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ABSTRACT 
 
 

Microwave dielectric sensing has become a popular technique in biological cell 

sensing for its potential in online, label-free, and real-time sensing. At microwave 

frequencies probing signals are sensitive to intracellular properties since they are able to 

penetrate cell membranes, making microwave flow cytometry a promising technology for 

label-free biosensing. In this dissertation a microwave flow cytometer is designed and 

used to measure single biological cells and micro particles. A radio frequency 

(RF)/microwave interferometer serves as the measurement system for its high sensitivity 

and tunability and we show that a two-stage interferometer can achieve up to 20 times 

higher sensitivity than a single interferometer. A microstrip sensor with an etched 

microfluidic channel is used as the sensing structure for measuring single cells and 

particles in flow. 

The microwave flow cytometer was used to measure changes in complex 

permittivity, 휀(𝑓) = 휀′(𝑓) − 𝑗휀"(𝑓), of viable and nonviable Saccharomyces cerevisiae 

and Saccharomyces pastorianus yeast cells and changes in complex permittivity and 

impedance of two lifecycle stages of Trypanosoma brucei, a unicellular eukaryotic 

parasite found in sub-Saharan Africa, at multiple frequencies from 265 MHz to 7.65 

GHz. 

Yeast cell measurements showed that there are frequency dependent permittivity 

differences between yeast species as well as viability states. Quadratic discriminate 

analysis (QDA) and k-nearest neighbors (KNN) were employed to validate the ability to 
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classify yeast species and viability, with minimum cross-validation error of with cross 

validation errors of 19% and 15% at 2.38 GHz and 265 MHz, respectively. 

Measurements of changes in permittivity and impedance of single procyclic form 

(PCF) and bloodstream form (BSF) T. brucei parasites also showed frequency 

dependence. The two cell forms had a strong dependence on the imaginary part of 

permittivity at 2.38 GHz and below and a strong dependence on the real part of 

permittivity at 5.55 GHz and above. Three PCF cell lines were tested to verify that the 

differences between the two cell forms were independent of cell strain. QDA gave 

maximum cross-validation errors of 15.4% and 10% when using one and three PCF 

strains, respectively. Impedance measurements were used to improve cell classification in 

cases where the permittivity of a cell cannot be detected. 

Lastly, a microwave resistance temperature detector (RTD) is designed, and a 

model is developed to extract the temperature and complex permittivity of liquids in a 

microfluidic channel. The microwave RTD is capable of measuring temperature to within 

0.1°C. The design can easily be modified to increase sensitivity be lengthening the 

sensing electrode or modified for smaller volumes of solute by shortening the electrode. 
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CHAPTER ONE

INTRODUCTION 

Microwave technology has attracted significant interests in biological cell sensing 

due to the potential for label-free and real-time sensing. Biological cells generally exhibit 

a frequency dependent permittivity similar to that shown in Fig. 1.1, which is 

characterized by three distinct dispersion regions, or frequency regions with a particularly 

strong frequency dependence separated by plateaus [1.1]. The α-dispersion region 

typically occurs from several Hz up to a few kHz and is associated with the diffusion 

process of ions at interfaces, such as membranes, and is hence correlated with membrane 

potential, the β-dispersion region typically occurs from several kHz up to tens or 

hundreds of MHz and is associated with the polarization of cellular membranes and other 

organic macromolecules, and the γ-dispersion region typically occurs above 10 GHz and 

is primarily attributed to the polarization of water molecules  [1.2-1.5]. 

Broadband dielectric spectroscopy can be used to extract a wealth of information 

from biological systems. Generally speaking, there are two approaches to dielectric 

measurements of biological systems – measurement of bulk cell monolayers and 

suspensions, and single cell measurements. Bulk cell dielectric measurements can 

quantify cell concentration, provide cell size, membrane capacitance, and cytoplasm 

permittivity and conductivity [1.6, 1.7]. Due to the large sample size bulk measurements 

of a stationary suspension can be easily measured over a broad frequency range using a 

parallel plate capacitor or coaxial probe. RF and microwave sensors have been used to 
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Fig. 1.1. Complex permittivity spectrum of biological tissues showing three distinct 

dispersion regions – α, β, and γ. 

detect cancer cells (liver, breast, lymphocyte, bone) [1.8-1.13], on-line monitoring of cell 

adhesion [1.14], alterations of cell morphology and motility for cytotoxicity assessment 

of chemicals [1.15], and on-line biomass monitoring [1.16]. A major drawback of bulk 

measurements is the lack of insight provided on the large variability of individual cells 

within the population and most studies of this type are well controlled in the lab and may 

not translate to real-world applications. Additionally, the complex models required to 

extract cell properties are only valid for low concentrations of cells as intercellular 

interactions at higher concentrations are difficult to predict. 

The second dielectric measurement approach, single cell measurements or flow 

cytometry, measures several individual cells within a culture. Single cell dielectric 

spectroscopy has mainly focused on the β-dispersion regions, which is primarily affected 

by the cell membrane. Radio wave and microwave fields in the MHz and GHz frequency 

range can penetrate the cell membrane and detect intracellular properties, and hence 
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microwave-based flow cytometers have the potential to be highly sensitive partly due to 

strong interactions between microwaves and cells and the large permittivity contrasts 

between cells and liquid medium matrix.   

A variety of approaches have been developed and different types of cells have 

been tested.  For instance, a combination of a resonator and interference measurements 

demonstrated high sensitivity microwave (1.1 GHz) detection of dual-frequency 

dielectrophoresis response of in-flow CHO cells [1.17].  A straight transmission line with 

a sensing gap has been used to monitor single cell monocytes subject to electroporation 

[1.18], where a blocker is used to capture single cells for broadband measurement up to 

40 GHz.   A similar design was developed for detecting small populations of E. coli cells 

from 0.5 to 20 GHz [1.19].  Passive interferometers were built to measure single yeast 

cells [1.20, 1.24]. Nevertheless, the lack of specificity has been the limiting factor for 

microwave cell sensing. 

Results from various microwave and RF sensing efforts indicated potential 

measurement specificity.  At lower frequencies, impedance measurements [1.21] have 

shown partial success in single cell identification when the ratio of impedance at two 

different frequencies (i.e. opacity) is used [1.22, 1.23].  At 5.0 GHz, viable and non-

viable yeast cells showed significantly different signals [1.24]. The fact that a cell species 

can have highly conserved and stable molecular components, such as fatty acids [1.25], 

likely enabled the differentiation due to differing charges, polarization, and dynamics of 

molecules of the bacteria.  These drawbacks could be overcome by measuring individual 

cells within a cell suspension over a broadband. Thus, a combination of broadband and 
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high-frequency measurements of single cells presents the best opportunity in the search 

for cell differentiation power due to potentially added information of molecular 

relaxation not detected by single frequency or narrow band probing and cell organelles 

not detectable at low frequencies.  As a result, microwave measurement specificity could 

be achieved without using bio-recognition elements or labels.  The specificity would 

address the major limitation of microwave sensor application in biology as well as 

chemical and environmental monitoring, where substance identification is of paramount 

importance. While label-based technologies can provide high specificity, these tools are 

often labor and cost intensive. Nevertheless, measuring single in-flow cells over a wide 

frequency range remains a challenge despite significant efforts and progress.   

