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Abstract. In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural
networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is
expressed as two first-order differential equations by selecting a variable substitution, and the other
does not change the order of the system based on the nonreduced-order method. By establishing
appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to
ensure that the discussed model converges exponentially to a ball with the prespecified convergence
rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results.

Keywords: inertial Cohen–Grossberg neural networks, time-varying delays, exponential conver-
gence, convergence rate.

1 Introduction

In the past few decades, neural networks have been widely studied due to their practical
application in combinatorial optimization, associative memory, pattern recognition and
other fields. In the meantime, the dynamic properties of neural networks, such as equi-
librium state, stability, attractor, attractor domain, periodic solution, bifurcation problem
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and chaos problem, have been explored (see [3–5,15,20,28,31–33]). For instance, Xiong
et al. [28] researched the robust convergence for CGNNs with delay. Scholars discussed
global asymptotic stability of delayed complex-valued CGNNs (see [31, 32]). Peng et al.
[20] presented finite-time synchronization of CGNNs via designing a suitable controller.
Cao et al. [4] discussed the finite-time stabilization of leakage delay on complex-valued
BAM neural networks, and the event-based state estimation problem for discrete-time
recurrent delayed semi-Markovian neural networks was investigated in [3].

From the view of both theory and application, it is necessary to consider the multista-
bility characteristics of systems. When the neural networks is dedicated to the function of
associative memory, the networks should have multiple equilibrium points (see [7,18]). In
addition, the boundedness of solutions for the networks is an important characteristic, and
scholars study the stability of the networks. In some cases, they do not need to care about
the information of equilibrium points. For example, Li and Jian presented the stability of
the system without considering the existence and uniqueness of equilibrium points [16].
Under different delay types, Jian and Wan discussed global exponential convergence of
generalized chaotic systems in [11].

Many of the proposed researches focused on the neural networks, whose states are
the first-order derivatives, and the neural networks, whose states are the second-order
derivatives, have better performance in dynamic behavior research. Second-order neural
networks have more complex dynamic behavior and clear biological background. For
example, an equivalent circuit, including inductance in animals semicircular canal, was
proposed to realize the hair cell membrane (see [1, 2]). In 1997, Wheeler and Schieve
[27] firstly proposed the inertial neural networks and studied its stability, bifurcation and
chaos phenomenon. Since then, He et al. [10] used the inertia item as a critical tool and
added the inertial term to the neuron system that can produce bifurcation and chaos. Up
to now, many existing literatures have discussed the dynamic behavior of inertial neural
networks (see [6, 9, 13, 14, 17, 21, 23–26, 29, 30]). For example, in [23, 26], the authors
investigated global exponential convergence of impulsive inertial neural networks. Global
exponential stabilization for inertial neural networks have been explored (see [21, 25]),
and scholars have researched the synchronization of drive-response systems by designing
different control strategies (see [6,9]). In general, the exponential convergence of inertial
CGNN has not attracted much attention, which is the purpose of this study.

Although scholars have studied the stability of inertial CGNN, few work focused on
solving the exponential convergence problem of nonreduced-order inertial CGNN. From
what has been discussed above, it is meaningful to further explore the exponential conver-
gence of inertial CGNNs, regardless of the existence and uniqueness of the equilibrium
point. This paper mainly has the following two aspects of contributions:

(i) By variable substitutions, the inertial system is converted into two first-order
systems (see [12]). Different from [12], both reduced order and nonreduced order
are adopted to discuss the inertial CGNNs model in this paper.

(ii) Compared with the networks model in [23, 26], the proposed inertial CGNNs in
this paper are more general, the exponential convergence rate and the specific
estimation problem of the convergence ball for the networks are given out.
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The arrangement of this paper is as follows. Section 2 gives the description of the
model, definition and lemmas. By setting up a suitable Lyapunov function and using
inequality techniques, Section 3 discusses the global exponential convergence of the
model. Section 4 verifies the validity of the results by two examples, and Section 5 draws
the conclusion.

Notations. R, Rm, Rm×n refer to the set of real numbers, m-dimensional real space,
m × n real matrices, respectively. Denote ‖`‖ = (

∑n
i=1 `

2
i )

1/2 for any ` = (`1, `2,
. . . , `n)T ∈ Rn. I represents the identity matrix of the appropriate dimension. λmin(Q)
and λmax(Q) stand for the minimal and maximum eigenvalues of matrix Q ∈ Rm×m,
respectively. Q < 0 shows that the matrix Q is negative definite. Let N = 1, 2, . . . , n.

