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Abstract In this paper a numerically efficient method for designing a nearly opti-
mal variable fractional delay (VFD) filter based on a simple and well-known window
method is presented. In the proposed method a single window extracted from the
optimal filter with fixed fractional delay (FD) is divided into even and odd part. Sub-
sequently, the odd part is discarded and symmetric even part of the extracted window
is used to design a family of nearly optimal filters with varying FD. In addition to
window extraction, the proposed approach requires filter gain correction which is
dependent on the desired FD. Optimum values of the gain correction factor as well
as the extracted window can be computed beforehand, which allows us to design a
nearly optimal FD filter with arbitrary FD at low numerical costs during runtime. On
the basis of the proposed filter design method, the universal structure of VFD filter
allowing for change of filter type and length has been proposed. In the paper, three
FD filter optimality criteria are considered, which are maximal flatness, Chebyshev
(minimax), and least squares.

Keywords Digital signal processing · Fractional delay filter · Optimal filter ·
Window method · Farrow structure

Electronic supplementary material The online version of this article (doi:10.1007/s00034-014-9803-8)
contains supplementary material, which is available to authorized users.

M. Blok (B) · M. Sac
Department of Teleinformation Networks, Gdansk University of Technology,
11/12 Narutowicza, 80-233 Gdańsk, Poland
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1 Introduction

In many digital signal processing applications, such as synchronization in digital
modems [14,37], incommensurate sampling rate conversion [8,15,20,29], and speech
coding [9,26], there is a necessity for delaying signals. This problem can be readily
solved when a signal needs to be delayed by an integer multiple of a sampling period.
In such a situation, signal samples are merely stored in a register for several sampling
periods. However, in many cases, like in the modeling of musical instruments sounds
[28,33] and time delay estimation (TDE) [11,27], a required delay is a fraction of a
sampling period and fractional delay (FD) filters [1,17,23,24] must be utilized. More-
over, in many of these applications a variable fractional delay (VFD) [1,7,13,16,17] is
required. This involves continuous changes of filter impulse response, often for each
processed sample, which creates a need for simple and efficient design algorithms.

The ideal FD filter has infinite impulse response, which is described by only one
parameter—the total delay [24]. In order to implement an FD filter in real time, its
impulse response is usually approximated with causal finite impulse response (FIR),
which leads to inevitable approximation errors [12]. From all FIR FD filters, the most
efficient are optimal FD filters, which offer the best performance for the given filter
length and approximation band. One of the most commonly utilized types of optimal
FD filters are filters which are optimal in the least squares (LS) sense, filters optimal
in the Chebyshev sense (also called minimax filters), and maximally flat (MF) filters
[1,10,24]. Among the above mentioned types of optimal FD filters, MF filters are the
easiest to design but leave the designer with no control over the approximation band and
even though there are some workarounds for this problem, like truncation of MF filter
impulse response [36], the obtained solution is not optimal. In contrast, there are LS and
minimax filters which have more complex design formulas but satisfy specific quality
requirements including requirements on the approximation band. Nevertheless, these
filters are very hard to design in real time because of complicated design algorithms,
which makes them unsuitable for most VFD applications.

Alternatively, a very simple filter design method is the commonly known window
method [12,25]. The design procedure consists only of the ideal impulse response
multiplication by a window function. The simplicity of the window method makes it
ideal for VFD filter design but the selection of window satisfying given specifications
is usually difficult. This is why a filter design using the window method requires an
iterative approach which still often produces results significantly worse than optimal.

In this paper we demonstrate that nearly optimal FD filters can be designed using a
slightly modified window method. In the approach investigated in this paper, called the
extracted window method (Fig. 1), instead of searching for the best window formula,
a window is extracted from the optimal filter with some arbitrarily selected fixed FD
(called the reference delay, dref) [3,6,17]. An additional advantage of the presented
method is that a single symmetric window can be used to design a VFD filter [4,
6,17,30]. However, the gain of the designed filter must be corrected with different
values for each desired FD [3,5,6,17,30]. The gain correction factor can be sampled
and stored in a look-up table (LUT) or approximated with a low order polynomial.
During runtime (the implementation stage in Fig. 1), the design of the filter with any
FD d is simple and consists only of the ideal filter impulse response hid[n] (which is
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Fig. 1 General diagram of the extracted window method; graphs demonstrate typical shapes of the ideal
and optimal FD filter impulse responses, extracted windows as well as gain correction curves

a sampled sinc function) multiplication by the reference window wref [n] (like in the
traditional window method) and additional filter gain correction α(d). On this basis
we have proposed the universal VFD filter structure based on the Farrow structure
[7,13,34]. The proposed structure can be easily switched to a different VFD filter
type and length simply by changing the reference window and the coefficients of
polynomial approximating gain correction curve.

The presented research is based on the concept of an extracted window proposed in
[17], where even length nearly optimal minimax FD filters are designed using a window
extracted from a symmetric FD filter with the FD dref = 0.5. We have extended this
concept to filters of any length (even and odd) and applied it not only to minimax FD
filters but also to LS and MF ones using even part of the window extracted for an
arbitrary FD. The same symmetric reference window can be directly obtained using
the formulas proposed in this paper. In such case, it is already properly scaled for
FD filter design for the given reference delay. We have also improved the method of
calculation of gain correction factor, which must be applied to designed filters. The
approach proposed in [17] is based on comparing the in-band gain of optimal and
designed filters for several delays, which means that several optimal filters need to be
designed. We have proposed a formula for direct calculation of gain correction factor
for all required delays based only on a single reference window, without the need for
optimal filters design. All the improvements were possible thanks to the new approach
to analysis of the windows extracted from optimal filters based on their division into
even and odd parts.

