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1. Introduction

Over the past two decades, neural networks (NNs) have been used in real-world applications
including fault diagnosis, image processing, speech synthesis, wheeled mobile robot and engineering
optimization (see [1–8] and the references therein). It is well known that the stability of NNs plays
an important role in the process of solving practical problems. However, some practical problems
that cannot be solved by real-valued NNs in existing research can be solved by complex-valued
neural networks (CVNNs) [9–11]. As a result, the research on the stability of CVNNs has gradually
increased. On the other hand, due to the limited signal switching and transmission speed in the
network, delay occurs frequently in the NNs, and it often leads to a key source of divergence and
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instability in NNs [12–16]. This is why more and more researchers were interested in the problem of
stability analysis of CVNNs with time delays over the past decade [17, 18]. Generally speaking, the
methods for dealing with CVNNs with delays include Lyapunov–Krasovskii functional (LKF) method
(see [11, 19–22] and the references therein), matrix measure method [23], etc.

Quaternions are hyper-complex numbers. They consist of three independent imaginary components
and a real component, which perfectly correspond to three and four dimensional feature vectors.
Therefore, quaternion-valued NNs (QVNNs) are regarded as an extension of CVNNs. Since QVNNs
possess the merits of both quaternions and NNs, the performance of QVNNs is more preferable
than that of CVNNs, which is convenient to practical applications related to complex signals.
Recently, QVNNs have attracted a lot of attentions from different fields, more and more attention
is focused on establishing sufficient conditions of various dynamics behaviors for QVNNs, such as
Lagrange stability [24–26], dissipativity [27], µ-stability [28, 29], multi-stability [30], exponential
stability [31–35], and robust stability [36–38]. However, quaternion multiplication does not meet the
commutative law, so the dynamical analysis of QVNNs is much harder than one of CVNNs.

In recent studies, we have learned that leakage delay can affect the stability of dynamic networks.
Despite this fact, we do not see much existing work on QVNNs with leakage delays. This may be due
to some theoretical and technical difficulties, as shown in [39]. In [36], the robust stability of QVNNs
with leakage and transmission delays is studied, by using Homeomorphic mapping theorem, LKF
method and LMI technique. The global Lagrange exponential stability of QVNNs with transmission,
leakage and distribution delays has been studied in [24]. By employing the LKF method associated
with the inequality technique and free-weighting-matrix technique, we got a sufficient condition
in appropriate LMI to assure the global Lagrange exponential stability. Meantime, the domain of
attraction is estimated. In [40], they used a quaternion-valued inequality, a LKF and a homeomorphic
mapping to solve the problem of globally robust stability of delayed QVNNs with the leakage
delay and transmission delay. In [41], an impulsive QVNN model with leakage, transmission and
distribution delays is considered. Based on the homeomorphic mapping method, by using Lyapunov
stability theorem and LMI approach, sufficient conditions for the global robust stability of the unique
equilibrium point are given. In [33], the discrete-time QVNNs are studied directly rather than through
real decomposition method or plural decomposition method. Then, by using homeomorphic mapping
theorem and Cauchy-Schwarz inequality, based on LKF and matrix inequality, we consider the issue
of exponential stability analysis for discrete-time QVNNs with transmission and leakage delays.
However, these obtained stability criteria need to solve multiple nonlinear inequalities or LMIs, that
greatly increases the computational complexity.

Based on the above analysis, in this article, we investigate global exponential stability criteria
for QVNNs with leakage, distribution, and transmission delays by proposing a direct method based
on system solutions. First, a useful property of system solutions is given. On this basis, sufficient
conditions for global exponential stability are investigated. The resulting stability conditions consist of
only a few simple linear scalar inequalities that can be solved by standard software tools. Finally, the
effectiveness of the theoretical results is clearly demonstrated by a numerical example. The advantages
are as follows:

(i) A direct method based on system solutions is proposed for establishing stability criteria of QVNNs
under consideration;
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(ii) The obtained stability criterion is only composed of several simple linear scalar inequalities;

(iii) The proposed method can be applied to real-value NNs and CVNNs.

Notations: Let R, Q, and Qn be the field of real numbers, real quaternion division algebra, and the
linear space of all n-dimensional quaternion vectors respectively. The quaternion is represented by
q = qR + iqI + jqJ + kqK , where qR, qI , qJ, qK ∈ R, i, j and k are imaginary units and obey the following
rules: i j = k, jk = i, ki = j and i2 = j2 = k2 = −1. Set |q| =

√
(qR)2 + (qI)2 + (qJ)2 + (qK)2. Let

C(H1,H2) represent to all bounded continuous functions from H1 to H2.

