, 0],
(6)

where the premise variables are χr(t), r = 1, . . . , g, the fuzzy sets are $pr, p =
1, . . . ,m, r = 1, . . . , g and m is the total of If-Then rules.

The final output of T-S fuzzy Clifford-valued NN can be achieved by inferring from
the fuzzy NN model (6), as followsż(t) =

∑m
p=1ϕp(χ(t))

{
−Dpz(t) + Aph(z(t)) + Bph(z(t− τ(t)))

}
, t ≥ 0,

z(t) = φ(t), t ∈ [−τ, 0],
(7)

where χ(t) = (χ1(t), . . . , χg(t))
T , ϕp(χ(t)) =

wp(χ(t))∑m
p=1wp(χ(t)) and wp(χ(t)) =

∏g
r=1$pr(χ(t)).

The term $pr(χ(t)) is the grade membership of χr(t) in $pr. It is assumed that
wp(χ(t)) ≥ 0, p = 1, . . . ,m and

∑m
p=1wp(χ(t)) > 0 for all t ≥ 0. From the fuzzy

set theory, we have ϕp(χ(t)) ≥ 0, p = 1, . . . ,m and
∑m
p=1ϕp(χ(t)) = 1 for all t ≥ 0.

If Clifford-valued NNs incorporated with impulse effects, the model (7) becomes
ż(t) =

∑m
p=1ϕp(χ(t))

{
−Dpz(t) + Aph(z(t)) + Bph(z(t− τ(t)))

}
, t ≥ 0, t 6= tk,

4z(tk) = z(t+k )− z(t−k ) = Ik(z(t−k )), t = tk, k ∈ Z+,

z(t) = φ(t), t ∈ [−τ, 0],

(8)

where 4z(tk) = z(t+k )−z(t−k ) is the impulse at moments tk and z(t+k ) and z(t−k ) denotes
the right and left hand limits of z(tk), respectively. In addition, Ik ∈ Rn×n denotes the
impulsive matrix and the impulse time tk satisfies 0 = t1 < t2 < . . . tk < . . .→∞ and
infk∈Z+

{tk − tk−1} > 0.
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3. MAIN RESULTS

First, we use eAēA = ēAeA = 1 and eB ēAeA = eB to rewrite the Clifford-valued NNs
(9) into real-valued NNs. From the definition, it is easy to obtain a unique G C fulfilling
G CeCh

AeA = (−1)%(B.Ā)G ChAeB = GB.ĀhAeB , which implies the following real-valued
NN model transformation.


żA(t) =

∑m
p=1ϕp(χ(t))

{
−Dpz

A(t) +
∑
BA

A·B̄
p hA(z(t)) +

∑
BB

A·B̄
p hA(z(t− τ(t)))

}
,

t ≥ 0, t 6= tk,

4zA(tk) = zA(t+k )− zA(t−k ) = Ik(zA(t−k )), t = tk, k ∈ Z+, A ∈ Γ.

(9)

The initial condition of (9) is as follows

zA(t) = φA(t), t ∈ [−τ, 0], (10)

where

zA(t) = (zA1 (t), . . . , zAn (t))T , z(t) =
∑
A

zA(t)eA,

hA(z(t)) = (hA1 (z(t)), . . . , hAn (z(t)))T ,

hA(z(t− τ(t))) = (hA1 (z(t− τ(t))), . . . , hAn (z(t− τ(t))))T ,

h(z(t)) =
∑
B

hB(zC1(t), . . . , zCn(t))eB =
∑
B

hB(z(t))eB ,

h(z(t− τ(t))) =
∑
B

hB(zC1(t− τ(t)), . . . , zCn(t− τ(t)))eB =
∑
B

hB(z(t− τ(t)))eB ,

Ap =
∑
C

AC
p eC , A

A.B̄
p = (−1)%[A.B̄]AC

p ,

Bp =
∑
C

BC
p eC , B

A.B̄
p = (−1)%[A.B̄]BC

p ,

eAēB = (−1)%[A.B̄]eC .