The paper is organized as follows. In Sect. 2 the FD filter is introduced and optimal
FD filters design is shortly described. Section 3 is dedicated to the extracted window
concept and the general outline of the proposed extracted window method. Next in
Sect. 4 properties of windows extracted from optimal filters are investigated. In this
section we have demonstrated that using a single window extracted from the optimal
FD filter for any arbitrary FD (which is generally asymmetric) we can reconstruct the
extracted window for all FDs. In Sect. 5 a symmetric even part of the extracted window
is proposed for the VFD filter design and in Sect. 6 a formula for the gain correction
factor required to obtain nearly optimal filters is derived. Section 7 is dedicated to a
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procedure for direct design of a symmetric window, which is an alternative for window
extraction from optimal FD filters. In Sect. 8 the structure for the implementation of
the VFD filter based on the proposed window method is presented and performance of
resulting filters is compared with optimal FD filters. Finally, the paper is summarized
in Sect. 9.

2 FD Filter

The ideal FD filter [17,24] with a total delay τd is characterized by the following
frequency response

Hid( f ) = |Hid( f )| exp( j�id( f )) = exp(− j2π f τd), | f | < 1/2, (1)

where f is the normalized frequency. The magnitude response |Hid( f )| of the ideal
FD filter is constant and equal to 1, while the phase response �id( f ) is linear, which
results in constant group delay equal to the assumed total filter delay τd.

The impulse response corresponding to the frequency response (1) is a sampled
sinc function [24]

hid[n] = sinc(n − τd), n = 0,±1, . . . , (2)

where n is the discrete-time index.
The total delay τd of any FD filter can be split into an integer delay D = round (τd)

and a FD d ∈ [−1/2, 1/2)

τd = D + d. (3)

One should notice that for a non-integer total delay, the impulse response (2) is
infinite as well as non-causal and a filter with such an impulse response cannot be
implemented. This leads us to the problem of the ideal frequency response Hid (1)
approximation using a causal filter with a FIR hN [n]. Since approximation errors are
inevitable, they must be taken into account during design. The most general measure
of approximation errors is the complex approximation error

E( f ) = HN ( f ) − Hid( f ), (4)

where

HN ( f ) =
N−1∑

n=0

hN [n] exp(− j2π f n), | f | ≤ 1/2 (5)

represents the frequency response of the FIR filter approximating the ideal FD filter
frequency response Hid (1).

In practice, instead of the complex approximation error (4), scalar parameters are
used, which allow for simpler evaluation of filter performance. Examples are peak
error (PE)

PE( fa) = max
f ∈[− fa, fa]

|E( f )| (6)
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and squared error (SE)

SE( fa) =
fa∫

− fa

|E( f )|2 d f (7)

evaluated in the desired approximation band limited by its upper frequency fa.
Depending on which design method we use, particular requirements for PE or SE

and an approximation band width may be satisfied by FIR filters with different impulse
response lengths. As mentioned earlier, there exist methods for optimal or nearly opti-
mal FD filter design [1,10,19,24]. Filters designed using these methods demonstrate
minimal approximation errors for the given impulse response length. When we use
such design methods we can readily find filters which satisfy our quality requirements
with minimal length. In the case of optimal LS and minimax filters (minimizing SE
(7) and PE (6), respectively), error is minimized only in the approximation band [– fa,
fa]. Disregarding error function outside this band, results in better performance in the
approximation band.

A different approach characterizes MF filter design, for which the complex approx-
imation error (4) [10,16,24] and its N–1 derivatives satisfy the following conditions

dn E( f )

d f n

∣∣∣∣
f =0

= 0, n = 0, 1, . . . , N − 1 (8)

which guarantees maximal flatness of its frequency response.
The impulse response h of the MF filter can be calculated by solving a set of linear

equations [24] which can be written in the matrix form

Ph = p (9a)

and further transformed into the following formula

h = [
h[0], h[1], . . . , h[N − 1] ]T = P−1p, (9b)

where T represents matrix transposition. The P matrix is a square Vandermonde matrix
with elements [24]

Pk+1,n+1 = nk; k, n = 0, 1, . . . , N − 1 (10a)

and P−1 is the inverse of the matrix P. The column vector p is composed of the
following elements

pk+1,1 = τ k
d . (10b)

The design of the optimal LS FD filter, for which SE (7) is minimized, can be
performed analogically to MF filters using matrix equations (9a) and (9b) [24] with
elements of matrix P and vector p expressed as

Pk+1,n+1 = 2 fa sinc(2 fa(k − n)) (11a)

pk+1,1 = 2 fa sinc(2 fa(k − τd)). (11b)
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Similarly, the design of FD filters optimal in the Chebyshev sense minimizing PE
(6) [1,19,24] can be formulated using the same matrix formulas (9a) and (9b). In this
case, however, we need to use matrix P and vector p with sizes increased by one

Pk+1,n+1 = cos(2π fk(n − τN )) − sin(2π fk(n − τN )) and Pk+1,N+1 = (−1)k

(12a)
pk+1,1 = cos(2π fk(τd − τN )) − sin(2π fk(τd − τN )), (12b)

where τN = (N − 1)/2 is the bulk delay and k = 0, 1,. . ., N . The impulse response
vector (9b) also includes an additional element δ

ĥ = [
h[0], h[1], . . . , h[N − 1], δ ]T (13)

representing the value of PE (6) calculated for the set of N + 1 frequency points
fk ∈ [− fa, fa], called extremal points, where fk < fk+1, f0 = − fa and fN−1 = fa.
In the case of the Chebyshev criterion, proper location of extremal points has to be
determined in order to obtain the optimal solution, which can be achieved using the
iterative complex Remez algorithm [1,22]. In each iteration of this algorithm, the
solution of matrix equations (9a) and (9b) is calculated and on this basis a location of
extremal points fk is corrected.