2 Preliminaries

Consider the inertial CGNNs as follows:

d2yk(t)

dt2
= −βk

dyk(t)

dt
− αk

(
yk(t)

)[
fk
(
yk(t)

)
−

n∑
m=1

ckmgm
(
ym(t)

)
−

n∑
m=1

dkmgm
(
ym
(
t− %m(t)

))
− Uk(t)

]
, (1)

where k,m ∈ N , yk(t) represents the kth state variable of the networks at time t, the
second derivative of yk(t) is called as the inertial term, βk > 0 is the damping coefficient,
αk(·) denotes amplification function, fk(·) is an appropriately behaved function such
that the solutions of system (1) remain bounded, and gm(·) is the activation function,
which shows how neurons respond to each other. ckm and dkm represent the weight
coefficients, the external input is Uk(t). The transmission delay %m(t) is a continuous
bounded function with 0 6 %m(t) 6 %.

The initial conditions of (1) are

yk(s) = φ̃k(s), ẏk(s) = ϕ̃k(s), s ∈ [−%, 0], k ∈ N ,

where φ̃k(s) and ϕ̃k(s) are continuous and bounded functions.

Remark 1. The inertial system considered in [12] is without time-varying delays. The
authors considered CGNNs only with the first-order derivative of the states in [22, 28].
The presented system here is more general than the systems discussed in [12, 22, 28].

The following assumptions will be used in this article:

(H1) αk(yk(t)) is a bounded function, and there exist two positive constants αk and
αk satisfying the inequality αk < αk(yk(t)) < αk. Let α = min{α1, α2, . . . ,
αn}, α = max{α1, α2, . . . , αn}.
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(H2) There exist some nonnegative constants lk to satisfy the following inequalities:∣∣gk(ă)− gk(b̆)
∣∣ 6 lk|ă− b̆|, gk(0) = 0, k ∈ N , ă, b̆ ∈ R.

Let l̃ = max{l1, l2, . . . , ln}.
(H3) The external input Uk(t) is bounded with max{|U1(t)|, . . . , |Un(t)|} 6 Ũ .

Definition 1. (See [23].) If for all δ > sup−%6s60 ‖Ψ(s)‖, there exists a number Γ =
Γ (δ) such that ∥∥y(t)

∥∥ 6 γ + Γ e−σt, t > 0,

where Ψ(s) = (φ̃1(s), φ̃2(s), . . . , φ̃n(s), ϕ̃1(s), ϕ̃2(s), . . . , ϕ̃n(s))T, s ∈ [−%, 0], then
system (1) is said to be globally uniformly exponentially convergent (GUEC) to the ball
b̆(r) = {y(t) ∈ Rn | ‖y(t)‖ 6 γ} with a rate σ > 0.

Lemma 1. (See [8].) If there exists ε > 0, then the positive-definite Hermitian matrix
M∈ Rn×n satisfies the following inequality:

2ăTMb̆ 6 εăTMă+ ε−1b̆TMb̆ ∀ă, b̆ ∈ Rn.

Lemma 2. (See [19].) Let h(t) be a continuous function, h(t) > 0 holds for all t > −%,
and let

ḣ(t) 6 −ăh(t) + b̆ sup
t−%6s6t

h(s) + c̆ ∀t > 0,

where sup−%6s60 h(s) 6 ζ, ă, b̆, c̆ > 0. If 0 < b̆ < ă, then

h(t) 6 m + ζe−σt ∀t > 0,

where m = c̆/(ă− b̆), and σ is the unique solution to σ = ă− b̆eσ%.

3 Main results

The purpose of this section is to obtain some sufficient conditions to guarantee that the
state variable of the network (1) is GUEC to a ball.

Theorem 1. Based on assumptions (H1)–(H3), suppose αk(yk(t))fk(yk(t)) = ξkyk(t).
For given positive constants µk, νk, ξk, if the state variable yk(t) satisfies ‖y(t)‖2 6
2nŨ2/(ω − $) + ζe−rt, t > 0, system (1) is GUEC. As the same time, network (1) is
globally exponentially convergent to a ball

B =

{
y(t)

∣∣ ∥∥y(t)
∥∥2 6

2nŨ2

ω −$

}
with the convergence rate r/2, where sup−%6s60 V (s) 6 ζ, µk = 2ξk − 3αk

2 −
2
∑n
m=1

∑n
s=1(cmsls)

2, νk = 2βk − 2 − 3αk
2 > 0, ηk = βk + ξk − 2, ω =

min16k6n{µk/2, νk, ηk}, $ = 2
∑n
k=1

∑n
m=1(dmklk)2 and ω>$, r=ω−$er%>0.
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Proof. Consider the following Lyapunov function V (t):

V (t) =

n∑
k=1

y2k(t) +

n∑
k=1

(
yk(t) + ẏk(t)

)2
.