According to Clifford algebra, NN (9) can be expressed as a new real-valued NN. Let

Y̌ (t) =
(
(z0(t))T , (z1(t))T , . . . , (zA(t))T , . . . , (z12...m(t))T

)T ∈ R2mn,

Ȟ(Y̌ (t)) =
(
(h0(z(t)))T , (h1(z(t)))T , . . . , (hA(z(t)))T , . . . , (h12...m(z(t)))T

)T∈ R2mn

Ȟ(Y̌ (t− τ(t))) =
(
(h0(z(t− τ(t))))T , (h1(z(t− τ(t))))T , . . . , (hA(z(t− τ(t))))T ,

. . . , (h12...m(z(t− τ(t))))T
)T ∈ R2mn,

Ďp =


Dp 0 . . . 0
0 Dp . . . 0
...

...
. . .

...
0 0 . . . Dp


2mn×2mn

, Ǐk =


Ik 0 . . . 0
0 Ik . . . 0
...

...
. . .

...
0 0 . . . Ik


2mn×2mn

,
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Ǎp =


A0
p . . . AA

p . . . A12...m
p

A1
p . . . A1.A

p . . . A1.12...m
p

... · · ·
...

. . .
...

A12...m
p . . . A12...m.A

p . . . A12...m.12...m
p


2mn×2mn

,

B̌p =


B0
p . . . BA

p . . . B12...m
p

B1
p . . . B1.A

p . . . B1.12...m
p

... · · ·
...

. . .
...

B12...m
p . . . B12...m.A

p . . . B12...m.12...m
p


2mn×2mn

.

Then, NN (9) can be written as ˙̌Y (t) =
∑m
p=1ϕp(χ(t))

{
− ĎpY̌ (t) + ǍpȞ(Y̌ (t)) + B̌pȞ(Y̌ (t− τ(t)))

}
, t ≥ 0, t 6= tk,

4Y̌ (tk) = Y̌ (t+k )− Y̌ (t−k ) = Ǐk(Y̌ (t−k )), t = tk, k ∈ Z+,

(11)

with the initial condition,

Y̌ (t) = Φ̌(t), t ∈ [−τ, 0], (12)

where Φ̌(t) = [(φ0(t))T , (φ1(t))T , . . . , (φA(t))T , . . . (φ12...m(t))T ]T ∈ R2mn.
Furthermore, (4) can be written in the following form:

(Ȟ(`)− Ȟ(˜̀))T (Ȟ(`)− Ȟ(˜̀)) ≤ (`− ˜̀)TǨ(`− ˜̀), (13)

where Ǩ =


KTK 0 . . . 0

0 KTK . . . 0
...

...
. . .

...
0 0 . . . KTK


2mn×2mn

.

To explore the global asymptotic stability, we further assume that the impulsive
function Ǐk(Y̌ (t−k )) satisfies the following assumption:

(A3) 4Y̌ (tk) = Ǐk(Y̌ (t−k )) = −J̌kY̌ (t−k ), k ∈ Z+.

where J̌k =


Jk 0 . . . 0
0 Jk . . . 0
...

...
. . .

...
0 0 . . . Jk


2mn×2mn

and Jk ∈ Rn×n.

Lemma 3.1. (Balasubramaniam et al. [5]) Let O1, O2, O3 be given matrices such that
O3 > 0, then [

O2 OT1
O1 −O3

]
< 0⇔ O2 +OT1 O

−1
3 O1 < 0.
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Lemma 3.2. (Balasubramaniam [5]) Given matrix 0 < O = OT ∈ R2mn×2mn, the
following inequality is true for any continuously differentiable function Y̌ (α) in [ξ1, ξ2] ∈
R2mn

−(ξ2 − ξ1)

∫ t−ξ1

t−ξ2
Y̌ T (α)OY̌ (α) dα ≤−

[ ∫ t−ξ1

t−ξ2
Y̌ (α) dα

]T
O

[ ∫ t−ξ1

t−ξ2
Y̌ (α) dα

]
.

Lemma 3.3. (Park et al. [27]) Given matrix 0 < O = OT ∈ R2mn×2mn, any matrices

X ∈ R2n×2mn, any vector ζ1, ζ2 ∈ R2mn, and any ϑ ∈ (0, 1), such that

(
O X

XT O

)
> 0,

the following LMI holds

1

ϑ
ζT1 Oζ1 +

1

1− ϑ
ζT2 Oζ2 ≥

(
ζ1
ζ2

)T (
O X

XT O

)(
ζ1
ζ2

)
.