3 Extracted Window Method

The optimal methods are the best choice if the best filter performance is required
but this goal is achieved at the expense of high computational costs of filter coeffi-
cients calculations. On the other hand, the window method in which the ideal impulse
response hid[n] (2) is simply multiplied by a window wN [n]

hN [n] = wN [n]hid[n] (14)

is simple and numerically efficient. This approach is, however, limited by the difficulty
of window selection which leads to rather poor performance of the designed filter.
Taking into consideration advantages and disadvantages of these design methods the
following question can be posed: “Is it possible to design FD filters close to the optimal
solution using the window method?”

A simple example of the optimal FD filter which can be designed using the window
method is full band LS filter ( fa = 0.5). In this case the matrix P in equations (12)
simplifies to a unit matrix, and thus, we obtain the following formula

h = p = [
sinc(0 − τd) sinc(1 − τd) · · · sinc(N − 1 − τd)

]T
. (15)

As we can see, the impulse response of full band LS FD filter (15) is a truncated
impulse response of the ideal FD filter (2). This means that this type of FD filter can
be designed using the rectangular window

wN [n] = 1, n = 0, 1, . . . , N − 1. (16)
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Since the full band optimization leads to poor performance filters, a more practical
example is the MF FD filter. It has been proven that its impulse response can be cal-
culated by multiplying the ideal impulse response (2) by the scaled binomial window
wb[n] [10,21,23,35]

hMF[n] = α(τd)wb[n]hid[n], (17)

where

wb[n] =
(

N − 1
n

)
, n = 0, 1, . . . , N − 1 (18)

and the window scaling factor dependent on the desired delay

α(τd) = (−1)N+1 π N

sin(πτd)

(
τd
N

)
. (19)

The Newton symbol
(

a
b

)
in formulas (18) and (19) represents the binomial coef-

ficient, which for negative and non-integer values of a or b can be computed using
gamma function �() [10].

The formula (17) shows that the MF filter can be designed using the well-known
window method, though additional gain correction dependent on the desired delay is
necessary.

Simplicity of the design process is a huge advantage of MF FD filters but width
of their approximation band depends only on their length. On the other hand, LS
and minimax filters allow for minimization of SE (7) and PE (6) in the specified
approximation band for the given filter length. Unfortunately, there are no formulas
for windows that can be used in bandlimited LS and in minimax FD filters design.
However, design equation of the window method (14) can be reversed and a window
wopt[n] can be extracted from the optimal FD filter for a given reference delay dref
[17]

wopt[n] = hopt[n]/hid[n] (20)

on condition that hid[n] �= 0, which is satisfied for dref �= 0.
Based on the formula (20) we propose a procedure for design and implementation

of high quality VFD filter with the use of the extracted window method, presented
in Fig. 1. The design procedure is split into two stages. All the most time consuming
computations are performed at the preparations stage. At this stage a single optimal
filter with impulse response hopt,dref [n] is designed and samples of the ideal filter
impulse response hid,dref [n] (2) are computed for the same arbitrary reference delay
dref (Sect. 2). Based on computed impulse responses a symmetric reference window
wref [n] is extracted using formula (20). Additionally, like in the case of MF filters,
we need a gain correction factor α(d). Computation of this factor is too complex
for real-time application requiring frequent delay changes but it can be calculated
beforehand for all desired delays based on the reference window obtained previously.
Next, computed factor values can be approximated with a polynomial of the order p
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αp(d) =
p∑

k=0

akdk (21)

or simply stored in a LUT for further use at the next stage.
At the runtime, which is marked as the implementation stage in Fig. 1, for each

required delay d we need to calculate a truncated impulse response of the ideal fil-
ter hid,d [n] (2) and compute the gain correction factor α(d) using the polynomial
coefficients or take it from the LUT table. In the next step hid,d [n] is multiplied by
the reference window wref [n] (like in traditional window method) and filter gain is
corrected.

4 Properties of Extracted Windows

The first problem which needs to be resolved in the proposed VFD filter design method
(Fig. 1) is proper selection of the reference window. To check if we can assume that
nearly optimal LS and minimax filters can be designed using window method (14) like
MF filters, we have investigated properties of windows extracted from optimal filters
using formula (20) for different fractional delays.

An impulse response of the FD filter and, thus an extracted window wopt[n] (20),
are in general asymmetric, so in order to verify properties of the extracted window we
split it into even

we[n] = (wopt[n] + wopt[N − 1 − n])/2 (22a)

and odd part
wo[n] = (wopt[n] − wopt[N − 1 − n])/2. (22b)

As we can see in Fig. 2a, the even part of the extracted window seems to be inde-
pendent of the filter delay regardless of the optimal filter type. Additionally, the odd
part of the extracted window is significantly smaller but non-zero, which indicates
asymmetry of the window (Fig. 2b). Analysis of windows presented in Fig. 2 reveals
no noticeable changes in the shape of both even and odd part of the extracted window.
Therefore, we propose to assume that only scale of even and odd part of the extracted
window changes with filter delay (Fig. 3). This assumption means that a single asym-
metric window, a reference window, extracted from the optimal filter with the FD
dref with proper scaling of its even and odd part can be used to reconstruct a window
wrec,d [n] which can be used to design the optimal filter with different FD d �= dref

wopt,d [n] ∼= wrec,d [n] = α(d)we,ref [n] + β(d)wo,ref [n]. (23)