2. Preliminaries

This paper will study QVNNs with distribution, transmission and leakage delays below:

ṗi(t) = − di pi(t − σ) +

n∑
j=1

ai j f j(p j(t)) +

n∑
j=1

bi j f j(p j(t − δi j(t)))

+

n∑
j=1

ci j

∫ t

t−τi j

f j(p j(s))ds + Li, ∀t ≥ 0, i = 1, 2, . . . , n, (2.1a)

pi($) = φi($),∀$ ∈ [−ϑ, 0], i = 1, 2, . . . , n, (2.1b)

which variable pi(t) refers to the state of the ith neuron, the positive integer n is the number of neurons,
f j(·) is the nonlinear activation function, di > 0 is the self-feedback connection weight coefficient, σ
is the leakage delay, Li represents the external input, ai j, bi j and ci j represent the constants of neuronal
interconnections, δi j(t) is the time-varying transmission delay subject to 0 ≤ δi j(t) ≤ δ̄i j, τi j is the
distribution delay, φi ∈ C1([−ϑ, 0],Q) is the initial function, and

ϑ = max
{
σ, max

1≤i, j≤n
τi j, max

1≤i, j≤n
δ̄i j

}
.

Remark 1. [1, 39] In some neural networks, there are a large number of synapses with different
sizes and parallel paths with different lengths, which limits the space range. Therefore, there are
transmission velocity distribution delays on these paths. Under these circumstances, the spread of
signal is not momentary, a more appropriate method is to add distribution delays, which has cumulative
influence on the system. Moreover, there is always a representative time delay, which is essentially
different from the conventional delays, and it broadly exists in the negative feedback terms of the system
which are identified as leakage terms, named leakage delay. The leakage delay is usually incorporated
in the study of network modeling, such a type of time delay often has a tendency to destabilize the
neural networks and is difficult to handle. Therefore, it is of great practical significance to study the
stability of NNs with leakage delays.

Next we determine the properties of fi(·), which usually require the following assumption:
A1: The function fi(·) is continuous, and there exist positive scalars `i satisfying the following

condition:

| fi(θ1) − fi(θ2)| ≤ `i|θ1 − θ2|, ∀θ1, θ2 ∈ Q, i = 1, 2, . . . , n.
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Under the assumption A1, there exists a unique equilibrium point p̃ of (2.1). By setting qi(t) =

pi(t) − p̃i, we shift the equilibrium point to the origin, the QVNN (2.1) can be transformed into:

q̇i(t) = − diqi(t − σ) +

n∑
j=1

ai jg j(q j(t)) +

n∑
j=1

bi jg j(q j(t − δi j(t)))

+

n∑
j=1

ci j

∫ t

t−τi j

g j(q j(s))ds, ∀t ≥ 0, i = 1, 2, . . . , n, (2.2a)

qi($) = ψi($),∀$ ∈ [−ϑ, 0], i = 1, 2, . . . , n, (2.2b)

where ψi($) = φi($) − p̃i and gi(·) = fi(· + p̃i) − fi( p̃i).
Obviously, the transformed neuronal activation function gi(·) satisfies the assumption followed:
A2: The function gi(·) is continuous, and there exist positive scalars `i satisfying the following

condition:

|gi(θ)| ≤ `i|θ|, ∀θ ∈ Q, i = 1, 2, . . . , n.

Definition 1. If there are H ≥ 1 and λ > 0 such that every solution of QVNN (2.2) satisfies

‖q(t)‖ ≤ H‖ψ‖ϑe−λt,∀t ≥ 0,

then QVNN (2.2) is called globally exponentially stable (GES), where
q(t) = col(q1(t), . . . , qn(t)),
‖ψ‖ϑ = sup

$∈[−ϑ,0]
‖ψ($)‖,

ψ($) = col(ψ1($), . . . , ψn($)).

3. Global exponential stability analysis

We will investigate the following main result related to global exponential stability of QVNN (2.2).