Theorem (3.4) presents the global asymptotic stability criterion for the NNs (11).

Theorem 3.4. Suppose Assumptions (A1) – (A3) are satisfied, NN (11) is globally
asymptotic stable if there exist positive definite symmetric matrices P, Q1, Q2, R1 and(
S11 S12

? S22

)
> 0, any matrix X and scalars ε1 > 0, ε2 > 0 such that the following LMIs

hold for p = 1, 2, . . . ,m: (
P (I − J̌k)TP
? P

)
≥ 0, k ∈ Z+, (14)

Ξp =

(Θp
i,j)5×5 τR1ΠT

√
τS22ΠT

? −R1 0
? ? −S22

 < 0, (15)

where Θp
1,1 = −2PĎp+Q1−R1+ε1Ǩ, Θp

1,2 = RT
1 −X+ST

12, Θp
1,3 = X, Θp

1,4 = PǍp,

Θp
1,5 = PB̌p, Θp

2,2 = −(1 − µ)Q1 −R1 −R1 + X + XT + τS11 − 2ST
12 + ε2Ǩ,

Θp
2,3 = R1 − X, Θp

3,3 = −R1, Θp
4,4 = Q2 − εI, Θp

5,5 = −(1 − µ)Q2 − ε2I, Π =[
− ĎT

p 0 0 ǍT
p B̌T

p

]
.

P r o o f . Construct the following LKF for NN model (11):

V(t) =

5∑
`=1

V̀(t), (16)

where

V1(t) = Y̌ T (t)PY̌ (t),

V2(t) =

∫ t

t−τ(t)

Y̌ T (s)Q1Y̌ (s) ds+

∫ t

t−τ(t)

ȞT (Y̌ (s))Q2Ȟ(Y̌ (s)) ds,

V3(t) = τ

∫ t

t−τ
(s− (t− τ)) ˙̌Y T (s)R1

˙̌Y (s) ds,
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V4(t) =

∫ t

0

∫ u

u−τ(u)

(
Y̌ (u− τ(u))

˙̌Y (s)

)T (
S11 S12

? S22

)(
Y̌ (u− τ(u))

˙̌Y (s)

)
dsdu,

V5(t) =

∫ t

t−τ
(s− (t− τ)) ˙̌Y T (s)S22

˙̌Y (s) ds.

Computing the upper right derivative of V(t) =
∑5
`=1V̀(t) with

∑m
p=1ϕp(χ(t)) = 1

along the trajectories of model (11) with interval t ∈ [tk−1, tk), k ∈ Z+, we have

D+V(t) =

5∑
`=1

D+V̀(t), (17)

where

D+V1(t) =

m∑
p=1

ϕp(χ(t))

{
2Y̌ T (t)P

[
− ĎpY̌ (t) + ǍpȞ(Y̌ (t)) + B̌pȞ(Y̌ (t− τ(t)))

]}
,

(18)

D+V2(t) = Y̌ T (t)Q1Y̌ (t)− (1− τ̇(t))Y̌ T (t− τ(t))Q1Y̌ (t− τ(t))

+ ȞT (Y̌ (t))Q2Ȟ(Y̌ (t))− (1− τ̇(t))ȞT (Y̌ (t− τ(t)))Q2Ȟ(Y̌ (t− τ(t))),
(19)

D+V3(t) = τ2 ˙̌Y T (t)R1
˙̌Y (t)− τ

∫ t

t−τ

˙̌Y T (s)R1
˙̌Y (s) ds. (20)

The first integral term in (20) can be defined as

−τ
∫ t

t−τ

˙̌Y T (s)R1
˙̌Y (s) ds = −

∫ t−τ(t)

t−τ

˙̌Y T (s)R1
˙̌Y (s) ds−

∫ t

t−τ(t)

˙̌Y T (s)R1
˙̌Y (s) ds.