In Chapter II of this dissertation the design of a simple RF interferometer is 

presented, which serves as the measurement system for the microwave flow cytometer. 

RF interferometers have been demonstrated for high sensitivity detection and analysis of 

single cells [1.26, 1.27], particles [1.28], DNAs [1.29], glucose, methanol, and 2-propanel 

[1.30-1.32] in solution.  Their design flexibility, tunable sensitivity and frequency 

coverage are attractive properties for various sensing applications.  Nevertheless, for high 

sensitivity measurements, the required system dynamic range is exceptionally large, e.g. 

~ 120 dB for an effective quality factor of ~3×106 [1.32].  As a result, such systems are 

difficult to use in rugged environments.  To help address this problem, different filters 

and resonators [1.33-1.35] have been proposed and demonstrated to improve sensitivity 

for a given dynamic range.  With engineered spectrum and dispersion relationship, the 

probing RF waves in these devices are slowed down with enhanced field intensities, 
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which lead to longer and stronger interactions between RF fields and material-under-test 

(mut).  The group delays, which are defined as 𝑡𝑔 = −𝑑𝜑/𝑑𝜔|𝜔0 with φ the frequency 

dependent phase shift and ω0 the operating frequency, of these filters and resonators are 

positive.  Corresponding group velocities, vg, are lower than the speed of light, c, in the 

medium, i.e. vg < c.   

We also show that an RF interferometer can be incorporated into a second one to 

form a two-stage interferometer setup to achieve up to 20-times higher frequency 

sensitivity, compared with one-stage interferometers. The improvements are better than 

that with filters and resonators in [1.33-1.35].  We also show that a single stage 

interferometer has negative group delays (NGDs), i.e. negative group velocities (NGVs), 

and SP regimes.  Such abnormal electromagnetic properties have been reported in a few 

structures and circuits [1.36-1.39].  In RF interferometers, these properties occur around 

the operating frequency points due to destructive interference of two traveling waves at 

the output port, similar to the processes at the dark port of a Mach–Zehnder 

interferometer [1.38].  A simple model shows that loss or reflection is not necessary for 

the RF interferometer to exhibit those properties.  At the same time, large positive group 

delays (PGD) can be easily obtained.  The achievable NGD, PGD and SP levels can be 

easily tuned.  Such tunability is not available in other passive circuits.  Furthermore, these 

abnormal properties can be exploited for high sensitivity sensor applications. 

 In Chapter III the sensor for the microwave flow cytometer is introduced. A 

microstrip sensor with an integrated microfluidic channel is used for detection of single 

cells in the cytometer. The microstrip sensor was shown to have better sensitivity than 
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CPW sensors [1.40], provides more reliable measurements by minimizing the uncertainty 

from variations in cell sizes and vertical location, and allows for broadband operation. 

 In Chapter V the microwave flow cytometer is applied to two Saccharomyces 

yeasts of closely related species, showing significant microwave property differences that 

can be used to differentiate the species and their viability in a cell-particle mixture 

suspension.  

The ability to accurately identify the phase of a cell is critical in cell cycle 

research. For some cells, such as yeast, the stages of cell growth (budding or non-

budding) are easy to observe by optical microscopy. For cells like Trypanosoma brucei, 

where different forms of the cell have similar morphology, more advanced approaches 

such as immunostaining, which selectively targets proteins in cells, are employed to 

identify and study cell cycles [1.41, 1.42]. These methods are time consuming, can only 

be performed periodically, and require the use of labels. Researchers have long put 

significant efforts into finding noninvasive and label-free methods for real time 

monitoring of cells. Dielectric sensing shows promise in being able to monitor cell cycle 

progression noninvasively and in real-time. 

Many studies have shown that the dielectric properties of cells can be used to 

determine the phase of cells in their lifecycle, such as [1.43], where changes in 

permittivity of a yeast culture below 300 kHz corresponded to an increase in cell length 

and bud size of budding yeast. The same authors later showed that the peaks in the cyclic 

changes of the permittivity corresponded with the time when daughter cells segregated 

from mother cells [1.44], which can be used to monitor and synchronize yeast cell 



 7 

division [1.45]. In [1.46], the authors showed that the capacitance of Chinese hamster 

ovary (CHO) cell cultures can be used as an indicator of transition points of the culture. 

Typically, these studies looked at the behavior of entire populations in synchronized 

cultures and thus fail to account for the large variability of individual cells within a 

culture. Additionally, these studies focused on the α- and β-dispersion regions, which is 

primarily affected by the cell membrane. Radio wave and microwave fields in the MHz 

and GHz frequency range can penetrate the cell membrane. The ability of microwave 

probing signals to penetrate cell walls indicates that microwave sensing could detect 

intercellular differences between cells that are unobtainable at lower frequencies [1.47]. 

Trapping-based sensors have also been developed for monitoring lifecycles of single 

cells, including a sensor that was developed to monitor the capacitive contrast of trapped 

living B lymphoma cells from 40 MHz to 40 GHz [1.48]. A similar approach was used to 

monitor the lifecycles of single budding yeast cells by correlating impedance at lower 

frequencies (10 kHz to 10 MHz) with optically monitored cell morphologies [1.49]. 

However, trapping based sensors can only score a single cell throughout the entire cell 

cycle, and thus lack the ability to analyze the significant number of cells in a culture that 

is required for phenotype analysis. Microwave flow cytometer sensors offer the ideal 

combination of high sensitivity and high throughput that enables label free detection of 

lifecycles of single cells in real time. In Chapter VI the microwave flow cytometer is used 

to measure the permittivity and impedance of single Trypanosoma brucei cells and show 

that the system can discriminate between two lifecycle stages of T. brucei cells- 

bloodstream form (BSF) and procyclic form (PCF). 
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In Chapter VII a highly sensitive microwave resistance temperature detector 

(RTD) sensor is proposed and demonstrated. The frequency and temperature dependent 

nature of polar liquids has been investigated thoroughly over the past several decades but 

precise temperature measurements in microfluidic chips is still a difficult task due to fast 

thermal transfer rates in small sample volumes, making it difficult to observe and account 

for local hot spots. The microwave RTD sensor is capable of measuring temperature in a 

microfluidic channel to within 0.1°C. 
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CHAPTER TWO 

 
RADIO FREQUENCY INTERFEROMETER 

 
 

2.1 Single Stage Radio-Frequency Interferometer 

RF interferometers (Fig. 2.1) have been shown to improve the sensitivity of 

measurements in dielectric spectroscopy measurements [2.1-2.3]. The system operates by 

splitting an RF signal between two transmission lines of different lengths. When the two 

signals are combined the resulting frequency response consists of a series of peaks and 

valleys due to constructive and deconstructive interference. A dielectric sensor is placed 

in one the signal paths, generally the shorter path to maximize the signal to noise ratio 

(SNR). A change in the dielectric properties of the sensor results in a change in the 

complex propagation constant, 𝛾 = 𝛼 + 𝑗𝛽, which is observed as a change in the 

magnitude and phase of the scattering parameters (S-parameters) measured by the vector 

network analyzer (VNA) when used as a single frequency transmit/receive module. If 

measuring in the frequency domain a shift in the frequency and magnitude of the 

minimum point of |S21| is also observed as the change in phase constant β is changes the 

electrical length of the sensor, and a change in the attenuation constant α changes the 

balance between the two paths. 