Theorem 1. Under the assumption A2, if there are 0 < λ < di and h̃i > 0 such that

(1 − ℵi(λ))h̃i −

n∑
j=1

∆i j(λ)h̃ j > 0, i = 1, 2, . . . , n, (3.1)

where

ℵi(λ) =
1
λ eλσ(eλσ−1)d2

i
di−λ

, ∆i j(λ) =
£i j(λ)

(
(eλσ−1)di

λ +1
)

di−λ
,

£i j(λ) = ` j

(
|ai j| + |bi j|eλδ̄i j + |ci j|

eλτi j−1
λ

)
,

then the following insertions are true:

(i) There exists hi > 1 such that |qi(t)| ≤ hi‖ψ‖ϑe−λt for all t ∈ R and i = 1, 2, . . ., n;

(ii) QVNN (2.2) is GES with the decay rate λ.
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Proof. For any given initial function $ ∈ C1([−ϑ, 0],Q), let {q1(t), q2(t), . . . , qn(t)} be the solution
of (2.2). It follows from (3.1) that

ℵi(λ) +
∑n

j=1 ∆i j(λ)h̃ j

h̃i
< 1, i = 1, 2, . . . , n,

so, there are scalars hi > 1 such that

Θi(λ) :=
max

{
2eλσ−1,

|qi(σ)|ediσ

‖ψ‖ϑ

}
hi

+ ℵi(λ) +
∑n

j=1 ∆i j(λ)h j

hi
< 1, i = 1, 2, . . . , n. (3.2)

From (2.2a), we obtained

q̇i(t) = − diqi(t) + di

∫ t

t−σ
q̇i(β)dβ +

n∑
j=1

ai jg j(q j(t)) +

n∑
j=1

bi jg j(q j(t − δi j(t)))

+

n∑
j=1

ci j

∫ t

t−τi j

g j(q j(s))ds, t ≥ 0, i = 1, 2, . . . , n. (3.3)

Case 1: t ≤ σ. Then t − σ ≤ 0. We derive∫ t

t−σ
q̇i(ζ)dζ =

∫ t

0
q̇i(ζ)dζ +

∫ 0

t−σ
q̇i(ζ)dζ

=

∫ t

0
q̇i(ζ)dζ + qi(0) − qi(t − σ).

This, together with (2.2) and (3.3), gives

q̇i(t) + diqi(t) =diψi(0) − diψi(t − σ)

+ di

∫ t

0

[
− diqi(ζ − σ) +

n∑
j=1

ai jg j(q j(ζ))

+

n∑
j=1

bi jg j(q j(ζ − δi j(ζ))) +

n∑
j=1

ci j

∫ ζ

ζ−τi j

g j(q j(s))ds
]
dζ

+

n∑
j=1

ai jg j(q j(t)) +

n∑
j=1

bi jg j(q j(t − δi j(t)))

+

n∑
j=1

ci j

∫ t

t−τi j

g j(q j(s))ds, 0 ≤ t ≤ σ, i = 1, 2, . . . , n. (3.4)

Multiplying by edit on the both sides, and then taking the integrals from 0 to t, we derive

qi(t) =

7∑
k=0

Iik(t), 0 ≤ t ≤ σ, i = 1, 2, . . . , n,

where
Ii0(t) = e−ditψi(0) + di

∫ t

0
edi(β−t)[ψi(0) − ψi(β − σ)]dβ,
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Ii1(t) = −d2
i

∫ t

0
edi(β−t)

∫ β

0
qi(ζ − σ)dζdβ,

Ii2(t) = di
∑n

j=1 ai j

∫ t

0
edi(β−t)

∫ β

0
g j(q j(ζ))dζdβ,

Ii3(t) = di
∑n

j=1 bi j

∫ t

0
edi(β−t)

∫ β

0
g j(q j(ζ − δi j(ζ)))dζdβ,

Ii4(t) = di
∑n

j=1 ci j

∫ t

0
edi(β−t)

∫ β

0

∫ ζ

ζ−τi j
g j(q j(s))dsdζdβ,

Ii5(t) =
∑n

j=1 ai j

∫ t

0
edi(β−t)g j(q j(β))dβ,

Ii6(t) =
∑n

j=1 bi j

∫ t

0
edi(β−t)g j(q j(β − δi j(β)))dβ,

Ii7(t) =
∑n

j=1 ci j

∫ t

0
edi(β−t)

∫ β

β−τi j
g j(q j(s))dsdβ.

Furthermore,

|qi(t)| ≤
7∑

k=0

|Iik(t)| ≤
7∑

k=0

Tik(t), 0 ≤ t ≤ σ, i = 1, 2, . . . , n, (3.5)

where
Ti0(t) = e−λt(2eλσ − 1)‖ψ‖ϑ,
Ti1(t) = d2

i

∫ t

0
edi(β−t)

∫ β

0
|qi(ζ − σ)|dζdβ,

Ti2(t) = di
∑n

j=1 |ai j|` j

∫ t

0
edi(β−t)

∫ β

0
|q j(ζ)|dζdβ,

Ti3(t) = di
∑n

j=1 |bi j|` j

∫ t

0
edi(β−t)

