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Abstract 

A digital differentiator simply involves the derivation of an input signal. This 

work includes the presentation of first-degree and second-degree differentiators, 

which are designed as both infinite-impulse-response (IIR) filters and 

finite-impulse-response (FIR) filters. The proposed differentiators have low-pass 

magnitude response characteristics, thereby rejecting noise frequencies higher 

than the cut-off frequency. Both steady-state frequency-domain characteristics 

and Time-domain analyses are given for the proposed differentiators. It is shown 

that the proposed differentiators perform well when compared to previously 

proposed filters. When considering the time-domain characteristics of the 

differentiators, the processing of quantized signals proved especially 

enlightening, in terms of the filtering effects of the proposed differentiators.  

The coefficients of the proposed differentiators are obtained using an 

optimization algorithm, while the optimization objectives include magnitude 

and phase response. The low-pass characteristic of the proposed differentiators 

is achieved by minimizing the filter variance, which provides a measure of the 

ability of the filter to attenuate noise corruption on an input signal. The 

low-pass differentiators designed show the steepest roll-off when compared 

with a number of other previously proposed differentiators of the same order, 

as well as having highly accurate magnitude response in the pass-band. The 

proposed differentiators can be designed for a particular group delay or roll-off 

characteristics, by choosing an application-dependent weight vector when 

defining the goals. 

While having a history of over three hundred years, the design of 

fractional differentiator has become a ‘hot topic’ in recent decades, because 

many authors have pointed out that these mathematical phenomena allow for 



 

 

 

the description of a real object more accurately than the classical integer-degree 

model. One challenging problem in this area is that there are many different 

definitions to describe the fractional model, such as the Riemann-Liouville and 

Caputo definitions. Some new fractional degree differentiators are designed 

using both of the above definitions. Through use of a feedback structure, based 

on the Riemann-Liouville definition. It is shown that the performance of the 

fractional differentiator can be improved in both the frequency-domain and 

time-domain. Further time-domain analyses show that the Caputo 

differentiators have better performance than other Fractional degree (FD 

differentiators when the initial value of the input signal is not zero. 

Two applications based on the proposed differentiators are described in 

the thesis. Specifically, the first of these involves the application of second 

degree differentiators in the estimation of the frequency components of a 

power system. A linear phase FIR second degree differentiator replaces a 

previously proposed IIR differentiator in a frequency-estimation algorithm, to 

avoid the error caused by the variable group delay. The second example 

concerns for an image processing, edge detection application. In this application, 

it is shown that IIR FD differentiators can be used to advantage when applied to 

the edge detection application, with the Caputo-based FD differentiators 

showing particular advantages.
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Nomenclature 

nh : component of the impulse response, equivalent to the filter coefficients for 

an FIR filter. 

N : filter order; an thN  order filter has 1P N   terms. 

nb  and IIR filter coefficients(numerator and denominator, respectively). 

 jH e  : frequency response of a filter.  

 je  : phase response of a filter. 

 je  : group delay. 

( )x n : input signal. 

( )y n : output signal. 

R : output noise power gain or variance of the filter. 

( )E  : maximum absolute value of the error function. 

F : the set of prescribed frequency bands.  

r : radius of a pole. 

 : the total weighted least-squares error . , ,n nw v  are the weighting factors. 

Ls  : the number of frequency components of an FIR filter. 

 des nH  : desired magnitude response of a low-pass differentiator. 

( )dH  : ideal magnitude response of a full-band differentiator. 
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2 ( )  : variance of the group delay.  

gm : mean of the group delay.  

p : number of filter coefficients. 

 : fractional delay. 

I : integer delay. 

( )dH  : ideal full-band second-degree differentiator. 

1( )kO   : error term of decays as fast as 1k  . 

( )  : the delta function. 

1 2PI D  : fractional degree controller. 

( )z : Euler’s gamma function. 

v : degree of fractional differentiator. 

( )v
a tD f t : Riemann-Liouville or Grunwald-Letnikov derivative. 

( )C v
a tD f t : Caputo derivative. 
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Chapter 1 Introduction 

Determining the derivative of a given applied signal is a traditional and well 

known problem in many applications. In control systems, differentiator is a 

fundamental element of the proportional-integral-derivative controller (PID). In 

image processing, edge detection can be implemented by using a differentiator. 

In biomedical engineering, the sharpness of some biological signals, such as the 

electroencephalogram (EEG) and electrocardiogram (EKG), can be measured by 

using second-degree differentiator. Additionally, in power systems, the 

second-degree differentiator is used to estimate the fundamental frequency. 

The derivatives of a given signal can often be determined explicitly using basic 

mathematical functions. However, there is frequently no simple expression for 

the derivative of the given signal when it is interfered with by noise. As a result, 

the design of digital differentiators remains an important topic in practical 

systems. Many articles are found on the design of first-degree differentiators, 

while significantly lesser attention has been paid to second degree or higher 

degree differentiators. Additionally, the fractional-degree differentiator has 

attracted significant attention in recent years, because of the increased use of 

fractional calculus in the modeling and control of physical phenomena. It is 

assumed in the thesis that the signals being considered are stationary, so that 

the noise characteristics of the signals do not vary greatly over the time interval 

considered. At the very least, it is assumed that a single differentiator will be 

applied to the input signals over the time interval. 

The following section of the introduction chapter contains an overview of 

some basic concepts of digital signal processing and relevant mathematical tools.  

In this thesis, both finite impulse response (FIR) and Infinite impulse response 

(IIR) differentiators are designed, so the concepts of FIR and IIR filters will be 
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introduced. For an IIR filter, group delay is one of the most important 

characteristics to be considered, so that an expression is given by which the 

group delay can be calculated. In this thesis, some differentiators are designed 

using an optimization technique to calculate the filter coefficients. Therefore, an 

introduction to the mathematical tool employed, the sequential quadratic 

programming method (which is included in the Matlab optimization toolbox) is 

provided in the final section of this chapter. 

This work focuses on the field of the design of digital differentiators – 

first-degree and second-degree FIR or IIR low-pass differentiators.  The most 

basic, and common, concepts relating to digital differentiators are introduced in 

Chapter 2, one aspect of which concerns the ideal magnitude response of a 

first-degree differentiator. Then, an IIR low-pass first-degree digital 

differentiator is designed using an optimization technique: the sequential 

quadratic programming method. This is applicable to nonlinear functions, and is 

used for computing the optimized filter coefficients. A vector of weight 

coefficients is set, as part of the minimization process, to define the relative 

importance of different objectives for IIR differentiators: magnitude response, 

variance, and flatness of group delay response. Additionally, a FIR low-pass 

differentiator is designed using a similar method, for which the optimization 

objectives include magnitude response and variance. The proposed FIR 

differentiator has linear-phase characteristics of either Type III  or Type IV

form. The proposed differentiators have low-pass characteristics and steep 

roll-off transition-bands, achieved by minimizing the filter variance. The variance 

provides a measure of the ability of the filter to attenuate noise corruption on 

an input signal. In this thesis, the cut-off frequency of low-pass differentiator is 

defined as the frequency where the magnitude response of the differentiator 

starts being attenuated significantly (e.g. by 3 dB), compared with the ideal 
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full-band differentiator. The FIR implementation differs from some 

implementations by allowing a variable cut-off frequency. The proposed 

differentiators exhibit highly accurate magnitude response in the pass-band, 

which is obtained by optimizing the squared error of the magnitude response, 

relative to that of the ideal differentiator. In particular, the proposed IIR 

differentiator has almost linear phase response in the pass-band, as well as 

being characterized by the minimization of the variation of the group delay. Test 

and analysis of the proposed differentiators are considered in both the 

frequency-domain and time-domain, and compared with some existing methods. 

In the frequency-domain, the proposed differentiators show the steepest roll-off 

when compared with a number of other differentiators of the same order, as 

well as having highly accurate magnitude response in the pass-band. For 

time-domain testing, the proposed differentiators show very good performance 

in terms of noise filtering. In addition, another advantage of the proposed 

method is that the designer can design a differentiator for a particular group 

delay or roll-off characteristics, by choosing an application-dependent weight 

vector when defining the goals.  

It is shown that the techniques employed for the first-degree 

differentiator are easily applied for the second-degree differentiator. In Chapter 

3, a new method for the design of low-pass second-degree digital differentiators 

is presented. The proposed FIR differentiator exhibits better attenuation 

performance on the transition band and stop band, though some 

high-frequency ripple exists. The proposed differentiators show good 

performance when testing the time-domain behavior, especially when 

evaluating the response to input noise. Because the second-degree 

differentiator is particularly sensitive to noise, such differentiators have a 

stricter requirement (relative to first-degree differentiators) in terms of the 
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attenuation required in the transition band and stop band. 

Additionally, the fractional-degree differentiator is designed and discussed. 

The proposed differentiator can be based on one of the standard definitions of 

the fractional calculus, such as the Riemann-Liouville, Grunwald-Letnikov  and 

Caputo definitions. A classical IIR fractional-degree differentiator and a 

fractional-degree integrator are combined using a proportional feedback loop.  

This structure is found to improve the performance of the proposed 

differentiator, in terms of both its frequency-domain and time-domain 

characteristics. In addition, the fractional degree differentiator based on the 

Caputo definition also been designed. It is shown that the proposed Caputo 

differentiator exhibit better performance when the initial value of input is no 

zero. 

The applicability of the proposed differentiators is presented. For example, 

a second–degree differentiator-based algorithm is applied to the problem of 

frequency estimation in power systems. The proposed structure result exhibits 

good performance using a specifically designed proposed FIR second-degree 

differentiator. Additionally, in image processing, the edge detection problem is 

introduced and discussed. The proposed fractional degree IIR differentiators, 

based on Riemann-Liouville and Caputo definition, are used for this detection, 

and show good results. Especially, the Caputo-based edge-detector has a better 

visual appearance when compared with the Riemann-Liouville edge detector. 
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1.1 Review	of	Established	Work	on	Digital	 Signal	

Processing	

This review includes the following four sections which concern: 

1. The concept of finite impulse response (FIR) filters; 

2. The concept of Infinite impulse response (IIR) filters; 

3. The concept of group delay; 

4. The optimization toolbox of Matlab. 

5. Performance metrics of low-pass differentiators. 

 

1.1.1 The  concept  of  finite  impulse  response 

(FIR) filters 

In digital signal processing, the impulse response ( )h n  of the FIR filter is finite

(0 )n N  . The transfer function of a FIR filter is defined by the following 

equation: 

 
0

( )
N

n
n

n

H z h z



   (1.1) 

where : 

 nh  is a component of the impulse response, equivalent to the filter 

coefficients, 
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 N  is the filter order; an thN  order filter has 1p N   terms. 

The FIR filter has the following properties [1]: The FIR filter can be 

designed to possess linear phase, when the phase response of the filter is a 

linear function of frequency. A FIR filter is linear phase if and only if the filter 

coefficients are symmetrical or anti-symmetrical. The FIR filter is always stable, 

because the impulse response has a finite number of terms and is therefore 

absolutely summable. 

 

 

1.1.2 The  concept of the  Infinite  impulse  response 

(IIR) filter 

The Infinite Impulse Response (IIR) filter is another primary type of digital filter 

used in digital signal processing. The impulse response of such a filter is infinite 

due to the feedback nature of the system. The transfer function of an thN  

order IIR filter is defined by the following equation: 

  
1 2

0 1 2
1 2

0 1 2

( )

( )

n N
n N

n N
n N

b z b b z b z b zB z
H z

A z a z a a z a z a z

   

   

  
  

  
  (1.2) 

where nb  and na  are the IIR filter coefficients, 

In designing an IIR filter, it is necessary to constrain all complex poles to 

have an absolute magnitude of, at most, slightly less than unity, to ensure the 

filter’s stability [2]. One expects an IIR filter to achieve a similar given magnitude 

response specifications with one-fifth (or less) of the order of corresponding FIR 

filter [3].   
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1.1.3 The  concept  of,  and  expression  for,  group 

delay 

In telecommunications applications, group delay is one of the most important 

characteristics to be considered, because a filter with constant group delay 

passes a square wave with little distortion [4]. Thus, the variation of the group 

delay with frequency, which can be obtained from [5], is an important aspect of 

IIR filter design. 

The frequency response  jH e   can be expressed as: 

          Re Im
jj ej j j jH e H e e H e j H e
              (1.3) 

Thus, the phase response  je   of the filter is: 

    
 

Im
arctan

Re

j

j

j

H e
e

H e







    
    

  (1.4) 

The group delay  je   is expressed as: 

    j

j
d e

e
d








   

It can be rewritten as: 

 

( )
( )

j

j

j

z e

z e

d z dz
e

dz d

dz
jz

d





 








 

 
  

because 
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   ln ( ) lnj j jH e H e j e        

where  ln   corresponds to the natural logarithm, and 

     Im lnj je H e       

The expression for group delay is:  

 

   

  

  

  

ln
Im

ln
Im

ln
Re

( )

Im ln

1
Re

)

[ ( )]

(

j

j

j

j

j j

z e

z e

z e

z e

d H z dz

dz d

d H z
j z

dz

d H z
z

d
e H e

dz

dH z
z

dz H

d

z









 












     
  

     
  

     
  

 


    

 







  (1.5) 

The group delay of a digital filter is constant when the filter exhibits a linear 

phase characteristic. 

 

1.1.4 Optimization algorithm utilized for differentia‐ 

tor 

In this work, optimization techniques are needed to enable the calculation of 

differentiator coefficients, which is a nonlinear optimization problem. The 

Matlab Optimization toolbox provides widely used algorithms for standard and 

large-scale optimization problems. These algorithms solve constrained, and 

unconstrained, continuous and discrete problems. 
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The Matlab solver fgoalattain, which concerns the minimization of 

multi-objectives simultaneously,  is used for computing the optimized filter 

coefficients. This solver, fgoalattain, uses a sequential quadratic programming 

(SQP) method, which addresses the problem of solving nonlinear functions 

[6][7]. A vector of weight coefficients must be set to define the relative 

importance of different objectives. Compared with traditional linear or 

nonlinear methods, the advantage of using this solver is: The goals can be 

defined more clearly, and the resultant differentiator has exactly constrained 

magnitude and phase response performance, as desired. 

It is necessary to use a suitable optimization algorithm which ensures the 

avoidance of local minima. In [13], the iterative quadratic programming 

approach is used. Alternatively, other authors pay attention to unconventional 

algorithms such as the genetic algorithm (GA), simulated annealing (SA) or 

neural networks [3][13][14][22]. 

The probability of finding local minima will be decreased by the use of 

judiciously chosen constraints. Specifically, the use of a nonlinear constraint 

method, such as the SQP method, to optimize a nonlinear function, can be 

problematical in ensuring the avoidance of local minima. A practicable method 

is to find suitable starting points (initial ‘guess’ for the filter parameters) and to 

include constraints that ensure the system’s stability.  A convenient method of 

choosing the start points is to utilize filter parameters of some existing 

differentiators, such as the differentiators in [3], [9] and [18], with similar 

requirements (cut-off frequency, order of the filter and stop band attenuation). 

If problems due to the local minima still occur, the parameters from another 

existing differentiator are instead chosen, with the resulting new design being 

evaluated. 
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1.1.5 Performance metrics  of  low‐pass  differentia‐ 

tor   

A desired low-pass differentiator can be designed to approximate closely to an 

ideal differentiator in the pass-band, but it should attenuate the magnitude 

response (ideally to zero) in the transition-band and stop-band. Additionally for  

the IIR differentiator, a differentiator that provides close to linear phase is also 

very important. Thus, the performance metrics of low-pass differentiators in the 

frequency domain include: (1) percent error in pass-band; (2) attenuation in 

transition band and stop band and (3) the variation (if any) of the group delay. 

For time-domain performance, (1) the output should be the derivatives of input 

signal, (2) and should exhibit good noise rejection performance. 
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Chapter 2 Design of a First‐Degree Digital 

Differentiator 

2.1 Introduction	

An ideal discrete-time differentiator is a linear system. When samples of a 

band-limited continuous signal are used as input, the output samples represent 

the derivative of the continuous signal. Given a continuous-time signal ( )x t  

and its corresponding sampled version ( ) ( )x n x nT , which can be assumed to 

be input to an ideal differentiator, an output signal ( )y n  can be produced, for 

which [8]: 

 
( )

( )
t nT

dx t
y n

dt 

   (2.1) 

If the Fourier transform of a continuous time input signal is denoted by 

( )X j , the Fourier transform of its derivative is obviously given by ( )j X j  . 

Thus, the ideal discrete-time differentiator has the following frequency 

response: 

   ,jH e j       (2.2) 

The corresponding magnitude are shown on Figure 2.1. Note that the 

normalized frequency is typically scaled to one at the Nyquist frequency, the 

corresponding normalized magnitude being  . 
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Figure 2.1 Ideal  magnitude  response  of  ideal,  normalized  first‐degree 

differentiator. 

 

 

 

2.2 Literature	review	

Many methods and possibilities have been proposed in the literature for the 

design of first-degree digital differentiators. For FIR differentiators, Kavanagh 

describes a method of using time-domain-based differentiator input/output 
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approximation that is obtained from window functions is described. 

Alternatively, it has been shown in the literature [10][11][12] that a first-degree 

differentiator can be designed using the numerical integration rule. The design 

method proposed by Al-Alaoui in [3] is based on the use of a numerical 

integration rule to design a low-pass IIR differentiator, by cascading a low-pass 

filter with an all-pass differentiator. With the development of optimization 

algorithms, many authors have designed both FIR and IIR digital differentiators 

using such optimization techniques [3][11][13][14]. Sections 2.2.1 to 2.2.4 

provide the literature review for the design of FIR differentiator, while Sections 

2.2.6 to 2.2.7 contain the literature review of the design of IIR differentiator. 

 

 

2.2.1 Design using  time‐domain‐based differenti‐ 

ator using input/output sequences 

For a FIR differentiator, which consists of a transversal filter of order N  with 

coefficients ( )h n , the transfer function of a differentiator should preferably be 

represented by the equations [9] [24]: 

 
0

( 0)
N

n

h n


   (2.3) 

 
0

( 1)
N

n

nh n


    (2.4) 

Equations (2.3) and (2.4) can be used to define a digital differentiator that 

exhibits: 

 zero gain for d.c. input, and 
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 an output equal to the slope for a ramp input. 

(2.3) and (2.4) can be rewritten in the following matrix form: 

 h 1 2V V   (2.5) 

where      [ 0 , 1 , , ]Th h h h N  , and 1V , and 2V   are given by: 

 1

1 1 1 1 1

1 1 0N N N

 
   

V



  (2.6) 

and 

 
0

1

 
   

2V  . (2.7) 

 

As commonly defined for FIR filters, when 1 n N nh h    , the differentiator is a 

Type III  or Type IV  filter (filter coefficients anti-symmetrical) which exhibits 

a linear-phase characteristic. In [9], an FIR differentiator was designed with 

optimum noise attenuation. Assuming that the additive noise has a flat power 

response, the output noise power gain is given by: 

  2

0

N

s
n

R h n


    (2.8) 

Thus, the problem is to minimize the quantity sR  with the two constraints 

(2.3) and (2.4). The authors solved the optimization problem above, by using 

the method of Lagrange multipliers. The filter coefficients are given by [9], with 

transfer function: 

     
6 2

1 , 0,1, ,
1 2

n
h n n N

N N N
       

   (2.9) 
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The magnitude responses are plotted using the Matlab function ‘dbode’, 

as shown in Figure 2.2. The y-axis is zoomed to 1 to provide a clear view of the 

response. The linear equations (2.5) can be solved using the Moore-Penrose 

pseudoinverse matrix, for example, in [28], a linear-phase second-degree FIR 

differentiator is obtained using this method. The Moore-Penrose pseudoinverse 

computes a 'best fit' (least squares) solution to a system of linear equations that 

lacks a unique solution. Thus, the differentiators designed using the 

Moore-Penrose pseudoinverse and those obtained using Lagrangian multipliers 

[9] give exactly the same results. 