Compute the derivative of V (t) along the network (1), one can obtain

V̇ (t)
∣∣
(1) 6 2

n∑
k=1

yk(t)ẏk(t)

+ 2

n∑
k=1

[(
yk(t) + ẏk(t)

)(
(1− βk)ẏk(t)− αk

(
yk(t)

)(
fk
(
yk(t)

)
−

n∑
m=1

ckmgm
(
ym(t)

)
−

n∑
m=1

dkmgm
(
ym
(
t− %m(t)

))
− Uk(t)

))]
.

Combine (H1), (H3) and 2ab 6 a2 + b2, for all a, b ∈ R, one gets

V̇ (t) 6
n∑
k=1

[(
−2ξk + 3αk

2
)
y2k(t) +

(
2− 2βk + 3αk

2
)
ẏ2k(t)

+ 2yk(t)(2− βk − ξk)ẏk(t) + 2

(
n∑

m=1

|ckm|
∣∣gm(ym(t)

)∣∣)2

+ 2

(
n∑

m=1

|dkm|
∣∣gm(ym(t− %m(t)

))∣∣)2

+ 2U2
k (t)

]
. (2)

Based on (H2) and the Cauchy inequality

n∑
i=1

aibi 6

(
n∑
i=1

a2i

)1/2( n∑
i=1

b2i

)1/2

,

for all ai, bi ∈ R, the following inequalities hold:(
n∑

m=1

|ckm|
∣∣gm(ym(t)

)∣∣)2

6

(
n∑

m=1

|ckmlm|
∣∣ym(t)

∣∣)2

6
n∑

m=1

(ckmlm)2
n∑

m=1

(
ym(t)

)2
. (3)

(
n∑

m=1

|dkm|
∣∣gm(ym(t− %m(t)

))∣∣)2

6
n∑

m=1

(dkmlm)2
n∑

m=1

(
ym
(
t− %m(t)

))2
. (4)
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By (2)–(4) one has

∣∣V̇ (t)
∣∣ 6 n∑

k=1

[
−2ξk + 3αk

2 + 2

n∑
m=1

n∑
s=1

(cmsls)
2y2k(t)

+
(
2− 2βk + 3αk

2
)
ẏ2k(t) + 2(2− βk − ξk)yk(t)ẏk(t)

]

+ 2

n∑
k=1

n∑
m=1

(dmklk)2
n∑
k=1

y2k
(
t− %k(t)

)
+ 2nŨ2

6
n∑
k=1

(
−µky2k(t)− νkẏ2k(t)− 2ηkyk(t)ẏk(t)

)
+$

n∑
k=1

y2k
(
t− %k(t)

)
+ 2nŨ2

6
n∑
k=1

(
−µk

2
y2k(t)− νkẏ2k(t)− 2ηkyk(t)ẏk(t)

)

−
n∑
k=1

µk
2
y2k(t) +$

n∑
k=1

y2k
(
t− %k(t)

)
+ 2nŨ2

6 −ω
n∑
k=1

(
y2k(t) + ẏ2k(t) + 2yk(t)ẏk(t)

)
−

n∑
k=1

µk
2
y2k(t)

+$

n∑
k=1

y2k
(
t− %k(t)

)
+ 2nŨ2

6 −ωV (t) +$ sup
−%6s60

V (s) + 2nŨ2. (5)

Based on (5) and Lemma 2, one obtains

n∑
k=1

y2k(t) 6 V (t) 6
2nŨ2

ω −$
+ ζe−rt, t > 0,

i.e., ∥∥y(t)
∥∥2 6

2nŨ2

ω −$
+ ζe−rt, t > 0. (6)

According to Definition 1 and (6), network (1) is globally exponentially convergent.
So, the proof is completed.

Remark 2. Ke and Li have studied exponential synchronization for inertial CGNNs with
time delays [12]. Tang and Jian have discussed the exponential convergence of inertial
complex-valued neural network [23]. Kong et al. investigated the fixed-time stabilization
and finite-time stabilization for discontinuous inertial CGNNs with delays in [13, 14],
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respectively. The reduced-order method is used in [12–14, 23], while the nonreduced-
order method is developed to explore the global exponential convergence of inertial CGNNs
in Theorem 1.