To determine the propagation constant from measured S21 values, first consider 

the signal from port 1, 𝑉1 = 𝑉1
+ + 𝑉1

−, then assuming a matched system, i.e. 𝑉1− = 0, the 

outputs of the first power divider are  
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   (a)      (b) 

Fig. 2.1. (a) Schematic of a single stage RF interferometer using two Wilkinson power 

dividers. Attenuator α is used for line balancing and phase shifter Φ is used for tuning 

operating frequency. (b) Frequency domain signals showing the effect of a change in 

dielectric properties in the sensor in (a), where a change in α causes a shift in the 

amplitude Δ|S21| and a change in β causes a shift in the frequency of the minimum point 

Δfmin. 

 
𝑉𝑟𝑒𝑓 = 𝑉𝑚𝑢𝑡 = −𝑗

𝑉1
+

√2
 

(2.1) 

Then the signals at the input of the second power divider are 

 
𝑉𝑟𝑒𝑓,𝑚𝑢𝑡 = −𝑗

𝑉1
+

√2
𝑒−𝛾𝑟𝑒𝑓,𝑚𝑢𝑡𝑙𝑟𝑒𝑓,𝑚𝑢𝑡  

(2.2) 

and the output of the interferometer is 

 𝑉𝑜𝑢𝑡 = −𝑉1
+(𝑒−𝛾𝑟𝑒𝑓𝑙𝑟𝑒𝑓 + 𝑒−𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡) (2.3) 
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where γmut and γref are the propagation constants of the two paths of the interferometer. 

The propagation constants can also be written in terms of frequency as 

 
𝑉𝑜𝑢𝑡 = −𝑉1

+ (𝑒
−𝛼𝑟𝑒𝑓𝑙𝑟𝑒𝑓−𝑗

2𝜋𝑓𝑙𝑟𝑒𝑓
𝑣𝑟𝑒𝑓 + 𝑒

−𝛼𝑚𝑢𝑡𝑙𝑚𝑢𝑡−𝑗
2𝜋𝑓𝑙𝑚𝑢𝑡
𝑣𝑚𝑢𝑡 ) 

(2.4) 

since 𝛽 = 2𝜋𝑓 𝑣𝑝⁄ , where vp is the phase velocity of the traveling wave. (2.4) shows that 

the output will have minimum at frequencies when the phase of the two paths are 180° 

out of phase, i.e. 

 
𝑓 =

(𝑛 − 1)𝑣𝑟𝑒𝑓𝑣𝑚𝑢𝑡
𝑙𝑟𝑒𝑓𝑣𝑚𝑢𝑡 + 𝑙𝑚𝑢𝑡𝑣𝑟𝑒𝑓

, 𝑛 = 1,2,3,… 
(2.5) 

The constant n denotes the harmonic number of the interferometer, where n = 1 is the 

fundamental frequency, n = 2 is the first harmonic, n = 3 is the second harmonic, etc. At 

harmonic frequencies the level of cancellation at the output is determined by the loss in 

the two lines, αref,mut, so if 𝛼𝑟𝑒𝑓 = 𝛼𝑚𝑢𝑡 the output would be 0. For a dielectric sensor in 

the mut path, if the permittivity of the sensor changes it causes a shift in the operating 

frequency, Δf, and the cancellation level Δ|S21|, as shown in Fig. 2.1(b). If Δf is assumed 

to be caused solely by a phase shift from a change in permittivity of the mut, then from 

(2.5) 

 
𝛥휀𝑒𝑓𝑓 = [

𝑐

𝑙𝑚𝑢𝑡
(
𝑛 − 1

𝑓 + ∆𝑓
−
𝑙𝑟𝑒𝑓
𝑣𝑟𝑒𝑓

)]

2

− 휀𝑒𝑓𝑓 , 𝑛 = 1,2,3,… 
(2.6) 

where the speed of light in free space is 𝑐 = 1 √휀0𝜇0⁄ ≈ 3 ∙ 108𝑚/𝑠 and the phase 

velocity is related to effective permittivity by 𝑣𝑝 = 𝑐/√휀𝑒𝑓𝑓 .  Likewise, if Δ|S21| is 
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assumed to be solely from a change in dielectric loss of the mut the loss tangent, tan δmut, 

can be determined from 

 
∆|𝑆21| = 𝐵𝑟𝑒𝑓 + 𝐵𝑚𝑢𝑡𝑒

−
𝛽𝑚𝑢𝑡(𝑡𝑎𝑛𝛿𝑚𝑢𝑡+∆𝑡𝑎𝑛𝛿𝑚𝑢𝑡)𝑙𝑚𝑢𝑡

2 −𝑗𝛽𝑚𝑢𝑡𝑙𝑚𝑢𝑡, (2.7) 

Where the coefficients Bmut and Bref are constants. While the above equations can be used 

to calculate the complex permittivity from S-parameter measurements, this approach 

requires measuring the constant coefficients in equations (2.6) and (2.7). A simpler and 

more accurate approach is to use calibration standards. The process for calculating 

impedance and permittivity with the use of calibrations in discussed in Chapters III and 

IV. 

2.2 Two-Stage Interferometer 

Fig. 2.2(a) shows the schematic of a two-stage interferometer, in which the first 

(i.e. inner) stage uses two commercial power dividers.  No tuning components, such as R 

and Φ in the second (outer) stage, are used for the first stage to simplify the design and 

operation of the two-stage interferometer.  Simple microstrip lines on Rogers RO4003C 

substrate are built and used as high frequency electrodes for mut detection.  A second 

one-stage interferometer at ~ 2 GHz, Fig. 2.2(b), is also designed and built as the first 

stage in Fig. 2.2(a).  The use of quadrature hybrids may enable some measurements not 

available from power divider settings [2.8].  

Figs. 2.3(a) and (b) show the measured |S21| and group delay, respectively, of the 

first stage in Fig. 1(a).  The constant positive group delay, ~ 4ns, is associated with the 

physical delay of the circuit.  Around ~ 1.1 GHz and 3.2 GHz, which are the fundamental 
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and 1st harmonic operating frequency, respectively, negative group delay (NGD), slow 

waves and superluminal propagations (SP) exist.  For slow waves, we have 0<|vg|<c, 

 

      

   (a)      (b) 

Fig. 2.2 The schematic of a two-stage RF interferometer. Attenuator R and phase shifter 

Φ are used for sensitivity and operating frequency tuning. Two commercial power 

dividers are used for the first stage and two quadrature hybrids are used for the second 

stage. A polydimethylsiloxane (PDMS) slab is used as mut and is placed on one path of 

the first stage.  The paths are formed with uniform microstrip lines. (b) A first stage built 

with quadrature hybrids. 

 

while for SP, |vg|>c, where c is the speed of RF waves along the uniform microstrip line.  