(21)

By applying Lemma (3.2) in the following forms

−τ
∫ t

t−τ

˙̌Y T (s)R1
˙̌Y (s) ds ≤− τ

τ − τ(t)

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
− τ

τ(t)

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
=−

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
− τ(t)

τ − τ(t)

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
− τ − τ(t)

τ(t)

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
. (22)
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If

(
R1 X

XT R1

)
≥ 0, by Lemma (3.3), the following inequality true:


√

τ(t)
τ−τ(t)

[∫ t−τ(t)

t−τ
˙̌Y (s) ds

]
√

τ−τ(t)
τ(t)

[∫ t
t−τ(t)

˙̌Y (s) ds

]

T (

R1 X

XT R1

)
√

τ(t)
τ−τ(t)

[∫ t−τ(t)

t−τ
˙̌Y (s) ds

]
√

τ−τ(t)
τ(t)

[∫ t
t−τ(t)

˙̌Y (s) ds

]
 ≥ 0, (23)

which implies

− τ(t)

τ − τ(t)

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
− τ − τ(t)

τ(t)

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
×R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
≤ −

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
X

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
XT

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
. (24)

From (22) and (24), once can obtain that

−τ
∫ t

t−τ

˙̌Y T (s)R1
˙̌Y (s) ds

≤ −
[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
×R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
−
[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
X

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
XT

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
. (25)

From (20) – (25), once can obtain that

D+V3(t) = τ2 ˙̌Y T (t)R1
˙̌Y (t)−

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
R1

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
R1

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
−
[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]T
X

[ ∫ t

t−τ(t)

˙̌Y (s) ds

]
−
[ ∫ t

t−τ(t)

˙̌Y (s) ds

]T
XT

[ ∫ t−τ(t)

t−τ

˙̌Y (s) ds

]
, (26)

D+V4(t) =

∫ t

t−τ(t)

(
Y̌ (t− τ(t))

˙̌Y (s)

)T (
S11 S12

? S22

)(
Y̌ (t− τ(t))

˙̌Y (s)

)
ds
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= τ(t)Y̌ T (t− τ(t))S11Y̌ (t− τ(t)) + 2Y̌ T (t)ST
12Y̌ (t− τ(t))

− 2Y̌ T (t− τ(t))ST
12Y̌ (t− τ(t)) +

∫ t

t−τ(t)

˙̌Y T (s)S22
˙̌Y (s) ds, (27)

D+V5(t) = τ ˙̌Y T (t)S22
˙̌Y (t)−

∫ t

t−τ(t)

˙̌Y T (s)S22
˙̌Y (s) ds. (28)

There exist positive scalar ε1 > 0, ε2 > 0. By assumption (A2), we have

0 ≤ ε1[Y̌ T (t)ǨY̌ (t)− ȞT (Y̌ (t))Ȟ(Y̌ (t))], (29)

0 ≤ ε2[Y̌ T (t− τ(t))ǨY̌ (t− τ(t))− ȞT (Y̌ (t− τ(t)))Ȟ(Y̌ (t− τ(t)))]. (30)

Combining (18) – (30), we have

D+V(t) ≤
m∑
p=1

ϕp(χ(t))

{
2Y̌ T (t)P

[
− ĎpY̌ (t) + ǍpȞ(Y̌ (t)) + B̌pȞ(Y̌ (t− τ(t)))

]
+ Y̌ T (t)Q1Y̌ (t)− (1− τ̇(t))Y̌ T (t− τ(t))Q1Y̌ (t− τ(t))

+ ȞT (Y̌ (t))Q2Ȟ(Y̌ (t))− (1− τ̇(t))ȞT (Y̌ (t− τ(t)))Q2Ȟ(Y̌ (t− τ(t)))

+ τ2 ˙̌Y T (t)R1
˙̌Y (t)

− [Y̌ (t− τ(t))− Y̌ (t− τ)]TR1[Y̌ (t− τ(t))− Y̌ (t− τ)]

− [Y̌ (t)− Y̌ (t− τ(t))]TR1 × [Y̌ (t)− Y̌ (t− τ(t))]

− [Y̌ (t− τ(t))− Y̌ (t− τ)]TX[Y̌ (t)− Y̌ (t− τ(t))]

− [Y̌ (t)− Y̌ (t− τ(t))]TXT [Y̌ (t− τ(t))− Y̌ (t− τ)]

+ τ Y̌ T (t− τ(t))S11Y̌ (t− τ(t)) + Y̌ T (t)ST
12Y̌ (t− τ(t))

− 2Y̌ T (t− τ(t))ST
12Y̌ (t− τ(t)) +

∫ t

t−τ(t)

