32 research outputs found

    Variable Fractional Delay Filter Design Using a Symmetric Window

    Get PDF

    FIR Filter Design Using Distributed Maximal Flatness Method

    Get PDF
    In the paper a novel method for filter design based on the distributed maximal flatness method is presented. The proposed approach is based on the method used to design the most common FIR fractional delay filter – the maximally flat filter. The MF filter demonstrates excellent performance but only in a relatively narrow frequency range around zero frequency but its magnitude response is no greater than one. This ,,passiveness” is the reason why despite of its narrow band of accurate approximation, the maximally flat filter is widely used in applications in which the adjustable delay is required in feedback loop. In the proposed method the maximal flatness conditions forced in standard approach at zero frequency are spread over the desired band of interest. In the result FIR filters are designed with width of the approximation band adjusted according to needs of the designer. Moreover a weighting function can be applied to the error function allowing for designs differing in error characteristics. Apart from the design of fractional delay filters the method is presented on the example of differentiator, raised cosine and square root raised cosine FIR filters. Additionally, the proposed method can be readily adapted for variable fractional delay filter design regardless of the filter type.

    Efficient algorithms for arbitrary sample rate conversion with application to wave field synthesis

    Get PDF
    Arbitrary sample rate conversion (ASRC) is used in many fields of digital signal processing to alter the sampling rate of discrete-time signals by arbitrary, potentially time-varying ratios. This thesis investigates efficient algorithms for ASRC and proposes several improvements. First, closed-form descriptions for the modified Farrow structure and Lagrange interpolators are derived that are directly applicable to algorithm design and analysis. Second, efficient implementation structures for ASRC algorithms are investigated. Third, this thesis considers coefficient design methods that are optimal for a selectable error norm and optional design constraints. Finally, the performance of different algorithms is compared for several performance metrics. This enables the selection of ASRC algorithms that meet the requirements of an application with minimal complexity. Wave field synthesis (WFS), a high-quality spatial sound reproduction technique, is the main application considered in this work. For WFS, sophisticated ASRC algorithms improve the quality of moving sound sources. However, the improvements proposed in this thesis are not limited to WFS, but applicable to general-purpose ASRC problems.Verfahren zur unbeschränkten Abtastratenwandlung (arbitrary sample rate conversion,ASRC) ermöglichen die Änderung der Abtastrate zeitdiskreter Signale um beliebige, zeitvarianteVerhältnisse. ASRC wird in vielen