The NGD indicates negative group velocities, vg<0  [2.7]. Simulation results with 

Advanced Design System (ADS) agree with the measured results in Fig. 2.3(b) when 

|S21|min is tuned to fit the measured |S21|min in Fig. 2.3(a).  Nevertheless, simulations also 

show PGD operations in Fig. 2.3(b).  A simple analysis can help understand the key 

factors that determine the observed main features.  Consider an input RF signal (with unit 
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amplitude) that is split by the first broadband power divider into two.  At the inputs of the 

second power divider we have 

 𝑆𝑀𝑈𝑇 = 𝐴1𝑒
−𝑗𝛽1𝑙1𝑆𝑅𝐸𝐹 = 𝐴2𝑒

−𝑗𝛽2𝑙2   (2.8) 

where A1,2 are the magnitudes of the transmission coefficients, β1,2 are the propagation 

constants and l1,2 the electrical lengths of the transmission lines. The output S21 of the 

second power divider will be 

 
𝑆21 = 𝐴21𝑒

−𝑗𝛷21 =  
𝐴1

√2
𝑒−𝑗(𝛽1𝑙1+𝜋 2)⁄ +

𝐴2

√2
𝑒−𝑗(𝛽2𝑙2+𝜋 2⁄ ), (2.9) 

Assume A1 and A2 are frequency independent around the operating frequency, 

taking the negative frequency derivative of (2.9), -d/dω, gives 

 
𝑗𝐴21𝑒

−𝑗𝛷21𝜏𝑔 −
𝑑𝐴3
dω

𝑒−𝑗𝛷21 = 

1

√2
[𝑗𝐴1𝑒

−𝑗𝛷1𝜏1 −
𝑑𝐴1
dω

𝑒−𝑗𝛷1 + 𝑗𝐴2𝑒
−𝑗𝛷2𝜏2 −

𝑑𝐴2
dω

𝑒−𝑗𝛷2] 

(2.10) 

where Φ1,2 = β1,2l1,2 – π/2, τg is the total group delay and τ1,2 are the group delays of the 

individual transmission lines. Equating the imaginary parts of (2.10) gives the total group 

delay as 

 
𝜏𝑔 =

𝐴1𝑒
−𝑗𝛷1𝜏1 + 𝐴2𝑒

−𝑗𝛷2𝜏2
𝐴1𝑒−𝑗𝛷1 + 𝐴2𝑒−𝑗𝛷2

 (2.11) 

while |S21|min occurs at frequencies where the two branches have a phase difference of  

 𝛽1𝑙1−𝛽2𝑙2 = (2𝑛 − 1)𝜋 (2.12) 

where n = 1 is the fundamental operating frequency of the interferometer. Under the 

condition of (12) the total group delay from (2.11) becomes 
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𝜏𝑔 =

𝐴1𝜏1 − 𝐴2𝜏2
𝐴1 − 𝐴2

 (2.13) 

The above equation implies that if A1 and A2 are the same that the group delay 

goes to infinity. However, if they differ the group delay can be either positive or negative, 

depending on which signal is larger, as shown in Fig. 2.3(b).  Current NGD electrical 

structures and circuits, such as the electromagnetic structures of a backward wave 

oscillator (BWO) [2.9], the distributed transmission line filter [2.10], left-handed media 

[2.52, 2.11], and the active circuits [2.6, 2.12], involve complicated wave reflection and 

propagation processes.  The RF interferometer, however, only involves the summation of 

two traveling waves with minimal reflections occurring in the summation device.   

Fig. 2.3(c) shows that at the design frequency, ~ 2 GHz, both |S11| and |S21| are 

small, as expected for the structure in Fig. 2.2(b).  Fig. 2.2(d) shows the measured group 

delay, where the ~ 1 ns constant group delay is shorter than that in Fig. 2.3(b) due to 

shorter physical structure length.  The -15 ns group delay indicates slower waves than 

those in Fig. 2.3(b).  The slower waves are associated with lower |S21| values in Fig. 

2.3(c), as indicated in eq. (6). Both |S11| and |S21| indicate strong reflections within the 

structure due to discontinuities.  Such reflections may be an issue for many signal 

processing applications.  However, for the investigation in this work, the reflections 

induce new group delay patterns in Fig. 2.3(d) and allow convenient study of group delay 

effects on interferometer sensitivities. 
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(a)      (b) 

   

(c)      (d) 

Fig. 2.3 Experimental results of (a) |S21|and (b) group delay of the first stage in Fig. 

2.2(a).  Simulation results agree with measured ones while simulation also indicates that 

PSD regimes can exist.  Furthermore, the group delay values mainly depend on the 

balance of the two signal paths, i.e. |S21|min.   Measured (c) |S11|, |S21|, and (d) group 

delay of the first stage in Fig. 2.2(b).  
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To investigate two stage interferometer operation, we first tune R and Φ in Fig. 2.2(a) to 

the desired frequency, f0, and |S21|min (~ -62-63 dB), as shown in Fig. 2.4(a). Then a mut is 

added to observe frequency shift, Δf, and |S21|min change. Both parameters can be used as 

sensitivity indicators.  A one-stage reference interferometer is also tested for sensitivity 

comparisons, as shown in Fig. 2.4(b). 

The mut used is a PDMS slab with dimensions of 4 mm × 2.5 mm × 2 mm.  For 

the two-stage in Fig. 2.2(a), the mut is placed on a microstrip line (mut-microstrip). For 

one-stage reference interferometer, the same mut-microstrip is used to replace the first 

stage of Fig. 2.2(a).  Additional cables are added to the mut-microstrip section, so the 

electrical length is similar to that of the first stage.  For the quadrature stage in Fig. 

2.2(b), two measurements are conducted with the mut positioned at the center of the two 

microstrip lines. 

Figs 2.4(a) and (b) show that the two-stage interferometer has much larger Δf, i.e. 

frequency sensitivity.  Nevertheless, the curves in Fig. 2.4(a) are less sharp than those in 

Fig. 2.4(b), indicating a lower effective quality factor, Qeff, and lower frequency reading 

resolution.  The frequency dependent signal amplitude from the first stage, i.e. dispersion 

in Figs. 2.3(a) and (b), is likely the main factor that affects the Qeff.  Nevertheless, Δf is 

not determined by Qeff, instead it is determined by the effective electrical length 

difference of the two branches as discussed in [2.4].  Fig. 2.4(c) shows the measured 

sensitivity improvement factor, which is defined as Δftwo-stage/Δfone-stage at the same 

operating frequency ω0 and |S21|min.  Also plotted is the measured group delay. It shows 
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   (a)      (b) 

 

(c) 

2.4 (a) Typical measurement results of the two-stage 

Fig. 2.4 (a) Typical measurement results of the two-stage interferometer in Fig. 2.2(a).  

(b) Typical measurement results of the reference interferometer for Fig. 2.2(a). (c) 

Measured sensitivity improvement factor vs. frequency.  

 



 24 

that sensor sensitivity is improved when operating at or near the fundamental and 1st 

harmonic frequencies of the first stage interferometer, regions that also have large NGDs. 

Secondly, between the two NGD regions, Δftwo-stage/Δfone-stage is smaller than 1, which is 

expected.   Within this region, the two-stage interferometers become one-stage 

interferometers, but with slightly lower sensitivities since the first-stages are effectively 

straight transmission lines with 3 dB lower RF power for mut detections.  Although this 

indicates a correlation between group delay and sensor sensitivity, the mechanisms 

responsible for the sensitivity enhancement are not fully understood.  Fig. 2.4(c) also 

indicates that the two-stage and one-stage interferometers are operating at the same 

harmonic (fundamental) frequencies so the comparisons in Fig. 2.4 are fair [2.4].    