˙̌Y T (s)S22
˙̌Y (s) ds

+ τ ˙̌Y T (t)S22
˙̌Y (t)−

∫ t

t−τ(t)

˙̌Y T (s)S22
˙̌Y (s) ds

+ ε1[Y̌ T (t)ǨY̌ (t)− ȞT (Y̌ (t))Ȟ(Y̌ (t))]

+ ε2[Y̌ T (t− τ(t))ǨY̌ (t− τ(t))− ȞT (Y̌ (t− τ(t)))Ȟ(Y̌ (t− τ(t)))]

}
, (31)

which implies

D+V(t) ≤
m∑
p=1

ϕp(χ(t))

{
ςT (t)[Θp

i,j + ΠT τ2R1Π + ΠT τS22Π]ς(t)

}
, (32)

where ς(t) =
[
Y̌ T (t), Y̌ T (t−τ(t)), Y̌ T (t−τ), ȞT (Y̌ (t)), ȞT (Y̌ (t−τ(t)))

]T
, and Θp

i,j ,
Π are given in (15).
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Furthermore, pre and post multiplication of (14) by diag{I,P−1}, we have

⇔
(
I 0
0 P

)(
P (I − J̌k)TP
? P

)(
I 0
0 P

)
⇔
(
P (I − J̌k)T

? P−1

)
≥ 0

⇔ P − (I − J̌k)TP(I − J̌k) ≥ 0. (33)

On the other hand, from the NN model (11) it follows that

Y̌ (tk)− Y̌ (t−k ) = −J̌kY̌ (t−k )

Y̌ (tk) = (I − J̌k)Y̌ (t−k ). (34)

Based on the definition of V(t), we have

V1(tk) = Y̌ (tk)TPY̌ (tk)

= Y̌ (t−k )T (I − J̌k)TP(I − J̌k)Y̌ (t−k )

≤ Y̌ (t−k )TPY̌ (t−k )

V1(tk) ≤ V1(t−k ).

Moreover, it can be easily verified that V2(tk) ≤ V2(t−k ), V3(tk) ≤ V3(t−k ), V4(tk) ≤
V4(t−k ) and V5(tk) ≤ V5(t−k ) which implies that

V(tk) ≤ V(t−k ), k ∈ Z+. (35)

Using the Schur complement Lemma (3.1) it can be derived from (32) that

D+V(t) ≤
m∑
p=1

ϕp(χ(t))

{
ςT (t)Ξpς(t)

}
, t ∈ [tk−1, tk), k ∈ Z+. (36)

From condition (15), we have

D+V(t) ≤ −η‖Y̌ (t)‖2 < 0, (37)

for a sufficiently small η > 0. It can be seen that D+V(t) is negative if LMI (15) holds.
This implies from Lyapunov stability theory that the equilibrium point of NN (8) or
(11) is globally asymptotically stable. This completes the proof of Theorem (3.4).

�

Remark 3.5. When there are no impulses, NN (11) becomes ˙̌Y (t) =
∑m
p=1 ϕp(χ(t))

{
− ĎpY̌ (t) + ǍpȞ(Y̌ (t)) + B̌pȞ(Y̌ (t− τ(t)))

}
, t ≥ 0,

Y̌ (t) = Φ̌(t), t ∈ [−τ, 0].

(38)
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The global asymptotic stability of NN (38) without impulsive effect is investigated
with corollary (3.6).

Corollary 3.6. Suppose Assumptions (A1) – (A2) are satisfied, NN model (38) is glob-
ally asymptotically stable if there exist positive definite symmetric matrices P, Q1, Q2,

R1 and

(
S11 S12

? S22

)
> 0, any matrix X and scalars ε1 > 0, ε2 > 0 such that the

following LMIs hold for p = 1, 2, . . . ,m:

Ξ̄p =

(Θ̄p
i,j)5×5 τ Π̄T

√
τ Π̄T

? −R1 0
? ? −S22

 < 0, (39)

where Θ̄p
1,1 = −2PĎp+Q1−R1 +ε1Ǩ, Θ̄p

1,2 = R1−X+ST
12, Θ̄p

1,3 = X, Θ̄p
1,4 = PǍp,

Θ̄p
1,5 = PB̌p, Θ̄p

2,2 = −(1 − µ)Q1 −R1 −R1 + X + XT + τS11 − 2ST
12 + ε2Ǩ,

Θ̄p
2,3 = R1 −X, Θ̄p

3,3 = −R1, Θ̄p
4,4 = Q2 − ε1I, Θ̄p

5,5 = −(1 − µ)Q2 − ε2I, Π̄ =[
− Ďp 0 0 Ǎp B̌p

]
.