 

Figure 2.2 Magnitude responses of the FIR differentiator with orders N = 4, N = 

11, N = 21, and ideal digital differentiators. 
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2.2.2 Design of a FIR differentiator using window 

functions 

From the Fourier transform of an FIR filter, the relationship between the 

frequency response ( )jH e   and the coefficients ( )h n  is given by the 

following equations: 

 ( ) ( )j j n

n

H e h n e 






    (2.10) 

 1
( ) ( )

2
j j nh n H e e d

  




 
    (2.11) 

Using equation (2.2), the corresponding impulse response is given by: 

 

2

1
( )

2
0, 0

1 1 ( 1)
0

2

j n

n
j n

h n j e d

for n

e for n
n jn n

 









 












    

    
  


  (2.12) 

An example is provided here of using rectangular, triangular, Hamming, Hanning, 

and Blackman windows, for an order 44N  . The filter coefficients are 

obtained from the convolution of the impulse response of the differentiator 

(shown in (2.12)) and different window functions. Figure 2.3 represents the 

magnitude responses of different windows, which shows the outputs of some 

FIR differentiator designs. Each window is applied to an all-pass differentiator. 

Obviously, the rectangular window and triangular window don’t show good 

magnitude response characteristics. Figure 2.4 gives the percentage errors of 

the FIR differentiators that make use of the other windows. Based on the above, 

the Blackman window is found to exhibit the smallest percentage error of 

magnitude responses amongst these windows.                                           
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Figure 2.3 Magnitude  responses  of  the  FIR  differentiators with  rectangular, 

triangular, Hamming, Hanning, and Blackman windows. 

  

Figure 2.4 Percentage error of the FIR differentiators with Hamming, Hanning, 

and Blackman windows. 
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Another example shows the magnitude response of the Blackman window 

with different even orders 6N  ,  10N  , 20N  ,  and  40N  . Figure 2.5 

shows that the frequency range over which one obtains a small percentage error, 

relative to the ideal passband response, changes with the order of the 

differentiator. 

 

Figure 2.5 Magnitude  responses  of  FIR  differentiators  using  the  Blackman 

window, for  6N  , 10N  , 20N    and  40N  . 
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2.2.3 Design  of  maximally  flat  low‐pass  digital 

differentiators 

There are many papers [15][16][17] on the design of full-band maximally flat 

digital differentiators, for which the approximation is highly accurate. However, 

to avoid the undesirable amplification of noise in digital differentiation, [18] 

introduce the design of a maximally flat low-pass digital differentiator, which 

satisfies the following constraints: 

 ( ) 0, 0jH e      (2.13) 

 ( ) 1, 0jd
H e

d
 


    (2.14) 

 ( ) 0, 0 2 2
k

j
k

d
H e k L

d
 


      (2.15) 

 ( ) 1, 0 2
k

j
k

d
H e k M

d
  


      (2.16) 

Let C  denote the number of zeros of the transfer function at 1z   . For a 

Type IV  filter, the transfer function always has an even number of zeros at 

1z   .  Selesnick, [18] gives the solution to this problem, using the 

nomenclature 2C M  for Type IV  transfer functions, and 2 1C M   for 

Type III  transfer functions. The combined formula for Type III  and Type IV , 

maximally flat low-pass differentiators is shown to be given by: 

 
1 1 1

0

1 1 2
( ) ( )

2 2 4

C n
L

L

n

z z z z
H z z s n

  




        
     
    

   (2.17) 

where 
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2(8 4 10 3) ( 1) (2 3) ( 2)

( )
2 (2 1)

n Cn n C s n n C s n
s n

n n

        



  (2.18) 

for 2n  , with (0) 2s  , and (1) 1/ 3s C  . When C  is even, ( )H z  is a 

Type IV  transfer function; when C  is odd, while ( )H z  is a Type III  

transfer function. In either case, the length of the impulse response is 

2 2p C L   , so that ( ) / 2 1L p C   , which determines how many values 

of ( )s n  are  needed in (2.17). Figure 2.6 and Figure 2.7 show the magnitude 

response of Selesnick’s  proposed differentiators. The cut-off frequency 

depends on the values of C  and L .  When 0C  , a full band differentiator 

is obtained. 

 

Figure 2.6 Magnitude  responses  of  Type  IV   FIR  maximally  flat  low‐pass 

differentiators with length of the impulse response  30p  . 
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Figure 2.7 Magnitude  responses  of  Type  III   FIR  maximally  flat  low‐pass 

differentiators with length of the impulse response  31p  . 

2.2.4 Design  of  an  FIR  low‐pass  digital 
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minimizing the maximum absolute value of the error function ( )E   [8][19]. 

The proposed filters designed by this method exhibit an equiripple behavior in 

their frequency response, and are sometimes called equiripple filters. This 

method can be described as in [8]: 

    min ( ) min max ( )
F

E E


 
 

   (2.19) 

where F  is the set of prescribed frequency bands. This method (with some 
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improvements to speed up the overall convergence routine) is made available in 

the MATLAB function firpm. 

An example is given to show the magnitude response and percentage 

error of the proposed differentiators with cut-off frequency 0.4c   of the 

normalized frequency, corresponding of magnitude vector 

[0 0.4 0 0]Ad  and different frequency vectors [0 0.4 0.45 1]1F , 

[0 0.4 0.5 1]2F , [0 0.4 0.6 1]3F , [0 0.4 0.7 1]4F  and 

[0 0.4 0.8 1]5F .  For example, using 1F , the magnitude of the filter 

output is 0.4  at a normalized frequency of 0.4, while the desired magnitude 

gain is zero at normalized frequencies of 0, 0.45 and 1 , as indicated in the 

vector Ad . 

 

 

Figure 2.8 Steady‐state magnitude responses of the FIR differentiators design 

using the chebyshev method, with different frequency specifications. 
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Figure 2.9 Percentage  error  of  the  FIR  differentiators  design  using  the 

Chebyshev method, with different frequency ‐band specifications. 

The resulting differentiators exhibit identical cut-off frequencies, but 

different roll-off characteristic.  It can be concluded from Figure 2.8 and Figure 

2.9 that increased steepness is associated with bigger magnitude response error 

in the pass-band, and smaller attenuation in the stop-band. In addition, the 

attenuation in the stop-band shows equiripple performance. 
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on the Newton-Cotes numerical integration rules [10][11][20][21][12][3]. The 

following are the numerical rules considered: 

 The Trapezoidal Rule: 

      ( ) ;
2

b

a

l
f t dt f a f a l l b a        . (2.20) 

 The Simpson Rule: 

    ( ) 4 ;
3 2 2

b

a

l a b b a
f t dt f a f f b l

           
 .  (2.21) 

 The Simpson three-Eight Rule: 

 
       3

( ) 3 3 ;
8

3

b

a

l
f t dt f a f a l b l f b

b a
l

       





.  (2.22) 

 The Boole Rule: 

 
       2

( ) 7 32 12 32 7 ;
45 2

.
4

b

a

l a b
f t dt f a f a l f f b l f b

b a
l

              





  (2.23) 

The transfer functions of Newton-Cotes base integrators of the above rules are 

given by: 

    
 

1

1

1

2 1
T

zT
H z

z









  (2.24) 

    
 

1 2

1/3 2

1 4

3 1
S

z zT
H z

z

 



 



  (2.25) 
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    
 

1 2 3

3/8 3

1 3 33

8 1
S

z z zT
H z

z

  



  



  (2.26) 

    
 

1 2 3 4

4

7 32 12 32 72

45 1
B

z z z zT
H z

z

   



   



  (2.27) 

where T  is the sample interval. 

The proposed differentiators are obtained by inverting the transfer 

function of integrators [10]. Note that if a pole of the proposed differentiator 

lies outside the unit circle at a radius of r , it should be replaced by a pole that 

lies inside the unit circle at a radius of 1/ r , in order to provide stability. The 

resulting transfer function should be multiplied by 1/ r  to compensate for the 

resulting change in magnitude. 

In [21], a differentiator is obtained by inverting the transfer function of the 

Simpson integrator of (2.25). A pole that lies outside the unit circle at 

3.7321z    is replaced by 1/ 3.7321 0.2679z      , and multiplication by 

1/ 3.7321  is implemented to compensate for the change of magnitude. The 

proposed transfer function is obtained by: 

  
2

_ 1/3 1 2

3(1 )
.

3.7321(1 0.5358 0.0718 )diff S

z
H z

z z



 




 
  (2.28) 

In [10], an integrator obtained by the rectangular and trapezoidal rules is 

given as: 

    

1

1

1
7 1

7

8 1
N

z
H z

z





  
 


  (2.29) 

After taking the inverse of this integrator, the resulting differentiator transfer 

function is: 
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    1

_
1

8 1

1
7 1

7

diff N

z
H z

z








  
 

  (2.30) 

 

Figure 2.10 Magnitude  responses of  the  IIR differentiators designed using  the 

Simpson and rectangular‐trapezoidal rules. 

In [11], a non-minimum phase integrator is generated by Al-Alaoui for 

interpolating the Simpson integrator and trapezoidal integrator: 

 

     
   1 1

1 2

2

1

3 1 1

6(1 )

ST S TH qH z q H z

q r z r z

z

 



  

  




  (2.31) 

where q  is the desired weight parameter, 
 

 1

3 2 3

3

q q
r

q

 



, 

 
 2

3 2 3

3

q q
r

q

 



, and 0 1q  . 

The minimum phase characteristic can be obtained by applying the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Normalized Frequency

M
ag

ni
tu

de

 

 

Simpson 1/3 diff

Rectangular-Trapezoidal diff

Ideal diff



 

29 

 

approach outlined in [10], and noting that 2 11/r r . The transfer function is: 

 
 

  

2

_ 21
1 2

6 1

3 1
diff ST

z
H

r q r z








 
  (2.32) 

 

Figure 2.11 Magnitude  responses  of  the  IIR  differentiator  design  using  the 

Simpson-trapezoidal rule with different interpolation weights (ratios). 
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2.2.7 Design of IIR low‐pass differentiator using the 

cascade method 

A low-pass digital differentiator should usually exhibit steep roll-off for the 

magnitude response of the frequency response.  For an IIR filter, the linearity 

of the phase in the pass-band is also a very important goal. Thus, Al-Alaoui 

obtained a low-pass differentiator, [3] by cascading the differentiator presented 

above (2.28) or (2.30) with an IIR low-pass filter whose numerator also 

represents a close-to linear phase IIR filter. As examples, some third-order 

Chebyshev Type 1, low-pass filters, having 0.1 dB attenuation in the pass-band, 

were chosen. The corresponding desired, normalized cut-off frequencies were 

0.35, 0.42, 0.52, and 0.7 of full band, respectively [3]. The magnitude responses 

are shown in Figure 2.12, the group delays are shown in Figure 2.13 and the 

differentiator coefficients are given in Table 2.1:  

 

Figure 2.12 Magnitude  responses  of  the  IIR Al‐Alaoui  low‐pass differentiators 

and rectangular‐trapezoidal rule based differentiator , presented in  (2.30). 
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Figure 2.13 Group  delay  of  the  Al‐Alaoui  low‐pass  differentiators  and  the 

rectangular‐trapezoidal rule based differentiator. 
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magnitude response which is close to that obtained for 30th order 

Parks-McClellan low-pass differentiators. 
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Table 2.1 Coefficients of the Al-Alaoui low-pass, fourth-order IIR differentiator 

 /c rad s     0.35 0.42 0.52 0.7 

 0b  0.0386 0.0573 0.0897 0.1649 

 1b  0.0772 0.1147 0.1794 0.3298 

 2b  0.0000 0.0000 0.0000 0.0000 

 3b  -0.0772 -0.1147 -0.1794 -0.3298 

 4b  -0.0386 -0.0573 -0.0897 -0.1649 

 0a  1.0000 1.0000 1.0000 1.0000 

 1a  -0.4398 0.0133 0.6228 1.6240 

 2a  0.4672 0.4366 0.5531 1.1710 

 3a  -0.0403 0.0003 0.0768 0.3223 

 4a  -0.0170 -0.0092 0.0011 0.0265 

 

2.2.8 Design of differentiator using the optimization 

technique 

Many authors have designed digital differentiators using an optimization 

technique. This method can be broken down to a number of components 

[3][13][14][22].  

In [3], a constrained optimization method is introduced. The first step is to 

choose one of the following equations as the transfer function, depending on 
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the required filter order, with the frequently appropriate orders four and five 

being assumed in this work: 

 
 1 1 4

1 2 3 4

1 2 2
( )

1 (1) (2) (3) (4)

K z z z
H z

a z a z a z a z

  

   

  


   
  (2.33) 

 
 1 2 3 4 5

1 2 3 4 5

1 3 2 2 3
( )

1 (1) (2) (3) (4) (5)

K z z z z z
H z

a z a z a z a z a z

    

    

    


    
  (2.34) 

Then the gain K  and the coefficients of the denominator polynomials will be 

allowed to vary in such a manner as to satisfy the optimization criterion. The 

cost function employed and the magnitude and phase responses are important 

characteristics of a digital differentiator. An optimality criterion to minimize the 

error is given in [3] [22]: 

             22

0
1 1

1
Ls Ls

n n des n n g n g d n
n n

w H H v          
 

             (2.35) 

where   is the total weighted least-squares error over all frequency bands 

(usually a large set of discrete frequencies is used), 1 2, ,? Ls    in 0    . 

, ,n nw v  are the weighting factors selected by the designer, and Ls  is the 

number of frequency components considered. The magnitude error at a 

frequency like n   is    n des nH H  , where  des nH   is the desired 

magnitude response, the group delay error is      0g n g d n       , where 

 0g   is the filter delay at some nominal center frequency in the pass band, 

and  d n   is the desired delay response of the filter relative to  0g   

[3][22].  

The resulting differentiators obtained from (2.33) and (2.34) are labelled  

“Optimized Al-Alaoui 1” and “Optimized Al-Alaoui 2”, respectively. The filter 
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coefficients are given in [3]. 

Table 2.2 Coefficients of the optimized Al-Alaoui low-pass IIR differentiators 

K  (1)a  (2)a  (3)a  (4)a  (5)a  

Opt diff 1 0.3c    0.0953 -0.6744 0.5425 -0.0777 -0.0272 0 

Opt diff 1 0.5c   0.2918 0.6524 0.5687 0.0454 -0.0008 0 

Opt diff 1 0.7c   0.5324 1.6901 1.2187 0.3095 0.0276 0 

Opt diff 2 0.3c   0.0660 -0.3332 0.3041 0.1178 -0.0454 -0.0137

Opt diff 2 0.4c   0.1178 0.3021 0.4396 0.1430 -0.0093 -0.0053

Opt diff 2 0.5c   0.2032 0.9515 0.8383 0.2321 0.0255 -0.0004

 

Figure 2.14 Magnitude responses of the optimized Al‐Alaoui low‐pass differentiators. 
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Figure 2.15 Comparison of  the percentage error of magnitude  responses of optimized 

Al‐Alaoui low‐pass differentiators. 

 

The magnitude response and percentage error of the optimized Al-Alaoui 

differentiators are shown in Figure 2.14 and Figure 2.15. Some obvious errors 

can be seen in the pass-band of the magnitude response,  especially for the 

optimized Al-Alaoui differentiator 2, when 0.7c  , which gives approximately 

3% maximum percentage error. 
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2.2.9 Conclusions for previous work in this field 

This section introduced several papers described in the literature, on the design 

of both FIR and IIR digital differentiators. The methods of FIR differentiator 

design through the consideration of time-domain-based differentiator 

input/output sequences, and that considering optimum noise attenuation are 

shown to give the same result, with good performance in the 

low-frequency-band, and high attenuation in the stop-band. Design using 

window functions is also an important method, with the Blackman window 

exhibiting the best magnitude response performance. Selesnick describes the 

design of the maximally flat FIR low-pass differentiator, which exhibits the 

smallest error magnitude response in the pass-band. Design via the Chebyshev 

method is the most popular method, because the proposed differentiator 

performance criteria, such as magnitude response, roll-off and stop-band 

attenuation are dependent on a set of magnitude and frequency vectors that 

are easily defined by the user. 

For IIR differentiators, Al-Alaoui has published many papers based on the 

Newton-Cotes numerical integration rules. From these, methods have been 

presented on the design of a low-pass IIR differentiator by cascading the 

resulting differentiator with a low-pass filter. On the other hand, the design 

methods that are based on the use of an optimization technique have become 

very popular recently. These consider both magnitude and phase responses. 
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2.3 Design	of	the	new	IIR	low‐pass	differentiator	

After the literature review section, the new method for the design of a low-pass 

IIR differentiator is presented in this section. The design method is based on the 

definition of the IIR differentiator, while the filter coefficients are computed by 

the constraint optimization technique. The components of the cost function are 

the square error of the magnitude response, the variance of the filter, and the 

group delay. 

 

 

 

2.3.1 IIR digital differentiator 

The transfer function of an IIR filter which is shown at (1.2) can be described by 

the recursive difference equation: 

     0
0 0

   , 1
N N

i i
i i

a y n i b x n i a
 

       (2.36) 

where  x n  and  y n  are the input and output sequences, respectively. For 

a digital differentiator, the output should clearly be the derivative of the input. 

Assuming the input to be the form 0i ip p v    (at some arbitrary time-index 

i ), where 0p  represents some initial signal value, the filter output at sample 

i   is the rate estimate	 v . Therefore, the output ( )y n  will be a constant value 

(the slope of the input) for a ramp input, and the output ( )y n  should decay to 

zero for a constant input. Therefore, the constraints can be described using the 

following equations: 
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b


   (2.37) 

 
0 0

N N

n n
n n

nb a
 

     (2.38) 

 

 

2.3.2 The transfer function of the IIR differentiator 

For an IIR filter, the numerator part can be regarded as an FIR filter, which will 

have a linear phase characteristic when    b n b N n   , corresponding to a 

Type III  or Type IV  linear phase FIR filter. 

The transfer function of digital differentiator can be rewritten as 

1
n nd b

G
  with constraints (2.37) and (2.38): 
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  (2.39) 

where 
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  (2.40) 

 The effect of the constant G  here is to meet the equation (2.38), which 

constrains the gain of the differentiator in such a way as to ensure that the 

output signal is the instantaneous rate of change of the input signal. 



 

39 

 

2.3.3 The variance of the IIR filter 

The variance of a filter is the measure of the average power output for a 

white-noise input. Hence, it provides a measure of the ability of the filter to 

attenuate noise corruption on an input signal. The expressions for variances of 

signals can be written as [23]: 

 

 
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∮

  (2.41) 

where  s   is the spectrum of the qusi-stationary signal. 

The efficient algorithm from [23] can be used to compute (2.41), either 

numerically or symbolically, as follows: 
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  (2.42) 

0,1, ,i N n   and 1,2, ,n N   

eventually allows computation of the output variance: 
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s n
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    (2.43) 
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It should be noted that the variance of an FIR filter is simply; 

 2

0

N

s
n

nR h


    (2.44) 

 

2.3.4 Design method for IIR differentiators 

A design method, using an optimization algorithm based on a number of 

required or desirable characteristics of an IIR differentiator, is described in this 

Section. It is found to be possible to define constraints and design rules that 

ensure the stability of the optimization and the good performance of the filter. 