Fig. 2.5(a) shows typical measurement results with the quadrature hybrid stage in 

Fig. 2.2(b).  mut is placed on each of the paths.  So the curves shifted left and right. The 

obtained Δftwo-stage is ~3200 kHz compared to ~ 150 kHz in the one-stage reference 

interferometer, which is an improvement of over 20 times. Fig. 2.5(b) summarizes the 

measured Δftwo-stage from 1 GHz to 3.5 GHz.  It shows that Δftwo-stage follows the group 

delay pattern.  However, the slow wave with positive group delay, Fig. 2.3(d), yields the 

highest sensitivity.  
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(a) 

 

(b) 

Fig. 2.5 (a) Typical measured results of the two-stage interferometer with the first stage 

in Fig. 2.2(b).  (b) Measured Δftwo-stage vs. frequency. 
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CHAPTER THREE 

 
DESIGN AND ANALYSIS OF MICROSTRIP LINE SENSOR 

 
 

3.1 Design and Fabrication of Microstrip Sensors 

A microstrip line sensor, shown in Fig. 3.1 and 3.2(a), was selected to be the 

sensing electrode in the microwave flow cytometer discussed in Chapter V.  Resonators 

can concentrate the probing fields and improve measurement sensitivity, such as 

measuring nanometer scale cell membranes [3.1].  But their operating frequencies are 

limited and not easily tunable, thus inconvenient for frequency searching/sweeping 

application.  Coplanar waveguides (CPWs) are easier to build, yet the measurement 

signals are sensitive to cell position relative to CPW electrode surface [3.2], and the 

position is difficult to control.  Hence, separating cell intrinsic property variation from 

position variation in a measurement is challenging.  The microstrip arrangement in Fig. 

3.1 also has better sensitivity than CPWs sensors [3.3].  The interaction between a cell 

and the microwave fields varies with cell sizes and vertical location, Fig. 3.2(b), but the 

variations can be alleviated to tolerable levels by use of larger microstrip width, w.  

Hence, the microstrip in Fig. 3.2 provides a reasonable tradeoff between sensitivity, field 

intensity variation, and frequency tunability. 

The microstrip electrode in Fig. 3.2(a) is connected to a CPW transition section at 

each end.  The use of CPW is for easier cable connections and has increased design 

flexibility due to not having a fixed gap between the signal and ground planes, as is the 

case with the microstrip. It also allows for broadband impedance matching by tapering 
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Fig. 3.1. 3-D model of microstrip line sensor used in the microwave flow cytometer. A 

microstrip electrode in the Sensing Zone serves as the sensing structure. A microscope 

image of the sensing zone is shown in Fig. 3.2(a). 

 

the signal line at the transition section. The tapered section increases the series 

capacitance, hence increasing the impedance, to account for the lower impedance 

microstrip section caused by the large permittivity of most cell media [3.4, 3.5].   The 

microfluidic channel, used to transport fluid and/or cell samples through the sensing 

zone, extends the width of the 10 mm × 10 mm sensor. The 500-μm-wide channel tapers 

to a width of 100 μm for a 250-μm-long section passing under the ML, giving a total 

channel volume of 43.6 nL. Microfluidic tubes inserted at the ends of the channel allow 

for samples to be injected via a syringe. 

The sensor is made of two pieces- a top piece that serves as a cover for the 

microfluidic channel and contains the signal lines and the CPW ground plane, and a 

bottom piece that has the microfluidic channel, the microstrip ground, and four additional  
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Fig. 3.2 (a) A top view of the sensing zone of the microstrip sensor, (b) K-K cross section 

of the microfluidic channel showing the layers of the microstrip and the signal line 

transitions (CPW-Microstrip-CPW), and (c) M-M cross section of the microstrip showing 

the HFSS simulated electric field intensity. 

 

channels used to adhere the pieces. The sensors were fabricated on 4-inch fused silica 

wafers using standard microfabrication processes. 20-Cr/200-Au metal was patterned 

using a liftoff procedure on both wafers to create the signal and ground lines. Five 9-μm-

deep channels were etched in the bottom wafer, prior to metal patterning on the bottom 

wafer, by immersing in concentrated 49 wt% hydrofluoric acid (HF) for 10 minutes. Due 

to the relatively large etch depth, 5-Cr/100-Pt was used as masking material rather than 

more commonly used photoresists, since photoresist is easily penetrated by HF at high 

concentrations [3.6]. Even with a Pt mask for etching, adhesion is a significant issue and 

(a) 

(b) 

(c) 
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the metalized patterns were often removed prior to the 10-minute etch time. If deeper 

channels are required borosilicate glass can be used in place of quartz since the etch rate 

is significantly higher, although it exhibits isotropic etch profiles [3.7, 3.8]. We were able 

to etch 10-μm channels in SCHOTT Borofloat® wafers by submerging in 49% HF for 90  

 

 

 

Fig. 3.3 Broadband simulation of the ML section of the sensor for polystyrene particles 

(εr = 2.6) in positions (1) and (2) using water as the reference material (εmut = 81). 

seconds using an AZ P4620 photoresist mask. The fabrication process is summarized in 

Fig. 3.4, Table 3.1, and Table 3.2. 

 

The microfluidic channel, labeled wchannel in Fig. 3.2(a), runs perpendicular to the 

signal line at the center of the sensor. The other four channels are used to adhere the two 

pieces together using optical glue. The glue channels are each 200 μm wide and span the 

width of the sensor. The bases of the channels are metal coated to create a ground plane 



 32 

for the microstrip and ensure continuity of the CPW ground. The width of the microstrip 

ground, wgnd, is slightly narrower than the microfluidic channel at 80 μm to allow for 

misalignment during fabrication. The areas above the channels on the top wafer are left 

transparent to allow for viewing under a microscope. After adhering the signal and  

 

 

Fig. 3.4. Fabrication process of microstrip sensor. Details of each step is provided in 

Table 3.1 and 3.2. 
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ground pieces, tubes are inserted into drilled holes at the ends of the microfluidic channel, 

allowing continuous fluid flow through the sensor. The final assembled device is 

mounted in a brass assembly with SMA connectors, shown in Fig. 4.2(b).  Fig. 3.5 shows 

the broadband measurement and simulation results of the microstrip line sensor. There 

was very good agreement between measured and simulated |S21| over the entire operating 

frequency range and |S11| agrees well below 6 GHz. The differences above this are likely 

due to effects from the connectors, optical glue, and device imperfections from 

fabrication, particularly scratches created from drilling the microfluidic channel inlets, 

being difficult to account for in the simulation. 