Remark 3.7. Clifford network models have been successfully applied to solving prob-
lems in optimization, neural computing, and image processing. Recent studies have in-
vestigated various types of Clifford-valued NN models, including Clifford-valued neutral-
type NNs [30], Clifford-valued neutral high-order Hopfield NNs [17], Clifford-valued iner-
tial NNs [19], and Clifford-valued inertial Cohen-Grossberg [19] and so on. However, no
work has been published on fuzzy T-S Clifford-valued NNs with time-varying delays and
impulsive effects. In order to fill such gaps, we derived for the first time new sufficient
conditions that ensure the global asymptotic stability of T-S fuzzy Clifford-valued NNs
models with time delays. In the current literature, there are no studies comparing the
obtained global asymptotic stability of T-S fuzzy Clifford-valued NN (11). It is note-
worthy that our results in this study are new, which is indicative of the efficacy of our
work.

Remark 3.8. Clifford algebra is a unital algebra, so research into Clifford-valued net-
works is difficult due to the noncommutative of Clifford numbers multiplication. There-
fore, there are very few studies examining the dynamical behavior of Clifford-valued
networks. Meanwhile, the decomposition method is very effective for solving the non-
commutativity problem in the multiplication of Clifford numbers. As shown by Theorem
(3.4), the original Clifford-valued networks have been examined by dividing them into
multidimensional real-valued networks, but the results are only concerning Clifford-
valued networks.

Remark 3.9. It is well known that the number of decision variables determines the
computation complexity of LMI. When using the augmented LKFs and free-weighting
matrix method, the number of decision variables increases. Moreover, when the number
of delay subintervals increases, it might increase the computational complexity. There-
fore, we used the standard LKFs, and the time derivative has been calculated without
using the free-weighting matrix method and delay decomposition methods. As a result,
the proposed results may lead to a small computational burden.
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4. NUMERICAL EXAMPLES

This section provides a numerical example to demonstrate the usefulness and benefit of
the analyses and results.

Example 1: In the case n = 2 and m = 3, consider the T-S fuzzy Clifford-valued NNs
and the plant rule with p = 1, 2.
ẏ(t) =

∑2
p=1 ϕp(χ(t))

{
−Dpy(t) + Apg(y(t)) + Bpg(y(t− τ(t)))

}
, t ≥ 0, t 6= tk,

4y(tk) = Iky(t−k ), t = tk, k ∈ Z+,

y(t) = φ(t), t ∈ [−τ, 0].

(40)

Plant Rule 1: IF {χ1(t) is $11}, THEN
ẏ(t) = −D1y(t) + A1g(y(t)) + B1g(y(t− τ(t))), t ≥ 0, t 6= tk,

4y(tk) = Iky(t−k ), t = tk, k ∈ Z+,

y(t) = φ(t), t ∈ [−τ, 0].

Plant Rule 2: IF {χ2(t) is $22}, THEN
ẏ(t) = −D2y(t) + A2g(y(t)) + B2g(y(t− τ(t))), t ≥ 0, t 6= tk,

4y(tk) = Iky(t−k ), t = tk, k ∈ Z+,

y(t) = φ(t), t ∈ [−τ, 0],

in which the following parameters are used

D1 =

(
4 0
0 4

)
, D2 =

(
3 0
0 3

)
,

Ik =

(
−0.5 0

0 −0.5

)
, K =

(
0.5 0
0 0.5

)
,

A1 =

(
0.3e0 + 2e1 + 0.1e13 0.2e0 + 0.4e2 − 0.7e12 + 0.1e13 + 0.1e23 + 0.1e123

0.06e0 − 0.3e2 + 0.05e12 + 0.2e13 0.2e0 + 0.2e1 + 0.1e3 + 0.06e12 + 0.1e13 + 0.1e123

