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Abstract. This article aims to study a class of discontinuous fuzzy inertial Cohen–Grossberg
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1 Introduction

1.1 Previous works

In 1986, Babcock et al. [3] proposed the inertial neural networks (INNs) for the first
time. Neural networks with inertial items have been successfully applied to chaos and
bifurcation control [23]. Since the states of such inertial systems are of second-order
derivatives, the corresponding dynamic behaviors are more complicated to deal with
compared to systems with first-order derivative of states [15]. So, stability analysis of
the INNs is necessary. In recent years, stability of INNs model and its generalizations
have been widely considered; see [7, 13, 19–21].

The concept of finite-time stabilization (FTS) proposed by Haimo [6] means that the
solutions of the system reach the equilibrium point in finite time. The time function indi-
cating when the trajectories reach the equilibrium point, variously known as the settling-
time, has a great importance in practice. FTS is of major interest to many applications such
as secure communications [17] or finite-time attitude tracking for spacecrafts [4]. Time
delays, especially, the time-varying delays may turn expected dynamics of the proposed
neural network into some undesired complex dynamical behaviors. So, the FTS analysis
for the time-delayed system will be difficult. This thanks to the pioneer work of Moulay
et al. [16]. After that, on the basis work of Moulay, during the past several years, many
efforts have been devoted to the delayed neural networks. See, to name a few, [1, 27, 28].

Despite of many FTS results on the delayed neural networks, there is few work on
FTS of INNs with discontinuous activations though the discontinuous phenomenon often
occur in neural networks; see [22]. Moreover, it is well known that time delays are
often inevitable and time-varying delays may turn expected dynamics of the proposed
neural network into some undesired complex dynamical behaviors. In reality, discrete
(time-varying) delay and distributed delay always occur simultaneously. In general, the
results of the stability analysis and synchronization analysis for delayed neural networks
contain delay-dependent and delay-independent criteria. However, the former can derive
less conservativeness and take more advantages in the practical applications. For more
details, see [9]. But there are few delay-dependent criteria derived for the delayed INNs
and few delay-dependent criteria ensuring the FTS of time-varying delayed INNs have
been derived.

Hence, it is meaningful to further propose a new framework and study the FTS of
the discontinuous INNs with mixed time-varying delays and derive some new delay-
dependent criteria to ensure the FTS of discontinuous INNs with mixed time-varying
delays. This is the first key purpose.

On the other hand, some inconveniences can inevitably be encountered in the mathe-
matical modeling of practical problems, for example, the uncertainty, the approximation
and the vagueness. Fuzzy logic systems can approximate any nonlinear functions. During
the past several years, based on the pioneer work of Yang and Yang [25] in 1996, stability
analysis of fuzzy neural networks with delays were extensively considered by researchers;
see [10–12,18] and the references therein. However, the best of authors knowledge, there
is only few research that investigated the fuzzy INNs (see [8,24]), not only that the fuzzy
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inertial Cohen–Grossberg neural networks. Still, the results established in [8,24] are based
on the delay-dependent criteria.

Thus, how to take the fuzzy logics into account and further derive some new delay-
dependent criteria to guarantee the FTS of DFICGNNs with mixed time delays is the
second key purpose.

Based on the pioneer works and addressed two key purposes mentioned above, in this
paper, we aim to investigate the FTS of DFICGNNs with mixed time delays via discon-
tinuous state-feedback controllers. Our works mainly aim to put forward to some new
delay-dependent criteria for the proposed DFICGNNs and put forward a new approach to
further study the dynamic behaviors of fuzzy INNs.

1.2 Major contributions
In contrast to the previous works on the INNs, the major contributions of this paper are
reflected in the subsequent key aspects:

• Taking the inertial items, fuzzy logics, CG terms, discontinuous activations and dis-
crete and distributed time-varying delays into consideration, the consider mixed time-
vary delayed DFICGNN is a more general case compared to the continuous INNs
without fuzzy logics [13, 14] and the fuzzy INNs without mixed time-varying delays
[8, 24].

• A mixed-time-varying delayed feedback control law is designed, which can help
achieve FTS effectively. Compared with the previous designed delayed feedback con-
trol, which can only cope with the discrete delays and discrete time-varying delays, it
takes more advantages.

• Some new delay-dependent criteria, which possess less conservativeness, are derived,
which can further illustrate that the delays can affect the FTS of the neural system.

2 System description and preliminaries

2.1 System description
Consider the following DFICGNNs with mixed time delays:

ẍi(t) = −ai(t)ẋi(t)− bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj −
n∑
j=1

cij(t)fj
(
xj(t)

)
−

n∑
j=1

hij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

ρij(t)

t∫
t−δij(t)

fj
(
xj(s)

)
ds−

n∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))

−
n∨
j=1

ωij(t)

t∫
t−δij(t)

fj
(
xj(s)

)
ds−

n∨
j=1

Sijνj − Ii(t)

]
, (1)
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where i, j ∈ I , {1, 2, . . . , n}, n > 2 is the number of neurons in the network, xi(t)
denotes the state of the ith unit at time t, the second derivative is called an inertial term
of system (1). ai(t) > 0 are damping coefficient; bi(·) denotes an amplification function;
ki(·) is the behaved function; cij is the elements of feedback templates; hij is the elements
of feed-forward templates; αij , ρij and ωij , βij are elements of fuzzy feedback MIN
template, fuzzy feedback MAX template, respectively; Tij and Sij are fuzzy feed-forward
MIN template and fuzzy feed-forward MAX template, respectively;

∧
and

∨
denote the

fuzzy AND and fuzzy OR operations, respectively; νj and Ii denote input and bias of the
jth and ith neuron, respectively; fj are the activation functions, which are assumed to
be discontinuous; τij(t) and δij(t) correspond to the discrete time-varying delay and the
distributed time-varying delay at time t satisfying 0 6 τij(t) 6 τ and 0 6 δij(t) 6 δ,
where τ = max16i,j6n supt∈R |τij(t)| and δ = max16i,j6n supt∈R |δij(t)|, τ and δ are
nonnegative constants. Let ξ = max{τ, δ}.