 

 

Fig. 3.5. Comparison of measurement and simulation results for the sensing electrode 

over the operating frequency range. 
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TABLE 3.1 

BOTTOM WAFER ETCH PROCESS 

Step Process Step Parameters 

1 O2 Clean 150W for 30 sec 
2 HMDS Vapor priming oven 
3 Coat AZ P4620 Photoresist Spin at 2500 rpm, 700 rpm/sec for 60 sec 
4 Soft Bake Hotplate 115°C for 2 min 
5 Expose 6 cycles, 5 sec each, 10 sec wait 
6 Develop 351:DI 1:3 for 2.5 min 
7 Descum 40W for 20 sec 
8 Etch 49% HF immersion for 90 sec 

 
 

TABLE 3.2 

LIFTOFF PROCESS 

Step Process Step Parameters 

1 O2 Clean 150W for 30 sec 
2 HMDS Vapor priming oven 
3 Coat AZ nLOF Photoresist Spin at 1500 rpm for 30 sec 
4 Soft Bake Hotplate 110°C for 60 sec 
5 Expose Expose 6 sec 
6 Hard Bake Hotplate 110°C for 60 sec 
7 Develop 351:DI 1:1 for 60 sec 
8 Descum 40W for 20 sec 
9 Evaporator 20-Cr/200-Au 
10 Liftoff Overnight immersion in remover 1165 

 
 
 

3.2 Sensor Modeling 

The goal of microwave dielectric spectroscopy measurements is to determine the 

unknown complex permittivity and impedance of the material under test (mut). In order 
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to extract the complex permittivity of materials it is desirable to have a closed form 

solution relating the relative permittivity to the effective permittivity, the latter of which 

can be calculated directly from S-parameter measurements. While simulations based on 

full wave techniques can effectively relate the permittivities, the computational efficiency 

is low and mesh convergence is often difficult to obtain, especially when the volume 

fraction of the mut is small. In this section static variational methods for planar 

transmission line structures will be discussed and applied to multilayer microstrips. The 

method can be used in both the space domain and the Fourier domain, the latter is known 

as the static spectral domain analysis (SDA). 

 
3.3.1 Static variational method 

The variational method is a method based on the calculus of variations that is used 

to obtain the unknown function of a physical problem formulated as a definite integral 

under stationary conditions; i.e., under maximum and minimum conditions for a 

variational integral (functional), and the stationary conditions give the lower and upper 

bounds of the functional. To determine the function that provides the maximum and 

minimum (stationary) values of the functional, the variation of the functional must be 

zero. Then, if the second variation is positive the function provides the minimum value 

(upper bound) of the functional, if it is negative the function provides the maximum value 

(lower bound) of the functional, just like when determining the maximum and minimum 

values of a function in differential calculus. As such, any approximate solution to the 

functional will be larger (minimum condition) or smaller (maximum condition) than the 

correct solution. 
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There are two variational formulations for determining line capacitance, and 

hence the characteristic impedance Z0, of transmission lines – the energy method-based 

variational expression and the Green’s function method-based variational expression. The 

former provides the upper bound of the line capacitance and the lower bound of the 

characteristic impedance and the latter provides the lower bound of line capacitance and 

the upper bound of the characteristic impedance, as shown in Fig. 3.6. 

 

 

Fig. 3.6. Capacitance and impedance approximations for Green’s function and energy- 

based formulations of variational expressions. The upper bounds should be minimized, 

and the lower bounds should be maximized for the highest accuracy. 

 

The average value of both the upper and lower bounds of line capacitance using 

the two methods described here would be the most accurate solution, however, for the 

sensors described in this chapter using the Green’s function method alone was 

sufficiently accurate. 
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3.3.2 Green’s function method variational expression 

In the Green’s function method the charge distribution on the conductor is the 

unknown function that is assumed and treated as the trial function. Assuming that 

conductor 1 in Fig. 3.7 is grounded and conductor 2 is at potential V0, giving a charge 

distribution ρ(x’,y’) on it’s surface.  

 

 

Fig. 3.7. Two conductor transmission line 

 

The fields surrounding the transmission lines are described by the potential 

function Φ(x,y), which satisfies Poisson’s equation: 

 
∇𝑡
2𝛷(𝑥, 𝑦) = −

1

휀
𝜌(𝑥′, 𝑦′) (3.1) 

where 휀 = 휀0휀𝑟, (x’,y’) is the location of the source, (x,y) is the location of the field, and 

boundary conditions that Φ is zero on S1 and at infinity. The charge density excitation on 

the surface of the conductor is described by Dirac’s delta function δ(x-x’)δ(y-y’) and the 

response to the charge density at location (x,y) is described by the potential Green’s 

function G(x,y|x’,y’), defined as the solution to 
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∇𝑡
2𝐺(𝑥, 𝑦|𝑥′, 𝑦′) = {

−
1

휀
𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′)

0, 𝑥 ≠ 𝑥′, 𝑦 ≠ 𝑦′
 (3.2) 

The Green’s function can be thought of as the response to a unit charge density at 

location (x,y), so then the potential at a given location is the superposition of the potential 

responses, given as 

 
𝛷(𝑥, 𝑦) = ∮ 𝐺(𝑥, 𝑦|𝑥′, 𝑦′)

𝑆2

𝜌(𝑥′, 𝑦′)𝑑𝑙′ (3.3) 

Given that the potential on the surface of conductor 2 is V0, this becomes 

 
𝛷(𝑥, 𝑦) = 𝑉0 = ∮ 𝐺(𝑥, 𝑦|𝑥′, 𝑦′)

𝑆2

𝜌(𝑥′, 𝑦′)𝑑𝑙′ (3.4) 

Equation (3.4) is an integral equation with unknown charge distribution ρ(x’,y’). 

From this, we get the variational expression for capacitance by multiplying by ρ(x,y), 

integrating over S2, and using the definition QV0 = Q2/C [3.9] 

 1

𝐶
=
∯ 𝐺(𝑥, 𝑦|𝑥′, 𝑦′)𝜌(𝑥, 𝑦)𝜌(𝑥′, 𝑦′)𝑑𝑙𝑑𝑙′
𝑆2

[∮ 𝜌(𝑥, 𝑦)𝑑𝑙
𝑆2

]
2  (3.5) 

or in terms of the potential function 

 1

𝐶
= ∮ 𝛷(𝑥, 𝑦)

𝑆2

𝜌(𝑥′, 𝑦′)𝑑𝑙 (3.6) 

Because the Green’s function method provides the lower bound of line 

capacitance (and upper bound of impedance), the computed line capacitance will always 

be less than the true value of capacitance, thus the coefficients of the trial charge 

distribution function should be optimized to maximize the line capacitance.  
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3.3.3 Green’s function method variational expression in the Fourier domain 

The Fourier transform of the function f(x,y) with respect to a continuous variable x 

over the range (-∞,∞) and its inverse are defined as 

 
𝑓(𝛽, 𝑦) = ∫ 𝛷(𝑥, 𝑦)𝑒𝑗𝛽𝑥𝑑𝑥

∞

−∞

 (3.7) 

 
𝑓(𝑥, 𝑦) =

1

2𝜋
∫ 𝛷(𝛽, 𝑦)𝑒−𝑗𝛽𝑥𝑑𝛽
∞

−∞

 (3.8) 

where β is the Fourier variable. The Fourier transform of Poisson’s equation then gives 

the ordinary differential equation 

 𝑑2�̃�(𝛽, 𝑦)

𝑑𝑦2
− 𝛽2𝛷(𝛽, 𝑦) = −

1

휀
𝑓(𝛽)𝛿(𝑦 − 𝑦′) (3.9) 

where 𝛷(𝛽, 𝑦) and 𝑓(𝛽) are the potential and charge distribution, respectively, in the 