Factors α(d) and β(d) used in Eq. (23) can be computed using the following
formulas

α(d) ∼= 1

fa

fa∫

0

|He( f )|/∣∣He,ref( f )
∣∣ d f (24a)
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Fig. 2 Even (a) and odd (b) parts of windows extracted from filters of length N =9 with fa = 0.35
optimal in the Chebyshev sense for different FDs d; dashed lines show values for d =0 and n = (N − 1)/2

β(d) ∼= sgn(dref)sgn(d)

fa

fa∫

0

|Ho( f )|/∣∣Ho,ref( f )
∣∣ d f

dref �= ±0.5 for even N
dref �= 0 for odd N ,

(24b)

where He( f ) is the frequency response of the FD filter with FD d designed using the
even part of window wopt,d [n], while He,ref( f ) is the frequency response of the FD
filter designed using the even part of the reference window wref [n]. Impulse responses
of these filters are described by the following formulas

he[n] = hid,d [n]we,d [n] and he,ref [n] = hid,d [n]we,ref [n]. (25)

By analogy, Ho( f ) and Ho,ref( f ) are frequency responses of the FD filters designed
using the odd parts of the windows wopt,d [n] and wref [n]. Impulse responses of these
filters are described by the following equations:

ho[n] = hid,d [n]wo,d [n] and ho,ref [n] = hid,d [n]wo,ref [n]. (26)
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Fig. 3 Curves of α(d) (a) and β(d) (b) factors computed for windows extracted from FD filters from Fig.
2 and reference window selected at FD dref = −0.5; values of these factors reflect changes in scale of even
(a) and odd (b) parts of windows extracted from optimal filters with different fractional delays d

Typical curves of α and β factors are presented in Fig. 3. As we can see, the scale
α(d) of the even part of the extracted window varies slightly (Fig. 3a), while the odd
part is approximately proportional to the FD (Fig. 3b).

Due to the fact that FD filter impulse response satisfies the property

hd [n] = h−d [N − 1 − n] (27)

filter approximation errors as well as gain correction factors are symmetric with respect
to FDs. For example, it can be noticed that α(d) and β(d) curves satisfy the following
properties

α(d) = α(−d) and β(d) = −β(−d). (28)

Therefore, results for negative FDs d are not presented in the next part of this paper.
With the assumption that changes in the shape of parts of the extracted window

are negligible, windows extracted from optimal FD filters at different delays can be
reconstructed using a window extracted for one particular delay value (23). Performed
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experiments confirmed that a good reconstruction is achieved for both parts of extracted
windows [31]. In particular, for windows extracted from LS filters, there is no notice-
able variation in the shape of even and odd parts of the window. Therefore, a perfect
reconstruction of the extracted window for all FDs can be achieved. On the other hand,
in the case of minimax filters, some minor changes in the shape of the extracted win-
dow can be observed, which result in small reconstruction errors. That is why, as we
will demonstrate in the next part of the paper, for minimax filters, VFD filter design
using the extracted window method is characterized with slightly lower performance
in comparison to the LS case.

5 Symmetric Reference Window

In the previous section we have demonstrated that asymmetric window required for
the optimal filter design for any FD can be reconstructed based on a single extracted
window. In this section we propose to use as a reference window, only the even part
of the window extracted from the optimal filter with particular reference delay dref

wref [n] = we[n] = (wopt[n] + wopt[N − 1 − n])/2 (29)

with single gain correction factor α (dependent on the desired delay d), to achieve
similar result with simpler procedure presented in Fig. 1. It is worth noting that we
can use reference windows obtained from filters with any delay. However, due to FD
filter impulse response properties as well as numerical limitations, it is advisable not
to use dref ∼= 0.

With the symmetric reference window (29) extracted at dref (Fig. 1), the proposed
design procedure for reconstructing impulse response hopt,d [n] of optimal FD filter
with any FD d can be described by the following formula

hopt,d [n] ∼= hrec,d [n] = hid,d [n]wrec,d [n] = hid,d [n]α(d)wref [n]. (30)

The key problem in the above design formula is the calculation of proper gain
correction factor α(d). The simplest solution is to compute α(d) values using formula
(24a) and assume that β(d) in formula (23) is equal to zero, which means that we
ignore the odd part of the extracted window. Design effects for this assumption are
presented in Figs. 4 and 5.

Performed research indicates that for high performance FD filters, with PE (6) or
SE (7) below −70 dB (Figs. 4, 5), the odd part of the extracted window although small
is still vital. In such case discarding the odd part of the extracted window results in
significant degradation of designed filter performance. As a result, this approach is
not adequate for high quality VFD filters. For such filters, additional optimization of
gain correction factor has to be performed.
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Fig. 4 Magnitudes of complex approximation errors for minimax FD filters of length N = 17 with d = 0.48
(a) and their equivalents with discarded odd part of extracted windows (b); filter gain correction is not applied

6 Gain Correction

As indicated in the previous section, simply ignoring the odd part of the window
extracted from the optimal filter is not an option for high performance VFD filter
design. Such filters require further optimization of the gain correction factor α. Our
research has confirmed that for fixed filter length N , approximation band fa, and FD d,
there is only one optimum value of the gain correction factor α (αopt) that minimizes
the desired error (PE for a window extracted from a minimax filter or SE for a window
extracted from an LS filter) (Fig. 6).