The proposed differentiator should have high accuracy in the pass-band and fast 

roll-off in the transition-band (when considering the magnitude response), with 

as linear as possible phase response. For an IIR filter, all poles must be placed 

within the unit circle in the ݖ-domain, to ensure filter stability. The nonlinear 

constraint function of this solver can be used to constrain all the poles to have 

an absolute magnitude of less than 0.98, to allow for some quantization of both 

coefficients and calculations. 

The cost function includes three functions: 

 Magnitude response 

A disadvantage of the ideal digital differentiator, or all-pass differentiator, 

is its high pass characteristic, which means that the high-frequency noise will be 

amplified, which is a problem in many applications. This implies the usefulness 

of a low-pass differentiator, which approximates closely to an ideal differentiator 

in the pass-band, but which should attenuate the magnitude response to zero in 

the transition-band and stop-band. A good pass-band characteristic is realized 

by minimizing the square-error in the pass-band between the proposed 
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differentiator and an ideal one: 

   2

1
1

( )
Ls

n d n
n

g H H 


    (2.45) 

where 1 2 3,? Ls    , Ls  is the number of frequency components 

considered, at specific points within the range 0 c   . Note that cω  is the 

cut-off frequency, and  ndH   is the ideal magnitude response. Above the 

cut-off frequency, the goal of minimizing the variance will implicitly minimize 

the magnitude gains in the transition and stop bands. 

 

 Variance 

The low-pass character of the IIR differentiator is ensured by minimizing the 

variance of the filter. The magnitude response in the pass-band should be 

maintained as close to ideal as possible, using the constraint (2.45). For the 

proposed low-pass differentiator, the attenuation of magnitude response in the 

transition-band and stop-band is obtained by minimizing the variance of the 

filter, as this will lead to a steeper roll-off of the magnitude of the frequency 

response.  

 

 Group delay 

Constant group delay implies linear phase of the frequency response of an FIR 

filter. While exactly linear phase is not possible for an IIR filter, the associated 

optimality criterion is intended to minimize the variance of the group delay, as 

follows: 
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g n g
n

m
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  


    (2.46) 

where the angular frequencies considered are 1 2 3,? Ls    , for 0    , 

Ls  is the number of frequency components considered, g is the group delay, 

which expression is shown in (1.5), and gm  is the mean of the group delay g : 

  
1

1 Ls

g g n
n

m
Ls

 


    (2.47) 

Therefore, the cost functions to be utilized are: 

 1 1F g   (2.48) 

 2
2F    (2.49) 

 3 sF R   (2.50) 

 Cost function 

The filter coefficients of the transfer function can be computed using an 

optimization technique. The cost function of the optimization is: 

 1 2 2 331F Fw w w F      (2.51) 

where  1 2 3w w wW =  is a weight vector. To ensure filter stability, an 

additional constraint on the optimization is included to constrain all complex 

poles to have an absolute magnitude of, at most, slightly less than unity [9]. 
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2.3.5 Design example 1 

Fourth order IIR differentiators, with the number of frequency components 

1000Ls   are chosen in this design example. Therefore, the transfer function 

of (2.39) and (2.40) can be rewritten as: 

  
1 3 4

1 2 3 4 1 1
4 1 2 3 4

1 1 2 3 4

1 1

4 2 1

a a a a d z d z z
H z

d a z a z a z a z

  

   

        
         

  (2.52) 

To compare with the differentiators presented by Al-Alaoui [3], 4th order 

differentiators with normalized cut-off frequencies of 0.35, 0.42, 0.52, and 0.7 of 

the full band frequency, respectively, are chosen. The proposed filter 

coefficients and optimization parameters are listed in Table 2.3. Figure 2.16 

shows that the proposed differentiator exhibits steeper roll-off than that of 

Al-Alaoui. Figure 2.17 shows the percentage error of the magnitude response of 

the proposed low-pass differentiator and that of the Al-Alaoui differentiator 

labeled ‘Diff 1’, for 0.52c  , clearly demonstrating that the proposed low-pass 

differentiator has much lower percentage error in the pass-band region than 

Al-Alaoui’s filter. The 0.1% error is felt to be acceptable. Figure 2.18 shows that 

the group delay of the proposed low-pass differentiator is slightly inferior to that 

of Al-Alaoui, but that both have an almost constant group delay in the pass-band, 

with a sample delay difference of approximately 1.9 samples from zero 

frequency to the cut-off frequency 0.52c  . The new differentiator is felt to 

be acceptable for most applications. 

 

 

 



 

44 

 

Table 2.3 Coefficients and optimization parameters of the proposed IIR 

low-pass differentiator 

  /c rad s   0.1 0.35 0.42 0.52 0.7 

 0b  0.0354 0.1098 0.1488 0.2685 0.5032 

 1b  0.0637 0.1976 0.2678 0.4832 0.9759 

 2b  0.0000 0.0000 0.0000 0.0000 0.0000 

 3b  -0.0637 -0.1976 -0.2678 -0.4832 -0.9759 

 4b  -0.0354 -0.1098 -0.1488 -0.2685 -0.5032 

 0a  1.0000 1.0000 1.0000 1.0000 1.0000 

 1a  -0.7724 -0.6317 -0.3491 0.4251 1.5315 

 2a  -0.1620 0.5786 0.5990 0.5881 1.1140 

 3a  0.0797 -0.1127 -0.1507 -0.0026 0.2900  

 4a  0.1235 -0.0001 0.0315 0.0296 0.0289 

1F  0.001 0.001 0.001 0.001 0.001 

2F  1 0.7 0.84 1 2 

3F  0.023 0.29 0.44 0.78 1.47 

Weight vector [1 1 1] [1 1 1] [1 1 1] [1 1 1] [1 1 1] 
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Figure 2.16 Magnitude  responses  of  fourth  order  proposed  differentiator  and 

fourth‐order  Low‐Pass Al‐Alaoui Differentiators,  for  the  values of  c   listed  in 

Table 2.3. 

 

Figure 2.17 Comparison  of  the  percentage  error  of  magnitude  responses  of 

proposed  low‐pass  differentiator  and  the  low‐pass  Al‐Alaoui  differentiator 

(termed Diff 1 by Al‐Alaoui), for  0.52c  . 
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Figure 2.18 Comparison of the group delay of frequency responses of proposed 

low‐pass differentiator and low‐pass Al‐Alaoui Differentiator, for  0.52c  . 

 

Then, the comparisons of the proposed low-pass differentiator and the 

optimized Al-Alaoui differentiators will be given. The differentiators will be 

comprised include: (1) proposed differentiator 0.52c   (filter coefficients 

shown in Table 2.3); (2) Al-Alaoui differentiator 1 0.52c    (filter coefficients 

shown in Table 2.1); (3) optimized Al-Alaoui differentiator 1 for 0.5c   and 

optimized Al-Alaoui differentiator 2 for 0.5c    (filter coefficients shown in 

Table 2.2). From Figure 2.19 and Figure 2.20, it can be seen that the proposed 

differentiator exhibits the smallest percentage error amongst the four 

differentiators.  
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Figure 2.19 Comparison  of  the  magnitude  responses  of  proposed  differentiator, 

Al‐Alaoui Differentiators 1 and optimized Al‐Alaoui differentiators. 

 

Figure 2.20 Comparison  of  the  percentage  error  of  proposed  differentiator,  Al‐Alaoui 

Differentiators 1 and optimized Al‐Alaoui differentiators. 
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Figure 2.21 Comparison of the magnitude responses of the proposed  low‐pass 

IIR differentiator and Vainio’s FIR Differentiator, for  0.1c  . 

 

Figure 2.22 Group delay of the proposed low‐pass differentiator, for  0.1c  . 
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Another comparison is given for the low-frequency-band performance. The 

cut-off frequency of the proposed IIR differentiator is 0.1c  . FIR 

differentiators of an identical cut-off frequency, with fourth and twentieth 

orders, obtained by equation (2.9) is also included in the comparison. An IIR 

filter that approximates a FIR filter should have an order of perhaps up to one 

fifth the order of the FIR filter. The comparison on Figure 2.21 shows that 

Vainio’s FIR differentiator has a minimum cut-off frequency that depends on the 

order of the filter.  It is found experimentally that the minimum cut-off 

frequency for the proposed IIR differentiator cannot be less than a FIR of the 

corresponding order. (including a minimum assumed ratio of five between the 

orders of the FIR and IIR filters, to strive for some similar performance 

characteristics).  However, the potential cut-off frequencies of the proposed IIR 

differentiators can be chosen over a very wide range, with higher cutoff 

frequencies attainable than with previous designs. 

 

 

 

 

2.3.6 Design example 2 

Different goals will result in a low-pass differentiator with different magnitude 

and phase responses. The example shows the low-pass differentiator with 

different goals for 0.6c  . The optimized filter coefficients are shown in Table 

2.4. Specifically, two goals are used in this example.  In general such goals (and 

goal vectors) will be application dependent. 
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Table 2.4 Coefficients and optimization parameters of the proposed low-pass 

differentiator for different goals 

0.6c   Goal 1 Goal 2 

 0b  0.1972 0.3034 

 1b  0.6288 0.5462 

 2b  0.0000 0.0000 

 3b  -0.6288 -0.5462 

 4b  -0.1972 -0.3034 

 0a  1.0000 1.0000 

 1a  0.5596 0.5912 

 2a  0.4794 0.6596 

 3a  -0.0222 0.0096 

 4a  0.0295 0.0459 

1F  0.01 0.1 

2F  0.7 1.4 

3F  1.1 0.9 

Weight vector [1 1 1] [1 1 1] 

Goal 1 places more weight factor on the filter variance, but less on the 

group delay, as shown below. Thus, as shown in Figure 2.23 and Figure 2.24, the 

differentiator with Goal 1 exhibits a shorter transition band and better stop 

band than that with Goal 2, but with worse group delay performance. 
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Figure 2.23 Magnitude response of proposed low‐pass differentiator using Goal 

1 and Goal 2, for  0.6c  . 

 

Figure 2.24 Group delay of proposed  low‐pass differentiator using goal 1 and 

goal 2, for  0.6c  . 
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2.4 Design	of	the	FIR	low‐pass	differentiator	

The method of designing FIR low-pass differentiators is similar to that of IIR 

differentiators. As with the IIR differentiator the coefficients of the FIR filter are 

computed by the constraint optimization technique. As already stated, if an FIR 

differentiator is to have linear-phase, it will have either a Type III  or a Type 

IV form [8]. Therefore, only the square error of the magnitude response and 

the variance of the filter are the components of the cost function. 

 

2.4.1 FIR digital differentiator 

The proposed FIR low-pass differentiators meet the equations (2.3) and (2.4), 

and the filter coefficients are antisymmetric. In Sections 2.2.1, only one solution 

exists, because the filter coefficients are computed using the Moore-Penrose 

pseudoinverse matrix, which yields resulting differentiators with optimum noise 

attenuation. However, in this section, the proposed differentiators are designed 

to not only have high accuracy low-frequency magnitude response, but also 

have steep roll-off and good stop band attenuation. To achieve this, the filter 

coefficients are computed using optimization techniques. 
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2.4.2 Design example 1 

In this example, a twenty-first order FIR linear low-pass differentiator will be 

designed. The filter coefficients have to satisfy the equations (2.3) and (2.4), and 

the filter coefficients are antisymmetric. The filter coefficients can be expressed 

as: 

  0 1 9 10 10 9 1 0h h h h h h h h h        (2.53) 

where  0 1 2 3 4 5 6 7 8 9 10

1
1 19 17 15 13 11 9 7 5 3

21
h h h h h h h h h h h            

The proposed differentiators, with different cut-off frequencies, have been 

designed using the SQP technique, as described in Section 1.1.4. The optimal 

constraints include the square error of the magnitude response in the pass-band 

and the variance of the filter.  

The cost function of the optimization is: 

 1 3 31w F Fw     (2.54) 

Table 2.5 lists the coefficients of the proposed differentiators. Figure 2.25 

shows the corresponding magnitude responses, illustrating that the proposed 

differentiators have good pass-band magnitude response and steep roll-off. 

Because the proposed differentiators are Type IV filters, the group delays are 

constant. 
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Table 2.5 Coefficients and optimization parameters of the proposed 

twenty-first order, low-pass FIR differentiators 

  /c rad s  0.2 0.3 0.4 0.5 0.6 0.7 

0h  -0.0222 0.0177 -0.0081 0.0048 -0.0039 0.0083 

1h  0.0343 -0.0370 0.0150 -0.0089 0.0096 -0.0271 

2h  0.0241 -0.0073 0.0143 -0.0102 -0.0047 0.0523 

3h  -0.0182 0.0485 -0.0586 0.0579 -0.0250 -0.0748 

4h  -0.0470 0.0275 0.0239 -0.0864 0.0800 0.0750 

5h  -0.0338 -0.0519 0.0779 0.0249 -0.1269 -0.0359 

6h  0.0184 -0.0768 -0.0558 0.1058 0.1080 -0.0530 

7h  0.0810 0.0178 -0.1217 -0.1459 0.0230 0.1810 

8h  0.1166 0.1601 0.1006 -0.0642 -0.2480 -0.3140 

9h  0.1021 0.2066 0.3363 0.4260 0.4340 0.3620 

10h   0.0404 0.0899 0.1953 0.3328 0.5152 0.6884 

1F  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

3F  0.077 0.18 0.38 0.68 1.1 1.5 

Weight vector [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] 
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Figure 2.25 Magnitude  response of proposed FIR  low‐pass differentiators with 

different cut‐off frequencies. 

 

 

2.4.3 Design example 2 

In this example, the proposed FIR low-pass differentiators will be compared with 

the maximally flat low-pass digital differentiators. A differentiator design using a 

window function is not included in the comparison because the cut-off 

frequency cannot be chosen freely for such a filter. The design is based on the 

design of twenty-first order FIR differentiators with a cut-off frequency of 

0.4c  . For the maximally flat low-pass digital differentiator, the parameter 

6C   is used (The filter coefficients can be obtained from (2.17) and (2.18)). 
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Note that C  is the number of zeros at 1z   , as before; (Lower values of 

cut-off frequency require larger C  values). The filter coefficients of the 

maximally flat differentiator are quantized to either four or fifteen digits. 

 

Figure 2.26 Comparison of  the magnitude  response of proposed  FIR  low‐pass 

differentiators and maximally flat FIR differentiator,  0.4c  . 
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regard than the proposed FIR differentiator.  It can be concluded that, in the 

case of very small error (less than 0. 01%), the limit of the differentiator 

accuracy is due to the quantization of filter coefficients. 

 

 

Figure 2.27 Comparison  of  the magnitude  response  percentage  error  of  the 

proposed  FIR  low‐pass  differentiators  and  maximally  flat  FIR  differentiators, 

0.4c   

 

   

2.5 Discussion	
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Table 2.6 Coefficients and optimization parameters of the proposed 

twenty-first order, low-pass FIR differentiators 

 Magnitude 

(passband) 

Roll-off Cut-off 

frequency 

Group 

delay 

Filter 

order 

Optimum 

noise diff 

Good (at 

very low 

frequency) 

Fast Very low 

cut-off 

frequency 

Constant 

(FIR) 

Variable 

Maximally 

flat diff 

Excellent Fast  Variable 

(not an 

accurately 

known 

frequency )

Constant 

(FIR) 

Variable 

Chebyshev 

diff 

Very good Adjustable Variable Constant 

(FIR) 

Variable 

Al-Alaoui 

diff 1 

Good Fast Variable Almost 

constant 

Variable 

Optimized 

Al-Alaoui  

Good Adjustable Variable Almost 

constant 

4th or 5th 

order 

Proposed 

diff 

Very good Adjustable Variable Almost 

constant 

Variable 
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2.6 Performance	 of	 Proposed	 Differentiators	 in	

the	Time‐Domain	

The performance of the proposed differentiators has been analyzed in the 

frequency-domain. In time-domain analysis, the desired output signal should be 

the derivative of input signal. However, the proposed differentiators have almost 

constant group delay, or linear phase, in the pass-band, which should cause a 

delay in the time domain when signals are processed by the differentiator. In 

addition, the input signal is typically subject to noise interference. Often, it can 

be assumed that quantization effects in digital filters are stochastic in nature 

[24][25], so it is important to consider the effects of quantization of the input 

signal. The fourth order IIR differentiator under test is shown in Table 2.3, with a 

normalized cut-off frequency of 0.35c  , and the twenty-first order FIR 

differentiator under test is shown in Table 2.5, with a normalized cut-off 

frequency of 0.4c  . 

The test signals used in this section include: 

 Basic noise-free quadratic function. 

The input signal function is: 2( ) 2 4 1x t t t   , so the ideal output, the 

derivative of the input signal, is: '( ) ( ) 4 4y t x t x   . The sample time is 

0.001T s . Figure 2.28 show that the outputs of the proposed differentiators 

are the derivatives of the input signals in the time-domain. The proposed 

differentiator shows initial transient oscillations, which is acceptable for an IIR 

filter, as the effect is transitory. However, the FIR differentiator shows a much 

longer delay because of the higher filter order. 
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Figure 2.28 Output signal of quadratic test signal. 

 

 

 Basic, noise-free triangular wave. 
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Figure 2.29 Time‐domain  response  of  triangular  wave  input  signal  for  the 

proposed IIR and FIR differentiators. 
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 Quantized composite signal. 

To analyze the time domain performance of a quantized signal, the proposed 

differentiators, with different cut-off frequencies, (for which the coefficients are 

as given in Table 2.3 and Table 2.5) are tested. The derivative of the stationary 

input signal is defined as: 

 
20 250( 17) 517

( ) 2 ( 517)
22 2sin 517

40 ( 517) / 20

x x

f x x
x

x



  
        

  (2.55) 

 

Figure 2.30 Ideal output of input signal without quantized noise. 

The  input signal can be obtained by numerically integrating this discrete 
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simply utilizing the ’ floor’ function in Matlab. Figure 2.31 and Figure 2.32 show 

the output for differentiators with different cut-off frequencies. It can be 

concluded that (1) the output of a differentiator of higher cut-off frequency 

exhibits more interference due to quantized noise, and (2) the proposed 

differentiator with lower cut-off frequency can substantially filter the quantized 

noise, but with significant attenuation of high-frequency inputs. 
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Figure 2.31 Output of quantized inputs for IIR differentiators of different cut‐off 

frequencies. 
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Figure 2.32 Comparison of output of quantized  inputs for FIR differentiators of 

different cut‐off frequencies. 
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Another example is shown in Figure 2.33 and Figure 2.34. The FIR 

differentiators are both twenty-first order, and the IIR differentiators are both 

fourth order. For the maximally flat differentiators, it has been chosen that 

6C   so that the cut-off frequency is close to 0.42c  . It can be concluded 

that (1) the FIR filters have more delay than the IIR filters; (2) the output of the 

maximally flat differentiator has more quantized noise interference at both the 

low-frequency and high-frequency ranges, due to its smooth roll-off of 

magnitude response; and (3) in Figure 2.34, the proposed IIR differentiator is 

shown to have faster attenuation at high frequency than Al-Alaoui’s 

differentiator, because the proposed IIR differentiator has steeper roll-off of the 

magnitude response. 