∫ β

0
|q j(ζ − δi j(ζ))|dζdβ,

Ti4(t) = di
∑n

j=1 |ci j|` j

∫ t

0
edi(β−t)

∫ β

0

∫ ζ

ζ−τi j
|q j(s)|dsdζdβ,

Ti5(t) =
∑n

j=1 |ai j|` j

∫ t

0
edi(β−t)|q j(β)|dβ,

Ti6(t) =
∑n

j=1 |bi j|` j

∫ t

0
edi(β−t)|q j(β − δi j(β))|dβ,

Ti7(t) =
∑n

j=1 |ci j|` j

∫ t

0
edi(β−t)

∫ β

β−τi j
|q j(s)|dsdβ.

Obviously, (i) is true for t ≤ 0.
We assert that (i) holds when t ≤ σ; otherwise, due to the continuity of qi(t), there exist σ ≥ t̂ > 0

and 1 ≤ r ≤ n such that

|qi(t)| ≤ hi‖ψ‖ϑe−λt, ∀ t ≤ t̂, i = 1, 2, . . . , n, (3.6)

|qr(t̂)| = hr‖ψ‖ϑe−λt̂. (3.7)

Using (3.6), one has

Tr1(t̂) =d2
r

∫ t̂

0
edr(β−t̂)

∫ β

0
|qr(ζ − σ)|dζdβ.

≤d2
r hr‖ψ‖ϑeλσ

∫ t̂

0
edr(β−t̂)

∫ β

0
e−λζdζdβ.

≤
d2

r

λ
hr‖ψ‖ϑeλσ(eλσ − 1)

∫ t̂

0
edr(β−t̂)−λβdβ

≤hr‖ψ‖ϑe−λt̂
d2

r
λ

eλσ(eλσ − 1)
dr − λ

, (3.8)
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Tr2(t̂) =dr

n∑
j=1

|ar j|` j

∫ t̂

0
edr(β−t̂)

∫ β

0
|q j(ζ)|dζdβ

≤dr‖ψ‖ϑ

n∑
j=1

|ar j|` jh j

∫ t̂

0
edr(β−t̂)

∫ β

0
e−λζdζdβ

≤
dr

λ
‖ψ‖ϑ

n∑
j=1

|ar j|` jh j(eλσ − 1)
∫ t̂

0
edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
dr
λ

∑n
j=1 |ar j|` jh j(eλσ − 1)

dr − λ
, (3.9)

Tr3(t̂) =dr

n∑
j=1

|br j|` j

∫ t̂

0
edr(β−t̂)

∫ β

0
|q j(ζ − δr j(ζ))|dζdβ

≤dr‖ψ‖ϑ

n∑
j=1

|br j|` jh jeλδ̄r j

∫ t̂

0
edr(β−t̂)

∫ β

0
e−λζdζdβ

≤
dr

λ
‖ψ‖ϑ

n∑
j=1

|br j|` jh j(eλσ − 1)eλδ̄r j

∫ t̂

0
edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
dr
λ

∑n
j=1 |br j|` jh j(eλσ − 1)eλδ̄r j

dr − λ
, (3.10)

Tr4(t̂) =dr

n∑
j=1

|cr j|` j

∫ t̂

0
edr(β−t̂)

∫ β

0

∫ ζ

ζ−τr j

|q j(s)|dsdζdβ

≤dr‖ψ‖ϑ

n∑
j=1

|cr j|` jh j

∫ t̂

0
edr(β−t̂)

∫ β

0

∫ ζ

ζ−τr j

e−λsdsdζdβ

=
dr

λ
‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)
∫ t̂

0
edr(β−t̂)

∫ β

0
e−λζdζdβ

≤
dr

λ2 ‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)(eλσ − 1)
∫ t̂

0
edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
dr
λ2

∑n
j=1 |cr j|` jh j(eλτr j − 1)(eλσ − 1)

dr − λ
, (3.11)

Tr5(t̂) =

n∑
j=1

|ar j|` j

∫ t̂

0
edr(β−t̂)|q j(β)|dβ

≤‖ψ‖ϑ

n∑
j=1

|ar j|` jh j

∫ t̂

0
edr(β−t̂)−λβdβ

=‖ψ‖ϑ

n∑
j=1

|ar j|` jh je−λt̂
∫ t̂

0
e(dr−λ)(β−t̂)dβ
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≤‖ψ‖ϑe−λt̂

∑n
j=1 |ar j|` jh j

dr − λ
, (3.12)