)
,

A2 =

(
0.2e0 + e1 + 0.1e23 0.1e0 + 0.3e2 + 0.1e3 − 0.6e12 + 0.1e23 + 0.1e123

0.05e0 − 0.2e2 + 0.4e12 + 0.1e123 0.1e0 + 0.1e1 + 0.1e2 + 0.05e12 + 0.1e13 + 0.1e123

)
,

B1 =

(
0.4e0 + 0.02e1 + 0.1e3 0.2e0 + 0.03e2 − 0.4e12 + 0.1e23 + 0.1e123

0.06e0 − 0.3e2 + 0.06e12 + 0.1e13 + 0.1e23 0.3e0 + 0.3e1 + 0.06e12 + 0.1e13 + 0.1e123

)
,

B2 =

(
0.3e0 + 0.01e1 + 0.1e3 0.1e0 + 0.02e2 − 0.3e12 + 0.1e23 + 0.1e123

0.05e0 − 0.2e2 + 0.05e12 + 0.1e13 + 0.1e23 0.2e0 + 0.2e1 + 0.05e12 + 0.1e13 + 0.1e123

)
.

According to the definitions, we have

A0
1 =

(
0.3 0.2
0.06 0.2

)
, A1

1 =

(
2 0
0 0.2

)
,
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A2
1 =

(
0 0.4
−0.3 0

)
, A3

1 =

(
0 0
0 0.1

)
,

A12
1 =

(
0 −0.7

0.5 0.06

)
, A13

1 =

(
0.1 0.1
0.2 0.1

)
,

A23
1 =

(
0 0.1
0 0

)
, A123

1 =

(
0 0.1
0 0.1

)
,

A0
2 =

(
0.2 0.1
0.05 0.1

)
, A1

2 =

(
1 0
0 0.1

)
,

A2
2 =

(
0 0.3
−0.2 0.1

)
, A3

2 =

(
0 0.1
0 0

)
,

A12
2 =

(
0 −0.6

0.4 0.05

)
, A13

2 =

(
0 0
0 0.1

)
,

A23
2 =

(
0.1 0.1
0 0

)
, A123

2 =

(
0 0.1

0.1 0.1

)
,

B0
1 =

(
0.4 0.2
0.06 0.3

)
, B1

1 =

(
0.02 0

0 0.3

)
,

B2
1 =

(
0 0.03
−0.3 0

)
, B3

1 =

(
0.1 0
0 0

)
,

B12
1 =

(
0 −0.4

0.06 0.06

)
, B13

1 =

(
0 0

0.1 0.1

)
,

B23
1 =

(
0 0.1

0.1 0

)
, B123

1 =

(
0 0.1

0.1 0

)
,

B0
2 =

(
0.3 0.1
0.05 0.2

)
, B1

2 =

(
0.01 0

0 0.2

)
,

B2
2 =

(
0 0.02
−0.2 0

)
, B3

2 =

(
0.1 0
0 0

)
,

B12
2 =

(
0 −0.3

0.05 0.05

)
, B13

2 =

(
0 0

0.1 0.1

)
,

B23
2 =

(
0 0.1

0.1 0

)
, B123

2 =

(
0 0

0.1 0.1

)
,

and

Ǎ1 =



A0
1 −A1

1 −A2
1 −A3

1 −A12
1 −A13

1 −A23
1 A123

1

A1
1 A0

1 −A12
1 −A13

1 A2
1 A3

1 −A123
1 −A23

1

A2
1 A12

1 A0
1 −A23

1 −A1
1 A123

1 A3
1 A13

1

A3
1 A13

1 A23
1 A0

1 −A123
1 −A1

1 −A2
1 −A12

1

A12
1 −A2

1 A1
1 −A123

1 A0
1 −A23

1 −A13
1 −A3

1

A13
1 −A3

1 A123
1 A1

1 A23
1 A0

1 −A12
1 A2

1

A23
1 −A123

1 −A3
1 A2

1 −A13
1 A12

1 A0
1 −A1

1

A123
1 A23

1 −A13
1 A12

1 A3
1 −A2

1 A1
1 A0

1


,
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Ǎ2 =



A0
2 −A1

2 −A2
2 −A3

2 −A12
2 −A13

2 −A23
2 A123

2

A1
2 A0

2 −A12
2 −A13

2 A2
2 A3

2 −A123
2 −A23

2

A2
2 A12

2 A0
2 −A23

2 −A1
2 A123

2 A3
2 A13

2

A3
2 A13

2 A23
2 A0

2 −A123
2 −A1

2 −A2
2 −A12

2

A12
2 −A2

2 A1
2 −A123

2 A0
2 −A23

2 −A13
2 −A3

2

A13
2 −A3

2 A123
2 A1

2 A23
2 A0

2 −A12
2 A2

2

A23
2 −A123

2 −A3
2 A2

2 −A13
2 A12

2 A0
2 −A1

2

A123
2 A23

2 −A13
2 A12

2 A3
2 −A2

2 A1
2 A0
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,

B̌1 =
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,

B̌2 =
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2


.

For the simulation purpose, we consider the split activation function, i. e., gj(yj) =
0.5 tanh(yj)e0 + 0.5 tanh(yj)e1 + 0.5 tanh(yj)e2 + 0.5 tanh(yj)e3 + 0.5 tanh(yj)e12 +