 

Figure 2.33 Magnitude  response of  the FIR and  IIR differentiators with cut‐off 

frequency  0.42c  . 
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Figure 2.34 Time‐domain  outputs  of  quantized  inputs  for  FIR  and  IIR 

differentiators with cut‐off frequency  0.42c  .   
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To test the noise reduction in performance of each differentiator, the error 

of the outputs between 50 seconds to 400 seconds is shown on Figure 2.35.  To 

reduce the effect by the delay of the differentiators, a constant was added to 

each output to ensure the mean of the error is zero. The maximum absolute 

errors of each output are listed on the Figure. Though the Proposed FIR 

differentiator has the steepest roll-off within of the differentiators, its maximum 

absolute error is not the smallest because the ripples at the stop-band can be 

found in the magnitude response. These ripples for the FIR differentiator are a 

direct result of the optimization goals chosen. Basically, the differentiator is a 

Vainio-type differentiator, but with a variable cut-off frequency. Clearly, an 

optimization that focused more on reduced stop-band ripple, could be designed, 

at the expense of increased variance. Hence, the noise reductions in 

performance of the differentiators are dependent on both the cut-off frequency 

and stop-band performance of the magnitude response.  
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Figure 2.35 Error between the outputs of the proposed FIR differentiators, and 

ideal output between 50 seconds to 400 seconds   
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2.7 Conclusion	

This Chapter introduces the concept of first-degree digital differentiator. Some 

papers have been reviewed on the design of both first-degree FIR and IIR 

differentiators.  

Then, new methods for the design of low-pass digital differentiators are 

presented in this chapter. The transfer functions of the proposed IIR and FIR 

differentiators are introduced. The filter coefficients are obtained through 

utilization of the optimization technique. For the proposed low-pass IIR 

differentiator, the optimization goals include the magnitude response, variance 

and group delay of the filter. The low-pass characteristics of the proposed 

differentiators are obtained by minimizing the variance of the filter, which is the 

measure of the average power output for a white-noise input. The method to 

design low-pass FIR differentiators is shown to be to be similar to that of IIR 

differentiators, but the optimization goals clearly do not include the group delay 

of the filter, because a linear phase FIR filter (Type III or Type IV ) is typically 

utilized. 

The comparison between the proposed low-pass differentiators and other 

differentiators previously presented in this field shows that both the proposed 

IIR and FIR low-pass differentiators have excellent magnitude response in the 

pass band, as well as a short transition band. Specifically, the proposed IIR 

differentiator yields almost linear phase in the pass-band. The designer can 

design the differentiator for a particular group delay or roll-off characteristics, 

by choosing the application-dependent weight vector when defining the goals.  

The testing of the proposed differentiators in time-domain also shows 

good performance. The outputs of both the IIR and FIR low-pass differentiators 

give the derivative of the input signal as expected，for various inputs. The testing 
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of a quantized signal is included in this chapter. The noise reduction 

performance is improved (relative to previously proposed differentiators) for 

both the cut-off frequency and stop-band performance of the magnitude 

response. Compared with the proposed IIR differentiator, the proposed FIR 

differentiator exhibits steeper roll-off, but has high-frequency ripple at high 

frequencies, when both have the same cut-off frequency. This is as a direct 

consequence of the different constraints utilized for the design of the filters.  

The goal of variance minimization leads to the proposed IIR differentiator having 

the smallest maximum absolute error found when processing quantized signals. 
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Chapter 3 Design  of  a  Second‐Degree 

Digital Differentiator 

Second-degree, or higher-degree, digital differentiators have a large range of 

applications. For example, in radar systems, acceleration can be computed from 

the position measurements using a second-degree differentiator [26]. An 

all-optical second-order temporal differentiator based on a 

mechanically-induced long-period fiber grating (MILPFG) with a single  -shift 

is demonstrated in [27]. In biomedical engineering applications, biomedical 

information, such as electroencephalogram (EEG) and electrocardiogram (EKG) 

data, is often evaluated using the second-degree derivative of the signals [28]. 

The ideal differentiator of a second degree integer order has the following 

frequency response: 

   2( ) ,jH e j       (3.1) 

 

 

 

3.1 Introduction	and	Literature	review	

3.1.1 The FIR second‐ degree differentiator 

The FIR second-degree differentiator (also termed the double differentiator) 

should have similar constraints to that of first-degree differentiators, as 

described using (2.3) and (2.4). This differentiator, it should meet the following 

equations: 
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0

0
N

n
n

h


   (3.2) 

 
0

0
N

n
n

n h


   (3.3) 

 2

0

2!
N

n
n

n h


   (3.4) 

Equation (3.4) corresponds to    '2
2

2 2 1 2!
d

x x
d x

     . 

The filter can be computed from the above equations (3.2) (3.3) and (3.4) 

using the Moore-Penrose pseudoinverse, as previously presented in Sections 

2.2.1 for first-degree differentiators. The magnitude responses of some 

corresponding double differentiators are shown in Figure 3.1: 

 

Figure 3.1 Magnitude  responses  of  the  second‐degree  differentiator  with 

5N  ,  10N  ,  20N  , and the ideal digital double differentiator. 
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In [28], an FIR differentiator is designed for estimation of signal derivatives 

and of sharpness at extremes. The filtering method is described as follows: 

If  ( , ), 1, ,i ix y i p   are data points to be interpolated by the parabola, 

  2
2 1 0P x v x v x v   , then the optimal coefficients 2v , 1v  and 0v  which 

minimize the mean square error, are given by: 

 2

1

( ( ))
p

i i
i

y P x


   (3.5) 

over all choices of such coefficients. These are obtained by solving the equation 

[28]: 

    2 1 0 ' ' 'v v v X X X Y    (3.6) 

where 3 j
ij iX x  , for 1 i p  ,  1 3j  , 1, , 'pY y y    , 'X  denotes 

the transpose of X , and  'X X


  denotes the Moore-Penrose 

pseudoinverse of the symmetric matrix 'X X . Letting 'A X X , the elements 

of the matrix A  are given by: 

 6

1

, 1 3., 1
p

i j
ij k

k

A x i p j 



       (3.7) 

Because the formula for 2v   is linear in Y , these estimates may be obtained 

from the output of an FIR filter which can be applied to the time series. This 

sequence of acceleration estimates are given by: 

 2 1 1 2 2 1 1

1

2 p k p k k p k p

p
v k F y F y F y F y     

           
  (3.8) 

where  , 1, 2 ,ky k    is the signal being analyzed, and p  is the number of 
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points used in the parabolic fit. The number of points used in the parabolic 

curve fitting is equivalent to that of an FIR filter with p  coefficients (of 

identical values). Using 1n j   and 1N p   when equating the derivations 

of [28] (from which the above description is excerpted) with the standard 

nomenclature employed in this thesis, the following FIR filter can be explicitly 

computed for a system of order N [28]: 

 
    

2 26 6
( ) 60 0, ,

1 1 2 ( 3)

n nN N N
h n n N

N N N N N

  
 

   
   (3.9) 

Equation (3.9) here, gives the same results as the coefficients obtained 

through use of equations (3.2), (3.3) and (3.4). As for the differentiator, it should 

be noted that the filter coefficients of the second-degree differentiator obtained 

using Lagrange multipliers, or using the Moore-Penrose pseudoinverse to 

compute the filter coefficients, or equivalent least-squares-based curve fitting 

techniques, produce exactly the same coefficients. Therefore, the same transfer 

function is computed from seemingly different, but equivalent methods. 

 

 

3.1.2 Design  using  Richardson  extrapolation  and 

fractional delay 

A method to design the second-degree differentiator, using Richardson 

extrapolation and fractional delay, is introduced in [29].  Richardson 

extrapolation is used to generate a highly accurate response (i.e. closely 

following the ideal curve in the pass-band). Then, a conventional Lagrange FIR 

fractional delay filter is directly applied to implement the second-degree 

differentiator. From [29], the backward difference formula to estimate the 
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second derivative is given, for a given signal ( )x n , by: 

 
2

( ) 2 ( ) ( 2 )
''( )

x n x n x n
x n

 


   
    (3.10) 

Taking the z-transform at both sides, the transfer function of the differentiator 

is: 

 
2

0 2

''( ) 1 2
( , )

( )

X z z z
A z

X z

 




  
    (3.11) 

where   is the fractional delay.  Replacing z  by je   in steady-state,  

 0 ( , ) ( ) ( )jA e D O       (3.12) 

where ( )O   denotes that the error term decays as fast as  , and ( )dH   is 

the ideal full-band second-degree differentiator.  If parameter   approaches 

zero:  

 0
0

lim ( , ) ( )j
dA e H


 


   (3.13) 

From [29] an improved discrete estimate of the differentiator is obtained using 
Richardson’s iterative improvement process, which yields the first improved 

differentiator estimate, 1A , as follows: 

 1 0 0

2

( , ) 2 ( , ) ( , 2 )

( ) ( )

j j j

d

A e A e A e

H O

    

 

 

 
  (3.14) 

The order of the error term of 1( , )jA e    is 2( )O  , which produces faster 

convergence speed than 0 ( , 2 )jA e    when   approaches zero. A simple 

recurrence formula can be used: 
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1 1
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2 ( , ) ( , 2 )
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2 1

( ) ( )

k j j
j k k

k k

k
d

A e A e
A e

H O

 
  

 

 







 

  (3.15) 

Therefore, it can be concluded that the error can be reduced by increasing 

k  or decreasing  . The implementation of differentiator ( , )kA z   involves a 

fractional delay. Chien-Cheng Tseng and Su-Ling Lee solved this problem by 

using the Lagrange FIR fractional delay filter. In this method, a pure integer delay 

Iz  is cascaded with ( , )kA z  . 

The filter coefficients are given in [29] for the cases 0,1k  : 

 0 2 2 2
0, 0,

1 2 2 2
( ) ( 1)

N N

k k n k k n

I k I k
h n n

n k n k

 
     

   
   

     (3.16) 

 
1 2 2
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2 2
0, 0,

1 16
( ) ( 1)

4 4

10 2 1 4

4 4

N

k k n

N N

k k n k k n

I k
h n n

n k

I k I k

n k n k


 

 
 

 

   

 
  



   
 

 



 
  (3.17) 

where 0, ,n N  , N  is the order of the differentiator and ( )   is the delta 

function . 
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Figure 3.2 Comparison  of  the  magnitude  responses  of  the  second‐degree 

differentiator designed using Richardson extrapolation and fractional delay, with 

a differentiator of purely integer delay. 

 

An example of this technique, an second-degree with order 80N  ,  

fractional delay 0.1  , integer delay 32, 36, 40, 44,or 48I  , using (3.16) 

(for the case of 0k  ), is considered. The magnitude response of the 

second-degree differentiator is shown in Figure 3.2. The resulting differentiators 

almost overlap with the ideal response in the frequency range of up to 0.8 of 

the normalized frequency. For the high-frequency range, the magnitude 

response of the differentiators is close to the ideal response when the value of 

I is close to the value of half of the filter order ( / 2 40N   in this example). 

This is because the fractional delay filter is obtained using a Lagrange 

interpolator. One characteristic of Lagrange interpolation is that the maximum 
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of the magnitude response never exceeds unity when the delay is near to half 

the filter length .Although the filter coefficients are not symmetrical, the 

resulting second-degree differentiators exhibits constant group delay 

performance in the frequency range of up to approximately 0.8 of the 

normalized Nyquist frequency. 

 

Figure 3.3 Comparison of the group delay of the second‐degree differentiator 

designed using Richardson extrapolation and fractional delay, with differentiator 

of purely integer delay. 
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Figure 3.4 Comparison  of  magnitude  response  of  the  second‐degree 

differentiator with different fractional delays. 

 

Figure 3.5 Comparison of percentage error of the second‐degree differentiator 

with different fractional delays. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Normalised Frequency

M
ag

ni
tu

de

 

 

a=1

a=0.1

a=0.0001

Ideal diff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

Normalized Frequency

P
er

ce
nt

ag
e 

E
rr

or

 

 

a=1

a=0.1

a=0.0001



 

81 

 

Another example is used to test the performance when the delay 

1, 0.1, or 0.0001  . As shown in in Figure 3.4 and Figure 3.5. it is clear that the 

smaller the value of  , the smaller the percentage error in the pass-band. 

 

 

3.2 Design	 of	 second‐degree	 IIR	 low‐pass	

differentiator	

The high-order IIR Low-Pass differentiator is designed using the optimization 

method presented in Chapter 2. 

In this section, the second-degree IIR low-pass differentiator is designed. 

The coefficients of the numerator and denominator are denoted by nb  and na , 

where 0 n N  , yielding the following equations: 

 
0

0
N

n
n

b


   (3.18) 

 
0

0
N

n
n

nb


   (3.19) 

 2

0 0

(2!)
N N

n n
n n

n b a
 

    (3.20) 

These equations arise from a second-degree differentiator that produces 

no output (in steady-state) for a constant input or an input with constant slope, 

while a parabola will produce an output that is equal to the (constant) second 

derivative of the parabolic input. The cost functions are the same as for the 

standard differentiator in (2.48), (2.49) and (2.50), so the optimization function 
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is given by (2.51). For example, the transfer function of a fourth-order IIR 

second-degree differentiator can be written as: 

  
1 2 3 4

1 2 3 4 1 1
4 1 2 3 4

1 2

1

1 3 4

) 2(1 )2(1 1

4 1

a a a a d z z d z z
H z

d a z a z a z a

d

z

   

   

       


    


 (3.21) 

It should be noted that, for a second-degree differentiator, the coefficient of the 

numerator is even symmetrical, which means that two zeros lie at 1z  . The 

resultant coefficients of the sample differentiators are given in Table 3.1. The 

magnitude response and group delay of the proposed differentiators are shown 

in Figure 3.6 , Figure 3.7 and Figure 3.8. The proposed differentiators exhibit 

high accuracy in the pass-band, for which the maximum percentage errors are 

less than 0.003%, and they show good attenuation in the stop-band, as well as a 

steep transition band. Additionally, the proposed differentiators also show 

almost constant group delay over the pass-band. 

 

Figure 3.6 Magnitude response of proposed second‐degree IIR differentiators. 
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Table 3.1 Coefficients of the proposed second-degree low-pass IIR 

differentiators 

  /c rad s
 

0.1 0.2 0.3 0.4 0.5 

 0b
 0.1248 0.1395 0.1916 0.2307 0.3716 

 1b
 -0.0025 -0.0028 -0.0038 -0.0046 -0.0074 

 2b
 -0.2446 -0.2735 -0.3756 -0.4522 -0.7284 

 3b
 -0.0025 -0.0028 -0.0038 -0.0046 -0.0074 

 4b
 0.1248 0.1395 0.1916 0.2307 0.3716 

 0a
 1.0000 1.0000 1.0000 1.0000 1.0000 

 1a
 -0.4862 -0.6462 -0.5050 -0.5277 0.0848 

 2a
 -0.1247 0.0637 0.1868 0.6239 0.4742 

 3a
 0.0384 0.1642 0.1709 -0.2226 -0.1179 

 4a
 0.0691 -0.0263 -0.0900 0.0447 0.0380 

1F  0.0001 0.001 0.001 0.001 0.001 

2F  0.28 0.36 0.4 0.76 0.7 

3F  0.07 0.12 0.3 0.76 1.8 

Weight vector [ 1 1 1] [ 1 1 1] [ 1 1 1] [ 1 1 1] [ 1 1 1] 
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Figure 3.7 Percentage Error of fourth‐order second‐degree IIR differentiators. 

 

Figure 3.8 Group delay of fourth‐order second‐degree IIR differentiators. 
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3.3 Design	 of	 Second‐degree	 FIR	 low‐pass	

differentiator	

The method of designing FIR second-degree differentiators was discussed in 

Section 3.1. The filter coefficients are computed using the Moore-Penrose 

pseudoinverse, to minimize the variance (the square sum of filter coefficients of 

the FIR filter). However, the choice of the cut-off frequency is not controllable 

when designing using the Moore-Penrose pseudoinverse. A method of 

designing the FIR low-pass second-degree differentiators is introduced in this 

section to rectify this deficiency. 

The constraints used for this method is the same as those of (3.2) (3.3) 

and (3.4), and the filter coefficients are desired to be even symmetrical for 

second-degree differentiator, to ensure that the proposed differentiator have 

linear phase, or constant group delay.  

The remaining filter coefficients are computed using the optimization 

techniques discussed in Chapter 2. Therefore, the optimization goals of a 

second-degree FIR differentiator include the magnitude response in the 

pass-band and the filter variance, which are represented by 1F  and 3F , 

respectively, as  (defined in (2.48) and (2.50)). The filter coefficients of the 

transfer function can be computed using an optimization technique. The cost 

function of the optimization is the same as for (2.54). In addition, this method 

could also be used for differentiators of higher degree. An example is given (in 

Figure 3.9 and Figure 3.10) to show the magnitude response and percentage 

error of twenty-first order FIR second-degree differentiators of different cut-off 

frequencies. The filter coefficients can be expressed as: 

  0 1 9 10 10 9 1 0h h h h h h h h h     (3.22) 
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where 0 2 3 4 5 6 7 8 9 10

1 1
9 17 24 30 35 39 42 44 45

10 2
h h h h h h h h h h

           
 

 

1 2 3 4 5 6 7 8 9 10

1 1
19 27 34 40 45 49 52 54 55

10 2
h h h h h h h h h h

            
 

 

The filter coefficients of the proposed differentiator are given in Table 3.2. 

The proposed differentiators exhibit high accuracy in the pass-band, and fast 

attenuation in the stop-band. A Comparison of Figure 3.6 and Figure 3.9, shows 

that the proposed second-degree differentiators exhibit high accuracy in the 

pass-band. The FIR differentiators show steeper roll-off but large ripple in the 

stop-band, when compared with the proposed IIR filter. Additionally, the 

proposed FIR second-degree differentiators have linear phase because the filter 

coefficients are even symmetrical. 

 

Figure 3.9 Magnitude  response  of  twenty  first‐order  FIR  second‐degree 

differentiators. 
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Table 3.2 Coefficients of the proposed second-degree twenty-first order, 

low-pass FIR differentiators 

  /c rad s  0.1 0.2 0.3 0.4 0.5 

0h  -0.0125 0.0052 0.0105 -0.0164 0.0128 

1h  0.0011 0.0099 -0.0490 0.0724 -0.0550 

2h  0.0096 -0.0186 0.0541 -0.1129 0.1002 

3h  0.0135 -0.0273 0.0381 0.0268 -0.0717 

4h  0.0132 -0.0047 -0.0576 0.1186 -0.0685 

5h  0.0097 0.0318 -0.0756 -0.0664 0.1993 

6h  0.0042 0.0549 0.0284 -0.1569 -0.1034 

7h  -0.0022 0.0470 0.1399 0.0921 -0.2381 

8h  -0.0083 0.0097 0.1210 0.3026 0.4009 

9h  -0.0129 -0.0377 -0.0313 0.0703 0.3796 

10h   -0.0154 -0.0702 -0.1785 -0.3302 -0.5561 

1F   0.0001 0.001 0.001 0.001 0.001 

3F   0.0023 0.028 0.17 0.55 1.5 

Weight vecetor [1 1] [1 1] [1 1] [1 1] [1 1] 
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Figure 3.10 Percentage error of fourth‐order second‐degree FIR differentiators. 
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differentiators in the time-domain. In time-domain analysis, the desired output 

signal should be the double derivative of the input signal. The proposed 
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 Basic noise-free Cubic function. 

The input signal function chosen is: 3 2( ) 3 4 2 1f t t t t    , for a sample time 

0.001sT s , so the ideal output, the double derivative of input signal is: 

'' ( ) 18 8f t t  . Figure 3.11 show the filter output to this test signal that results 

from the polynomial signal described in this section. The ideal output is simply 

the double derivative of the input However, the proposed second-degree 

differentiators shows more extreme intial transients than the first-degree 

differentiator designed in Section 2.6. In addition, the output of the FIR 

differerentiator shows obvious delay in comparsion with the output of the 

corresponding IIR filter. 