The initial conditions of system (1) are

xi(s) = φxi (s), ẋi(s) = ψxi (s), s ∈ [−ξ, 0].

Throughout the paper, we always use i, j ∈ I, unless otherwise stated.

Remark 1. The proposed neural system includes the inertial items, fuzzy logics, CG
terms, discontinuous activations and discrete and distributed time-varying delays. Thus,
the presented results are obtained in a more general framework and are more practical
than the aforementioned previous results cited in the references such as [8, 13, 14, 24].

Design the following generalized variable transformation:

yi(t) = µiẋi(t) + ωixi(t), (2)

where µi and ωi are positive constants. Then system (1) can be rewritten as

ẋi(t) = −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) = −ãi(t)yi(t) + ωiãi(t)xi(t)− µibi(t, xi(t))
[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj

(
xj(t)

)
−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 ρij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds−

∨n
j=1 Sijνj

−
∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 ωij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds− Ii(t)

]
,

(3)

where ãi(t) = ai(t)− ωi/µi.
The initial conditions of system (3) are

xi(s) = φxi (s), yi(s) = µiψ
x
i (s) + ωiφ

x
i (s) , ϕyi (s), s ∈ [−ξ, 0].
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Remark 2. Two tunable variables µi, ωi are introduced instead of one variable to express
the transformation. Currently, lots of previous results for INNs are obtained based on
variable transformation with µi = 1 or µi = ωi = 1. In order to further reduce the
conservativeness, as verified in [8], two free-weight coefficients µi, ωi can be introduced
to the transformation.

Next, the controlled DFICGNNs are obtained as

ẋi(t) = −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) = −ãi(t)yi(t) + ωiãi(t)xi(t)− µibi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj

(
xj(t)

)
−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 ρij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds−

∨n
j=1 Sijνj

−
∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 ωij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds− Ii(t)

]
+ ui(t),

(4)

where ui(t) are the feedback control laws to be designed later.
Throughout this paper, we assume that the activation functions satisfy the following

conditions:

(A1) For each i ∈ I, fi : R→ R is piecewise continuous.
(A2) For each i ∈ I, there exist nonnegative constants Ai, Bi such that

supγi∈K[fi](xi) |γi| 6 Ai|xi|+ Bi for all xi ∈ R.

Here K[fj ](u) ,
⋂
δ>0

⋂
µ(N)=0 co[fj(t, B(u, δ) \ N)], co[E] denotes the closure of the

convex hull of set E, µ(N) denotes the Lebesgue measure of set N, and B(u, δ) is the
open ball with the center at u ∈ R and the radius δ ∈ R.

2.2 Basic definitions and lemmas

Notations. Let R be the space of real number, R+ be the set of all nonnegative real
numbers and Rn denote the n-dimensional Euclidean space. Consider the column vectors
x = (x1, x2, . . . , xn)

> ∈ Rn and ‖x‖ =
√
x>x, where the superscript > represents

the transpose operator. A continuous function ν : R → R belongs to the class K if it
is strictly increasing and ν(0) = 0. C([a, b],Rn) denotes the space of all continuous
functions ϕ : [a, b] → Rn with uniform norm ‖ϕ‖ = supa6t6b |ϕ(t)|. sgn(·) denote the
sign function.

Define f+ = supt∈R |f(t)|, f− = inft∈R |f(t)|, where f(t) is a bounded and contin-
uous function. Let Λ be an open subset of C([−ξ, 0],Rn) containing 0.

Definition 1. (See [16].) The origin of system (4) is finite-time stable, where ui(t)=0, if

(i) The origin of system (4) is stable;
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(ii) The origin of system (4) is finite-time convergent, i.e., for any initial state
ϕ(s) ∈ Λ, there exists 0 6 T (ϕ) < +∞ such that every solution of system (1)
satisfies x(t, ϕ) = 0 for all t > T (ϕ).

The functional T0(ϕ) = inf{T (ϕ) > 0: x(t, ϕ) = 0 ∀t > T (ϕ)} is called the settling-
time of system.

Lemma 1. (See [16].) Let there exist a continuous function V : [0,+∞)×Λ→ R+ and
two functions ν, r of class K for the controlled system (4) such that

(i) V (t, 0) = 0, ν(‖x‖) 6 V (t, x), t ∈ [0,+∞);
(ii) D+V (t, x) 6 −r(V (t, x)) with

∫ ε
0
dz/r(z) < +∞ for all ε > 0, x ∈ Λ.

Then system (4) is finite-time stable with a settling time satisfying the inequality T0(ϕ) 6∫ V (0,ϕ)

0
dz/r(z). In particular, if r(V ) = λV ρ, where λ > 0, ρ ∈ (0, 1), then the settling

time satisfies the inequality

T0(ϕ) 6

V (0,ϕ)∫
0

dz

r(z)
=
V 1−ρ(0, ϕ)

λ(1− ρ)
.

Lemma 2. (See [5, Chain Rule].) Assume that V (x) is C-regular (regular, positive
definite and radially unbounded) and y(t) is absolutely continuous on any compact sub-
interval of [0,+∞). Then V (x(t)) and x(t) are differentiable for almost everywhere
t ∈ [0,+∞), and dV (x(t))/dt = ξ>ẋ(t) for all ξ ∈ ∂V

(
x(t)), where ∂V (x) =

co[limk→∞∇V (xk) : xk → x, xk /∈ N, xk /∈ Ω]. Here Ω ⊂ Rn × R is the set of
points, V is not differentiable, and N ⊂ Rn × R is an arbitrary set with measure zero.