Tr6(t̂) =

n∑
j=1

|br j|` j

∫ t̂

0
edr(β−t̂)|q j(β − δr j(β))|dβ

≤‖ψ‖ϑ

n∑
j=1

|br j|` jh jeλδ̄r j

∫ t̂

0
edr(β−t̂)−λβdβ

=‖ψ‖ϑ

n∑
j=1

|br j|` jh jeλδ̄r je−λt̂
∫ t̂

0
e(dr−λ)(β−t̂)dβ

≤‖ψ‖ϑe−λt̂

∑n
j=1 |br j|` jh jeλδ̄r j

dr − λ
, (3.13)

Tr7(t̂) =

n∑
j=1

|cr j|` j

∫ t̂

0
edr(β−t̂)

∫ β

β−τr j

|q j(s)|dsdβ

≤‖ψ‖ϑ

n∑
j=1

|cr j|` jh j

∫ t̂

0
edr(β−t̂)

∫ β

β−τr j

e−λsdsdβ

=
1
λ
‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)
∫ t̂

0
edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
1
λ

∑n
j=1 |cr j|` jh j(eλτr j − 1)

dr − λ
. (3.14)

Substituting (3.8)–(3.14) into (3.5) to get

|qr(t̂)| ≤(2eλσ − 1)e−λt̂‖ψ‖ϑ + ‖ψ‖ϑe−λt̂ℵr(λ)hr

+ ‖ψ‖ϑe−λt̂
n∑

j=1

h j

£r j(λ)
(

(eλσ−1)dr
λ

+ 1
)

dr − λ

=hr‖φ‖νe−λt̂Θr(λ).

It follows from (3.2) that |qr(t̂)| < hr‖ψ‖ϑe−λt̂, which contradicts to (3.7). Consequently, (i) holds when
t ≤ σ.

Case 2: t > σ. Clearly, t − σ > 0. We substitute (2.2a) into the right of (3.3) to obtain

q̇i(t) + diqi(t) =di

∫ t

t−σ

[
− diqi(β − σ) +

n∑
j=1

ai jg j(q j(β))

+

n∑
j=1

bi jg j(q j(β − δi j(β))) +

n∑
j=1

ci j

∫ β

β−τi j

g j(q j(s))ds
]
dβ

+

n∑
j=1

ai jg j(q j(t)) +

n∑
j=1

bi jg j(q j(t − δi j(t)))
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+

n∑
j=1

ci j

∫ t

t−τi j

g j(q j(s))ds, ∀t ≥ σ, i = 1, 2, . . . , n. (3.15)

Multiplying by edi(t−σ) on the both sides, and then taking the integrals from σ to t, we derive

qi(t) =e−di(t−σ)qi(σ) +

∫ t

σ

edi(β−t)

di

∫ β

β−σ

[
− diqi(ζ − σ) +

n∑
j=1

ai jg j(q j(ζ))

+

n∑
j=1

bi jg j(q j(ζ − δi j(ζ))) +

n∑
j=1

ci j

∫ ζ

ζ−τi j

g j(q j(s))ds
]
dζ

+

n∑
j=1

ai jg j(q j(β)) +

n∑
j=1

bi jg j(q j(β − δi j(β)))

+

n∑
j=1

ci j

∫ β

β−τi j

g j(q j(s))ds

 dβ, ∀t ≥ σ, i = 1, 2, . . . , n. (3.16)

In the light of the assumption A2, one derive

|qi(t)| ≤e−di(t−σ)|qi(σ)| + d2
i Li1(t) + diLi2(t) + diLi3(t) + diLi4(t)

+ Li5(t) + Li6(t) + Li7(t), ∀t ≥ σ, i = 1, 2, . . . , n, (3.17)

where
Li1(t) =

∫ t

σ
edi(β−t)

∫ β

β−σ
|qi(ζ − σ)|dζdβ,

Li2(t) =
∑n

j=1 |ai j|` j

∫ t

σ
edi(β−t)

∫ β

β−σ
|q j(ζ)|dζdβ,

Li3(t) =
∑n

j=1 |bi j|` j

∫ t

σ
edi(β−t)

∫ β

β−σ
|q j(ζ − δi j(ζ))|dζdβ,

Li4(t) =
∑n

j=1 |ci j|` j

∫ t

σ
edi(β−t)

∫ β

β−σ

∫ ζ

ζ−τi j
|q j(s)|dsdζdβ,

Li5(t) =
∑n

j=1 |ai j|` j

∫ t

σ
edi(β−t)|q j(β)|dβ,

Li6(t) =
∑n

j=1 |bi j|` j

∫ t

σ
edi(β−t)|q j(β − δi j(β))|dβ,

Li7(t) =
∑n

j=1 |ci j|` j

∫ t

σ
edi(β−t)

∫ β

β−τi j
|q j(s)|dsdβ.

