1,526 research outputs found

    Electric impedance microflow cytometry for characterization of cell disease states

    Get PDF
    The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by the malaria parasite Plasmodium falciparum. Invasion by P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells. We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of P. falciparum infected RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology)Massachusetts Institute of Technology. Center for Integrated Circuits and SystemsNational Institutes of Health (U.S.) (Grant R01 HL094270

    Nanogap capacitive biosensor for label-free aptamer-based protein detection

    Get PDF
    Recent advances in nanotechnology offer a new platform for the label free detection of biomolecules at ultra-low concentrations. Nano biosensors are emerging as a powerful method of improving device performance whilst minimizing device size, cost and fabrication times. Nanogap capacitive biosensors are an excellent approach for detecting biomolecular interactions due to the ease of measurement, low cost equipment needed and compatibility with multiplex formats.This thesis describes research into the fabrication of a nanogap capacitive biosensor and its detection results in label-free aptamer-based protein detection for proof of concept. Over the last four decades many research groups have worked on fabrication and applications of these type of biosensors, with different approaches, but there is much scope for the improvement of sensitivity and reliability. Additionally, the potential of these sensors for use in commercial markets and in everyday life has yet to be realized.Initial work in the field was limited to high frequency (>100 kHz) measurements only, since at low frequency there is significant electronic thermal noise (=4kBTR) from the electrical double layer (EDL). This was a significant drawback since this noise masked most of the important information from biomolecular interactions of interest. A novel approach to remove this parasitic noise is to minimize the EDL impedance by reducing the capacitor electrode separation to less than the EDL thickness. In the case of aptamer functionalized electrodes, this is particularly advantageous since device sensitivity is increased as the dielectric volume is better matched to the size of the biomolecules and their binding to the electrode surface. This work has demonstrated experimentally the concepts postulated theoretically.In this work we have fabricated a large area (100 x 5 μm x 5 μm) vertically oriented capacitive nanogap biosensor with a 40 nm electrode separation between two gold electrodes. A silicon dioxide support layer separates the two electrodes and this is partially etched (approximately 800 nm from both sides of each 5 μm x 5 μm capacitor), leaving an area of the gold electrodes available for thiol-aptamer functionalization.AC impedance spectroscopy measurements were performed with the biosensor in the presence of air, D.I. water, various ionic strength buffer solutions and aptamer/protein pairs inside the nanogap. Applied frequencies were from 1Hz to 500 kHz at 20 mV AC voltage with 0 DC. We obtained relative permittivity results as a function of frequency for air (ɛ=1) and DI water (ɛ~80) which compares very favorably with previous works done by different research groups.The sensitivity and response of the sensors to buffer solution (SSC buffer) with various ionic strengths (0.1x SSC, 0.2x SSC, 0.5x SSC and 1x SSC) was studied in detail. It was found that in the low frequency region (<1 kHz) the relative permittivity (capacitance) was broadly constant, that means it is independent from the applied frequency in this range. With increasing buffer concentration, the relative permittivity starts to increase (from ɛ=170 for 0.1x SSC to ɛ=260 for 1x SSC).The sensor performance was further investigated for aptamer-based protein detection, human alpha thrombin aptamers and human alpha thrombin protein pairs were selected for proof of concept. Aptamers were functionalized into the gold electrode surface with the Self-Assembly-Monolayer (SAM) method and measurements were performed in the presence of 0.5x SSC buffer solution (ɛ=180). Then the hybridization step was carried out with 1 μM of human alpha thrombin protein followed by measurements in the presence of the same buffer (ɛ=130). The response of the sensors with different solutions inside the nanogap was studied at room temperature (5 working devices were tested for each step). The replacement of the buffer solution (ɛ=250) with lower relative permittivity biomolecules (aptamer ɛ=180) and further binding proteins to immobilized aptamer (ɛ=130) was studied. To validate these results, a control experiment was carried out using different aptamers, in this case which are not able to bind to human alpha thrombin protein. It was found that the relative permittivity did not change after the hybridization step compared to the aptamer functionalization step, which indicates that the sensors performance is highly sensitive and reliable.This work serves as a proof of concept for a novel nanogap based biosensor with the potential to be used for many applications in environmental, food industry and medical industry. The fabrication method has been shown to be reliable and consistent with the possibility of being easily commercialized for mass production for use in laboratories for the analysis of a wide range of samples