Anwendungen digitaler Signalverarbeitung eingesetzt.In dieser Arbeit wird die Verwendung von ASRC-Verfahren in der Wellenfeldsynthese(WFS), einem Verfahren zur hochqualitativen, räumlich korrekten Audio-Wiedergabe, untersucht.Durch ASRC-Algorithmen kann die Wiedergabequalität bewegter Schallquellenin WFS deutlich verbessert werden. Durch die hohe Zahl der in einem WFS-Wiedergabesystembenötigten simultanen ASRC-Operationen ist eine direkte Anwendung hochwertigerAlgorithmen jedoch meist nicht möglich.Zur Lösung dieses Problems werden verschiedene Beiträge vorgestellt. Die Komplexitätder WFS-Signalverarbeitung wird durch eine geeignete Partitionierung der ASRC-Algorithmensignifikant reduziert, welche eine effiziente Wiederverwendung von Zwischenergebnissenermöglicht. Dies erlaubt den Einsatz hochqualitativer Algorithmen zur Abtastratenwandlungmit einer Komplexität, die mit der Anwendung einfacher konventioneller ASRCAlgorithmenvergleichbar ist. Dieses Partitionierungsschema stellt jedoch auch zusätzlicheAnforderungen an ASRC-Algorithmen und erfordert Abwägungen zwischen Performance-Maßen wie der algorithmischen Komplexität, Speicherbedarf oder -bandbreite.Zur Verbesserung von Algorithmen und Implementierungsstrukturen für ASRC werdenverschiedene Maßnahmen vorgeschlagen. Zum Einen werden geschlossene, analytischeBeschreibungen für den kontinuierlichen Frequenzgang verschiedener Klassen von ASRCStruktureneingeführt. Insbesondere für Lagrange-Interpolatoren, die modifizierte Farrow-Struktur sowie Kombinationen aus Überabtastung und zeitkontinuierlichen Resampling-Funktionen werden kompakte Darstellungen hergeleitet, die sowohl Aufschluss über dasVerhalten dieser Filter geben als auch eine direkte Verwendung in Design-Methoden ermöglichen.Einen zweiten Schwerpunkt bildet das Koeffizientendesign für diese Strukturen, insbesonderezum optimalen Entwurf bezüglich einer gewählten Fehlernorm und optionaler Entwurfsbedingungenund -restriktionen. Im Gegensatz zu bisherigen Ansätzen werden solcheoptimalen Entwurfsmethoden auch für mehrstufige ASRC-Strukturen, welche ganzzahligeÜberabtastung mit zeitkontinuierlichen Resampling-Funktionen verbinden, vorgestellt.Für diese Klasse von Strukturen wird eine Reihe angepasster Resampling-Funktionen vorgeschlagen,welche in Verbindung mit den entwickelten optimalen Entwurfsmethoden signifikanteQualitätssteigerungen ermöglichen.Die Vielzahl von ASRC-Strukturen sowie deren Design-Parameter bildet eine Hauptschwierigkeitbei der Auswahl eines für eine gegebene Anwendung geeigneten Verfahrens.Evaluation und Performance-Vergleiche bilden daher einen dritten Schwerpunkt. Dazu wirdzum Einen der Einfluss verschiedener Entwurfsparameter auf die erzielbare Qualität vonASRC-Algorithmen untersucht. Zum Anderen wird der benötigte Aufwand bezüglich verschiedenerPerformance-Metriken in Abhängigkeit von Design-Qualität dargestellt.Auf diese Weise sind die Ergebnisse dieser Arbeit nicht auf WFS beschränkt, sondernsind in einer Vielzahl von Anwendungen unbeschränkter Abtastratenwandlung nutzbar