 

Figure 3.11 Output signals for the cubic test signal input. 
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 Basic, noise-free sinusoidal wave. 

The input signal is the sinusoidal wave is ( ) sinf t t , so that the ideal output is:

''( ) sinf t t  . In Figure 3.12, the resulting output signal of the proposed IIR 

differentiator shows very good performance in the time-domain, with almost no 

delay, for a sample time 0.01sT s . The delay by the FIR filter is evident, 

causing an obvious error. 

 

Figure 3.12 Time domain analysis of sinusoidal wave signal with proposed 

second‐degree differentiators. 
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 Quantized composite signal. 

The ideal output signal is the same as that used for testing the differentiators 

discussed in Section Chapter 1 (with an appropriate input signal). Figure 3.13 

and Figure 3.14 provide the double derivative of the quantized input, which 

shows that it has similar characteristics to those of the first-degree 

differentiator: (1) the higher the cut-off frequency of the proposed 

differentiator, the more quantized noise interference ensues; (2) with very low 

cut-off frequency ,the proposed differentiator can substantially filter the 

quantized noise, with significant attenuation for high-frequency inputs.  
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Figure 3.13 Time domain analysis of constant acceleration and  sinusoidal 

wave  signal  (of  ideally  constant  output  magnitude  for  varying  input 

frequencies) for proposed second‐degree IIR differentiators. 
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Figure 3.14 Time‐domain analysis of  constant acceleration and  sinusoidal 

signals (of ideally constant output magnitude for varying input frequencies) 

for proposed second‐degree FIR differentiators. 
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Another test is given to compare the performance in the time-domain of 

different second-degree differentiators. The second-degree differentiators to be 

tested include the fourth order proposed IIR differentiator, twenty-first order 

proposed FIR differentiator with cut-off frequency 0.3c  , for which filter 

coefficients can be found in Table 3.1 and Table 3.2; Vainio’s FIR differentiator 

the  coefficients of which can be computed from (3.9), and the differentiator 

designed by Chien-Cheng Tseng and Su-Ling Lee [29], for which the filter 

coefficients are as given in (3.16), ( 0.1  , 20N   and 8I  ). The 

magnitude responses of the above second-degree differentiators are shown in 

Figure 3.15. Vainio’s FIR differentiator exhibits the smallest cut-off frequency by 

minimizing the filter variance (with no choice available to the designer); the 

cut-off frequency of the proposed FIR and IIR differentiators are at 0.3c  . 

The FIR differentiator shows faster roll-off, but bigger ripple at high frequency, 

than the IIR differentiator. The second-degree differentiator designed by 

Chien-Cheng Tseng and Su-Ling Lee exhibits high accuracy in the passband, with 

cut-off frequency 0.6c  . 
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Figure 3.15 The magnitude  response  of  the  second‐degree differentiators 

to be tested. 
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Figure 3.16 Output of quantized inputs for FIR and IIR second‐degree differentiators . 
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and IIR second-degree differentiators exhibit similar results, with good noise 

reduction performance and no attenuation in the high frequency range. In 

addition, the output of the proposed FIR second-degree differentiator has 

better noise reduction performance due to its faster roll-off. As expected from 

the magnitude response shown on Figure 3.15, Vainio’s FIR second-degree 

differentiator shows almost perfect noise reduction performance but big 

attenuation at high frequencies. It can be found easily that there is obvious 

noise interference of the output when using Chien-Cheng Tseng’s second-degree 

differentiator, because by its high cut-off frequency.  It is evident that the 

second-degree differentiator is more sensitive to noise, because the noise is 

greatly amplified relative to the first-degree differentiator. 

 

 

 

 

 

 

3.4 Conclusions	

In this Chapter, some papers have been reviewed on the design of both 

second-degree FIR and IIR differentiators. A new method for the design of 

low-pass second-degree digital differentiators is presented in this chapter. The 

approach utilizes optimization techniques similar to those of Chapter 2, for 

which optimization goals include the magnitude response, variance and group 

delay of the filter. 
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In frequency-domain testing, both of the proposed FIR and IIR 

differentiators exhibit high accuracy in the pass-band. The FIR second-degree 

differentiator show faster roll-off than the second-degree IIR differentiator. 

While some small ripples it can be found in the transition band and stop band of 

the proposed FIR differentiators, its attenuation is still better than that of the 

proposed IIR differentiators. It should be noted that, for a second-degree 

differentiator, the coefficient of the numerator is even symmetrical, which 

means that two zeros lie at 1z  . 

In time-domain testing, the proposed IIR and FIR low-pass second-degree 

differentiator also show good results. The outputs of both the IIR and FIR 

low-pass differentiators give the second derivative of input signal, as expected, 

for various inputs. The proposed differentiators show good performance for the 

testing of a quantized signal, in terms of the noise reduction performance and 

the fact there is no obvious unwanted attenuation at high frequencies. It should 

be noted that the second-degree differentiator is much sensitive to noise, so 

some all pass differentiators will not provide good results in many applications, 

due to the amplification of noise. 
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Chapter 4 Design  of  a  Fractional‐Degree 

Digital Differentiator 

The history of the fractional calculus covers over three-hundred years, similar to 

that of classical differential calculus. Dated 30 September 1695, a letter on the 

meaning of the derivative of order one half is discussed between Leibniz and 

l'Hôpital. Nowadays, many scientists consider that day as the birthday of 

fractional calculus, with Leibniz as its father [30]. For three centuries, the theory 

of fractional derivatives developed mainly as a purely theoretical field of 

mathematics, useful only for mathematicians. However, in the last few decades, 

many authors have pointed out that these mathematical phenomena allow for 

the description of a real object more accurately than the classical integer-degree 

model [31]. 

As one example, the usefulness of fractional degree control has been 

illustrated for the improved control of dynamic systems described by the 

fractional model. The CRONE controller (French acronym for Commande 

Robuste  d’ordre  Non  Entier) has been successfully implemented as a CAD 

toolbox: the CRONE Matlab toolbox [32].  In industrial control systems, a 

proportional integral derivative (PID) controller is probably the most commonly 

used feedback controller. A fractional degree 1 2PI D   controller (where the 

orders 1  and 2  assume real non-integer values) is proposed by Podlubny 

[33]. In [33], where an example is provided of the comparison between a 

classical PID  controller and a fractional degree 1 2PI D   controller, the 

desirability of the latter structure for the more efficient control of fractional 

degree systems is demonstrated. 



 

100 

 

A further example of the application of a fractional differentiator (FD) has 

been proposed in the field of image processing, where the requirement is for 

edge detection of a noisy image. Tuning the degree of the differentiator allows 

optimum trade-off between noise reduction and sharp edge detection. In [34], 

an edge detector based on a FD was shown to improve the criteria of ‘thin 

detection’, and the immunity to noise. In addition, Hilfer [35] gives many other 

applications of fractional calculus, including medical science [36], signal 

processing [37], fluid flow [38], and the theory of viscoelasticity [39], etc. 

In the fractional degree controller, the discretization of the fractional 

differentiator or integrator is the key step of the realization techniques. In this 

chapter, some existing open-loop methods for the design of FDs are introduced. 

Then, a feedback system is used to modify these previous fractional degree 

implementations, in order to ensure that the differentiator performs well in 

terms of both its time-domain and frequency-domain behavior. 

Frequency-domain plots are indicative of the steady-state performance of the 

system, while the time-domain characteristics give a better insight into its 

transient behavior.  

 

 

 

4.1 Background	of	fractional	calculus	

In this section, some basic functions and concepts of fractional calculus will be 

introduced. 
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4.1.1 The Gamma function 

One of the most basic functions of the fractional calculus is Euler’s gamma 

function, ( )z  , which generalizes the factorial !n  , so that n  is allowed to 

also take non-integer, and even complex, values. 

The definition of the gamma function ( )z  is given by: 

 1

0

( ) t zz e t dt z


       (4.1) 

One of the basic properties of the gamma function is that it satisfies the 

following equation: 

 ( 1) ( )z z z      (4.2) 

which can be proved as follows: 

 1

0
0 0

( 1) ( )
tt z t z t z

t
z e t dt e t z e t dt z z

 
   


             (4.3) 

Also, when z   using (4.2), it can be shown that: 

 

(2) 1 (1) 1 1!,

(3) 2 (2) 2 1! 2!,

(4) 3 (3) 3 2! 3!,

( 1) ( ) ( 1)! !n n n n n n

    
     
     

       


  (4.4) 
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Figure 4.1 The Gamma function. 

Figure 4.1 shows the Gamma function for small (positive and negative) 

inputs. Note that the gamma function has simple poles at negative integers. 

 

4.1.2 Laplace transformation   

The basic Laplace transform is defined by: 

  
0

( ) ( ) ( )stF s L f t e f t dt


     (4.5) 

for a function ( )f t . The convolution is: 

 
0

( ) ( ) ( ) ( ) ( ) ( )
t

f t g t f t g d g t f t         (4.6) 
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For the two functions ( )f t  and ( )g t , which are equal to zero for 0t  . The 

Laplace transform also satisfies the following equation: 

  ( ) ( ) ( ) ( )L f t g t F s G s    (4.7) 

Another important property of the Laplace transform is that the derivative 

of an integer of degree n  of the function ( )f t  is defined by:  

  
1 1

1 ( ) ( 1)

0 0

( ) ( ) (0) ( ) (0)
n n

n n n k k n k n k

k k

L f t s F s s f s F s s f
 

   

 

       (4.8) 

 

4.1.3 Definition of the fractional calculus 

The following is the infinite sequence of n-fold integrals and n-fold integer 

derivatives: 

2 2

2 1 1 1 1 2

( ) ( )
, ( ) , ( ) , ( ), , ,

t t

a a a

df t d f t
d f d f d f t

dt dt



         

It is interesting that the derivative of the real degree v  can be considered 

as an interpolation of this sequence of operators. The most comment notation 

used is ( )v
a tD f t , where a  and t  are the two limits related to the operation 

of fractional differentiation [40]. 

 

4.1.3.1 Riemaan‐Liouville	fractional	derivatives	

The Riemann-Liouville derivative is the most widely used generalization of the 

fractional calculus.  It is based on the Cauchy formula for n -fold integrals [41]. 

The first integral of a function is equivalent to differentiating it by degree -1: 
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 1

0

( ) ( )
t

D f t f d      (4.9) 

Then, for the second derivative, 

 

2

1 1

2
1 1 2 1 2 1 1 2 1

0 0 0 0

0

( ) ( ) ( ) ( )

( )( )

t t t t t

t

D f t f d d f d d f d d

f t d



 

        

  

   

 

     


  (4.10) 

Thus, in general, 

 1

0

1
( ) ( )( )

( 1)!

t
n nD f t f t d

n
    

    (4.11) 

Formula (4.11) is Cauchy’s formula. The Riemann-Liouville integral with lower 

limit a  can be generalized as: 

 
1

1 ( )
( )

( ) ( )

t
v

a t v
a

f
J f t d

v t

 
 

    (4.12) 

where v
a tJ  represents the fractional integral operation of v  , and the 

Riemann-Liouville derivative of degree 0v   can be obtained from (4.12): 

 
1

1 ( )
( )

( ) ( )

tm
v

a t m v m
a

d f
D f t d

dt m v t

 
  

     (4.13) 

where 1m v m   . It can be noted that the Riemann-Liouville derivative is 

defined as the left inverse of v
a tJ . 

 

 



 

105 

 

4.1.3.2 Grunwald‐Letnikov	fractional	derivative	

The fundamental definition of a continuous function ( )f t  is defined as: 

 '

0

( ) ( )
( ) lim

2

f t f t
f t






 
   (4.14) 

Then, applying this definition twice, the second derivative can be found: 

 

2

' '
''

0

0

0

( ) ( )
( ) lim

1 ( ) ( ) ( ) ( 2 )
lim

( ) 2 ( ) ( 2 )
lim

f t f t
f t

f t f t f t f t

f t f t f t










  
  

 








 


       
 
   



  (4.15) 

The thn  degree derivative can be obtained by induction: 

 ( )

0
0

1
( ) lim ( 1) ( )

n n
n i

n n
i

nd f
f t f t i

idt 





 
    

 
   (4.16) 

where 

 
( 1)( 2) ( 1)

!

n n n n n i

i i

     
 

 


  (4.17) 

is the usual notation for the binomial coefficients. 

To generate the formula for non-integer values of degree n , the standard 

factorial will be replaced by the Gamma function. In addition, when the upper 

limit t  and lower limit a  of differentiation are considered, the upper limit of 

the summation n  will be replaced by ( ) /t a  . Thus, the Grunwald-Letnikov 

fractional derivative is: 
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0

0

1 ( 1)
( ) lim ( 1) ( )

! ( 1)

t a

v i
a t v

i

v
D f t f t i

i v i













 
  

     (4.18) 

Next, the Grunwald-Letnikov derivative is considered for negative v .  

The notation n

i

 
 
 

 is defined as: 

 

( 1)( 2)( 3) ( 1)

!

( 1)( 2)( 3) ( 1)
( 1)

!
( 1)!

( 1)
( 1)! !

i

i

n n n n n n i

i i

n n n n n i

i
n i

n i

           
 

 
    

 

 
 





   (4.19) 

Rewriting the formula (4.19) using v  and the Gamma function: 

 
( )

( 1)
( ) !

iv v i

i v i

   
    

  (4.20) 

Therefore, the Grunwald-Letnikov fractional integral is: 

 
0

0

( )
( ) lim ( )

! ( )

t a

v v
a t

i

v i
D f t f t i

i v




 








 
 

   (4.21) 

 

 

 

4.1.3.3 Caputo	fractional	derivative	 	

Two formulations of fractional derivative have been introduced in the 

above sections. It can be shown that the two definitions are equivalent. The 

mathematical proof of this equivalence can be found on [40]. 

However, the analysis of some new applications that exhibit 
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fractional-degree characteristics requires a revision of the well-established 

purely mathematical approach. For this purpose, a further definition of the 

fractional derivative was introduced by Caputo in 1967. This can be written as: 

 
( )

1

1 ( )
( )

( ) ( )

t m
C v
a t v m

a

f
D f t d

m v t

 
  

     (4.22) 

where 1m v m   , m  is a integer number.  

The Caputo differential operator is a linear operator [43]: 

 1 1 2 2 1 1 2 2( ( ) ( )) ( ) ( )C v C v C vD C y t C y t D C y t D C y t     (4.23) 

and 

 1 2 1 2( ) ( )v v v vC C CD D y t D y t   (4.24) 

 

4.2 Some	 methods	 for	 the	 design	 of	 fractional	

differentiators/integrators	

Recently, many methods have been proposed for implementing an 

approximation of the digital fractional differentiator as an FIR or IIR filter. 

Chien-Cheng Tseng [42] gives the specification of an ideal linear phase thv  

degree differentiator: 

 /2( ) ( )j v jvH e j e     (4.25) 

where v  is the degree of the differentiator.  If v  is a fractional number, it is 

called a fractional degree differentiator design problem. 
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4.2.1 Design of a  fractional differentiator using the 

Grunwald‐Letnikov definition 

The simplest and most straightforward method of designing the fractional 

differentiator is to use the Grunwald-Letnikov definition directly. To obtain an 

FIR filter approximation of this operator (4.18) is truncated from an infinite 

series to a finite number of terms. Thus, the transfer function of the FD can be 

rewritten as: 

 
0

( 1)
( ) ( 1)

! ( 1)

N
i i

GL
i

v
H z z

i v i




 
 

     (4.26) 

where N  is the order of the FIR filter. 

 

4.2.2 Design  of  fractional  differentiator  using  the 

Riemann‐Liouville definition 

A numerical algorithm for computing Riemann-Liouville integrals is introduced in 

[43], [44]. This method is based on a product trapezoidal rule which was 

developed by Odibat in [45]. Rewriting the formula as a digital filter with finite 

memory length, for 0 2v  , with T  as the sample period, the transfer 

function is: 

 
0

( )
(2 )

v N
i

RL
i

T
H h i z

v





     (4.27) 
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where 

1 1

1 1 1

(1 ) ( 1) if 0,

( ) ( 1) 2( ) ( 1) if 0 ,

1 if .

v v v

v v v

v N N N i

h i N i N i N i i N

i N

 

  

     
         
 

 

 

Figure 4.2 Magnitude  response  of  the  Riemann‐Liouville‐based  and   

Grunwald‐Letnikov‐based differentiators. 

Figure 4.2 shows the magnitude response of the fractional differentiators 

of degree 0.5v  , based on (4.26) and (4.27). The magnitude response of an 

ideal fractional degree differentiator is based on (4.25). The two differentiators 

under consideration have good magnitude response at very low frequency, but 

the performances at high frequency are not satisfactory, because these methods 

are based on the Newton-Cotes numerical integration rules. Thus, it is necessary 

to reduce the approximation error in the high frequency range. 
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4.2.3 Design  of  fractional  differentiator  using  a 

discretization scheme 

The Laplace transform of the Riemann-Liouville derivative for degree 0 1v  , 

as given by [34]: 

  0 ( ) ( )v v
tL D t s F s    (4.28) 

The digital fractional differentiator is the discrete equivalent of the 

continuous operator vs , which can be expressed by the generating function 

1( )s z  . The most common methods of the discretization of the continuous 

operator vs , are the Newton-Cotes integration rules (e.g. Euler rule, Trapezoid 

rule, or Al-Alaoui rule). A tunable generating function is given in [46][47]: 

 
1

1

1 1
( )

(1 )

v
z

H z
T z  





 
    

  (4.29) 

where   and   denote the gain and phase tuning parameters, respectively, 

and T  is the sample period. In general, the Power Series Expansion (PSE) 

[48][49] are one of the most common ways to expand the generating function. 

For example, using the backward Euler rule, 1 1( ) (1 ) /H z z T   , and 

performing a PSE of 1((1 ) / )vz T , the result is: 
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  

 

1

1

1

1
( ) PSE 1

1
( )

1
(0) (1) ( ) ,

v
vv

N

v

N

v
N

D z z
T

P z
T

h h z h N z
T





 

   
 

   
 

    
 



  (4.30) 

where P  is a polynomial of order N , ( )h k , ( 0,1k   ) are the coefficients 

of the FIR implementation, and 

 
1 if = 0,

( ) 1
1 ( 1) if =1,2,

k

h k v
h k k

i


     


  (4.31) 

The discretization formulae (4.30) and (4.31) correspond to the 

Grunwald-Letnikov definition (4.26). 

In [50], a method is described for obtaining the impulse response of a 

digital fractional-degree differentiator. The discretized formula 1( )vH z  can be 

written  by taking the PSE of the function 1(1 )vz  in (4.30) and (4.31) in the 

form: 

    

1
1

1

1 1

0

1 1
( )

(1 )

1
1 (1 )

( ) ,

v

v
v v

k

k

z
H z

T z

z z
T

h k z

  

 







 






 
    

 
    
 



  (4.32) 

where the impulse response sequence ( )vh k  can be shown to be ( 0)k  :  

 ( )

0

11
( ) (1 )

v k
v k i k i

i

i v v
h k

i k iT
 


   



     
           

   (4.33) 

Table 4.1 shows the s z  transforms and impulse response sequences of 



 

112 

 

some of the most commonly used discretization schemes (i.e. the Euler, the 

Al-Alaoui and the Tustin operaters). These were computed from equation (4.32) 

(4.33), and by considering variations of the tuning parameter, i.e. when 1   

and [1, 7 / 8,1/ 2]  , 

 

Table 4.1. s z  transform and impulse response sequence of Euler, 

Al-Alaoui and Tustin operators 

Method s z  ( )h k  

Euler ( 1)   1

1

1 1
v

v z
s

T z





 
  
 

 
11

v k v

kT

   
  

   
 

Al-Alaoui 

7
( )

8
   

1

1

8 1

7 1 / 7

v

v z
s

T z





 
   

 
0

18 1

7 7

v k ik

i

i v v

i k iT





       
            



Tustin 1
( )

2
   1

1

2 1

1

v

v z
s

T z





 
   

 
0

12
v k

i

i v v

i k iT 

     
        

  

Note that the fractional differentiators obtained using this method lead to 

an impulse response sequence of infinite length. Therefore, an thN  order FIR 

filter approximation implementation can be obtained by as k N . For example, 

the filter coefficients of the fractional-degree differentiators of order 150N   

based on Euler, Al-Alaoui and Tustin methods can be obtained from Table 4.1. 