Lemma 3. (See [26].) Suppose x and y are two states of system (1), then the following
inequalities hold:∣∣∣∣∣

n∧
j=1

αijgj(xj)−
n∧
j=1

αijgj(yj)

∣∣∣∣∣ 6
n∑
j=1

|αij |
∣∣gj(xj)− gj(yj)∣∣,∣∣∣∣∣

n∨
j=1

βijgj(xj)−
n∨
j=1

βijgj(yj)

∣∣∣∣∣ 6
n∑
j=1

|βij |
∣∣gj(xj)− gj(yj)∣∣.

For the sake of convenience, we provide the following basic assumptions:

(A3) For any i ∈ I, there exists positive constant bi such that bi(t, xi(t)) 6 bi.
(A4) For each x ∈ R, ki(·, x) is continuous, ki(t, 0) = 0 and there exists a continu-

ous function ∆i(t) > 0 such that |ki(t, x)| 6 ∆i(t)|x|, x ∈ R.
(A5) The discrete time-varying delays τij(t) are continuously differentiable function

and satisfy τ̇ij(t) 6= 1 for i, j ∈ I.
(A6) The distributed time-varying delays δij(t) are continuously differentiable func-

tion for i, j ∈ I.
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3 Finite-time stabilization analysis

In this section, we will consider the finite-time stabilization for the proposed DFICGNNs.
Design the following delayed feedback control law:

ui(t) = sgn
(
yi(t)

)(
−λi − σi

∣∣xi(t)∣∣− γi∣∣xi(t− τji(t))∣∣−ηi t∫
t−δji(t)

∣∣xi(s)∣∣ ds), (5)

where i ∈ I, λi, σi, γi and ηi are gain coefficients to be determined.

Theorem 1. Suppose that assumptions (A1)–(A6) are satisfied and the following assump-
tion hold:

(A7) lim sup
t→+∞

{
1

µi
− ãi(t)

}
6 0, ãi(t) = ai(t)−

ωi
µi
,

Λi = lim inf
t→+∞

{
−λi + µibi

∣∣Ii(t)∣∣+ µibi

n∑
j=1

[
Bj
(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣

+
∣∣αij(t)∣∣+ ∣∣βij(t)∣∣+ ∣∣ωij(t)∣∣∣∣δij(t)∣∣+ ∣∣ρij(t)∣∣∣∣∣∣δij(t)∣∣)

+ |νj |
(
|dij |+ |Tij |+ |Sij |

)]}
> 0,

lim sup
t→+∞

{
−σi −

ωi
µi

+ ωi
∣∣ãi(t)∣∣+ µibi∆i(t)

+

n∑
j=1

[
µjbjAi

∣∣cji(t)∣∣+ |hji(ϕ−1ji (t))|
1− τ̇ji(ϕ−1ji (t))

+
∣∣δji(t)∣∣]} 6 0,

lim sup
t→+∞

{
−γi +

n∑
j=1

[
−
∣∣hij(t)∣∣+ µibiAj

(∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)]} 6 0,

lim sup
t→+∞

{
−ηi +

n∑
j=1

[
µjbiAi

(∣∣ρji(t)∣∣+ ∣∣ωji(t)∣∣)+ δ̇ji(t)
]}

6 0.

Then the closed-loop system (4) is FTS, and the settling-time satisfies T0 = V (0)/∆,
∆ = mini∈I{∆i}, where

V (0) =

n∑
i=1

(∣∣xi(0)∣∣+ ∣∣yi(0)∣∣)+ n∑
i=1

n∑
j=1

0∫
−τij(0)

|hij(ϕ−1ij (s))|
1− τ̇ij(ϕ−1ij (s))

∣∣xj(s)∣∣ds
+

n∑
i=1

n∑
j=1

0∫
−δij(0)

0∫
s

∣∣xj(u)∣∣ duds.
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Proof. Due to the presence of discontinuities in system (4), by using set-valued map
and differential inclusion theory, we have the following differential inclusion system
corresponding to systems (4):

ẋi(t) ∈ −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) ∈ −ãi(t)yi(t) + ωiãi(t)xi(t)− µibi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)K[fj ]

(
xj(t)

)
−
∑n
j=1 hij(t)K[fj ]

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)K[fj ]

(
xj
(
t− τij(t)

))
−
∧n
j=1 ρij(t)

∫ t
t−δij(t)K[fj ]

(
xj(s)

)
ds

−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)K[fj ]

(
xj
(
t− τij(t)

))
−
∨n
j=1 ωij(t)

∫ t
t−δij(t)K[fj ]

(
xj(s)

)
ds− Ii(t)

]
+ ui(t).

(6)

By the measurable selection lemma stated in [2], if (x(t), y(t))> is the Filippov
solutions of system (6), then there exists a measurable function γ = (γ1, γ2, . . . , γn)

> :
[−ξ,+∞)→ Rn, where γj(t) ∈ K[fj ](xj(t)) such that

ẋi(t) = −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) = −ãi(t)yi(t) + ωiãi(t)xi(t)− µibi(t, xi(t))
[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)γj(t)

−
∑n
j=1 hij(t)γj

(
t− τij(t)

)
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)γj

(
t− τij(t)

)
−
∧n
j=1 ρij(t)

∫ t
t−δij(t) γj(s) ds−

∨n
j=1 Sijνj

−
∨n
j=1 βij(t)γj

(
t− τij(t)

)
−
∨n
j=1 ωij(t)

∫ t
t−δij(t) γj(s) ds− Ii(t)

]
+ ui(t)

(7)

hold for almost all t ∈ [−ξ,+∞), where ui(t) ∈ K[ui(t)], K[ui(t)] = K[sgn(yi(t))]×
(−λi − σixi(t)− γi|xi(t− τji(t))| − ηi

∫ t
t−δji(t) |xi(s)|ds) and

K
[
sgn
(
yi(t)

)]
=


{1}, xi(t) > 0,

[−1, 1], xi(t) = 0,

{−1}, xi(t) < 0.