Now, we assert that (i) holds for all t ∈ R; otherwise, due to Case 1 and the continuity of qi(t), there
exist t̂ > σ and 1 ≤ r ≤ n such that

|qi(t)| ≤ hi‖ψ‖ϑe−λt, ∀ t ≤ t̂, i = 1, 2, . . . , n, (3.18)

|qr(t̂)| = hr‖ψ‖ϑe−λt̂. (3.19)

According to (3.18)

Lr1(t̂) =

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

|qr(ζ − σ)|dζdβ

≤hr‖ψ‖ϑeλσ
∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

e−λζdζdβ
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=
1
λ

hr‖ψ‖ϑeλσ(eλσ − 1)
∫ t̂

σ

edr(β−t̂)−λβdβ

≤hr‖ψ‖ϑe−λt̂
1
λ
eλσ(eλσ − 1)

dr − λ
, (3.20)

Lr2(t̂) =

n∑
j=1

|ar j|` j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

|q j(ζ)|dζdβ

≤‖ψ‖ϑ

n∑
j=1

|ar j|` jh j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

e−λζdζdβ

=
1
λ
‖ψ‖ϑ

n∑
j=1

|ar j|` jh j(eλσ − 1)
∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
1
λ

∑n
j=1 |ar j|` jh j(eλσ − 1)

dr − λ
, (3.21)

Lr3(t̂) =

n∑
j=1

|br j|` j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

|q j(ζ − δr j(ζ))|dζdβ

≤‖ψ‖ϑ

n∑
j=1

|br j|` jh jeλδ̄r j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

e−λζdζdβ

=
1
λ
‖ψ‖ϑ

n∑
j=1

|br j|` jh j(eλσ − 1)eλδ̄r j

∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
1
λ

∑n
j=1 |br j|` jh j(eλσ − 1)eλδ̄r j

dr − λ
, (3.22)

Lr4(t̂) =

n∑
j=1

|cr j|` j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

∫ ζ

ζ−τr j

|q j(s)|dsdζdβ

≤‖ψ‖ϑ

n∑
j=1

|cr j|` jh j

∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

∫ ζ

ζ−τr j

e−λsdsdζdβ

=
1
λ
‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)
∫ t̂

σ

edr(β−t̂)
∫ β

β−σ

e−λζdζdβ

=
1
λ2 ‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)(eλσ − 1)
∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
1
λ2

∑n
j=1 |cr j|` jh j(eλτr j − 1)(eλσ − 1)

dr − λ
, (3.23)

Lr5(t̂) =

n∑
j=1

|ar j|` j

∫ t̂

σ

edr(β−t̂)|q j(β)|dβ
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≤‖ψ‖ϑ

n∑
j=1

|ar j|` jh j

∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂

∑n
j=1 |ar j|` jh j

dr − λ
, (3.24)

Lr6(t̂) =

n∑
j=1

|br j|` j

∫ t̂

σ

edr(β−t̂)|q j(β − δr j(β))|dβ

≤‖ψ‖ϑ

n∑
j=1

|br j|` jh jeλδ̄r j

∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂

∑n
j=1 |br j|` jh jeλδ̄r j

dr − λ
, (3.25)

Lr7(t̂) =

n∑
j=1

|cr j|` j

∫ t̂

σ

edr(β−t̂)
∫ β

β−τr j

|q j(s)|dsdβ

≤‖ψ‖ϑ

n∑
j=1

|cr j|` jh j

∫ t̂

σ

edr(β−t̂)
∫ β

β−τr j

e−λsdsdβ

=
1
λ
‖ψ‖ϑ

n∑
j=1

|cr j|` jh j(eλτr j − 1)
∫ t̂

σ

edr(β−t̂)−λβdβ

≤‖ψ‖ϑe−λt̂
1
λ

∑n
j=1 |cr j|` jh j(eλτr j − 1)

dr − λ
. (3.26)

Insert (3.20)–(3.26) into (3.17) to get

|qr(t̂)| ≤e−dr(t̂−σ)|qr(σ)| + ‖ψ‖ϑe−λt̂ℵr(λ)hr

+ ‖ψ‖ϑe−λt̂
n∑

j=1

h j

£r j(λ)
(

(eλσ−1)dr
λ

+ 1
)

dr − λ
.

This, together with Case 1 and (3.2), implies that |qr(t̂)| ≤ hr‖ψ‖ϑe−λt̂, which contradicts to (3.19).
Consequently, (i) holds.