Fourier domain. Then, the variational expression in the Fourier domain be found by 

applying Parseval’s theorem to Equation (3.6) giving 

 1

𝐶
=

1

2𝜋𝑄2
∫ 𝛷(𝛽, 𝑦′)𝑓(𝛽)𝑑𝛽
∞

−∞

 (3.10) 

where y’ is the location of the conductor containing the charge distribution and the 

potential in the Fourier domain is 

 𝛷(𝛽, 𝑦′) = �̃�(𝛽, 𝑦′)𝑓(𝛽) (3.11) 

where �̃�(𝛽, 𝑦′) is the Green’s function in the Fourier domain. Assuming a symmetrical 

charge distribution, i.e. 𝑓(−𝛽) = 𝑓(𝛽), the variational expression for capacitance in the 

Fourier domain is 
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 1

𝐶
=
1

𝜋
∫ [

𝑓(𝛽)

𝑄
]

2

�̃�(𝛽, 𝑦′)𝑑𝛽
∞

0

 (3.12) 

To solve Equation (3.12) for the line capacitance we must assume a trial charge 

distribution, [𝑓(𝛽) 𝑄⁄ ]. Several charge distributions and their Fourier transform have 

been presented, including constant [3.10], linear [3.11], cubic [3.12], Maxwell’s [3.13], 

and others. Since the charge distribution on a strip conductor is symmetrical and has 

singularities at the strip edges, ideally a charge distribution would be chosen to represent 

that behavior, such as Maxwell’s distribution function. However, the cubic charge 

distribution was chosen to model the multilayer microstrip line sensor since it has been 

shown to be sufficiently accurate and is much simpler to implement. The cubic charge 

distribution is defined as 

 
𝑓(𝑥) = {

1 + 𝐴 |
𝑥

𝑤/2
|
3

, −𝑤/2 ≤ 𝑥 ≤ 𝑤/2

0,                                               |𝑥| > 𝑤/2

 (3.13) 

where w is the strip width and A is a constant. Assuming A = 1, the Fourier transform of 

Equation (3.13) is 

 
 𝑓(𝛽) =

4

𝛽
sin (

𝛽𝑤

2
) +

12

𝑤𝛽2
× 

               {cos (
𝛽𝑤

2
) −

4

𝛽𝑤
sin (

𝛽𝑤

2
) +

16

(𝛽𝑤)2
sin2 (

𝛽𝑤

4
)} 

(3.14) 

The total charge p.u.l.is 

 
𝑄 = ∫ (1 + |

2𝑥

𝑤
|
3

)𝑑𝑥
𝑤/2

−𝑤/2

=
5𝑤

4
 (3.15) 

Finally, the normalized charge distribution function in the Fourier domain is 
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𝑓(𝛽)

𝑄
=
8

5
∙
sin (

𝛽𝑤
2 )

𝛽𝑤
2

 +
12

5(
𝛽𝑤
2 )

2 × 

                {cos (
𝛽𝑤

2
) − 2 [

sin (𝛽𝑤/2)

𝛽𝑤/2
] + [

sin (𝛽𝑤/4)

𝛽𝑤/4
]
2

} 

(3.16) 

So to determine the line capacitance of a transmission line using the Green’s function 

method variational expression, the Green’s function of the problem must first be 

determined using Equation (3.9). Then the Green’s function and trial charge distribution 

function are substituted into Equation (3.12). 

 
3.3.4 The Transverse Transmission Line Method 

To determine the Green’s function of multilayer structures, the transverse 

transmission line (TTL) techniques is employed. The TTL method, first introduced by 

Chang and Change [3.14], is a convenient and simple method that uses an equivalent 

multi-section transmission line circuit to find the Green’s function of a multi-layer 

structure. TTL can be used to calculate the Green’s function in both the space domain and 

the Fourier domain, the latter of which is presented here and used for a multilayer 

microstrip line. 

The equivalency in this technique is due to the similarity between Poisson’s 

equation (Equation (3.9)) and the Kelvin–Heaviside voltage wave equation for a 

transmission line excited by a current source [3.15] 

 𝑑2𝑉

𝑑𝑦2
− 𝛾2𝑉 = −𝛾

1

𝑌0
𝐼𝑠𝛿(𝑦 − 𝑦

′) (3.17) 

Comparing Equations (3.9) and (3.17) gives the following equivalences 
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TABLE 3.3 

EQUIVALENT PARAMETERS 

Poisson’s Equation  Transmission Line 

𝛷(𝛽, 𝑦′)𝑓 ≡ 𝑉 
𝛽 ≡ 𝛾 
휀 ≡ 𝑌0 

𝑓(𝛽)/𝛽 ≡ 𝐼𝑠 
 

Since the charge on the strip is equivalent to a current source at the microstrip conductor 

location, the voltage at strip location y’ is 

 
𝑉(𝑦 = 𝑦′) =

𝐼𝑠
𝑌

 (3.18) 

so the potential function equivalence is 

 𝛷(𝛽, 𝑦 = 𝑦′) = 𝑓(𝛽)�̃�(𝛽, 𝑦) (3.19) 

where 

 
�̃�(𝛽, 𝑦) =

1

𝛽𝑌
 (3.20) 

Substituting Equation (3.20) into Equation (3.12) gives the variational expression in 

terms of the admittance parameter Y as follows 

 1

𝐶
=

1

𝜋휀0
∫

[𝑓(𝛽)/𝑄]
2

𝛽𝑌
𝑑𝛽

∞

0

 (3.21) 

This method can be applied to determine the Green’s function of multilayer 

microstrips without sidewalls, as shown in Fig. 3.8(a)-(b). The top and bottom surfaces 

can be modeled as either a short circuit or an open circuit, corresponding to an electric  
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  (a)       (b) 

Fig. 3.8. Cross section of (a) two-layer and (b) three-layer microstrips with bottom 

ground planes (electric wall) and unshielded (magnetic wall) top. The corresponding 

equivalent transmission line circuits are shown in Fig. 3.9. 

 

wall (PEC) or magnetic wall (PMC), respectively, at the ends of the equivalent 

transmission lines. The admittance of a lossy transmission line is defined as 

 
𝑌𝑖𝑛 = 𝑌0

𝑌𝐿 + 𝑌0 tanh 𝛾𝑙

𝑌0 + 𝑌𝐿 tanh 𝛾𝑙
 (3.22) 

so the admittances of an electric wall (YL → ∞) and a magnetic wall (YL → 0) are 

 𝑌𝑖𝑛
𝐸𝑊 = 𝑌0 coth 𝛾𝑙 (3.23) 

 𝑌𝑖𝑛
𝑀𝑊 = 𝑌0 tanh 𝛾𝑙 (3.24) 

For an unshielded microstrip, where εr = 1 and h = ∞, Eq. 3.26 gives admittance Yin = 1. 

For the unshielded two-layer microstrip in Fig. 3.9(a) the admittance function Y is 

 
𝑌 = 𝑌𝑎 + 𝑌𝑏 = 휀𝑟2

1 + 휀𝑟2 tanh 𝛽ℎ2
휀𝑟2 + tanh 𝛽ℎ2

+ 휀𝑟1 coth 𝛽ℎ1 (3.25) 
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(a) 

 

(b) 

Fig. 3.9. Equivalent transmission line models of (a) two-layer and (b) three-layer 

microstrips with bottom ground planes (electric wall) and unshielded (magnetic wall) 

tops used to determine the admittance functions. 