Consider the following Lyapunov–Krasovskii candidate functional:

V (t) =

n∑
i=1

(∣∣xi(t)∣∣+ ∣∣yi(t)∣∣)+ n∑
i=1

n∑
j=1

t∫
t−τij(t)

|hij(ϕ−1ij (s))|
1− τ̇ij(ϕ−1ij (s))

∣∣xj(s)∣∣ds
+

n∑
i=1

n∑
j=1

0∫
−δij(t)

t∫
t+s

∣∣xj(u)∣∣duds,
where ϕ−1ij is the inverse function of ϕij(t) = t− τij(t).
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It is easy to verify that V (t) is C-regular. Calculating the time derivative of V (t)
along the trajectory of system (7), it follows from Lemma 2 and assumption (A5) that

V̇ (t) =

n∑
i=1

sgn
(
xi(t)

)[
−ωi
µi
xi(t) +

1

µi
yi(t)

]

+

n∑
i=1

sgn
(
yi(t)

){
−ãi(t)yi(t) + ωiãi(t)xi(t)− µibi

(
t, xi(t)

)
×

[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj −
n∑
j=1

cij(t)γj(t)−
n∑
j=1

hij(t)γj
(
t− τij(t)

)

−
n∧
j=1

Tijνj −
n∧
j=1

αij(t)γj
(
t− τij(t)

)
−

n∧
j=1

ρij(t)

t∫
t−δij(t)

γj(s) ds−
n∨
j=1

Sijνj

−
n∨
j=1

βij(t)γj
(
t− τij(t)

)
−

n∨
j=1

ωij(t)

t∫
t−δij(t)

γj(s) ds− Ii(t)

]
+ ui(t)

}

+

n∑
i=1

n∑
j=1

|hij(ϕ−1ij (t))|
1− τ̇ij(ϕ−1ij (t))

∣∣xj(t)∣∣− n∑
i=1

n∑
j=1

∣∣hij(t)∣∣∣∣xj(t− τij(t))∣∣
+

n∑
i=1

m∑
j=1

δ′ij(t)

t∫
t−δij(t)

∣∣xj(u)∣∣du+

n∑
i=1

m∑
j=1

0∫
−δij(t)

∣∣xj(s)∣∣ds
−

n∑
i=1

n∑
j=1

0∫
−δij(t)

∣∣xj(t+ s)
∣∣ds,

which, together with (7), assumptions (A2)–(A4), Lemma 3, gives

V̇ (t) 6
n∑
i=1

[
1

µi
− ãi(t)

]∣∣yi(t)∣∣+ n∑
i=1

{
−σi −

ωi
µi

+ ωi
∣∣ãi(t)∣∣+ µibi∆i(t)

+

n∑
j=1

[
µibjAi

∣∣cji(t)∣∣+ |hji(ϕ−1ji (t))|
1− τ̇ji(ϕ−1ji (t))

+
∣∣δji(t)∣∣]}∣∣xi(t)∣∣

+

n∑
i=1

{
−γi +

n∑
j=1

[
−
∣∣hij(t)∣∣+ µibiAj

(∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)]}
×
∣∣xi(t− τji(t))∣∣

+

n∑
i=1

{
−λi+ µibi

∣∣Ii(t)∣∣+ µibi

n∑
j=1

[
Bj
(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣
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+
∣∣ωij(t)∣∣∣∣δij(t)∣∣+ ∣∣ρij(t)∣∣∣∣δij(t)∣∣)+ |νj |(|dij |+ |Tij |+ |Sij |)]}

+

n∑
i=1

{
−ηi +

n∑
j=1

[
µjbjAi

(∣∣ρji(t)∣∣+ ∣∣ωji(t)∣∣)+ δ̇ji(t)
]} t∫

t−δji(t)

∣∣xi(s)∣∣ ds.
According to assumption (A6), we can have V̇ (t) 6 −∆, where ∆ = mini∈I{∆i} and

∆i = λi − µibi
∣∣Ii(t)∣∣

− µibi
n∑
j=1

[
Bj
(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣

+
∣∣ωij(t)∣∣∣∣δij(t)∣∣+ ∣∣ρij(t)∣∣∣∣δij(t)∣∣)+ |νj |(|dij |+ |Tij |+ |Sij |)].

Then there exists a constant T0 = V (0)/∆ such that V (t) = 0 for all t > T0. Therefore,
according to Definition 1, system (1) is finite-time stabilizable under the designed control
law (5).

Remark 3. During the past several years, some delayed control laws have been designed
to help achieve FTS for the delayed neural networks and INNs. But, compared with the
previous delayed control laws, which can only help achieve FTS for neural networks with
discrete delays (see [11]), the designed mixed time-varying delayed control law cannot
only cope with the discrete delays, but also the distributed delays. From this point of
view, the proposed control strategy is more generalized.

Remark 4. From Theorem 1 one can see that the FTS can achieve is based on the derived
delay-dependent criteria. This fact can further show that the delays can affect the FTS of
INNs. Thus, the established results in this paper can include and extend the previous
works on the INNs based on the delay-independent criteria such as [20, 21].

Let δij(t) ≡ 0, i, j ∈ I, and consider the following DFICGNNs with discrete time
delays:

ẍi(t) = −ai(t)ẋi(t)− bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj

−
n∑
j=1

cij(t)fj
(
xj(t)

)
−

n∑
j=1

hij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

Sijνj − Ii(t)
]
. (8)
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By using the variable transformation (2), set-valued map, differential inclusion theory
and measurable selection lemma, we can have the following loop-closed system:

ẋi(t) = −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) = −ãi(t)yi(t) + ωiãi(t)xi(t)− µibi(t, xi(t))
[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)γj(t)−

∑n
j=1 hij(t)γj

(
t− τij(t)

)
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)γj

(
t− τij(t)

)
−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)γj

(
t− τij(t)

)
− Ii(t)

]
+ ũi(t),

(9)

where ũi(t) are the feedback control laws to be designed later.