For some selected scalar λk, let variable transformation zk(t) = dyk(t)/dt+λkyk(t),
then system (1) can be expressed as

dyk(t)

dt
= −λkyk(t) + zk(t),

dzk(t)

dt
= −λk(λk − βk)yk(t)− (βk − λk)zk(t)

− αk
(
yk(t)

)[
fk
(
yk(t)

)
−

n∑
m=1

ckmgm
(
ym(t)

)
−

n∑
m=1

dkmgm
(
ym
(
t− %m(t)

))
− Uk(t)

]
.

(7)

System (7) can be represented in a compact form

dy(t)

dt
= −Λy(t) + z(t),

dz(t)

dt
= −Ay(t)− Bz(t)

− α
(
y(t)

)[
f
(
y(t)

)
− Cg

(
y(t)

)
−Dg

(
y
(
t− %(t)

))
− U(t)

]
,

(8)

where

y(t) =
(
y1(t), y2(t), . . . , yn(t)

)T
, z(t) =

(
z1(t), z2(t), . . . , zn(t)

)T
,

Λ = diag(λ1, λ2, . . . , λn), B = diag(β1 − λ1, β2 − λ2, . . . , βn − λn),

A = diag
(
λ1(λ1 − β1), λ2(λ2 − β2), . . . , λn(λn − βn)

)
,

f
(
y(t)

)
=
(
f1
(
y1(t)

)
, f2
(
y2(t)

)
, . . . , fn

(
yn(t)

))T
, C = (ckm)n×n,

g
(
y(t)

)
=
(
g1
(
y1(t)

)
, g2
(
y2(t)

)
, . . . , gn

(
yn(t)

))T
, D = (dkm)n×n,

g
(
y
(
t− %(t)

))
=
(
g1
(
y1(t− %1(t)

))
, g2
(
y2
(
t− %2(t)

))
, . . . , gn

(
yn
(
t− %n(t)

)))T
,

α
(
y(t)

)
= diag

(
α1

(
y1(t)

)
, α2

(
y2(t)

)
, . . . , αn

(
yn(t)

))
,

U(t) =
(
U1(t), U2(t), . . . , Un(t)

)T
.

Theorem 2. Let assumptions (H1)–(H3) and fk(yk(t)) = hk(yk(t))zk(t) hold, where
hk(·) is a continuous bounded function, and for given positive constants ε, µ, ν, ω > $,
there exists a definite Hermitian matrix Q such that

(i) −2Λ+ ε−1I + ε−1α2 l̃2CTC 6 −µQ,
(ii) −2B − 2α~I + 4εI − 2εA+ εA2 6 −νI .
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Then system (8) is GUEC,∥∥y(t)
∥∥2 +

∥∥z(t)∥∥2 6
nε−1α2Ũ2

ω −$
+ ζe−r(t−t0), t > 0.

Furthermore, networks (8) is globally exponentially convergent to a ball

B =

{
y(t), z(t)

∣∣∣ ∥∥y(t)
∥∥2 +

∥∥z(t)∥∥2 6
nε−1α2Ũ2

ω −$

}
with a convergence rate r/2, where $ = ε−1α2 l̃2λmax(DTD), ω = min{µλmin(Q), ν},
sup−%6s60(y(s)Ty(s)+z(s)Tz(s)) 6 ζ, r = ω−$er% > 0, h(y(t)) = min(h1(y1(t)),
h2(y2(t)), . . . , hn(yn(t))) > ~.

Proof. From (8) one gets

d

dt

(
y(t)Ty(t) + z(t)Tz(t)

)
= −2yT(t)Λy(t) + 2yT(t)(I −A)z(t)− 2zT(t)Bz(t)
− 2zT(t)α

(
y(t)

)
f
(
y(t)

)
+ 2zT(t)α

(
y(t)

)
Cg
(
y(t)

)
+ 2zT(t)α

(
y(t)

)
Dg
(
y
(
t− %(t)

))
+ 2zT(t)α

(
y(t)

)
U(t).