    Design and Operation of a Microwave Flow Cytometer for Single Cell Detection and Identification

    Get PDF
    Microwave dielectric sensing has become a popular technique in biological cell sensing for its potential in online, label-free, and real-time sensing. At microwave frequencies probing signals are sensitive to intracellular properties since they are able to penetrate cell membranes, making microwave flow cytometry a promising technology for label-free biosensing. In this dissertation a microwave flow cytometer is designed and used to measure single biological cells and micro particles. A radio frequency (RF)/microwave interferometer serves as the measurement system for its high sensitivity and tunability and we show that a two-stage interferometer can achieve up to 20 times higher sensitivity than a single interferometer. A microstrip sensor with an etched microfluidic channel is used as the sensing structure for measuring single cells and particles in flow. The microwave flow cytometer was used to measure changes in complex permittivity, , of viable and nonviable Saccharomyces cerevisiae and Saccharomyces pastorianus yeast cells and changes in complex permittivity and impedance of two lifecycle stages of Trypanosoma brucei, a unicellular eukaryotic parasite found in sub-Saharan Africa, at multiple frequencies from 265 MHz to 7.65 GHz. Yeast cell measurements showed that there are frequency dependent permittivity differences between yeast species as well as viability states. Quadratic discriminate analysis (QDA) and k-nearest neighbors (KNN) were employed to validate the ability to classify yeast species and viability, with minimum cross-validation error of with cross validation errors of 19% and 15% at 2.38 GHz and 265 MHz, respectively. Measurements of changes in permittivity and impedance of single procyclic form (PCF) and bloodstream form (BSF) T. brucei parasites also showed frequency dependence. The two cell forms had a strong dependence on the imaginary part of permittivity at 2.38 GHz and below and a strong dependence on the real part of permittivity at 5.55 GHz and above. Three PCF cell lines were tested to verify that the differences between the two cell forms were independent of cell strain. QDA gave maximum cross-validation errors of 15.4% and 10% when using one and three PCF strains, respectively. Impedance measurements were used to improve cell classification in cases where the permittivity of a cell cannot be detected. Lastly, a microwave resistance temperature detector (RTD) is designed, and a model is developed to extract the temperature and complex permittivity of liquids in a microfluidic channel. The microwave RTD is capable of measuring temperature to within 0.1°C. The design can easily be modified to increase sensitivity be lengthening the sensing electrode or modified for smaller volumes of solute by shortening the electrode

    Electrical and Electro-Optical Biosensors

    Get PDF
    Electrical and electro-optical biosensing technologies are critical to the development of innovative POCT devices, which can be used by both professional and untrained personnel for the provision of necessary health information within a short time for medical decisions to be determined, being especially important in an era of global pandemics. This Special Issue includes a few pioneering works concerning biosensors utilizing electrochemical impedance, localized surface plasmon resonance, and the bioelectricity of sensing materials in which the amount of analyte is pertinent to the signal response. The presented results demonstrate the potential of these label-free biosensing approaches in the detection of disease-related small-molecule metabolites, proteins, and whole-cell entities