Corollary 1. Suppose that assumptions (A1)–(A5) are satisfied, and the following as-
sumption hold:

(A8) lim sup
t→+∞

{
1

µi
− ãi(t)

}
6 0,

Λ̃i = lim inf
t→+∞

{
−λ̃i + µibi

∣∣Ii(t)∣∣+ µibi

n∑
j=1

[
|νj |
(
|dij |+ |Sij |+ |Tij |

)
+ Bj

(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)]} > 0,

lim sup
t→+∞

{
−σ̃i −

ωi
µi

+ ωi
∣∣ãi(t)∣∣+ µibi∆i(t) +

n∑
j=1

µjbj
∣∣cji(t)∣∣Ai

+

n∑
j=1

|hji(ϕ−1ji (t))|
1− τ̇ji(ϕ−1ji (t))

}
6 0,

lim sup
t→+∞

{
−γ̃i +

n∑
j=1

[
−
∣∣hji(t)∣∣+ µjbjAi

(∣∣hji(t)∣∣+ ∣∣αji(t)∣∣+ ∣∣βji(t)∣∣)]} 6 0.

Then the closed-loop system (9) is FTS via the following designed control laws:

ũi(t) = sgn(yi(t))
(
− λ̃i − σ̃i

∣∣xi(t)∣∣− γ̃i∣∣xi(t− τji(t))∣∣), (10)

where i ∈ I, λ̃i, σ̃i and γ̃i are gain coefficients to be determined. Moreover, the settling-
time is estimated as follows: T̃0 = Ṽ (0)/∆̃, ∆̃ = mini∈I{∆̃i}, where

Ṽ (0) =

n∑
i=1

(∣∣xi(0)∣∣+ ∣∣yi(0)∣∣)+ n∑
i=1

n∑
j=1

t∫
−τij(0)

|hij(ϕ−1ij (s))|
1− τ̇ij(ϕ−1ij (s))

∣∣xj(s)∣∣ds.
Proof. Consider the following Lyapunov–Krasovskii candidate functional:

Ṽ (t) =

n∑
i=1

(∣∣xi(t)∣∣+ ∣∣yi(t)∣∣)+ n∑
i=1

n∑
j=1

t∫
t−τij(t)

|hij(ϕ−1ij (s))|
1− τ̇ij(ϕ−1ij (s))

∣∣xj(s)∣∣ds, (11)
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where ϕ−1ij is the inverse function of ϕij(t) = t− τij(t). Calculating the time derivative
of Ṽ (t) along the trajectory of system (9), we can have

˙̃
V (t) =

n∑
i=1

sgn
(
xi(t)

)[
−ωi
µi
xi(t) +

1

µi
yi(t)

]
+

n∑
i=1

sgn
(
yi(t)

){
−ãi(t)yi(t)

+ ωiãi(t)xi(t)− µibi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj −
n∑
j=1

cij(t)γj(t)

−
n∑
j=1

hij(t)γj
(
t− τij(t)

)
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)γj
(
t− τij(t)

)
−

n∨
j=1

Sijνj −
n∨
j=1

βij(t)γj
(
t− τij(t)

)
− Ii(t)

]
+ ũi(t)

}

+

n∑
i=1

n∑
j=1

|hij(ϕ−1ij (t))|
1− τ̇ij(ϕ−1ij (t))

∣∣xj(t)∣∣− n∑
i=1

n∑
j=1

∣∣hij(t)∣∣∣∣xj(t− τij(t))∣∣.
By using a similar method with that in Theorem 1, we get

˙̃
V (t) 6

n∑
i=1

[
1

µi
− ãi(t)

]∣∣yi(t)∣∣+ n∑
i=1

{
−σ̃i −

ωi
µi

+ ωi
∣∣ãi(t)∣∣+ µibi∆i(t)

+

n∑
j=1

µjbj
∣∣cji(t)∣∣Ai + n∑

j=1

|hji(ϕ−1ji (t))|
1− τ̇ji(ϕ−1ji (t))

}∣∣xi(t)∣∣
+

n∑
i=1

n∑
j=1

{
−γ̃i + µjbjAi

(∣∣hji(t)∣∣+ ∣∣αji(t)∣∣+ ∣∣βji(t)∣∣)− ∣∣hji(t)∣∣}
×
∣∣xi(t− τji(t))∣∣

+

n∑
i=1

{
−λ̃i + µibi

∣∣Ii(t)∣∣+ µibi

n∑
j=1

[
|νj |
(
|dij |+ |Sij |+ |Tij |

)
+ Bj

(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)]}.
From Assumption (A8) it follows that ˙̃

V (t) 6 −∆̃, where ∆̃ = mini∈I{∆̃i} and

Λ̃i = lim inf
t→+∞

{
−λ̃i + µibi

∣∣Ii(t)∣∣+ µibi

n∑
j=1

[
|νj |
(
|dij |+ |Sij |+ |Tij |

)
+ Bj

(∣∣cij(t)∣∣+ ∣∣hij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)]}.
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Then there exists a constant T̃0 = Ṽ (0)/∆̃ such that Ṽ (t) = 0 for all t > T̃0. Therefore,
according to Definition 1, system (8) is finite-time stabilizable under the designed control
law (10).

The proof is completed.

For i, j ∈ I, let τij(t) ≡ 0 and δij(t) ≡ 0, and further consider the following
DFICGNNs:

ẍi(t) = −ai(t)ẋi(t)− bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj

−
n∑
j=1

cij(t)fj
(
xj(t)

)
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)fj
(
xj(t)

)
−

n∨
j=1

Sijνj −
n∨
j=1

βij(t)fj
(
xj(t)

)
− Ii(t)

]
. (12)

By using the variable transformation (2), set-valued map, differential inclusion theory
and measurable selection lemma, we can have the following loop-closed system:

ẋi(t) = −ωi

µi
xi(t) +

1
µi
yi(t),

ẏi(t) = −ãi(t)yi(t) + ωiãi(t)xi(t)

− µibi(t, xi(t))
[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj

−
∑n
j=1 cij(t)γj(t)−

∧n
j=1 Tijνj −

∧n
j=1 αij(t)γj(t)

−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)γj(t)− Ii(t)

]
+ ûi(t),

(13)

where ûi(t) are the feedback control laws to be designed later.