For each desired FD we can start from α(d) computed using formula (24a) (Fig. 6)
and optimize this correction factor for the best performance of the designed filter
(PE or SE). The optimum gain correction factor αopt can be easily found using any
algorithm minimizing the value of PE (6) or SE (7) computed based on the following
complex approximation error
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Fig. 5 PE versus N (a) and fa (b) for minimax FD filters with different FDs (black lines) and their
equivalents with discarded odd part of extracted windows and without filter gain correction (gray lines);
fa = 0.4 (a); N = 27 (b)

E( f ) = α(d)Href,d( f ) − Hid,d( f ), (31)

where Href,d( f ) is the frequency response of the filter designed using reference win-
dow (29) without gain correction (α = 1) for the given FD d and Hid,d( f ) is the
frequency response of the ideal filter (1) with the same FD d. A simple recursive
algorithm which can be used for α(d) optimization is described in [30]. The use of
optimized α(d) factors in the design formula (30) compensates for the lack of the odd
part of the extracted window and results in nearly optimal VFD filter performance.

The phenomenon behind the proposed design method lies in the distribution of the
introduced errors over normalized frequency f. Let us consider the optimal filter with
FD d. Its impulse response can be expressed in the following form

hopt,d [n] = we,d [n]hid,d [n] + wo,d [n]hid,d [n]. (32)

On the other hand, the formula for the impulse response of the filter designed using
the even part of the window extracted for the FD d is as follows
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Fig. 6 PE (a) and SE (b) versus gain correction factor α for FD filters with different FDs d designed using
the extracted window method—thick black lines; reference windows extracted at dref = 0.5 from optimal
filters with N = 11 and fa = 0.35 (a) as well as N = 62 and fa = 0.45 (b); dotted lines represent optimum α

with corresponding error levels and dashed lines mark α computed using formula (24a)

hd [n] = αopt(d)we,d [n]hid,d [n]. (33)

For nearly optimal filter designed using (33), the error

	e[n] = hd [n] − hopt,d [n] = 	he[n] − 	ho[n] (34)

must be close to zero. In formula (34) 	he[n] is the impulse response correction
related to the even part of the reference window

	he[n] = (αopt(d) − 1)we,d [n]hid,d [n] (35a)

which compensates for the lack of the part of the impulse response related to the odd
part of the reference window

	ho[n] = wo,d [n]hid,d [n]. (35b)
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However, because of different symmetries of we,d [n] and wo,d [n]

(αopt(d) − 1)we,d [n] �= wo,d [n] (36)

and thus generally 	e[n] �= 0.
The results presented in Fig. 7 confirm that 	he[n] and 	ho[n] have similar magni-

tude responses in the approximation band (up to fa) and the error (34) is about 50–60
dB smaller than the approximation error Eopt( f ) (4) of the optimal solution. Since
most of the energy of the error 	e[n] (34) is located outside of the approximation band
(above fa) (Fig. 7), it is best to limit minimization of this error to the approximation
band (up to fa). Additionally, in Fig. 7 we can see that the magnitude response of
	ho[n] stays at the similar level for different filters, only slightly decreasing for high
performance FD filters (Fig. 7b). As a result, for the low performance optimal filter,
	ho[n] is much smaller than the approximation error of the filter (Fig. 7a) and for
such filters the odd part of the extracted window can be simply discarded without

Fig. 7 Illustration of compensation of discarded odd part of the reference window with adjusted gain
of its even part for FD filters of length N = 20 with d = 0.3, fa = 0.43 (a) and fa = 0.34 (b);
plots represent magnitudes responses of the following errors: approximation error of the optimal solu-
tion eopt[n] = hopt[n] − hid[n] (solid line), 	he[n] (solid line with x-marks), 	ho[n] (dash-dot line) and
	e[n] (dashed line)
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noticeable loss of performance. On the other hand, for high performance filters (Fig.
7b), the magnitude response of 	ho[n] is higher than the approximation error of the
filter and the gain correction factor in (35a) needs to be adjusted. Since we need to
compensate for the lack of the odd part of the extracted window, we should select
αopt(d) such that frequency responses of 	he[n] and 	ho[n] are approximately the
same for f ∈ [0, fa).

Using these observations the iterative procedure of αopt(d) search (Fig. 6) can be
replaced with nearly optimal gain correction factor computation. For convenience, in
our derivation we use a modified approximation error with removed phase rotation
resulting from non-zero delay

Em( f ) = E( f )H∗
id( f ) = Href,d( f )H∗

id( f ) − 1, (37)

where E( f ) is the complex approximation error (4), Hid( f ) is the frequency response
of the ideal FD filter (1), * is the complex conjugation symbol, and Href,d( f ) is the
frequency response of the filter with impulse response designed using formula (30)
without gain correction (α = 1) for the given FD d.

The modified error Em( f ) of the filter designed using the extracted window with
incorrect gain differs from the modified error Eopt,m( f ) of the optimal filter only by
a real constant value [5]

Eopt,m( f ) ∼= Em( f ) + (1 − 1/αopt) for f ∈ [0, fa] . (38)

Taking only the real part of the above formula and assuming that the real part of
the error Eopt,m( f ) is equal to zero we can find a formula for approximate value of
optimum gain correction factor αopt

αopt(d) ∼= 1/

⎛

⎜⎝1 + 1

fa

fa∫

0

Re {Em( f )} d f

⎞

⎟⎠. (39)

Using this formula a nearly optimal gain correction factor can be computed in a
single step based on the average value of the real part of the modified error (37) of
the filter designed with the extracted window for α = 1. Formula (39) can be further
transformed into more practical form

αopt(d) ∼= 1

/(
N−1∑
n=0

href,d [n] sinc(2 fa(n − τd))

)

= 1

/(
N−1∑
n=0

sinc(2 fa(n − τd))wref [n]hid,d [n]
)

,

(40)

where href,d [n] is the impulse response of the filter designed using formula (30) without
gain correction (α = 1) for the given FD d.