    Broadband Beamforming Algorithms For Audio Signal Acquisition Using Compact Microphone Arrays

    Get PDF
    Mikrofon-Arrays erlauben die selektive Erfassung und Trennung von Audiosignalen aus einer akustischen Umgebung. Typische Anwendungen sind z.B. die Ortung einzelner Schallquellen, die räumliche Kartierung eines Schallfeldes ("akustische Kamera") oder der gerichtete Empfang einer bestimmten Schallquelle bei gleichzeitiger Unterdrückung von Umgebungs- oder Störschallen. Vielkanalige Verfahren und Filter, die sich dieser Aufgabe widmen, werden als Beamforming bzw. Beamformer bezeichnet. In dieser Dissertation werden bekannte und eigene Beamforming-Ansätze im Hinblick auf ihre Eignung für die hochwertige Übertragung von Audiosignalen untersucht. Diese erfordert neben einer möglichst großen Abdeckung des relevanten Frequenzbereichs (Breitbandigkeit) auch die Frequenzunabhängigkeit der Richtcharakteristik, um spektrale Verzerrungen zu vermeiden. Es wird ein Algorithmus vorgestellt, der diese Anforderungen mit sehr kompakten Arrays erfüllt. Eine klassische Möglichkeit, eine frequenzinvariante Charakteristik (Beampattern) mithilfe eines Delay-and-Sum-Beamformers zu erhalten, ist eine frequenzabhängige Gewichtung der Mikrofone, welche die effektive Apertur des Arrays proportional zur Schallwellenlänge einstellt. Diese Methode funktioniert jedoch nur bei Wellenlängen, die kleiner sind als die Ausdehnung des Arrays, und erfordert bei Frequenzen unter 100Hz Arrays von mehreren Metern Größe. Ein gänzlich anderes Verhalten zeigen differentielle Mikrofonarrays, welche Differenzen aus Signalen benachbarter Mikrofone bilden: In Kombination mit Integratorfiltern erzeugen sie Beampattern, die auch bei sehr kleinen Frequenzen, d.h. bei Wellenlängen, die groß gegen das Array sind, unverändert bleiben (sog. Superdirektivität). Aus diesem Prinzip wurde in dieser Arbeit das Konzept des Multipol-Beamformers entwickelt, der ein gegebenes Soll-Beampattern durch eine Reihenentwicklung nach Sinus- und Kosinusfunktionen (zweidimensionaler Fall) oder Kugelflächenfunktionen (dreidimensionaler Fall) approximiert. Der Multipol-Beamformer erzielt eine hervorragende Richtwirkung bei kleinen Frequenzen, ist jedoch nur über einen sehr begrenzten Bereich frequenzinvariant und erweist sich insbesondere in drei Raumdimensionen als analytisch aufwändig. Flexibler und in zwei wie in drei Raumdimensionen gleichermaßen einfach in der Formulierung ist demgegenüber das in der Literatur zu findende Verfahren des modalen Subraum-Beamformings (Modal Subspace Decomposition, MSD). Dieser Ansatz bestimmt zu einer beliebigen Sensorgeometrie einen Satz orthogonaler Eigen-Beampattern, die dann zu einer Reihenentwicklung des Soll-Beampatterns herangezogen werden. Ähnlich dem erwähnten Delay-and-Sum-Beamformer jedoch erfordert auch dieser Ansatz bei großen Wellenlängen entsprechend groß dimensionierte Arrays und ist nicht superdirektiv. In dieser Arbeit wurde deshalb eine eigene, neue Ausprägung des MSD-Algorithmus formuliert, welche die Superdirektivität des Multipol-Beamformers mit der Flexibilität und Einfachheit des MSD-Verfahrens vereint. Diese als "superdirektives MSD-Beamforming" bezeichnete Methode besitzt - wie das bereits bekannte MSD-Verfahren auch - die interessante Eigenschaft, daß die Eigen-Beampattern für ein frei zu wählendes Entwurfs-Frequenzband berechnet werden, so daß das Verhalten des Beamformers über ein ganzes Frequenzintervall kontrolliert werden kann. Dies eröffnet auch die Möglichkeit eines sehr breitbandigen Beamformings durch Kombination mehrerer Beamformer, die individuell auf benachbarte Frequenzbänder abgestimmt werden. Mit beispielsweise einem hexagonalen Array von nur 6cm Durchmesser und sieben Mikrofonen erreicht der superdirektive Ansatz so ca. 20-30dB Störabstand über einen Frequenzbereich von 100Hz bis 6kHz, was für Sprache eine sehr hohe Übertragungsqualität darstellt. Zur experimentellen Verifikation der untersuchten Algorithmen wurde im Rahmen dieser Arbeit eine vielkanalige Echtzeit-Signalverarbeitungsumgebung unter Windows XP erstellt, welche die Erfassung, Verarbeitung, Analyse und Ausgabe vielkanaliger Audio-Daten erlaubt. Auch eine Simulation idealer Freifeldmessungen an Mikrofonarrays ist damit möglich, indem die Ausbreitung des Schalls von der Schallquelle zu den Mikrofonen durch zeitdiskrete Fractional-Delay-Filter simuliert wird. Dieser Filtertypus wurden im Rahmen dieser Arbeit ebenfalls eingehend untersucht: Für zwei aus der Literatur bekannte Entwurfsverfahren wurden Erweiterungen gefunden, die bei gleicher Filterordnung eine höhere nutzbare Bandbreite erzielen. Für Messungen an realen Arrays wurde die Akustik-Messkammer des Instituts durch zusätzliche Dämmauskleidung für Freifeld-Messungen nutzbar gemacht. Die Messergebnisse belegen, daß die untersuchten Algorithmen in der Praxis erwartungsgemäß funktionieren und daß der gefundene superdirektive MSD-Algorithmus mit sehr kompakten Arrays eine gute breitbandige Erfassung und Trennung von Audiosignalen ermöglicht.Microphone arrays allow for the selective acquisition and separation of audio signals from an acoustic environment. Typical