Figure 4.3 shows the magnitude response of the corresponding fractional 

differentiators. However, only Euler’s method exhibits good results at low 

frequency; the other differentiators show large error in all frequency ranges. In 
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addition, the differentiators are not linear phase filters, as the filter coefficients 

are not symmetrical. Figure 4.4 illustrates the group delay of the fractional 

degree FIR differentiators designed by Euler’s method, which shows big 

variations in steady-state at slightly differing input frequencies, in the 

low-frequency range. 

 

Figure 4.3 Magnitude  response  of  the  fractional  degree  FIR  differentiators 

designed by Euler’s method, Al‐Alaoui’s method, and Tustin’s method. 
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Figure 4.4 Group delay of the fractional degree FIR differentiators designed by 

Euler’s method. 

4.2.4 Design  of  IIR  approximations  to  fractional 

differentiators   

Some least-squares methods have been used to obtain an IIR fractional 

differentiator from a FIR filter. These methods, such as the Padé approximation, 

Prony’s method, and Shanks’ method, are introduced and described in [50] [53]. 

In this section, Prony’s method is applied to design IIR fractional differentiators.  

Assuming that the desired FIR filter coefficients ( )h k  can be obtained 

from Table 4.1, the transfer function of an IIR filter ( )H z , to be designed, has 

the form of an IIR filter, shows at (1.2), where m  is the order of the nominator, 

and n  the order of  the denominator, m n . The denominator coefficients 

vector a  can be obtained by solving the following linear equation: 
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    


 (4.34) 

As described in [50], and elsewhere, (4.34) can be routinely solved using a 

pseudoinverse-based method to produce the optimum vector (in terms of 

least-squared error) of the denominator coefficients  1 2, , ,
T

na a aa  . Then, 

the numerator coefficients, b , can be found as [50]: 

 
1

( ) ( ) 0
n

v v
l

i

h k a h k i k m


    b   (4.35) 
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Figure 4.5 Magnitude response of the fractional degree Euler IIR differentiator 

(FIR‐to‐IIR transformation using Prony’s method) and Euler FIR differentiator. 

 

 

Figure 4.6 Magnitude  response  of  the  fractional  degree  Euler  IIR 
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differentiators  (FIR‐to‐IIR  transformation  using  Prony’s method)  and  Euler  FIR 

differentiator. 

 

 

Figure 4.7 Pole/zero  Plot  of  the  fractional  degree  Euler  IIR  differentiator 

(FIR‐to‐IIR transformation using Prony’s method) and Euler FIR differentiator. 

Plots associated with two fractional-degree, Euler-based differentiators 

(one FIR and one IIR) is shown in Figure 4.5 to Figure 4.7. The IIR fractional 

differentiator has a very good match to the desired FIR fractional differentiator, 

and the tiny error in the very-low-frequency-range is acceptable. The group 

delay of the IIR fractional differentiator has less variation due to differing input 

frequencies and is more stable than that of the FIR implementation, as is 

illustrated by Figure 4.6. It is also clear from consideration of the pole/zero plot 

(Figure 4.7) that all the poles are located inside the unit circle to ensure the 

system’s stability, though one pole is very close to the unit circle. 
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4.3 Modified	 design	 of	 fractional	 degree	

differentiators	

In this section, a new fractional–degree differentiator is designed, based on a 

feedback system. In [54], the use is presented of a feedback-based structure 

which permits the implementation of an accurate, stable estimate of a Caputo 

fractional differentiator, with automatic initialization, due to the fact that the 

feedback drives the system error toward zero after a short transient, irrespective 

of initial conditions. 

The fractional integrator operator vJ  and the fractional differentiator 

operator vD  of order v R  are now considered. It should be noted that vD  

is the left-inverse of the corresponding integral operator vJ , so that it satisfies 

the following ideal relationship: 

 v vD J I   (4.36) 

A fractional differentiator ( )DH z , with degree v , and an fractional 

integrator ( )JH z  are designed. It is assumed that the input is ( )X z , the ideal 

fractional order derivative of the input is ( )Y z , and that a feedback system is 

created as in Figure 4.8. (Note that the fractional differentiator and fractional 

integrator designed in Section 4.2, would be suitable examples for use as 

( )DH z  and ( )JH z ). 
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Figure 4.8 Fractional order differentiator structure with added feedback. 

 

Because the fractional order differentiator and integrator are connected in 

cascade, 

 1( ) ( ( ))vY z D X z   (4.37) 

and 

 2 1( ) ( ( )) ( ( ( ))) ( )v v vY z J Y z J D X z X z     (4.38) 

Therefore, 1( )Y z  is the approximation of the ideal fractional order 

derivative, and 2 ( )Y z  should approximate the input ( )X z . The feedback 

system is designed to reduce the error, ( )E z . Assuming that the transfer 

function of the fractional differentiator and fractional integrator, respectively, 

are: 

 1

1

( )
( )

( )D

N z
H z

D z
   (4.39) 

and 
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 2

2

( )
( )

( )J

N z
H z

D z
   (4.40) 

The output of the system is: 

 
1

1 2

1 2 1 2

( )
(1 )

1 ( ) ( )

( ) ( )
(1 )

( ) ( ) ( ) ( )

D

D J

H z
Y K

KH z H z

N z D z
K

D z D z KN z N z

 


 


  (4.41) 

The speed of convergence clearly depends on the proportional gain K . 

The limiting characteristics of the closed-loop system correspond to those of 

standard feedback systems:  

 1
1

1

( )
( ) ( ), 0

( ) d

N z
Y z H z K

D z
     (4.42) 

 2
2

2

( )
( ) ( ),

( ) j

N z
Y z H z K

D z
     (4.43) 

so that when 0K  , the system corresponds to an open-loop system with the 

same performance as the fractional differentiator ( )dH z . Clearly, the type of 

differentiator/ integrator and the feedback gain, K , must be selected according 

to both desired frequency-domain and time-domain performances. 

The design method can be described by the following sequence of steps:  

1) Design FIR fractional-degree differentiators and integrators. Some 

methods are described in Section 4.2.1, 4.2.2 and 4.2.3. 

2) Transform the resulting FIR fractional-degree differentiators and 

integrators to IIR filters. 

3) Implement the feedback system using equation (4.41). 
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Two examples are given to shown the performance of the closed-loop 

system. Three fractional differentiators of degree 0.5v   were designed using 

the feedback system of (4.41), and sample period 1T s , with the order of the 

FIR filter being 150N  , and the order of IIR filter being defined by 5m n  . 

The coefficients of the FIR fractional-degree differentiators are obtained from 

(4.33), Table 4.1 and (4.27), then transform from FIR filter to an IIR filter using 

Prony’s method (4.35). 

The first examples are constructed by an IIR Euler fractional differentiator 

and IIR Riemann-Liouville fractional integrator with different values of 

proportional gain K . For cases (a) 0.1K  , (b) 0.3K  , and (c) 2K  . The 

corresponding magnitude responses are shown in Figure 4.9. 

 

Figure 4.9 Magnitude  response  of  the  feedback  systems  constructed  by  an 

Euler FD and RL FI with different proportional gains,  K . 
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Figure 4.10     Magnitude  response  of  the  feedback  systems  constructed with 

different fractional differentiators and fractional integrators. 

The second examples of the FD are constructed as: a) Al-Alaoui fractional 

differentiator and Riemann-Liouville fractional integrator with 0.4K   b) 

Tustin FD and Euler FI, with 5K  ; c) Euler fractional differentiator and 

Riemann-Liouville fractional integrator with 0.3K  ; (see Figure 4.10). 

 Note that the gains chosen in each case were found experimentally to 

yield the best performance. In order to apply the two filters, ( )DH z 	and 

( )JH z , in feedback systems, they are both transformed from FIR filters to IIR 

filters, using Prony’s method, i.e. using (4.34) and (4.35). 
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Numerator b  Denominator a  

1.( ) 060 06b     6.(6 42) 08b   (0) 1.0000a   (6) 2.2568a   

 -6.(1 15) 52b    -1.(7 23) 49b   (1) -5.5882a   (7) -0.3743a   

17.(2 50) 42b   0.( ) 988 20b   (2) 13.3879a   (8) 0.0233a   

-26.(3) 4796b    -0.(9) 0144b   (3) -17.9144a   (9) 0.0010a   

 25.(4) 1405b   0.0003(10)b   (4) 14.5993a   (10)  -0.0001a   

-15.(5) 4126b    (5)  -7.3913a    

 

The very low d.c. gain (0.0523), obtained by setting 1z   is consistent 

with a differentiator characteristic. This, along with the pole positions indicates 

a differentiator-like operator.  

As expected, Figure 4.9 and Figure 4.10 show that the magnitude response 

performance of the fractional differentiators constructed by the feedback 

system is dependent on both the type of fractional differentiator/fractional 

integrator, and the proportional gain, K . The fractional differentiator with this 

feedback system is unconditionally stable when 0K  , because all the poles 

are inside the unit circle. For comparison, the plots also include some traces 

typical of the outputs of some traditional types of fractional differentiators. In 

particular, the case of the Euler fractional differentiator and Riemann-Liouville 

fractional integrator, with 0.3K  ,  exhibits the best magnitude response 

amongst these differentiators. Table 4.2 shows the coefficients of the proposed 

fractional differentiators, and Figure 4.11 is the associated pole/zero plot, which 
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exhibits that all the poles are located inside the unit circle, so that the feedback 

system is stable. 

 

Figure 4.11     Pole/zero  Plot  of  the  proposed  fractional  differentiator 

(constructed  by  an  Euler  fractional  differentiator,  and  Riemann‐Liouville 

fractional integrator). 

In order to test the differentiator performance in the time-domain, a 

sample period of 0.01sT   has been chosen. The fractional differentiators 

described above (i.e. constructed by an Euler fractional differentiators and an 

Riemann-Liouville fractional integrator with 0.3K  , and a standard Euler 

fractional differentiator (without feedback), are used. A standard time-domain 

function ݔሺݐሻ ൌ ݐሺ	௣ݐ ൐ 0ሻ is used as the input. Choosing 1.5p  , the ideal 

output should be: 0.5( ) ( ( )) 1.3293y t D x t t  . 
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Figure 4.12 Fractional derivative of 1.5( )x t t  for order 0.5v  . 

 

Figure 4.13 Fractional  derivative  of  ( ) sin( )y t t   with  addition  of  white 

Gaussian noise  ( 45dB)SNR    and order  0.5v  . 
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As a further test, a sine wave with added white Gaussian noise defined by 

signal-to-noise ratio of 45dbSNR  , is inputted to the differentiator. If the 

input sine function is ( ) sin( )y t t , 1t s  and zero otherwise, the ideal 

fractional derivative, after initial transients have decayed, is: 

 ( ( )) sin( )
2

vD y t t v


   (4.44) 

Figure 4.12 and Figure 4.13 show the time-domain performance of the 

fractional differentiators constructed by the feedback system. When compared 

to a standard Euler fractional differentiator, the fractional differentiators 

constructed by the feedback system exhibit better performance in the 

time-domain (Figure 4.12), especially when 1t s . Figure 4.13 shows that the 

system responds well to a noisy input (for which 45 dBSNR  ሻ, providing a 

good verification of the system’s stability. 

From the above example, the fractional differentiator constructed by an 

Euler fractional differentiator and an Riemann-Liouville fractional integrator, 

with a proportional controller ( 0.3)K  , was shown to provide better 

magnitude response performance than standard fractional differentiators (i.e. 

Euler, Al-Alaoui and Tustin fractional differentiators).  

It is noteworthy that many of the time-domain outputs of fractional 

differentiators presented in many journal and conference papers that consider 

the RL or GL definitions of fractional differentiators, as a means of illustrating 

the veracity of the implementation being proposed, would actually show huge 

disparities between actual and desired outputs if the plot have been extended 

over a longer time interval. An example was shown earlier in Figure 4.12, with 

significant error occurring when the time 1.5st   (about 150 samples) for a 

150th order FIR fractional differentiator.  For this FIR fractional differentiator, 
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the output is a function only of the past 150 samples. The physical fractional 

degree system is known to be a function of the initial value and derivatives, but 

these are not captured by the FIR approximation. For this example, when 

1.5st  , the FIR approximation is shown to lead to an output with little error 

due to the fact that it implicitly assumes zero initial conditions, but this 

assumption will lead to a large error when 1.5st  .   

A fractional differentiator can only be approximated by an FIR filter, as the 

output of the physical system will depend on the value and derivatives at the 

initial time, i.e. for a particular waveform to be processed by a fractional 

differentiator, a different initial (start) time will cause a different output 

waveform.  

To research this topic, a function  1.5
( ) 1f t t   1: 6t   second, is given 

as the input, but with different lower limits 1 1a   and 2 3a  . The fractional 

derivative with fractional degree 0.5v   of the input is obtained using the 

Grunwald-Letnikov definition (4.21) directly. The result on Figure 4.14 illustrates, 

(as expected) that the fractional derivatives are different when the lower limit, 

or initial conditions, are different.  

In [40], the Grunwald-Letnikov fractional derivative ( )v
a tD f t  of the 

power function  ( )
p

f t t a  , where p  is a real function, is given by the 

formula: 

    ( 1)

( 1)
p p vv

a t

p
D t a t a

v p
 

  
   

  (4.45) 

 where ( 0, 1)v p    or (0 1, )m v m p m     , and m  is an integer 

number. It can be found from (4.45) that the required lower limit is a  for the 
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Grunwald-Letnikov fractional derivative for the input power function 

 ( )
p

f t t a  . Therefore, for the given function  1.5
( ) 1f t t   presented 

above, the output with lower limit 1 1a   gives the correct Grunwald-Letnikov 

fractional derivative. 

When the fractional derivative is obtained using an FIR fractional 

differentiator, the effective lower limit a  will change with time. Therefore, 

huge disparities tend to occur between the actual and desired outputs when the 

plot is extended over a longer time interval. One can conclude that great care 

must be taken when utilizing time-domain traces to illustrate the veracity of a 

fractional-degree system, and the effects of the signal and its derivatives must 

be considered carefully. 

 

Figure 4.14     Inputs  and  outputs  for  fractional  derivative  of  degree  0.5v   

for different lower limit when using the Grunwald-Letnikov definition. 
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4.4 Discussion	 on	 Caputo	 fractional	 degree	

differentiators,	 and	future	work	

In many practical applications, such as in solid mechanics, rheology, and those 

relating to viscoelasticity,  mathematical modeling naturally leads to 

differential equations of fractional degree, and these involve the formulation of 

initial conditions to such equations. The utilization of physically interpretable 

initial conditions is required by some applied problems [40]. The initial 

conditions of Riemann-Liouville fractional derivatives only contain the limit 

values at the lower terminal t a , for example 

 

1
1

2
2

lim ( ) ,

lim ( ) ,

lim ( )

v
a tt a

v
a tt a

v n
a t nt a

D f t k

D f t k

D f t k




















  (4.46) 

where ik , 1, 2,i n   are given constants. Though the initial value problem 

can be solved mathematically, the solutions are practically useless, because 

when a real physical application is considered, the physical meaning of such 

fractional derivatives can be unknown, or very difficult to estimate [30]. 

The Laplace transform formula for the Caputo definition, with a limit of 

0a  , is given by [40]: 

  
1

1 ( )
0

0

( ) ( ) (0)
m

C v v v k k
t

k

L D t s F s s f


 



    (4.47) 

where 1m v m   . The Laplace transform of the Riemann-Liouville 

derivative is: 
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  
1

1
0 0 0

0

( ) ( ) ( )
m

v v k v k
t t t

k

L D t s F s s D f t


 




    (4.48) 

where 1m v m   . The main advantage of the Caputo derivative is that only 

the initial conditions: (0)f , ' (0)f , , ( 1) (0)mf  , i.e. the initial value of the 

function value itself and its integer-degree derivatives, have to be specified. 

Conversely, for the Riemann-Liouville derivative, the values of certain fractional 

derivatives at the initial point 0t   need to be specified.  

Another significant difference between the Riemann-Liouville and Caputo 

definitions is that, for a constant input (for example of magnitude cK ), the 

output of the Caputo definition is 0 , unlike that of the Riemann-Liouville 

definition, for which 

 0 ( )
(1 )

v
v c
t c

K t
D K

v




 

  (4.49) 

As an example, let ( ) 3f t   as the input function, the output being 

shown in Figure 4.15. The output corresponding to the Riemann-Liouville 

definition is calculated as 0.5( ) 1.6926y t t . It is noteworthy that, taking the 

lower terminal a    for both Riemann-Liouville definition and Caputo 

definition, the two definition are the same [40]. It means that for the study of 

steady state dynamical processes, the two definitions must give the same 

results. 

When designing fractional degree differentiators, it is clear that the 

outputs of differentiators based on the Riemann-Liouville definition and those 

based on the Caputo definition differentiator differ when the initial value of the 

input does not equal zero. It can be surmised that Caputo based fractional 

differentiators have better performance in time-domain of the reducing 
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transient effects, especially for a constant input signal and/or, more generally, 

when the initial value of the input differs from zero. 

 

Figure 4.15     Output of fractional derivative of degree 0.5 for a constant input, 

when using the Riemann‐Liouville definition. 

 

 

In [55], the relationship between the Caputo fractional derivative and the 

Riemannn-Liouville fractional derivative is given by: 

 
( )1

1

( )
( ) ( ) ( )

( 1)
a

im
v C v i v

a t t
i

y a
D y t D y t t a

i v






  
     (4.50) 

where 1m v m   , and a  is the initial value of the input function. In 

particular, for a the case of 0 1v  , 1m  , this definition can be simplified to: 
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 0.5 0.5 0.5( )
( ) ( ) ( )

( 1)
a

C
a t t

y a
D y t D y t t a

v
  

  
  (4.51) 

Therefore, a Caputo fractional differentiator can be designed as follows:  

 

Figure 4.16     Proposed Caputo fractional‐degree differentiator structure. 

 

where the initial condition  int ( ) ( ) / ( 1) ( ) vy t y a v t a       . To test the 

performance, a RL fractional differentiator of degree 0.5v   bas been chosen 

from (4.27) with order 150N  . The RL fractional differentiator is tested to 

provide a comparison with the Caputo fractional differentiator. The ideal output 

is computed from the definition directly, in (4.22), with the lower limit of 0a  . 