(ii) From (i), the following inequality can be obtained:

‖q(t)‖ =

 n∑
i=1

|qi(t)|2


1
2

≤ H‖ψ‖ϑe−λt, ∀t ≥ σ,

where H =
(∑n

i=1 h2
i

) 1
2 , that is, QVNN (2.2) is GES which the decay rate is λ. �

Remark 2. One of the first tasks in the study of QVNNs with time delays is the stability analysis. Many
existing results on stability analysis are derived by transforming QVNNs into two complex-valued
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systems or four real-valued parts systems, then LMI stability conditions are obtained by employing
the so-called LKF method that is difficult and will greatly increase the computational complexity
(see [28, 29, 31, 32, 42] and the references therein). When the number of delays increases, the amount
of calculations will be very large. To overcome the trouble, for the problem of global exponential
stability analysis of QVNN with multiple time-varying delays, in this paper a new method based on
system solutions is proposed, which does not involve any LKF. Computationally, the stability criteria
obtained in this paper are actually to determine the existence of a positive vector of simple linear scalar
inequalities, which is easier to verify by using the software YALMIP (similar to LMI toolbox). What is
important: LMIs contain more decision variables, while simple linear scalar inequalities involves few
decision variables, and hence simple linear scalar inequalities in this paper have lower computational
complexity than LMIs.

Remark 3. The global exponential stability problem of QVNNs with leakage, transmission, and
distribution delays is studied in this article. The delay-dependent and decay-rate dependent GES
criterion of the QVNNs (2.2) is given in Theorem 1. It can be used to CVNNs or real-valued NNs.
The obtained stability criterion can used to characterize the relation between the decay rate and the
time-varying delays’s upper-bounds.

Remark 4. Let σ = 0 and ci j = 0, i, j = 1, 2, . . . , n, then the QVNN (2.2) is transformed into the
following form:

q̇i(t) = −diqi(t) +

n∑
j=1

ai jg j(q j(t)) +

n∑
j=1

bi jg j(q j(t − δi j(t))), ∀t ≥ 0, i = 1, 2, . . . , n, (3.27a)

qi($) = ψi($),∀$ ∈ [−ϑ, 0], i = 1, 2, . . . , n. (3.27b)

Corollary 1. Under the assumption A2, if there are 0 < λ < di and h̃i > 0 such that

h̃i −

n∑
j=1

∆i j(λ)h̃ j > 0, i = 1, 2, . . . , n, (3.28)

where ∆i j(λ) =
£i j(λ)
di−λ

, £i j(λ) = ` j

(
|ai j| + |bi j|eλδ̄i j

)
, then the following insertions are true:

(i) There exists hi > 1 such that |qi(t)| ≤ hi‖ψ‖ϑe−λt for all t ∈ R and i = 1, 2, . . ., n;

(ii) QVNN (3.27) is GES with the decay rate λ.

The proof of Corollary 1 for QVNN (3.27) is similar to Theorem 1.

4. Numerical examples

We will proof the effectiveness of the theoretical results that obtained in this article via the following
example.

Example 1. In QVNN (2.2) with leakage, transmission, and distribution delays, we choose n = 2,

d1 = d2 = 5,
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a11 = 1 − i − 0.1 j − 0.5k, a12 = −1 − i − 0.4 j + 0.2k,

a21 = 2 − i − 0.1 j + 0.2k, a22 = 2 − 5i − 0.3 j − 0.1k,

b11 = 1 − i − 0.1 j − 0.5k, b12 = 1 − i − 0.2 j + 0.1k,

b21 = 1 + i − 0.2 j + 0.5k, b22 = 1 − i − 0.4 j − 0.1k,

c11 = 1 − i − 0.2 j − 0.5k, c12 = −1 − i − 0.4 j + 0.3k,

c21 = 2 − i − 0.3 j + 0.3k, c22 = 2 − 5i − 0.1 j − 0.5k,

and the activation functions are gp(qp) = 0.01 tanh(qR
p)+0.01 tanh(qI

p)i+0.01 tanh(qJ
p) j+0.01 tanh(qK

p )k,
where qp ∈ Q, qp = qR

p + qI
pi + qJ

p j + qK
p k, p = 1, 2.