Corollary 2. Suppose that assumptions (A1)–(A4) are satisfied and the following as-
sumption hold:

(A9) lim sup
t→+∞

{
1

µi
− ãi(t)

}
6 0,

Λ̂i = lim inf
t→+∞

{
−λ̂i + µibi

∣∣Ii(t)∣∣+ n∑
j=1

µibi
[
Bj
(∣∣cij(t)∣∣

+
∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)+ |νj |(|dij |+ |Tij |+ |Sij |)]} > 0,

lim sup
t→+∞

{
−σ̂i −

ωi
µi

+ ωi|ãi(t)|+ µibi∆i(t)

+ µjbjAi
(∣∣cji(t)∣∣+ ∣∣αji(t)∣∣+ ∣∣βji(t)∣∣)} 6 0.
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Then the closed-loop system (13) is FTS via the following designed control laws:

ûi(t) = sgn
(
yi(t)

)(
−λ̂i − σ̂i

∣∣xi(t)∣∣), (14)

where i ∈ I, λ̂i and σ̂i are gain coefficients to be determined. Moreover, the settling-time
is estimated as follows:

T̂0 =
V̂ (0)

∆̂
, ∆̂ = min

i∈I
{∆̂i}, V̂ (0) =

n∑
i=1

(∣∣xi(0)∣∣+ ∣∣yi(0)∣∣).
Proof. Consider the following Lyapunov–Krasovskii candidate functional:

V̂ (t) =

n∑
i=1

(∣∣xi(t)∣∣+ ∣∣yi(t)∣∣).
Calculating the time derivative of V̂ (t) along the trajectory of system (13), we can have

˙̂
V (t) =

n∑
i=1

sgn
(
xi(t)

)[
−ωi
µi
xi(t) +

1

µi
yi(t)

]
+

n∑
i=1

sgn
(
yi(t)

){
−ãi(t)yi(t)

+ ωiãi(t)xi(t)− µibi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj −
n∑
j=1

cij(t)γj(t)

−
n∧
j=1

Tijνj −
n∧
j=1

αij(t)γj(t)−
n∨
j=1

Sijνj −
n∨
j=1

βij(t)γj(t)− Ii(t)

]

+ sgn
(
yi(t)

)(
−λ̂i − σ̂ixi(t)

)}
.

By using a similar method with that in Theorem 1, we have

˙̂
V (t) 6

n∑
i=1

[
1

µi
− ãi(t)

]∣∣yi(t)∣∣+ n∑
i=1

{
−σ̂i −

ωi
µi

+ ωi
∣∣ãi(t)∣∣

+ µibi∆i(t) + µjbjAi
(∣∣cji(t)∣∣+ ∣∣αji(t)∣∣+ ∣∣βji(t)∣∣)}∣∣xi(t)∣∣

+

n∑
i=1

{
−λ̂i + µibi

∣∣Ii(t)∣∣+ n∑
j=1

µibi
[
Bj
(∣∣cij(t)∣∣+ ∣∣αij(t)∣∣+ ∣∣βij(t)∣∣)

+ |νj |
(
|dij |+ |Tij |+ |Sij |

)]}
.

Then there exists a constant T̂0 = V̂ (0)/∆̂ such that V̂ (t) = 0 for all t > T̂0. Therefore,
according to Definition 1, system (12) is finite-time stabilizable under the designed control
law (14).

Up to now, the proof is completed.
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Remark 5. From Theorem 1 and Corollaries 1–2 one can see that the results on FTS of
DFICGNNs with mixed time-varying delays, with discrete time delays and without time
delays are established. If we make some comparisons between Theorem 1 and Corollar-
ies 1–2, there exist at least three points need to be pointed.

First, from the criteria derived in assumptions (A7), (A8) and (A9) it follows that
time-varying delays can affect the FTS of the considered DFICGNNs. That is to say,
the delay-dependent criteria derived in this paper can better illustrate the FTS of time-
varying delayed INNs. Thus, the delay-independent criteria derived in [8, 13, 19–21,
24] can be extended. Second, compared with Theorem 1 and Corollary 1, we can see
that discrete time-varying delays can affect FTS of the considered DFICGNNs, but the
distributed time-varying delays can also affect FTS of the considered DFICGNNs. From
this point of view, the result established in Theorem 1 can extend some previous related
works on INNs and fuzzy neural networks without distributed time-varying delays such
as [20, 21] and [8, 11, 24]. Lastly, the activation functions considered in this paper are
discontinuous, which are different from the continuous activation functions studied in the
previous INNs. Moreover, it is clear to see that assumption (A2) can still hold when the
activation functions are continuous.

Remark 6. In contrast to the asymptotic convergence results in [13], global exponential
convergence results in [7, 19, 20] and Lagrange exponential stability convergence results
in [21], the finite time convergence obtained in this paper can provide faster convergence
speed.

4 Numerical examples and simulations

In this section, two numerical examples are given to verify the correctness of the obtained
results.

Example 1 [Example used to verify Theorem 1]. Consider the following two-dimensional
DFICGNN with discrete and distributed time-delays:

ẍi(t) = −ai(t)ẋi(t)− bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−

n∑
j=1

dijνj

−
n∑
j=1

cij(t)fj
(
xj(t)

)
−

n∑
j=1

hij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

ρij(t)

t∫
t−δij(t)

fj
(
xj(s)

)
ds−

n∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))

−
n∨
j=1

ωij(t)

t∫
t−δij(t)

fj
(
xj(s)

)
ds−

n∨
j=1

Sijνj − Ii(t)

]
, (15)
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where a1(t) = 5.9 + 1.5 cos t, a2(t) = 5.3 + 2.7 cos t, b1(t, x) = 2 + 1/(2(1 + x2)),
b2(t, x) = 2+1/(2(1+x2)), k1(t, x) = (1.5+0.3 sin t)x, k2(t, x) = (1.5+0.5 cos t)x,

(
cij(t)