According to (H1)–(H3) and Lemma 1, the following inequalities hold:

−2zT(t)α
(
y(t)

)
f
(
y(t)

)
6 −2zT(t)α~z(t),

2yT(t)(I −A)z(t) 6 ε−1yT(t)y(t) + εzT(t)(I −A)(I −A)z(t),

2zT(t)α
(
y(t)

)
Cg
(
y(t)

)
6 εzT(t)z(t) + ε−1α2 l̃2yT(t)CTCy(t),

2zT(t)α
(
y(t)

)
Dg
(
y
(
t− %(t)

))
6 εzT(t)z(t)

+ ε−1α2 l̃2yT
(
t− %(t)

)
DTDy

(
t− %(t)

)
,

2zT(t)α
(
y(t)

)
U(t) 6 εzT(t)z(t) + ε−1UT(t)α2U(t)

6 εzT(t)z(t) + nε−1α2Ũ2.

(9)

In view of (9), one has

d

dt

(
y(t)Ty(t) + z(t)Tz(t)

)
6 yT(t)

(
−2Λ+ ε−1I + ε−1α2 l̃2CTC

)
y(t)

+ zT(t)
(
−2B − 2α~I + 4εI − 2εA+ εA2

)
z(t)

+ ε−1α2 l̃2yT
(
t− %(t)

)
DTDy

(
t− %(t)

)
+ nε−1α2Ũ2

6 −µyT(t)Qy(t)− νzT(t)z(t) +$yT
(
t− %(t)

)
y
(
t− %(t)

)
+ nε−1α2Ũ2

6 −ω
(
yT(t)y(t) + zT(t)z(t)

)
+$ sup

−%6s60

(
yT(t)y(t) + zT(t)z(t)

)
+ nε−1α2Ũ2. (10)

Nonlinear Anal. Model. Control, 28(6):1062–1076, 2023

https://doi.org/10.15388/namc.2023.28.33431


1070 Y. Wu et al.

Based on (10) and Lemma 2, one yields

yT(t)y(t) + zT(t)z(t) 6
nε−1α2Ũ2

ω −$
+ ζe−rt, t > 0,

i.e., ∥∥y(t)
∥∥2 +

∥∥z(t)∥∥2 6
nε−1α2Ũ2

ω −$
+ ζe−rt, t > 0. (11)

By virtue of condition (11) and Definition 1, one can get that the network model (8)
is globally exponentially convergent. This completes the proof.

Remark 3. Shi et al. [21] have investigated global exponential stabilization of iner-
tial neural networks, and Zhang et al. [29] have explored the dissipativity for delayed
memristor-based inertial neural networks. However, the derivatives of time-varying delay
in [21,29] are required to be no greater than one. It should be pointed out that the restricted
conditions are removed in this paper.

4 Illustrative examples

Example 1. Consider the following 2-dimensional inertial CGNNs:

d2y1(t)

dt2
= −3.5

dy1(t)

dt
− 2.5y1(t)

+

(
1

8
sin
(
y1(t)

)
+

3

8

)[
0.3g1

(
y1(t)

)
− 0.2g2

(
y2(t)

)
− 0.4g1

(
y1
(
t− %1(t)

))
+ 0.3g2

(
y2
(
t− %2(t)

))
+ U1(t)

]
,

d2y2(t)

dt2
= −4

dy2(t)

dt
− 3y2(t)

+

(
1

8
sin
(
y2(t)

)
+

3

8

)[
0.2g1

(
y1(t)

)
− 0.3g2

(
y2(t)

)
− 0.3g1

(
y1
(
t− %1(t)

))
− 0.35g2

(
y2
(
t− %2(t)

))
+ U2(t)

]
,

(12)

where gk(yk) = 0.5(|yk + 1| − |yk − 1|), k = 1, 2, U1(t) = 0.8 sin t, U2(t) = 0.8 cos t.
So, one has |gk(a)− gk(b)| 6 |a− b| for all a, b ∈ R, then lk = 1.

From Theorem 1 one can calculate that µ1 = 3.73, µ2 = 4.73, ν1 = 4.25, ν2 = 5.25,
η1 = 4, η2 = 5, ω = 1.865 > $ = 0.925, system (12) with a convergence rate
r/2 = 0.1677 is globally exponentially convergent to the ball

B =

{
y(t)

∣∣∣ ∥∥y(t)
∥∥2 6

2nŨ2

ω −$
= 2.7234

}
.

Choose the initial values of system (12) as φ̃1(s) = −0.05 cos s, φ̃2(s) = 0.06 sin s,
ϕ̃1(s) = 0.07 sin s, ϕ̃2(s) = 0.07 sin s. Figure 1(a) depicts the state trajectories and the
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(a) %k(t) = 1.5 sin2 t

(b) %k(t) = 1.5 cos2 t

Figure 1. The state trajectory and phase graph of system (12).