    Eis analysis of shear enhanced microfluidic lab-on-a-chip device

    Get PDF
    Electrochemical sensors and biosensors have received much attention owing to the feasibility demonstrated regarding instrumental simplicity, decent cost, and portability during the detection of a wide range of biological and pharmaceutical macromolecules. Carbon-based nanomaterials, including carbon nanotubes, have garnered tremendous interest for their unique thermal, mechanical, electronic and catalytic properties while designing these sensors. Whenever the macromolecules interact with a bio-recognition element on the electrode transducer surface, a measurable change in the electrical current or potential takes place. To achieve lower limits of detection, the use of sensor surfaces modified with nanostructured materials such as nanotubes, or nanoparticles is becoming increasingly significant. The study aims to design a CNT-based electrochemical glass sensor which purifies monoclonal antibody in the presence of its biorecognition element (e.g. an antigen). The system utilizes an open-flow carbon nanotube platform for monoclonal antibody purification using impedance-based sensing (EIS). The open flow allows rapid concentration of the target molecules and shear-enhanced specificity leading to maximum hydrodynamic shear force. Interdigitated electrodes are used to trap multi-walled carbon nanotubes. The principals involved in fabricating such a device can be applied for the detection of some other pharmaceutical molecules. At the same time, CNTs replaced by ZnO and Al2O3 based nanomaterials can also be taken into account for detection of various macromolecules for better sensitivity and better specificity

    Microcantilever-based sensing arrays for evaluation of biomolecular interactions

    Get PDF
    The controlled immobilization on a surface of biomolecules used as recognition elements is of fundamental importance in order to realize highly specific and sensible biosensors. Microcantilevers (MC) are nanomechanical sensors, which can be used as label free micro-sized mechanical transducers. MC resonant frequency is sensitively modified upon molecules adsorption, demonstrating an impressive mass resolution. A widely used approach for the immobilization of biorecognition elements on silicon substrates consists in the deposition of 3-aminopropyl-triethoxysilane (APTES) followed by the incubation with glutaraldehyde (GA) as a crosslinking agent. However, these derivatization processes produce a variable chemical functionalization because of the spontaneous polymerization of GA in aqueous solutions. With the aim of producing a more reliable chemical functionalization for protein immobilization, the deposition of a thin film of APTES by self-assembly followed by the modification of its amino groups into carboxyl groups by incubating in succinic anhydride (SA) is proposed. Moreover, the activation of these terminal carboxyl groups were performed by using the EDC/s-NHS protocol in order to enhance their reactivity toward primary amine groups present on biomolecules surface. This method was characterized from a physico-chemical point of view by means of compositional and morphological surface analysis. Moreover, data acquired after the application of this functionalization to a MC-based system showed a highly reproducible deposition of APTES/SA when compared to APTES/GA deposition process. APTES/SA derivatized MC arrays were then incubated with biomolecules for the study of its protein binding capability: the quantification of the grafted biomolecules was performed from the gravimetric data and compared with a theoretical surface density calculated through a molecular modeling tool, providing information about the orientation of the proteins tethered to the surface. In order to avoid or reduce non-specific protein interactions, Bovine Serum Albumin and ethanolamine were considered for their blocking capability. Finally, the detection of the envelope glycoprotein domain III of the Dengue virus type 1 based on immune-specific recognition through the DV32.6 antibody was performed, providing a stoichiometry ratio for the DIII-DV1/DV32.6 interaction. Currently, no cure or vaccine are available; thus, a better understanding of the interactions between the viruses and specific antibodies is expected to provide fundamental information for the development of a vaccine

    Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)

    Get PDF
    The scope of this Special Issue is to collect some of the contributions to the First International Electronic Conference on Biosensors, which was held to bring together well-known experts currently working in biosensor technologies from around the globe, and to provide an online forum for presenting and discussing new results. The world of biosensors is definitively a versatile and universally applicable one, as demonstrated by the wide range of topics which were addressed at the Conference, such as: bioengineered and biomimetic receptors; microfluidics for biosensing; biosensors for emergency situations; nanotechnologies and nanomaterials for biosensors; intra- and extracellular biosensing; and advanced applications in clinical, environmental, food safety, and cultural heritage fields
    • …
    corecore