We choose σ = 0.1, τi j = 0.1, δi j(t) = 0.5 sin t + 0.5, t > 0, i, j = 1, 2. Clearly, δ̄i j = 1 for i, j = 1, 2.
Set `i = 0.02, i = 1, 2. Then the assumption A2 is satisfied. When λ = 0.6, by employing the software
tool YALMIP, we obtain a feasible solution of inequalities in (3.1): h̃1 = 81.5264 and h̃2 = 86.5244. For
20 stochastically taken initial functions, Figures 1–4 show that the state trajectories of the considered
QVNN converge to the zero equilibrium point, which verifies the result that the considered QVNN is
GES.
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Figure 1. Trajectories of qR
p(t), p = 1, 2.
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Figure 2. Trajectories of qI
p(t), p = 1, 2.
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Figure 3. Trajectories of qJ
p(t), p = 1, 2.
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Figure 4. Trajectories of qK
p (t), p = 1, 2.

Example 2. With the application and development of neural network theory, neural network can be
applied not only to biological neurons, but also to some practical systems [43]. In the example in [44],
the quadruple-tank process system (QTPS) can be regarded as a practical problem, which is shown in
Figure 5. The differential equation model of mass balance in QTPS is as follows:

˙̃x(t) = Ã0 x̃(t) + Ã1 x̃(t) + B̃0u(t) + B̃1u(t − τ(t)), t ≥ 0, (4.1)

where x̃ is the state vector, u(t) is the control input, τ : [0,+∞)→ [0, τ̄] is the time-varying delay, and

Ã0 = −diag(0.0021, 0.0021, 0.0424, 0.0424), Ã1 =


0 0 0.0424 0
0 0 0 0.0424
0 0 0 0
0 0 0 0

 ,

B̃0 =


0.1113γ1 0

0 0.1042γ2

0 0
0 0

 , B̃1 =


0 0
0 0
0 0.1113(1 − γ1)

0.1042(1 − γ2) 0

 ,

γ1 = 0.333, γ2 = 0.307.

K̄ =

[
−0.1609 −0.1765 −0.0795 −0.2073
−0.1977 −0.1579 −0.2288 −0.0772

]
.
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Based on the actual context of QTPS, it is natural to treat control input u(t) as a non-linear function as
follows:

u(t) = K̄ f̂ (x̃(t)), f̂ (x̃(t)) = ( f̂1(x̃1(t)), f̂2(x̃2(t)), f̂3(x̃3(t)), f̂4(x̃4(t)))T ,

where K̄ is the control gain matrix. Then the QTPS (4.1) can be rewritten to the form:

˙̃x(t) = Ã0 x̃(t) + Ã1 x̃(t) + B̂ f̂ (x̃(t)) + Ĉ f̂ (x̃(t − τ(t))), t ≥ 0, (4.2)

where B̂ = B̃0K̄, Ĉ = B̃1K̄.
Let f̂i(x̃i(t)) = 0.012 x̃i(t), i = 1, 2, 3, 4, the QTPS (4.2) is convert to the following form:

˙̃x(t) = Ã0 x̃(t) + (Ã1 + 0.012B̂)x̃(t) + 0.012Ĉ x̃(t − τ(t)), t ≥ 0, (4.3)

where B̂ = B̃0K̄, Ĉ = B̃1K̄.
Clearly, (4.3) can be reviewed as a special form of QVNN (3.27), where d1 = d2 = 0.0021, d3 =

d4 = 0.0424, [ai j]4×4 = 100Ã1 + 0.01B̂, [bi j]4×4 = 0.01Ĉ, g(x̃(t)) = 0.01x̃(t).

Figure 5. Schematic representation of the QTPS [44].

We choose δi j(t) = 0.25sin(0.5t) + 0.25, t > 0, i, j = 1, 2, 3, 4. Clearly, δ̄i j = 0.5 for i, j = 1, 2, 3, 4.
Set `i = 0.01, i = 1, 2, 3, 4. Then the assumption A2 is satisfied. When λ = 0.002, by employing
the software tool YALMIP, we obtain a feasible solution of inequalities in (3.28): h̃1 = 88.4901
,h̃2 = 88.4901, h̃3 = 88.4899, h̃4 = 88.4899. The conditions of the Corollary 1 are satisfied easily,
which verifies the result that the considered QTPS is GES. For 20 stochastically taken initial functions,
Figure 6 show that the state trajectories of the considered QVNN converge to the zero equilibrium
point, which verifies the result that the considered QVNN is GES.
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Figure 6. Trajectories of qR
p(t), p = 1, 2, 3, 4.

5. Conclusions

In this article, we study the global exponential stability of QVNNs with leakage, distribution and
transmission delays. By proposing a direct method based on system solutions, the global exponential
stability criteria are established of linear scalar inequalities form. Especially, the proposed method
doesn’t need both LKF construction and model decomposition, which reduces the calculation amount
to a certain extent.
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