It is interesting that although in this paper we discuss only the use of symmetric
reference windows, high quality VFD filters can be designed with both symmetric and
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asymmetric reference windows [31]. According to our research [31], using asymmet-
ric reference window, optimal results are achieved for the selected reference delay and
nearly optimal results for other delays. On the other hand, a symmetric reference win-
dow offers comparable performance and additionally a half of the reference window
coefficients is the same and the gain correction factor is a symmetric function of filter
delay which can result in lower utilization of DSP resources. For that reason in this
paper only symmetric reference windows are considered.

Figure 8 presents the difference between PE/SE errors of filters designed using
the extracted window approach and their optimal equivalents. Regardless of the used
optimality criteria, filters designed using symmetric reference windows are virtually
identical with the optimal filters. The difference is only about 0.01 dB for the Cheby-
shev optimality criterion (Fig. 8a) and even smaller for the LS optimality criterion (Fig.
8b). Performed research indicates that the difference decreases with impulse response
length and increases with width of filter approximation band.

An interesting difference between minimax and LS cases can be noticed, though.
As mentioned in Sect. 4, for LS filters shape of the even part of the extracted window

Fig. 8 Difference in errors between VFD filters and their optimal equivalents for (a) filters of length N = 9
with different approximation bands (reference windows extracted from minimax filters) and (b) filters with
fa = 0.45 and different lengths (reference windows extracted from LS filters); for all cases dref = 0.25
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is independent of the delay. This means that selection of the reference delay dref at
which window is extracted does not matter and the best solution is always achieved for
the FD d = 0 for odd length filters and d = ±0.5 for even length filters (Fig. 8b). On
the other hand, the shape of the even part of the window extracted from minimax filter
changes slightly with delay and the performance of the designed filter is the nearest
to the optimal solution at the delay close to the reference delay dref (Fig. 8a).

7 Direct Design of Symmetric Reference Window

Although in the extracted window method (Fig. 1) the impulse response of the optimal
filter is used, we are not really interested in it. We just need a window extracted from
such a filter. Therefore, we propose to convert the optimal filter design equation (9a)
into the formula

P̂w = p, (41)

where
w = [

wopt[0], wopt[1], . . . , wopt[N − 1] ]T = P̂−1p (42)

which allows for direct design of the window w extracted from optimal filter [4]. Now,
let us assume that optimal filter impulse response h (9b) could be calculated by ideal
filter impulse response hid multiplication by the window w (42)

h = hidw, (43)

where

hid =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

hid[0] 0 0 · · · 0

0 hid[1] 0 · · · 0

0 0 0
...

...
. . .

...

0 0 0 · · · hid[N − 1]

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

The ideal impulse response factor hid can be removed from vector h in (9a) and
incorporated into matrix P forming matrix P̂

Ph = Phidw = P̂w = p (45)

with elements given by the following formula

P̂k+1,n+1 = hid[n]Pk+1,n+1; ∀k and n = 0, 1, . . . , N − 1. (46)

As already discussed in Sect. 3, MF FD filters can be designed using window
method with symmetric binomial window (18) and gain correction factor dependent
on the desired delay (19). For LS and minimax FD filters extracted windows are
not symmetric (Fig. 2) with small but vital odd parts (Figs. 4, 5). However, as we
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have demonstrated, with optimum gain correction (40) nearly optimal results can be
achieved. For that reason we propose to assume symmetry of the reference window.
With this assumption instead of computing N samples of the extracted window we
need to calculate only L =�N /2	 (� 	 symbol represents rounding up function) samples
of vector v

v =
⎧
⎨

⎩

[
wref [0], wref [1], . . . , wref [L − 1] ]T for odd N[
wref [0], wref [1], . . . , wref [L − 1]/2

]T
for even N

(47)

The values of the vector v can be computed using the formula

v = P̂−1
e pe, (48)

where elements of matrix P̂e are given by the following equation

P̂e m+1,n+1 = P̂k(m)+1,n+1 + P̂k(m)+1,N−n; n = 0, 1, . . . , L − 1 (49)

with additional elements for minimax filters

P̂e m+1,L+1 = (−1)k(m). (50)

In order to use formula (48) we also need the vector pe which consists of the selected
rows of the p vector (10b), (11b), (12b)

pe m+1,1 = pk(m)+1,1. (51)

The indices m and k(m) used in formulas (49)–(51) can be defined as follows

m =
{

0, 1, . . . , L − 1 for MF and LS filters

0, 1, . . . , L for minimax filters
(52)

k(m) =
{

2m for MF filters

m for LS and minimax filters
(53)

The proposed design formula (48) is the equivalent of a symmetric reference win-
dow extraction. In the case of MF filters it leads to obtaining binomial window (18)
scaled by the proper gain correction factor (19). With such a window we can design
the optimal MF filter. Analogically, for LS and minimax FD filters formula (48) gives
us appropriately scaled (by gain correction factor (40)) symmetric reference windows
(29), which can be used for a nearly optimal filter design [6,30,31].