To illustrate the application of the Caputo fractional differentiator, its 

response to a number of typical inputs was considered: 

1
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where 0 :150t  . 
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Figure 4.17     Outputs of  fractional derivative of degree  0.5v    for different 

inputs when using the Caputo and Riemann‐Liouville definitions. 
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The outputs of fractional derivative of degree 0.5v   are shown on 

Figure 4.17. As expected, the output of the Caputo differentiator for a constant 

1( )f t  is zero, with a transient time of approximately 15 second. For the case of 

an input function 1.5
2 ( )f t t , the output of the Caputo differentiator, RL 

differentiator, and ideal output expected when using the Caputo definition, are 

almost coincident, because, the initial condition term 

 int ( ) ( ) / ( 1) ( ) vy t y a v t a        of (4.51) is zero when the initial value of the 

input function, (0) 0f  . When the initial value is not zero, a d.c. component is 

added to the input function 1.5
3 ( ) 30f t t  . The Caputo differentiator exhibits 

almost ideal output, while an obvious difference can be found between the 

Caputo and RL differentiators. For the case of 4 ( ) sin(0.5 ) 10f t t  , the 

situation is similar to that pertaining to 3( )f t , with a difference between the 

Caputo and RL differentiators, and a non-zero initial condition.  

 

4.5 Conclusion	

In this chapter, some concepts and definitions of fractional calculus have been 

reviewed, the Riemann-Liouville, Grunwald-Letnikov, and Caputo definitions 

were demonstrated. 

As the fractional differentiators to be implemented are to be in the form of 

FIR or IIR filters, the transfer function and expansion techniques to develop such 

rational structures were also described, thereby illustrating some existing 

realizations of fractional differentiators, of the basic Riemann-Liouville-based 

and Grunwald-Letnikov based differentiators. It is shown that the magnitude 

response performance at high frequency is not satisfactory, under the above 
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definitions of the FD. The method of designing FIR fractional degree 

differentiators based on a Newton-Cotes numerical integration rules is 

introduced. Then, the transfer function with tuning parameter is given for 

computing the required filter coefficients. In addition, the FIR differentiators can 

be transformed to IIR differentiators by using some least-squares methods, such 

as the Padé approximation or Prony’s method. 

A new feedback system is constructed in this Chapter, to improve the 

fractional degree differentiator, both in the frequency-domain and time-domain. 

Specifically, it is shown that a Riemann-Liouville-based fractional differentiator 

can perform well in a feedback structure. A fractional differentiator constructed 

by an Euler fractional differentiator and RL fractional integrator in a feedback 

structure with a suitably gained proportional controller ( 0.3K  for the 

structure presented) was shown to provide better magnitude response 

performance than standard fractional differentiators (i.e. Euler, Al-Alaoui and 

Tustin FD fractional differentiators). The proposed structure shows an 

unconditionally stable characteristic for a positive proportional feedback 

constant, 0K  . This feedback system was constructed based on the standard 

Riemann-Liouville and Grunwald-Letnikov definitions, which can be designed 

and implemented easily. 

Then, the Caputo fractional degree differentiator is designed that is based 

on the RL fractional degree differentiator. The proposed differentiator is 

obtained by cascading a function that models the behavior of the system at the 

initial condition to an RL fractional differentiator. Then, some time-domain tests 

were presented which show that the FIR Caputo fractional differentiator has the 

desired output, based on the Caputo definition.  

A physical understanding of fractional differentiators and the FIR or IIR 

implementations of such systems has been a focus of research in recent years. In 
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this chapter some consideration is given to the limitations of some such systems. 

For example, the problem of huge disparities found between actual and desired 

outputs of a FIR fractional differentiator (using GL or RL definitions), if the 

output have been extended over a longer time interval, is discussed. The reason 

is that the effective initial conditions pertaining to the application of the FIR 

approximation (or an IIR filter that is based on the FIR sequence) of the 

differentiator changes as time increases.  
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Chapter 5 Applications  of  Digital 

Differentiators 

There are many applications of digital differentiators. In this chapter, two 

important applications will be introduced. Specifically, the first of these involves 

the application of second degree differentiators in the estimation of the 

frequency components of a power system, while the second example concerns 

the application of fractional differentiators for image processing, edge detection 

applications.  

 

5.1 Frequency  estimation  using 

second‐degree differentiator 

Good-quality frequency estimation of signals is pertinent to power system 

operation, control and protection. Therefore, algorithms to implement such 

estimation systems are frequently used. In [56], a novel algorithm for an IIR 

second-degree differentiator has been developed and implemented for on-line 

estimation of the fundamental frequency of non-sinusoidal signals. This method 

has a simple structure, wide range of application, and good robustness against 

sampling frequency variation. The authors point out that compared with other 

methods of frequency estimation (e.g. enhanced phase-locked-loop systems, as 

proposed by Karimi-Ghartemani and Iravani [57][58][59][60]), the only limitation 

of Karimi-Ghartemani and Iravani’s proposed method is its slightly reduced 

accuracy (maximum error of approximately  3 mHz) under static sinusoidal 

conditions. 
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5.1.1 Review  of  second‐degree  IIR  differentiator 

based algorithms 

This section provides an overview of the second-degree IIR- differentiator-based 

algorithm for frequency estimation, as described in [56].  

Let, ( )s t  represent a continuously-measured non-sinusoidal signal: 

 max( ) sin(2 ) ( )
k k

k

s t S kft t       (5.1) 

where ( )t  represents zero-mean random noise, f  is the fundamental 

frequency, and maxk
S  and k  are the peak value and phase angle of the thk  

harmonic of the signal. A pre-filter was added to reduce the effect of harmonics 

and of additive noise. Therefore, the signal can be rewritten, approximately, as: 

 max1( ) sin(2 ) ( )F F Fs t S kft t       (5.2) 

where F  and ( )F t  are the new phase angle and noise of ( )Fs t , 

respectively. 

The second-degree differentiation of (5.1) is: 

 2 2
max1( ) 4 sin(2 ) ( )FD F FDs t f S kft t         (5.3) 

where ( )FD t  is the noise signal after second-degree differentiation. 

If the waveform above is discretized with a finite number of significant 

harmonics (with maximum order M ) at sampling frequency sf , (5.1), (5.2) and 

(5.3) can be rewritten as: 
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 max
1

( ) sin(2 ) ( )
k

M

k
k

s n S kfn n  


     (5.4) 

 max1( ) sin(2 ) ( )

( ) ( )
F F F

FT F

s n S kfn n

s n n

  


  
 

  (5.5) 

 
2 2

max1( ) 4 sin(2 ) ( )

( ) ( )
FD F FD

FDT FD

s n f S kfn n

s n n

   


   

 
  (5.6) 

where 

 max1( ) sin(2 )FT Fs n S kfn     (5.7) 

and 

 2 2
max1( ) 4 sin(2 )FDT Fs n f S kfn       (5.8) 

( )FTs n  and ( )FDTs n  are the true samples of ( )Fs n  and ( )FDs n , 

respectively, showing the theoretically correct sinusoidal values. The discrete 

errors ( )n , ( )F n  and ( )FD n  correspond to the values of ( )t , ( )F t , 

and ( )FD t  at discrete time index n , with additional noise because of 

quantization. 

Sarkar and Sengupta, [56], outline an algorithm that achieves fundamental 

frequency estimation: 

 
  

  

1

0
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( )1
( )

2

A

F FDj

A

Fj

s n j s n j
f n

s n j








  







  (5.9) 

where A  is a constant that plays an important role in the accuracy and 

computational load associated with the proposed algorithm. The authors point 

out that the variation of estimation errors is a function of the variation of a 
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parameter A , which is cyclic in nature, and is a minimum when the number of 

samples per cycle is an integer. The corresponding value of A  is defined as: 

 ( ) round to the nearest integer
2 ( 1)

sfA n
f n

 
   

  (5.10) 

In the numerator of (5.9), the absolute value has been considered, in order 

to avoid any discrepancy because of slight phase angle error. The block diagram 

of the fundamental frequency estimation algorithm is shown in Figure 5.1. 

 

Figure 5.1 Block diagram of the frequency estimation algorithm. 

 

The following elements are considered when designing the frequency 

estimator: 

 The pre-filter utilizes a low-pass Chebychev-1, filter of order four, with a 

pass-band ripple of 0.001 dB, and a cut-off frequency of 50 Hz. A sample 

frequency 6.4 KHz is chosen. 

 Use is made of the second-degree low-pass differentiator introduced in [11], 

for which the transfer function is: 
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2 2 2 4

2 1 4 1 2 3 4
2

1 (1 ) 3.72 7.44 3.72
( )

(1 ) 1 3.8569 5.5785 3.586 0.8644SDDD
s

z z z
H z G

T r z z z z z

  

    

  
 

    
 

when 2( 3.72 0.9642358)G r   and when it is assumed that 1sT   

 The sample frequency is selected to be 6.4 KHz.  For a typical fundamental 

sinusoidal signal of frequency 50 Hz, this corresponds to : 

6400
( ) 64

2 ( 1) 2 50
sfA n

f n
  

 
 

A simulation of the algorithm is presented below. The results generated by 

the simulation are used to evaluate the performance of the system. In this test, 

sinusoidal signals with unity amplitude, and frequencies of 50 Hz, 51 Hz and 40 

Hz, have been provided as inputs to the algorithms, as shown in Figure 5.2. 

 

Figure 5.2 Frequency  estimates  obtained  from  the  algorithm  of  Sarkar  and 

Sengupta for 50 Hz, 51 Hz and 40 Hz static sinusoidal signal inputs. 
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For the 50 Hz sinusoidal test signals, the proposed method provides 

almost zero steady-state error. However, for input frequencies of 51 Hz and 40 

Hz, the results show small oscillatory outputs in steady-state and/or offset 

errors, respectively. Specifically, a small offset error will exist, and in the case of 

a 51 Hz input, a small oscillatory component exists in the steady-state frequency 

estimate. This is because, from (5.10), the value of A chosen will be calculated 

using a  floor or ceiling function, so that the estimate of A  will be in error 

when / 2 ( 1)sf f n  is not an integer. In this case, a small oscillation will be 

evident in the output of the algorithm, such as when the frequency is 51 Hz. The 

steady-state error that occurs at an input frequency of 40 Hz, is caused by the 

pre-filter, which has a pass-band ripple of 0.001 dB in this case.  

 

Figure 5.3 Absolute maximum error in frequency estimates of 50Hz sinusoidal 

signals as A is allowed to vary. 
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Figure 5.3 shows the absolute maximum error of the input of 50 Hz 

sinusoidal signals. As the described in above section, the error is minimum when 

the number of samples per cycle is an integer. 

Another test is used which considers a step change of the input frequency.  

A sinusoid of unity amplitude, for which the frequency drops suddenly from 50 

Hz to 40 Hz at time 3t s  is used for this test. The resultant plot, Figure 5.4, 

shows that the proposed method provides fast convergence, and a response 

time of less than 50 ms. 

 

Figure 5.4 Frequency estimates during a step change in frequency. 
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5.1.2 Improved  design  of  second‐degree 

differentiator based algorithms 

In [56] the algorithm of Sarkar and S. Sengupta, described in the previous 

section, the authors proposed the use of a the minimum-phase second-degree 

IIR differentiator to obtain the double derivative signal ( )FDs t . There is a small, 

but variable group delay, for this minimum phase differentiator (about 0.04 

samples), as shown in Figure 5.5. This delay between the input signal ( )Fs t  and 

its double derivative signal ( )FDs t , and more particularly its variation, will cause 

some error for the algorithm (5.9). 

 

Figure 5.5 Group  delay  of  the  minimum‐phase  second‐degree  IIR 

differentiator. 

 

To solve this problem, the IIR differentiator is replaced by a linear phase 

second-degree FIR differentiator. As shown in Figure 5.6, a delay must be added 
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removed because the FIR differentiator has constant group delay. Note that the 

frequency estimation output of the algorithm is not operating in a 

high-frequency closed-loop control system, so a small constant delay is 

immaterial to the application of the frequency estimator.  

 

Figure 5.6 Block  diagram  of  the  frequency  estimation  for  the  improved 

algorithm. 

 

Figure 5.7 Comparison of frequency estimates of 50 Hz sinusoidal signals of IIR 

differentiator and FIR differentiator, for the case of  1A  . 
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For example, a 20th order second-degree FIR differentiator, with normalized 

frequency 0.2, is used in this test. This differentiator was described in Section 

3.3. The proposed FIR differentiator has a constant group delay of ten samples. 

The pre-filter utilizes a low-pass Chebychev-1 filter, of order four, with a 

pass-band ripple of 0.001 dB, and a cut-off frequency of 50 Hz. This filter 

matches that proposed by Sarkar and S. Sengupta in [56]. 

In the first test, the value of A  was chosen as one. This choice implies 

that no averaging effect is included in the A-based algorithm. As shown in Figure 

5.7, the frequency estimates obtained through use of an FIR differentiator 

provides zero steady-state error. The equivalent method that makes use of an IIR 

differentiator exhibits large errors with a period (for a 50 Hz input), of 0.01 s, 

which always correspond to half a signal period. It can be concluded that for this 

type of input, at least, the error caused by the delay can be fully removed when 

using the linear FIR differentiator. 

 

Figure 5.8 Frequency estimates provided by new algorithm of 50 Hz, 51 Hz and 

40  Hz  static  sinusoidal  signals,  using  linear  phase  second‐degree  FIR 

differentiator. 
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Figure 5.9 Comparison of  frequency estimates during  step  frequency  change 

(at  3t s ). 

 

Figure 5.10 Comparison of  frequency estimates during  step  frequency  change 

with different values of A , assuming an FIR differentiator. 
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Figure 5.9 shows the comparison of frequency estimates during step 

frequency changes. There is very little difference between the methods using an 

IIR differentiator and FIR differentiator. However, the FIR-based method does 

have a specific delay, due to the group delay of the FIR differentiator being ten 

samples. 

In another test, the averaging value of A  is changed, using 64A   as a 

base (initial) value, then choosing 20A   and 200A  , to investigate the 

influence of A . The FIR differentiator has been chosen. It is shown on Figure 

5.10 that, the smaller the value of A , the faster the convergence of the 

algorithm, and the smoother the transition. 

In order to evaluate the sensitivity of the algorithm to input noise, a further 

test was implemented. A sinusoidal 50 Hz signal with zero-mean white Gaussian 

noise  (signal to noise ratio, 30SNR  ) has been used as input test signals. 

The result, shown on Figure 5.11, makes it clear that increasing A   results in a 

reduced absolute maximum steady-state error.  

It can be concluded from the results above that the choice of A  plays an 

important role in this algorithm. Compared with the use of IIR differentiator, the 

FIR-based method exhibits better selectively on the choice of value of A .  A 

large value of A  provides small maximum steady-state errors, with an 

improved noise tolerance of the frequency estimation algorithm, and a smooth 

transition band, but it is associated with a slow convergence, due to the 

effective averaging being over an extended period. 
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Figure 5.11 Comparison of  frequency estimates of 50Hz sinusoidal signal with 

added  white‐noise,  for  different  values  of A ,  when  using  the  FIR‐based 

frequency estimation algorithm. 

 

To investigate the effect of harmonics on the performance of the proposed 

method, an input of 50 Hz, with additional harmonic components, has been 

used, as follows: 

        ( ) sin 15 0.2sin 3 145 0.1sin 5 75 0.05sin 115v t t t t t               (5.11) 

 

 

 

 

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
49

50

51
A=64

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
49

50

51

E
st

im
at

ed
 F

re
qu

en
cy

 (
H

z)

A=20

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
49

50

51

Time (s)

A=200



 

150 

 

The pre-filters have chosen as following Table: 

Table 5.1. Filter parameter of pre-filter 

Pre-filter Order Pass-band 

ripple 

Stop-band 

ripple 

Cut-off 

frequency 

LP Chebyshev Type 1 4N   0.001 dB N/A 50 Hz 

LP Elliptic 4N   1 dB 80 dB 50 Hz 

BP Chebyshev-Type 1 4N   0.001 dB N/A 40 Hz to 60 Hz 

 

In the above tests, the LP Chebyshev-Type 1 filter was chosen as the pre-filter 

used in [56]. 

It is shown in Figure 5.12 that the Elliptic pre-filter provides the least 

minimum steady-state error amongst these filters. This is because the harmonic 

components have been effectively removed by the pre-filters. For example, the 

normalized frequency of third harmonic component of the input signal is at a 

normalized frequency 3 / (sample frequency / 2) 3 50 / (6400 / 2) 0.0469    . 

For the selected filters, it can be found from Figure 5.13 that the magnitude 

responses at a normalized frequency of 0.0469 are -4.5db, -54.6db and -19db 

respectively. The elliptic pre-filter can best remove the harmonic components. 

When deciding on a rule for the choice of the pre-filter, can be concluded that: 

(1) the accuracy of the frequency estimate depends on the magnitude of the 

pre-filter attenuation at the fundamental frequency (for the constant frequency, 

sinusoidal inputs); and (2) for signals with significant harmonics and/or noise, 

the attenuation of the pre-filter at higher frequencies is also important. 
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Figure 5.12 Comparison of  frequency estimates  for 50 Hz  input, with different 

pre‐filters. 

 

Figure 5.13 Magnitude  response  of  the  pre‐filters  used  in  the  frequency   

estimators. 
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5.2 Image  Edge  detection  using 

differentiator 

Edge detection of an image is one of the most important tasks in digital image 

processing. It is the foundation of high-level image processing, incorporating the 

understanding and analysis of images, and computer vision [62]. The basic idea 

of most available edge detectors is to locate some local object-boundary 

information in an image, by the thresholding and skeletonizing of the 

pixel-intensity variation map [69]. The edge detection process serves to simplify 

to analysis of images by drastically reducing the amount of data to be processed, 

while at the same time preserving useful structural information about object 

boundaries [61]. Therefore, in image processing, methods obtaining the image 

edge remain a focus for research.  

In image processing, edge detection often utilizes integer-degree 

differentiation operators, such as first degree operators that use the gradient or 

second degree operators via the Laplacian [61] [63] [65]. In [62] [34] [64], some 

methods based on fractional degree operators are introduced.  

 

5.2.1 Review  of  frequency‐estimation  algorithms 

based on second‐degree IIR differentiators   

In this section, some classical and recently-reported edge detectors are 

introduced, including the Prewitt [68], Sobel [67], Alaoui FIR [65] and Alaoui IIR 

[66]. Most of the edge detectors need to compute the derivatives of the image 

intensity function. It is assumed that the distance between two samples is the 

same along the horizontal and vertical directions, equal to  . The following are 
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the approximations of the first-degree derivative: 

 

 

 

 

1
( ) ( ) Forward difference

1
( ) ( ) Backward difference

1
( ) ( ) Central difference.

f n f n

f n f n

f n f n

    


   


     


  (5.12) 

Unlike the forward and backward differences, the central difference is 

symmetric and provides a more precise approximation of the first derivative [1]. 

 

 

5.2.1.1 Sobel	and	Prewitt	edge	detector	

The Sobel [67] and Prewitt [68] edge detectors represent the most basic masks 

used in edge detection. These can be applied by smoothing the image before 

computing the derivatives, in the direction perpendicular to the derivative. In 

many applications, the operators are used for standard gradient computation, to 

retrieve the image gradient and edges. A Sobel edge detector is given as follows: 

 
1 0 1

2 0 2

1 0 1
SxG

 
   
  

  (5.13) 

This filter computes the partial derivative in the x  (horizontal) direction. 

Similarly, a similar filter can compute the partial derivative in the y  (vertical) 

direction: 

 
1 2 1

0 0 0

1 2 1
SyG

   
   
  

  (5.14) 
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The Prewitt edge detector is obtained in the same fashion as the Sobel mask in 

the x  (horizontal) direction: 

 
1 0 1

1 0 1

1 0 1
PxG

 
   
  

  (5.15) 

and in the y  (vertical) direction: 

 
1 1 1

0 0 0

1 1 1
SyG

   
   
  

  (5.16) 

Both of the above edge detectors are based on the discrete approximation 

of the central differentiators. The Prewitt edge detector is based on the central 

difference differentiator of coefficients [ 1 0 1]h   , with a low-pass 

smoothing filter, [1 1 1]. The Sobel edge detector is obtained from the same 

differentiator, with a differentiator smoothing filter of [1 2 1] . 