applications include e.g. locating single sound sources, spatial sound field mapping ("acoustic camera") or receiving sound from a desired sound source while suppressing environmental sounds and noises. Multichannel methods and filters performing these tasks are called beamforming and beamformer, respectively. In this work, known beamforming methods as well as approaches developed by the author are discussed with regard to their applicability for the transmission of high-quality audio signals. To achieve this, the algorithm should cover the relevant frequency range as completely as possible (broadband requirement), and should also have a frequency-independent directivity in order to avoid spectral distortions. An algorithm is presented which satisfies these requirements using very compact arrays. One classical approach to obtain a frequency-invariant directivity (beampattern) by means of a delay-and-sum beamformer uses a frequency-dependent weighting of the microphones, which adjusts the effective array aperture in proportion to the sound wavelength. However, this method only works for wavelengths smaller than the size of the array; for frequencies below 100Hz, arrays of several meters in size are necessary. Differential microphone arrays which use difference signals taken from neighbouring microphones show a completely different behaviour: When combined with integrator filters, these arrays produce beampatterns which remain unchanged even at very low frequencies, i.e. at wavelengths larger than the array itself (superdirectivity). From this principle, the concept of multipole beamforming was developed in this work, which approximates a given desired beampattern by an expansion into a series of sine-/cosine-shaped functions (two-dimensional case) or spherical harmonics (three-dimensional case). The multipole beamformer achieves excellent results at low frequencies; however, it is only frequency invariant over a very limited frequency range and is analytically complex especially in the case of three spatial dimensions. In contrast, the method of modal subspace decomposition (MSD) which can be found in the literature is more flexible and its analytical notation in two and three spatial dimensions is equally simple. With respect to an arbitrary sensor geometry given, this method computes a set of orthogonal eigen-beampatterns which then serve as a basis for a series expansion of the desired beampattern. However, like the delay-and-sum beamformer, this approach requires large arrays for large wavelengths and is not superdirective. Thus, in this work a new form of the MSD algorithm was developed by the author, which combines the superdirectivity of the multipole beamformer and the flexibility and notational simplicity of the MSD approach. This so-called "superdirective MSD beamforming" method shares an interesting property of the known MSD approach: The eigen-beampatterns are calculated with respect to a given design frequency band, such that the behaviour of the beamformer is controlled over an entire frequency range. Hence, it is possible to achieve very broadband beamforming by combining multiple beamformers which are individually designed for adjacent frequency bands. Thus, e.g. by using a hexagonal array only 6cm in diameter and comprising seven microphones, the superdirective approach achieves 20dB to 30dB SNR over a frequency range from 100Hz to 6kHz, which is a very high transmission quality for speech. For experimental verification of the discussed algorithms, a multi-channel, real-time signal processing environment based on Windows XP was developed which allows acquisition, processing, analyzing and replaying of multi-channel audio data. Also, ideal free-field measurements on an array can be simulated: For this, the propagation of sound from a sound source to each microphone is simulated by time-discrete fractional-delay filters, which realize arbitrary non-integer time delays. This type of filters was also investigated in this work: For two design methods known in the literature, extensions were found which achieve a higher usable bandwidth at a given filter order. For measurements on real arrays, the acoustical measurement chamber at the institute was prepared by additional sound-absorbing lining. The measurement results show that the discussed algorithms in practice do work as expected, and that the superdirective MSD algorithm presented allows for a good broadband acquisition and spatial separation of audio signals with very compact arrays

    A Chronology of Interpolation: From Ancient Astronomy to Modern Signal and Image Processing

    Get PDF
    This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently used in signal and image processing into historical perspective. A summary of the insights and recommendations that follow from relatively recent theoretical as well as experimental studies concludes the presentation

    A chronology of interpolation: from ancient astronomy to modern signal and image processing

    Full text link

    Design of digital differentiators

    Get PDF
    A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques
    corecore