The symmetric reference window design method presented in this section reduces
the size of design equations set by half. As a result, in the case of LS FD filter design
this approach offers better resistance to numerical errors, which strongly affect high
performance filters. In Fig. 9a we can see that with direct design of the optimal LS
filter, the performance of the designed filter is degraded. It is worth noting that VFD
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Fig. 9 SE versus FD d for VFD filter of length N = 22 with fa = 0.3 (a) designed using: (1) optimal method,
(2) window method with gain correction using window extracted from optimal LS filter with dref = 0.5,
(3) window method using directly designed symmetric window separately for each d, (4) window method
with gain correction using directly designed symmetric window for dref = 0.5 and gain correction; (b) SE
versus filter length for d = 0.25 and different fa for (1) optimal LS filter and (2) FD filter obtained using
window method with gain correction for directly designed symmetric window for dref = 0.5

filter performance can be improved by use of the window method with even part of the
window extracted from optimal filter designed for dref = 0.5. Further improvement
comes from the use of directly designed symmetric window for each d value with best
results when a single symmetric window designed for dref = 0.5 is used along with
proper gain correction. These facts are summarized in Fig. 9b. As can be observed,
direct optimal filter design offers FD filters with error not smaller than −130 dB, while
using the extracted window method with directly designed symmetric window we can
obtain filters with error about −150 dB.

Unfortunately, for minimax filters we cannot take full advantage of the smaller size
of the design formulas due to the necessity of iterative search for extremal points. Our
experiments indicated that it is possible to apply the complex Remez algorithm to
design filters using the proposed reference window design method. Nonetheless, the
convergence of the algorithm in such case is significantly slower and the initial set of
extremal points has to be more precisely determined.
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8 VFD Filter Implementation

There are two problems with VFD filter implementation based on the proposed
extracted window method which have not been discussed yet. These are computa-
tion of the gain correction factor and the ideal impulse response (2) during runtime
for each new fractional delay.

The problem with the optimum gain correction factor is that it depends on the desired
filter delay and must be updated for each new delay. Formula (40) looks quite simple
but it might be computationally too demanding for real time application, therefore, in
most cases another approach must be applied. The two main approaches in such case
are a LUT and a polynomial approximation.

In the first of these options, several values of αopt computed for a given set of
delays are stored in a LUT and selected based on the desired filter delay. As we can
see in Fig. 10, the performance of designed filters is practically optimal at delays
for which αopt factors are stored. Conversely, for high performance filters (Fig. 10a,

Fig. 10 PE versus d for minimax FD filters with N = 11 and their equivalents designed using single
reference window and LUT of optimum gain correction factors (a); maximum PE for d∈ [0, 0.5] versus N
for minimax VFD filters with fa = 0.4 and their equivalents designed using LUT of different sizes (b)
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Fig. 11 Optimum gain correction factor αopt versus FD d for minimax VFD filters with fa = 0.35 and
different lengths (a) as well as for LS VFD filters with N = 15 and different approximation bands (b);
dref = 0.2 (a) and dref = 0.3 (b)

fa = 0.29) a single αopt value can be used only in extremely narrow delay range, thus,
in such case this approach requires a large LUT. This fact is also clearly visible in Fig.
10b, especially for higher filter lengths. Consequently, using a LUT of αopt can be
sensible in some applications, however, in most cases it is better to use a polynomial
approximation of gain correction factor (40).

In order to thoroughly investigate the possibility of gain correction factor polyno-
mial approximation, a number of αopt(d) curves for different windows, filter lengths,
and approximation bands has been analyzed (Fig. 11). For all examined cases αopt is a
continuous even function of FD d and can be easily approximated by a low order poly-
nomial [6,17,30]. Coefficients of such a polynomial can be stored in signal processor
memory and used to calculate αopt factor at runtime with low numerical costs. This
makes high quality VFD filter design using the extracted window method suitable for
most applications.

The influence of polynomial approximation of the gain correction factor on VFD
filter performance is demonstrated in Fig. 12. As we see in Fig. 12a, for high perfor-
mance short filters a higher polynomial order is required, however, there is no need for
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Fig. 12 SE(d) for filters of length N = 11 for polynomial approximation of α(d) curve (a) and maximum
SE for d∈ [0, 0.5] versus filter length N for different fa and orders p of polynomial approximating α(d)

(b); dots in (a) indicate the set of delays used to compute coefficients of polynomial approximating α(d)

curve; dref = 0.5

orders larger than 4 even if required PE or SE is about −100 dB. It is interesting that for
longer filters or with wider approximation band (Fig. 12b) lower polynomial order is
sufficient, with order p = 2 giving excellent results for the filters of the length N = 30.
It is also worth noting that the approximation error of all VFD filters is significantly
smaller for FDs close to zero (Fig. 12a) and thus the degradation of filter performance
for these delays is less important in filter implementation than for fractional delays
close to 0.5.

The second problem with VFD filter implementation using the presented approach
is the computation of the ideal impulse response (2). Each time we need to update the
impulse response of the VFD filter, a new set of samples of a non-linear sinc function
must be obtained. The problem can be dealt with a Farrow structure [2,7,11,13,18,27,
32,34,38], in which each sample of the ideal impulse response (2) is computed using
a polynomial

hid[n] =
q∑

m=0

cm[n]dm (54)
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This leads to the following formula describing the ideal FD filter

y[n] =
N−1∑

k=0

hid[k]x[n − k] =
q∑

m=0

ym[n]dm, (55)

where

ym[n] =
N−1∑

k=0

cm[k]x[n − k]. (56)

Formulas (55) and (56) lead to the structure presented in Fig. 13a, where each row
of coefficients implements separate filter with impulse response cm[n] (56) with all
the filters sharing the same input buffer. In order to use this structure along with the
extracted window method only two things have to be changed (Fig. 13b). Firstly, the
input buffer needs to be replaced with a pseudo input buffer which stores input samples
multiplied by samples of the reference window at the output. Secondly, gain correction
must be introduced, which in Fig. 13b is performed at the output based on a polynomial
approximation. Increase of the structure order by one allows for implementation of FD
filters with performance improved by 20 dB. For example, filters with approximation
error about −100 dB require a structure of the order q = 7 [6,7].