Figure 2. The state trajectory of system (12) with %k(t) = 1.5 sin2 t and Uk(t) = 0.

phrase trajectories of system (12) with %k(t) = 1.5 sin2 t, k = 1, 2. Figure 1(b) gives the
states trajectories and phrase trajectories of system (12) with %k(t) = 1.5 cos2 t, k = 1, 2,
respectively. Combining Figs. 1(a) and 1(b), one can get that the presented criteria are
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independent of time-varying delay. Figure 2 shows the state trajectories with U1(t) =
U2(t) = 0, and it can be further concluded that system (12) is globally exponential stable.

Example 2. Consider the inertial CGNNs as follows:

d2y1(t)

dt2
= −1.8

dy1(t)

dt
− α1

(
y1(t)

)[
f1
(
y1(t)

)
+ 0.2g1

(
y1(t)

)
+ 0.3g2

(
y2(t)

)
− 0.3g1

(
y1
(
t− %1(t)

))
+ 0.2g2

(
y2
(
t− %2(t)

))
+ cos t

]
,

d2y2(t)

dt2
= −1.7

dy2(t)

dt
− α2

(
y2(t)

)[
f1
(
y1(t)

)
− 0.4g1

(
y1(t)

)
+ 0.2g2

(
y2(t)

)
+ 0.4g1

(
y1
(
t− %1(t)

))
− 0.3g2(y2

(
t− %2(t)

))
+ sin t

]
,

(13)

where αk(yk(t)) = 1/(10(1 + |yk(t)|)) + 1/2, gk(yk(t)) = 0.8 tanh(yk(t)), %k(t) =
sin t+ 1, k = 1, 2. So, one can obtain∣∣gk(a)− gk(b)

∣∣ =
∣∣ tanh(ξ)′(a− b)

∣∣ =
∣∣(1− tanh2(ξ)

)
(a− b)

∣∣
6 0.8|a− b| ∀a, b ∈ R,

where ξ ∈ [min{a, b},max{a, b}], then lk = 0.8.
Choose λ1 = λ2 = 0.9 and fk(yk(t)) = (3.5 − yk(t)/(yk(t)2 + 1))zk(t), k = 1, 2.

Rewriting system (13) into (8) form, one has the corresponding matrix

Λ = diag(0.9, 0.9), A = diag(−0.81, −0.72), B = diag(0.9, 0.8),

C =

[
0.2 0.3
−0.4 0.2

]
, D =

[
−0.3 0.2
0.4 −0.3

]
, U(t) =

[
cos t
sin t

]
.

Take µ = 0.3, ν = 0.35, ε = 0.7. Using LMI, the Q that satisfies the condition is as
follows:

Q =

[
2.0151 0.1292
0.1292 2.2729

]
.

Based on Theorem 2, one can compute the$ = 0.1250 and ω = min{0.5885, 0.3500} =
0.3500, then the conditions in Theorem 2 hold. At the same time, network (13), with
a convergence rate λ/2 = 0.0866, is globally exponentially convergent to the ball

B =

{
y(t), z(t)

∣∣∣ ∥∥y(t)
∥∥2 +

∥∥z(t)∥∥2 6
nε−1α2Ũ2

ω −$

}
= 4.5714.

Let the initial conditions be φ̃1(s) = −0.015 sin s, φ̃2(s) = 0.017 sin s, ϕ̃1(s) =
0.017 sin s, ϕ̃2(s) = −0.013 sin s for s ∈ [−2, 0]. Figure 3 depicts the state trajectories
and the phrase trajectories of system (13). Figure 4 shows the state trajectories with
U(t) = 0. Besides, when U(t) = 0, system (13), with convergence rate 0.1105, is
globally exponential stable.
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Figure 3. The state trajectories and the phrase trajectories of system (13).

Figure 4. The state trajectory of system (13) with U(t) = 0.

5 Conclusions

This paper presents some delay-dependent sufficient conditions, which ensure the inertial
CGNNs to globally exponentially converge to a ball with a prespecified convergence rate.
The proposed results here do not require the derivative of time-varying delayed to be less
than one. In addition, based on the reduce-order method and nonreduced-order method,
this paper presents the exponential convergence for inertial CGNNs without discussing
the equilibrium point. Finally, two examples illustrate the validity of the results. In the
future work, we will explore the finite-time state estimation problem of delayed inertial
CGNNs via the nonreduced-order method.
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