0.5 tanh(yj)e13 + 0.5 tanh(yj)e23 + 0.5 tanh(yj)e123, j = 1, 2. Also, the time-varying
delay is fixed as τ(t) = 0.4 + 0.3 sin(t), implying that the greatest permissible upper
bound is τ = 0.7. It is observable that 0 ≤ τ̇(t) ≤ µ = 0 ≤ 0.3 cos(t) ≤ 0.3. Furthermore,
we use the following definitions for membership functions ϕ1(χ(t)) = 1

1+e−2t , ϕ2(χ(t)) =

1− 1
1+e−2t . The LMI conditions of (14) and (15) in Theorem (3.4) are verified by using

the MATLAB LMI toolbox. Under the initial values φ1(t) = −0.9e0 + e1 − 0.2e2 −
1.6e3 + 1.2e12 + 1.5e13 − 0.9e23 − 2e123 and φ2(t) = −e0 − e1 + 1.8e2 + 2e3 − 0.6e12 −
2e13 + 1.2e23 + e123, the time responses of states y0

i (t), y1
i (t), y2

i (t), y3
i (t), y12

i (t), y13
i (t),

y23
i (t), y123

i (t), i = 1, 2 are illustrated in Figures (1)- (6).
From the above example, we can conclude that all the conditions associated with The-

orem (3.4) are confirmed by this example. As a result of Theorem (3.4), the equilibrium
point of NNs (40) is globally asymptotically stable.

5. CONCLUSION

The global asymptotic stability of T-S fuzzy Clifford-valued NN model with time-varying
delays and impulsive effects have been examined in this paper. In order to achieve the
main results, we design a general network model that includes real-, complex-, and
quaternion-valued networks as special cases. First, we decompose the n-dimensional
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Fig. 1. The trajectories of states y0i (t), y1i (t), y2i (t), y3i (t), i = 1, 2 of

NNs (40) with impulses.
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NNs (40) without impulses.
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Clifford-valued neural network into 2mn-dimensional real-valued counterparts in order to
solve the non-commutativity of Clifford numbers multiplication. Then, we prove the new
LMI-based global asymptotic stability criteria by constructing an appropriate LKFs and
employing Jensen’s integral inequality together with the reciprocal convex combination
method. Finally, we present a numerical example together with their simulation results
to illustrate the efficiency of our obtained results.

Undoubtedly, there are certain advancements worth investigating further in this pro-
posed area of research. Shortly, we will attempt to investigate the global stability of T-S
fuzzy Clifford-valued bidirectional associative memory NNs with time-varying delays
and impulses as shown below.

ẋ(t) =
∑m
p=1 ϕp(χ(t))

{
−Dpx(t) + Apf(y(t)) + Bpf(y(t− σ(t)))

}
, t ≥ 0, t 6= tk,

4x(tk) = Ikx(t−k ), t = tk, k ∈ Z+,

x(t) = φx(t), t ∈ [−τ, 0],

ẏ(t) =
∑m
p=1 ϕp(χ(t))

{
−Cpy(t) +Epg(x(t)) + Fpg(x(t− τ(t)))

}
, t ≥ 0, t 6= tk,

4y(tk) = Jky(t−k ), t = tk, k ∈ Z+,

y(t) = φy(t), t ∈ [−σ, 0].

(Received February 15, 2022)
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