Fig. 13 Farrow structure of the order q = 2 implementing VFD filter (a) and its modification based on the
extracted window method and polynomial approximation of gain correction factor (21) (b)
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The structure in Fig. 13b is similar to the concept proposed in [34], where Farrow
structure subfilters are designed as mth order differentiators using the window method.
The difference is that we use the extracted window and incorporate windowing into
the input buffer. Also the gain correction placed at the output of the proposed structure
is necessary in case of high performance FD filter implementation. For comparison of
both concepts ([34] and ours) see the demonstrations presented in Online Resource 1
and the demonstration code provided in Online Resource 2.

It is worth noting that coefficients cm[n] in the proposed structure (Fig. 13b) are
independent of the implemented filter type or the width of its approximation band.
Additionally, the increase in filter length can be simply achieved by attaching new
branches at the beginning (left side) and the end (right side) of the structure prepared
for a shorter filter. This means that we only need to design a structure for the longest
filter which we want to implement and simply switch the segments of the structure
on or off, which corresponds to adding or discarding samples of impulse response
without the need for a change in the coefficients set (demonstration of this concept
can be found in Online Resource 1 and 2). We must remember, however, that we
actually need two structures (sets of coefficients) as the polynomials used in Farrow
structure approximate different sections of sinc function for even and odd filter lengths.

As we can see in Fig. 8, filters designed using the proposed window method are
virtually optimal. Therefore, we can say that structures from Fig. 13 are equivalent.
Moreover, the order required for direct implementation of optimal VFD filter using
the Farrow structure (Fig. 13a) is practically the same as that required for the proposed
structure (Fig. 13b) [2,7], which needs only a few additional numerical operations.
This small overhead in numerical costs allows for a change of filter type and/or length
by simple replacement of an extracted window and coefficients of polynomial approx-
imating gain correction factor for this window, which is the advantage of the proposed
structure.

Since the extracted window method is well suited for runtime VFD filter implemen-
tation its performance in fixed-point arithmetic is also important. Performed research
[6] demonstrates that for the extracted window method filter performance loss indi-
cated by increase of PE/SE is similar to that of the optimal filter with coefficients
quantized directly. Also magnitude responses of the overall filters of sampling rate
conversion algorithm based on FD filters [8,10] implemented using the extracted win-
dow approach [6] were investigated. The obtained results indicate that in fixed-point
arithmetic, overall performance is comparable to direct use of the optimal filters but
is characterized with different error distributions. These facts prove that the proposed
design method leads to nearly optimal results and can be exceedingly useful in VFD
filter design and implementation.

9 Conclusions

In the paper we have demonstrated that nearly optimal minimax and LS filters can
be designed using symmetric window method with practically negligible errors of the
order of 0.01 dB (comparing to the optimal case) or smaller. Such high performance can
be obtained due to the fact that most energy of the error introduced by using symmetric
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reference window concentrates in the off-care band of the filter. The investigations
were inspired by the extracted window method [17] with windows extracted from
filters obtained using optimal design methods. In this approach only a single window
is required to design the entire family of FD filters differing only in FD. In the original
paper [17] the approach was proposed for the design of even length minimax FD filters
with symmetric window extracted from symmetric impulse response of the filter with
FD equal to 0.5. We have extended the concept to both even and odd FD filters optimal
in the minimax, LS, and MF sense with even part of window extracted for an arbitrary
FD used as the reference window. Additionally, we have proposed the method for
direct design of the symmetric reference window, which for LS FD filters offers more
numerically robust design than the direct optimal FD filter design. Comparing to [17],
we have also improved the method of calculating gain correction factor, which can be
now directly computed without the need for design of optimal filters.

The proposed approach includes two design stages: preparation and implementa-
tion. At the first stage an asymmetric window is extracted from optimal FD filter but
only its even part is further used as the reference window. Instead of using the window
extraction procedure, the symmetric reference window can also be directly designed
using formulas presented in the paper. In order to compensate for the lack of the
extracted window odd part, the investigated method requires additional gain correc-
tion dependent on the desired delay. Therefore, several gain correction factor values
for different delays have to be computed based on the selected reference window. Later
these values can be stored in a LUT or used to approximate the gain correction curve
with a polynomial. Notwithstanding, the use of LUT should be rather considered in the
case of low performance filters as with decreasing approximation error the required
size of LUT increases rapidly. Therefore, polynomial approximation is a better option
for high performance filters. A polynomial of order not greater than four was sufficient
in every analyzed case with second order polynomial being adequate for longer filters.

At the implementation stage (at runtime), VFD filter coefficients update for any
arbitrary delay simplifies to multiplication of the ideal filter impulse response (sam-
pled sinc function) by the reference window computed before just like in traditional
window method. However, additional filter gain correction dependent on the desired
delay has to be applied using values stored in memory (LUT) or calculated using
the approximating polynomial. The only problem is the computation of the truncated
ideal impulse response, which can be solved using the Farrow structure. Since the
design overhead related to the proposed Farrow structure approach does not consume
many signal processor resources, the proposed method can be easily implemented
in real time. The structure can be used to implement MF or minimax and LS filters
for different approximation bands and lengths. This versatile structure can be use-
ful especially in multimedia applications, particularly in sampling rate conversion.
Different sampling rates and quality requirements result in different specifications of
VFD filter used in the processing, which with prepared beforehand set of extracted
windows and associated gain correction curves can be satisfied with single structure
at low numerical costs.
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