)
2×2 =

(
0.7 + 0.2 cos t 0.9 + 0.6 sin t
−2 + 0.5 sin t −1.8 + 0.3 cos t

)
,

(
hij(t)

)
2×2 =

(
−0.4 + 0.1 sin t 0.7 + 0.3 cos t
−1.6 + 0.3 cos t 0.3 + 0.1 sin t

)
,

(
αij(t)

)
2×2 =

(
−2.4 + 0.6 sin t −1.4 + 0.7 cos t
−1.2 + 0.8 cos t −1 + 0.3 sin t

)
,

(
ρij(t)

)
2×2 =

(
−1 + 0.1 sin t −0.5 + 0.2 cos t
−0.8 + 0.2 cos t −1.7 + 0.3 sin t

)
,

(
βij(t)

)
2×2 =

(
−0.5 + 0.3 cos t −1.9 + 0.2 sin t
−1.7 + 0.2 cos t −1.5 + 0.5 sin t

)
,

(
ωij(t)

)
2×2 =

(
−2 + 0.2 cos t −1.6 + 0.2 sin t
−0.4 + 0.3 cos t −1.5 + 0.3 sin t

)
,

(dij)2×2 = (Tij)2×2 = (Sij)2×2 =
(
0.1 0
0 0.2

)
, ν1 = ν2 = 1, I1(t) = 5 + 3.5 sin t,

I2(t) = 6.6−1.4 cos t, τij(t) = 0.5 sin t, τ̇ij(t) 6= 1, δij(t) = 0.4 cos t, t > 0, i, j = 1, 2.
Then we have that b1 = b2 = 5/2, τ = 0.5, τ̇ij(t) = 0.5 cos t 6= 1, δ = 0.4 and
∆1(t) = 1.5 + 0.4 sin t, ∆2(t) = 1 + 0.9 cos t. Then assumptions (A3)–(A6) are all
satisfied.

Define

f1(x) = f2(x) =

{
0.5 tanhx− 0.1, x > 0;

0.5 tanhx+ 0.1, x < 0.

It is easy to see that the activation function fj(x) are discontinuous and nonmonotonic.
The activation function fj(x) has a discontinuous point x = 0, and co[fi(0)] = [f+i (0),
f−i (0)] = [−0.1, 0.1], i = 1, 2. Thus, assumptions (A1) and (A2) all hold if A1 = A2 =
0.5 and B1 = B2 = 0.1.

Furthermore, let µ1 = µ2 = 0.4, ω1 = ω2 = 0.5, λ1 = 9, λ2 = 5.2, σ1 = 9.43, σ2 =
9.23, γ1 = 0.95, γ2 = 0.8, η1 = 2.5, η2 = 2.95, then it follows from straightforward
computation that assumption (A7) holds and Λ1 ≈ 0.79 > 0, Λ2 ≈ 1.59 > 0.

By using the generalized variable transformation yi(t) = 0.4dxi(t)/dt + 0.5xi(t),
system (15) can be rewritten as

dxi(t)
dt = − 0.5

0.4xi(t) +
1
0.4yi(t),

dyi(t)
dt = −ãi(t)yi(t) + 0.5ãi(t)xi(t)− 0.4bi(t, xi(t))

[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj

(
xj(t)

)
−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj

−
∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 ρij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds

−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 ωij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds− Ii(t)

]
,

(16)
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Figure 1. State trajectories of variables x1(t), x2(t) and y1(t), y2(t) of system (16) with the initial condition
(1,−2), (−2, 1.5) and without controllers.

where ãi(t) = ai(t) − ωi/µi. Under the initial condition (φ1(s), φ2(s)) = (1,−2)
and (ψ1, ψ2) = (−2, 1.5), s ∈ [−0.5, 0], the state trajectories of variables x(t) =
(x1(t), x2(t))

> and y(t) = (y1(t), y2(t))
> of system (16) are shown in Fig. 1.

Design the following controlled DFICGNNs:

ẋi(t) = − 0.5
0.4xi(t) +

1
0.4yi(t),

ẏi(t) = −ãi(t)yi(t) + 0.5ãi(t)xi(t)− 0.4bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj

(
xj(t)

)
−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj

−
∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 ρij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds

−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 ωij(t)

∫ t
t−δij(t) fj

(
xj(s)

)
ds− Ii(t)

]
+ ui(t),

(17)

where delayed feedback control laws are designed as follows:

u1(t) = sgn
(
y1(t)

)(
−9− 9.43

∣∣x1(t)∣∣
− 0.95

∣∣x1(t− 0.5 sin t)
∣∣− 2.5

t∫
t−0.4 cos t

∣∣x1(s)∣∣ds),
u2(t) = sgn

(
y2(t)

)(
−5.2− 9.23

∣∣x2(t)∣∣
− 0.8

∣∣x2(t− 0.5 sin t)
∣∣− 2.95

t∫
t−0.4 cos t

∣∣x2(s)∣∣ds).
(18)

Thus, the closed-loop system (16) is FTS via delayed feedback control laws (17) and the
settling-time T0 ≈ 13.038(s). This fact is shown by Fig. 2.
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Figure 2. States trajectories x(t) and y(t) of system (17) via delayed feedback control laws (18).