The gradient magnitude is obtained by combining the partial derivative in 

the  x  and y  directions, as  

 2 2( ) ( )x m y mG G I G I      (5.17) 

where mI  is the gradient of a given image, and  is the signal convolution 

operation. 
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5.2.1.2 Al‐Alaoui	IIR	edge	detector	

Traditional edge detection relies on mask edge detectors based on low-order 

FIR differentiators to perform efficient edge detection. In [66], Al-Alaoui 

presented a method of employing a direct approach to edge detection, to 

perform edge detection without using masks. 

Some IIR differentiators are given in [66], which are obtained by 

interpolating two Newton-Cotes numerical integration rules, as described in 

Section 2.2.6. The transfer functions of the IIR differentiators are: 

 1

0.3638( 1)
( )

1 / 7Alaoui

z
H z

z





  (5.18) 

 
2

2 2

( 1)
( )

0.611 0.0932Alaoui

z
H z

z z




 
  (5.19) 

 
2

3 2

3( 1)
( )

3.7321( 0.5358 0.0718)Alaoui

z
H z

z z




 
  (5.20) 

 

The The edge detectors are achieved by computed the partial derivatives in the 

x - and y- directions, and then combining them using (5.17). 

 

 

5.2.1.3 Al‐Alaoui	FIR	edge	detector	

Al-Alaoui approximated the Al-Alaoui first-order IIR differentiator via an FIR 

filter. The FIR approximation of the Al-Alaoui IIR differentiator 1 (the transfer 

function is given in (5.18)) is designed in [65]. The resulting transfer function of 

the FIR Al-Alaoui differentiator is given: 
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 2( ) 0.36 0.42 0.06ALaouiH z z z    (5.21) 

Therefore, the Al-Alaoui edge detectors can be obtained from (5.21), with 

smoothing filters [1 1 1], [1 2 1]  and [1 3 1] .  In this section, the 

Al-Alaoui edge detector includes the smoothing filter. For example, the 

smoothing filter [1 1 1]  leads to the following mask in the x direction:  

 

  
0.36 6 6 6

6
0.42 1 1 1 7 7 7

100
0.06 1 1 1

AlaouixG

   
           
      

  (5.22) 

And for y  direction 

  
1 6 7 1

6
1 0.36 0.42 0.06 6 7 1

100
1 6 7 1

AlaouiyG

   
         
      

  (5.23) 

 

 

5.2.1.4 CRONE	edge	detector	

The CRONE edge detector is introduced in [34], which based on fractional 

degree differentiation. The CRONE edge detector with mask size 2 1m   in 

horizontal direction can be written as: 

  1 10m ma a a a       (5.24) 

and for the vertical direction: 

  1 10
T

m ma a a a       (5.25) 
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where 

 
 

   

1

1 1
( 1)

!
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v v v k

k

 
   

 
  

 


  (5.26) 

The coefficients of the CRONE edge detector utilize the Grunwald-Letnikov 

fractional derivative, as provided in (4.16). v  is the fractional degree, which can 

be a value between 1 and 2 to improve edge detection selectivity, and it can also 

be a number between -1 and 1 favors robustness of immunity to noise. 

 

 

5.2.1.4 Edge	detector	results	

In this Section, a noise-free grayscale Lena image is considered as the input 

image. In Figure 5.14, Figure 5.15 and Figure 5.16, the output results 

corresponding to the edge detectors are shown. All the edge detectors 

performed edge detection successfully, and with seemingly good performance. 

In Figure 5.14, the Al-Alaoui IIR edge detector 1 show worse sensitivity of edge 

detection compare with other Al-Alaoui IIR edge detectors. In Figure 4.16, the 

Al-Alaoui FIR edge detector also has the same disadvantage, because it is based 

on the Al-Alaoui IIR edge detector 1. Figure 5.16 is the comparison of CRONE 

edge detectors with different fractional degree. It can be concluded that a 

CRONE detector with high fractional degree is sensitivity to the detail, but miss 

some particular edges. Although many edge detection methods have developed 

in the past years [69][70][71], the performance evaluation of the edge detector 

results is still a challenging problem.  
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Figure 5.14 Edge detection results of Al‐Alaoui IIR edge detector. 
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Figure 5.15 Edge detection results using mask. 
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Figure 5.16 Edge detection results for the CRONE mask. 
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5.2.2 Direct Approach to Image Edge Detector Using 

IIR Fractional Differentiators 

The method to design in [66] is based on the first-degree differentiator. In this 

Section, the first-degree differentiators will be replaced to fractional 

differentiators. 

In the first example, fractional differentiators with different degree, 

0.4v  , 0.8v  , 1.2v   and 1.6v   are selected to design the edge 

detectors. The coefficients of FIR Grunwald-Letnikov fractional differentiators 

can be computed from (4.26), then transferred to IIR filters using (4.34) and 

(4.35) with fifth order 5m n  .  

 

Figure 5.17 Magnitude  response  of  IIR  Grunwald‐Letnikov  fractional 

differentiators with different degree. 
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Figure 5.18 Edge  detector  based  on  Grunwald‐Letnikov  fractional 

differentiators with different degree. 

Figure 5.17 shows the magnitude characteristics of the fractional 

differentiators, while Figure 5.18 shows the performance of the corresponding 

fractional differentiators for edge detection applications. The fractional 

differentiators with low degree can exhibit more detail of the original image 

characteristic, such as for 0.4v  , and the fractional differentiators with high 

degree show the characteristic of the accuracy edge information. A beneficial 

characteristic of using a fractional differentiator of low degree for edge 

detection is that the viewer can still see many of the characteristics of the 
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original image, while edges are enhanced.  A fractional differentiator with high 

degree has large magnitude response at high frequencies, as is evident in Figure 

5.17. Therefore, the fractional differentiator with degree 0.8v   is a suitable 

solution for edge detection. 

 

The next example compares the first-degree IIR differentiator labelled by 

Al-Alaoui as differentiator 3, defined in [66] with transfer function (5.20), and 

two Grunwald-Letnikov fractional differentiators with degree 0.8v  , one of 

which is a third order FIR fractional differentiator (the length of mask will be 5), 

while the other is a fifth order IIR fractional differentiator. A low-pass first 

degree differentiator with cut-off frequency 0.52c   is also adding to the 

comparison, for which the filter coefficients are taken from Table 2.3.  

 

Figure 5.19 Magnitude response of IIR differentiators. 
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Figure 5.20 Group delay of IIR differentiators. 

 

 

The Figure 5.19 shows the magnitude responses of the IIR differentiators, 

which have similar magnitude response in the high frequency range. However, 

the Figure 5.20 shows that these IIR differentiators have different group. The 

Grunwald-Letnikov fractional IIR differentiator shows better frequency 

responses than the FIR one, as expected due to the relative low order of the 

latter.. The fractional differentiators have the smallest group delay amongst the 

differentiators considered, about 0.5 samples, while the first degree 

differentiator shows about 1 sample delay at low frequencies. This will cause a 

problem when computing the gradient using (5.17). The position of 
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the edge detectors using masks that were considered in Section 5.2.1.4. 1The 

resulting images are shown in Figure 5.21. The Grunwald-Letnikov FIR edge 

detector is a CRONE edge detector. When compared with the Grunwald-Letnikov 

IIR edge detector, the CRONE edge detector exhibits almost the same detection 

accuracy. 

 

                                                       

1 While zero-phase filtering has a useful role in the filtering of off-line data, it is not applicable 

to real-time signals. However, zero-phase high-pass filtering is worthy of consideration for the 

processing of static images.   
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Figure 5.21 Edge detector based on IIR and FIR differentiators. 

 

The last example is the comparison of fractional differentiators with 

different definitions, specifically the Riemann-Liouville definition and Caputo 

definition. The coefficients of the Riemann-Liouville fractional differentiator can 

be computed from (4.27), and the coefficients of the Caputo differentiator from 

(4.50) with degree 0.8v  .  
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Figure 5.22 Edge detector based on Riemann‐Liouville  fractional differentiator 

and Caputo fractional differentiator. 

 

Figure 5.23 Difference  between  the  Riemann‐Liouville  and  Caputo  fractional 

differentiators. 
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It is hard to find the differences between the two edge detectors from 

Figure 5.22. Thus, the Figure 5.23 shows the difference between the edge 

detectors. There are some “white pieces” on the left of Figure 5.23. On 

one-dimensional differences, an initial value of an image is usually not zeros. It is 

shown on Section 4.4 that the Caputo derivative has better performance when 

the initial condition has a DC component. The Caputo derivative can reach  

steady-state with a shorter transient (than that proposed in other works). 

Therefore the Caputo edge detector has a better visual appearance than the 

Riemann-Liouville edge detector.  

 

 

Figure 5.24 Original image of bike. 

 

Another image is used to test the performance of the edge detectors. The 

original image is shown in Figure 5.24. The edge detectors to be tested include 

the Prewitt edge detector, Al-Alaoui IIR edge detector (5.18), Al-Alaoui FIR dege 

detector (5.22), CRONE edge detector (5.24), Grunwald-Letnikov IIR edge 
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detector Caputo edge detector, and the fractional edge detectors considered,  

with degree 0.8v  . Figure 5.26 shows the resulting image with a threshold of 

0.15, (so that each pixel with gray value between 0.15 and 1 is displayed with a 

value of 1. Theoretically, the resulting images of the Al-Alaoui IIR and Al-Alaoui 

FIR edge detectors, CRONE and GL IIR edge detectors should have the same 

result, because they are based on the same transfer function. However, some 

differences can be found on Figure 5.25 and Figure 5.26. Because a low-order 

IIR filter can outperform a higher order FIR filter, the IIR detector is more 

sensitive to the detail. Figure 5.27 shows the edge detection of a noisy image 

(noise has zero mean and a variance of 0.03). The CRONE edge detector show 

better noise reduction, but some edge information is missing. The IIR GL edge 

detector and the Caputo edge detector show similar resulting image, but the 

Caputo edge detector has better performance at the edge of the image. If the 

edge detector is to retain more details, the noise of the image cannot be 

effectively suppressed. As expected, the stronger is the noise immunity, the 

lower is the detection accuracy. 
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Figure 5.25 Edge detection results. 
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Figure 5.26 Edge detection results with Threshold = 0.15. 
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Figure 5.27 Edge detection results with Threshold = 0.15 for noisy image (mean 

0 and variance 0.03). 
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5.3 Conclusion 

In this chapter, two applications of the digital differentiator are introduced. The 

first application concerns the frequency estimation of a power system using 

second degree differentiators. A novel algorithm using an IIR second-degree 

differentiator has been developed and implemented by A. Sarkar and S. 

Sengupta [56]. In this algorithm, the performance of the frequency estimator 

depends on the pre-filter, second-degree differentiator and the value of the 

parameter A , which is a constant that plays an important role in the accuracy 

and computational load associated with the proposed algorithm. There is a 

small, but variable group delay, for the second-degree IIR differentiator, which 

is the main reason that the frequency estimator provides an oscillatory output 

error, which is frequency dependent. To overcome this problem, a linear phase, 

FIR second-degree differentiator is used instead of the IIR differentiator, and the 

frequency estimation algorithm is improved by adding the known and constant 

delay associated with the FIR filter.  The result shows that the FIR based 

method exhibits better selectively on the choice of the user-chosen parameter 

A .  

The other application considered is of edge detection using a differentiator. 

In Section 5.2, some edge detectors have been introduced. A direct approach 

method to design the edge detector based on an IIR differentiator was 

introduced by Al-Alaoui [66]. Comparison with some  classical, mask-based 

edge detectors showed that the IIR edge detectors perform better than the FIR 

edge detectors, though (and because) the IIR filter can have a lower order. From 

the comparisons shown in this chapter, the FIR edge detector, using a mask, 

exhibits a clearer edge, because of the gradient of the IIR edge detector using 

(5.17). The position of corresponding pixel gradient in x  direction and y  
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direction will shift due to the group delay of the differentiators. Therefore, a 

fractional degree differentiator is using in this method to instead the first degree 

IIR differentiator. The proposed fractional differentiator has very small group 

delay, about 0.5 samples, which leads to better performance of the edge 

detector. Another advantage of using the fractional differentiator is that the 

filter can be changed to suit the given image. For the lena image, the fractional 

differentiator of degree 0.8v   shows best performance for edge detection. 

When examining images, one possible optimization technique would be to use a 

slider to allow an operator to see the effect of varying the degree.  

The use of the Caputo edge detector is designed to improve to 

performance of edge detection, especially for the edge of an image. Fractional 

edge detectors have better selectivity than classical edge detector with integer 

degree. The GL IIR fractional edge detector is more sensitive to detail than the 

CRONE edge detector with same degree and mask length. When compared to 

previous applications of fractional differentiators for edge detection, it is found 

that the Caputo edge detector can improve the edge detection because of the 

faster attenuation of initial transients caused by non-zero initial conditions. This 

is of concern for real-time application of edge-detection algorithms.    
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Chapter 6 Conclusion  and  Future 

Work 

This thesis will conclude by discussing the advantages of some of the new 

algorithms and techniques suggested in this work, as well as some suggestions 

for future work that will build upon that reported in the previous chapters. The 

thesis concentrates on four topics. 

Firstly, when considering first degree and second degree differentiators, 

the proposed low-pass differentiators were designed by optimizing the 

magnitude response, group delay and variance. The particular transfer functions 

of the proposed differentiator are given in (2.39) and (3.21). Because a number 

of desired characteristics of a differentiator were assumed in advance (e.g. sum 

of the coefficients, the response to an input of constant slope, or the 

anti-symmetry of coefficients implicit in a linear-phase FIR or close-to-linear 

phase IIR differentiator, the number of filter coefficients to be optimized was 

minimized. The proposed low-pass differentiators exhibit many advantages in 

the frequency domain, such as high accuracy in the pass band, steep roll-off, and 

almost linear phase response for IIR differentiators. In particular, when 

compared with the Al-Alaoui low-pass differentiator, for which the filter 

coefficients are listed in Table 2.1, the proposed differentiators show better 

accuracy in the pass band, and steeper roll-off.  

There are some previously described methods of designing 

differentiators based on optimization technology, for which the magnitude 

response over the full frequency band is obtained by approximating some 

existing differentiators. Examples include the maximally flat low-pass digital 

differentiator, or the differentiator design based on the Chebyshev method. 
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Because the low-pass characteristic of the proposed differentiator is achieved by 

minimizing the weight vectors relating to the various filter characteristics, 

including the variance of the filter (which is the measure of the average power 

output for a white-noise input), the new method has better selectivity in the 

design of the frequency response. Compared with the maximally flat, low-pass 

digital differentiators, the proposed differentiators show worse accuracy in the 

pass band. However, both the proposed and maximally flat designs show small 

passband error, so that it is shown in both cases that error due to coefficient 

quantization in a fixed-point system is likely to be the limiting factor for the 

accuracy of the differentiator output. 

Chapter 3 of this thesis concentrated on second-degree differentiators, a 

topic that has not been widely studied to date. It was found that some new 

design rules relating to the required time-domain performance of such 

differentiators (e.g. for constant slope and parabolic inputs), and the application 

of the optimization algorithm, facilitated the design of new second-degree 

differentiators for both FIR and IIR systems. As with the first-degree 

differentiators, time- and frequency-domain results show the good performance 

of the proposed systems.  

A second topic of interest in the design of digital differentiators concerns 

the optimization algorithm chosen for obtaining the coefficients of the proposed 

low-pass differentiators.  In this work, they are obtained by an algoithm which 

is based on a sequential quadratic programming (SQP) method. This algorithm is 

achieved by the solver fgoalattain, which can be found in the Matlab 

Optimization toolbox. The advantage of using this optimization algorithm is that 

various objectives are considered in the optimization, with different weight 

vectors.  Therefore, the resulting differentiator will have exactly constrained 

magnitude and phase response performance, as desired. However, a potential 
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problem of using this optimization algorithm is the need to find suitable starting 

points (initial ‘guess’ for the filter parameters), in order to guard against the 

problem of local minima. A simple and practical method of achieving this for the 

differentiators studied was outlined in Chapter 2. It would be useful if a more 

general and provable technique of selecting these start points could be found. 

Other potential future work associated with this optimization work would 

consider the application of some other algorithms, such as a genetic algorithm, 

simulated annealing or neural networks, as alternative means of solving this 

problem. 

The next topic considered involved the design of fractional degree 

differentiators. In this chapter, a new feedback system was constructed to 

improve the fractional degree differentiator in terms of both the frequency 

domain and time domain performance. Additionally, a Caputo fractional degree 

differentiator was designed, that is based on the RL fractional degree 

differentiator, with an additional term based on the initial conditions. The 

fractional differentiator can be very sensitive to the filter coefficients, i.e. a small 

change of the coefficients can cause a large error in time-domain output. A 

differentiator design using an optimization technique was chosen to ensure 

good performance in the frequency domain. However, this technique produced 

differentiators that showed large output errors when tested in the time domain. 

Hence, the optimization technique that proved successful in the design of 

integer degree differentiators was not utilized for the design of fractional 

differentiators. It is shown that the FIR model of a fractional differentiator based 

on the RL or GL definition may not produce the desired output in the time 

domain when the initial conditions of the differentiator differ from those that 

would pertain in a steady-state system. The problem has been shown to be 

particularly acute when the integration of output errors is considered over a 
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long time interval. Future work in this field will involve the consideration of a 

feedback system to reduce or eliminate this problem. 

The thesis also contains the description of two applications for which the 

new differentiators presented prove advantageous relative to prior work.  The 

first application of the differentiator is the estimation of the frequency 

components of a power system using a second degree differentiator. A linear 

phase FIR second degree differentiator is designed to replace the IIR 

differentiator previously used in the given algorithm. The results show that the 

FIR based method can reduce the error caused by the non-constant group delay 

of the IIR differentiator. Therefore the proposed frequency estimator provides a 

more accurate output.  

Finally, the application of image edge detection using a differentiator is 

introduced and discussed. The edge detectors chosen are designed using 

fractional IIR differentiators, based on Grunwald-Letnikov and Caputo definitions. 

The proposed edge detectors are compared with some other edge detectors 

and show good results. However, many suggestions for future work can be 

suggested.  In this work, there is no clear standard method proposed for the 

evaluation of different edge detectors.  As is common, a qualitative method is 

used to permit the reader to decide which outputs are visually most pleasing 

and which are deemed to be most suitable for the user’s application. An 

associated problem is that it is difficult to choose an appropriate performance 

measure for the edge detector, especially for the fractional-degree edge 

detector. In this work, a threshold of 0.15 is applied for generating the resultant 

image, but it can be important to choose an appropriate threshold for the edge 

detector. A low threshold may miss some edges, and a high threshold may cause 

excessive noise in the resulting image. Thus, a thresholding algorithm can be 

advantageous, and will be considered in future work on this topic. Finally, an 
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edge detector based on an IIR differentiator was designed. It was observed that 

the position of the corresponding pixel gradient in the x  and y  directions 

will effectively shift due to the group delay of the IIR differentiators. Zero-phase 

filtering can have a useful role in the filtering of off-line data, but it is not 

applicable to real-time signals. However, zero-phase high-pass filtering is worthy 

of consideration for the processing of static images. 
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