Example 2 [Example used to verify Corollary 1]. Let δij(t) ≡ 0, i, j ∈ I, and consider
the following DFICGNNs with discrete time delays:

ẍi(t) = −ai(t)ẋi(t)− bi
(
t, xi(t)

)[
ki(t, xi(t))−

n∑
j=1

dijνj

−
n∑
j=1

cij(t)fj
(
xj(t)

)
−

n∑
j=1

hij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

Tijνj −
n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

Sijνj − Ii(t)

]
, (19)

where a1(t) = 5.6 + 2.1 cos t, a2(t) = 4.7 + 2.5 sin t, b1(t, x) = 1 + 1/(3(1 + x2)),
b2(t, x) = 1 + 1/(3(1 + x2)), k1(t, x) = (1.9 + 0.7 sin t)x, k2(t, x) = (2.5 + cos t)x,

(
cij(t)

)
2×2 =

(
1 + 0.2 cos t 0.8 + 0.6 sin t
−1.3 + 0.4 sin t −0.4 + 0.2 cos t

)
,

(
hij(t)

)
2×2 =

(
−1 + 0.2 sin t 0.4 + 0.1 cos t
−1.1 + 0.5 cos t 0.2 + 0.1 sin t

)
,

(
αij(t)

)
2×2 =

(
−1.3 + 0.5 sin t −1.5 + 0.6 cos t
−1.9 + 0.4 cos t −0.7 + 0.3 sin t

)
,

(
βij(t)

)
2×2 =

(
−2.4 + cos t −1.8 + 0.3 sin t
−1.8 + 0.3 cos t −0.6 + 0.5 sin t

)
,

(dij)2×2 = (Tij)2×2 = (Sij)2×2 =
(
0.1 0
0 0.2

)
, ν1 = ν2 = 1, I1(t) = 2 − 1.1 sin t,

I2(t) = 3.8 + 1.4 cos t, τij(t) = 0.5 sin t, τ̇ij(t) 6= 1, t > 0, i, j = 1, 2, and the
discontinuous activation functions f1(x), f2(x) are the same as those in Example 1. Then
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Figure 3. State trajectories of variables x1(t), x2(t) and y1(t), y2(t) of system (20) with the initial condition
(1,−2), (−2, 1.5) and without controllers.

we have that b1 = b2 = 4/3, τ = 0.5, τ̇ij(t) = 0.5 cos t 6= 1, ∆1(t) = 1.9 + 0.7 sin t,
∆2(t) = 2.5 + cos t. Then assumptions (A1)–(A2), (A3)–(A5) are all satisfied.

Furthermore, let µ1 = µ2 = 0.6, ω1 = ω2 = 1.8, λ̃1 = 0.1, λ̃2 = 0.2, σ̃1 = 7.58,
σ̃2 = 9.6, γ̃1 = 0.96, γ̃2 = 0.86. Then it follows from straightforward computation that
Assumption (A8) holds and Λ̃1 ≈ 3.3 > 0, Λ̃2 ≈ 4.88 > 0.

By using the following generalized variable transformation yi(t) = 0.6dxi(t)dt +
1.8xi(t), system (19) can be rewritten as

dxi(t)
dt = − 1.8

0.6xi(t) +
1
0.6yi(t),

dyi(t)
dt = −ãi(t)yi(t) + 1.8ãi(t)xi(t)− 0.6bi

(
t, xi(t)

)[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj(xj(t))

−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
− Ii(t)

]
,

(20)

where ãi(t) = ai(t) − ωi/µi. Under the initial condition (φ1(s), φ2(s)) = (−0.5, 1)
and (ψ1, ψ2) = (1,−0.5), s ∈ [−0.5, 0], the state trajectories of variables x(t) =
(x1(t), x2(t))

> and y(t) = (y1(t), y2(t))
> of system (20) are shown in Fig. 3.

Design the following controlled DFICGNNs:

ẋi(t) = − 1.8
0.6xi(t) +

1
0.6yi(t),

ẏi(t) = −ãi(t)yi(t) + 1.8ãi(t)xi(t)− 0.6bi
(
t, xi(t)

)[
ki
(
t, xi(t)

)
−
∑n
j=1 dijνj −

∑n
j=1 cij(t)fj(xj(t))

−
∑n
j=1 hij(t)fj

(
xj
(
t− τij(t)

))
−
∧n
j=1 Tijνj −

∧n
j=1 αij(t)fj

(
xj
(
t− τij(t)

))
−
∨n
j=1 Sijνj −

∨n
j=1 βij(t)fj

(
xj
(
t− τij(t)

))
− Ii(t)

]
+ ũi(t),

(21)
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Figure 4. States trajectories x(t) and y(t) of system (21) via delayed feedback control laws (22).

where delayed feedback control laws are designed as follows:

ũ1(t) = sgn
(
y1(t)

)(
− 0.1− 7.58

∣∣x1(t)∣∣− 0.96
∣∣x1(t− 0.5 sin t)

∣∣),
ũ2(t) = sgn

(
y2(t)

)(
− 0.2− 9.6

∣∣x2(t)∣∣− 0.86
∣∣x2(t− 0.5 sin t)

∣∣). (22)

Thus, the closed-loop system (21) is FTS via delayed feedback control laws (22) and the
settling-time T0 ≈ 3.456(s). This fact is shown by Fig. 4.

Remark 7. Since the INNs considered in [7,13,20,21] or fuzzy INNs considered in [8,24]
are the special case of ours, so, the finite time stability of their considered DFICGNNs can
be obtained directly by using Theorem 1 and Corollaries 1–2. Therefore, the established
FTS results in the paper are more inclusive and generalized.

Remark 8. Theorem 1 and Corollary 1 provide the delay-dependent criteria ensuring
the FTS of the considered DFICGNNs with discrete and distributed time-delays. In sharp
contrast to the delay-independent criteria derived in the previous works concerning de-
layed INNs, the delay-dependent criteria derived in the paper take more advantages.
Moreover, Examples 1 and 2 can illustrate the influence of time-varying delays.

5 Conclusion

In this paper, we have investigated the finite-time stabilization for a class of discontinu-
ous fuzzy inertial Cohen–Grossberg neural networks with discrete and distributed time-
delays. Based on a generalized variable transformation including two tunable variables,
differential inclusion theory and by constructing a modified Lyapunov–Krasovskii candi-
date functional concerning with the mixed delays, delay-dependent criteria formulated by
algebraic inequalities are derived to ensure the finite-time stabilization for the addressed
system via the designed delayed feedback control law. Moreover, the settling time is
estimated. Some related works on inertial neural networks can be extended. Finally, two
numerical examples are carried out to verify the effectiveness of the established results.
The results established derive less conservativeness and are more inclusive.
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