 

where 

 
𝑌𝑎 = 휀𝑟1

𝑌𝑎1 + 휀𝑟2 tanh 𝛽ℎ2
휀𝑟2 + 𝑌𝑏1 tanh 𝛽ℎ2

= 휀𝑟1
1 + 휀𝑟2 tanh 𝛽ℎ2
휀𝑟2 + tanh 𝛽ℎ2

 (3.26) 

 𝑌𝑏 = 휀𝑟1 coth 𝛽ℎ1 (3.27) 

Similarly, the admittance function of the unshielded three-layer microstrip in Fig. 3.8(a) 

 



 45 

 
𝑌 = 휀𝑟2

𝑌𝑎2 + 휀𝑟2 tanh 𝛽ℎ2
휀𝑟2 + 𝑌𝑎2 tanh 𝛽ℎ2

+ 휀𝑟1 coth 𝛽ℎ1 (3.28) 

where 

 
𝑌𝑎2 = 휀𝑟3

1 + 휀𝑟3 tanh 𝛽ℎ3
휀𝑟3 + tanh 𝛽ℎ3

 (3.29) 

This method can be used for n-layer microstrips with or without a top shield so 

long as the assumptions of infinitely wide substrates and a thin conductive strip are valid.  

The static dielectric constant and characteristic impedance of a multilayer microstrip 

without sidewalls are given by 

 
휀𝑒𝑓𝑓 =

𝐶

𝐶0
 (3.30) 

and 

 
𝑍0 =

1

𝑐√𝐶𝐶0
=
𝑍0(휀𝑟 = 1)

√휀𝑒𝑓𝑓
 (3.31) 

where C0 is the line capacitance p.u.l. with the substrate replaced by air and c is the speed 

of light in free space. This method can also be applied to various other single- and multi-

layer planar transmission line structures such as CPWs, coupled striplines, and slotlines 

[3.10, 3.16-3.24]. 
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CHAPTER FOUR 

 
MICROWAVE FLOW CYTOMETER 

 
 

Fig. 4.1(a) shows a schematic of the microwave flow cytometer using a 

microwave interferometer and a microstrip line sensor. The operating principle for the 

microwave interferometer is described in Chapter II and the microstrip sensor is 

described in Chapter III. For the microwave flow cytometer system, the microstrip sensor 

is placed in the shorter path of the interferometer and an attenuator is used in the 

reference (ref) path to balance the loss between the two paths to maximize measurement 

signal-to-noise ratio (SNR). 

 

 
(a)      (b) 

Fig. 4.1. (a) The schematic of the microwave interferometer used in the flow cytometer. 

A VNA is used to generate and detect single frequency probing signals. The operating 

frequencies are the minimum points circled in (b) the broadband system response. 
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With the microstrip sensor in the interferometer in Fig. 4.1(a), the path lengths 

were fixed such that the interferometer had a fundamental frequency of 265 MHz, with 

harmonics approximately every 530 MHz, as shown in Fig. 4.1(b). This allowed for easy 

switching between operating frequencies over a wide range of frequencies. A tunable 

phase shifter could be added in series with the attenuator if increased frequency tunability 

is desired. The full flow cytometer system, with the interferometer constructed from 

connectorized RF components and the microstrip line sensor described in Chapter III, is 

shown in Fig. 4.2. 

 

 
 
 

Fig. 4.2. (a) Benchtop assembly showing the interferometer setup with VNA, microscope, 

and (b) the final assembled microstrip line sensor. 

 

(a) 

(b) 
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4.1 Permittivity and Impedance Extraction 

The primary function of the microwave flow cytometer is to extract microwave 

properties of single biological cells in a microfluidic sensor. The analytical formulation 

for the microstrip described in Chapter III can be used to relate the S-parameters that are 

measured with a VNA to the complex permittivity and impedance of a liquid mut in the 

sensing zone of the microstrip sensor. The permittivity and impedance of the mut can be 

extracted from the measured frequency spectrum using the process described in Chapter 

II. However, that process requires that every component in the system be characterized. 

Any disturbance of the system, such as moving cables or components, or fluctuations in 

room temperature, would change system parameters and required it to be recharacterized. 

A much simpler and more effective approach is to use calibration standards prior to 

measurements. This approach also has the advantage of not requiring frequency domain 

measurements, allowing for the continuous time-domain measurements required for flow 

cytometry measurements. The calibration process and transmission line parameters for 

any sensor in an RF interferometer system is described in the following sections. 

 
4.1.1 RF interferometer calibration  

In order to obtain permittivity information, 휀(𝑓) = 휀′(𝑓) − 𝑗휀"(𝑓), from 

measured S-parameters, first the effective substrate permittivity of the sensor is extracted. 

The sensor’s propagation constant, 𝛾 = 𝛼 + 𝑗𝛽, can be obtained from the measured S21. 

The output at port 2 of the interferometer in Fig. 4.1(a) is [4.1] 
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  𝑆21 = 𝐴𝑚𝑢𝑡𝑒
−𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 + 𝐴𝑟𝑒𝑓 (4.1) 

where the subscript mut and ref refer to the material under test and the reference material, 

respectively. The complex constants Amut and Aref are the normalized transmission 

coefficients of the two paths.  The transmission coefficient of the sensor is described by 

the term 𝑒−𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 . These constants can be eliminated by using two calibration 

standards with known propagation constants by  

 𝑆21𝑚𝑢𝑡 − 𝑆21𝑐𝑎𝑙1
𝑆21𝑐𝑎𝑙2 − 𝑆21𝑐𝑎𝑙1

=
𝐴𝑚𝑢𝑡𝑒

−𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 + 𝐴𝑟𝑒𝑓 − 𝐴𝑚𝑢𝑡𝑒
−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1 − 𝐴𝑟𝑒𝑓

𝐴𝑚𝑢𝑡𝑒−𝛾𝑐𝑎𝑙2𝑙𝑐𝑎𝑙2 + 𝐴𝑟𝑒𝑓 − 𝐴𝑚𝑢𝑡𝑒−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1 − 𝐴𝑟𝑒𝑓
 

                                  =
𝑒−𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 − 𝑒−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1

𝑒−𝛾𝑐𝑎𝑙2𝑙𝑐𝑎𝑙2 − 𝑒−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1
 

(4.2) 

where the cal1 and cal2 subscripts refer to the signals from two calibration solutions. 

Solving for 𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 gives 

 
𝛾𝑚𝑢𝑡𝑙𝑚𝑢𝑡 = 𝑙𝑛 [(

𝑆21𝑚𝑢𝑡 − 𝑆21𝑐𝑎𝑙1
𝑆21𝑐𝑎𝑙2 − 𝑆21𝑐𝑎𝑙1

) (𝑒−𝛾𝑐𝑎𝑙2𝑙𝑐𝑎𝑙2 − 𝑒−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1)

− 𝑒−𝛾𝑐𝑎𝑙1𝑙𝑐𝑎𝑙1]. 

(4.3) 

The effective complex permittivity is then determined from 𝛾𝑚𝑢𝑡 by [4.2] 

 
ε𝑒𝑓𝑓 ’ =

𝛽2 − 𝛼2

𝜔2𝜇0휀0
 (4.4) 

and 

 
ε𝑒𝑓𝑓" =

2𝛼𝛽

𝜔2𝜇0휀0
. (4.5) 

This result is the effective permittivity of the portion of the sensor containing mut, which 

assumes a homogeneous medium surrounding the electrode (Fig. 4.3). Since the effective 
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permittivity is the averaged permittivity of the sensing zone it includes effects of the glass 

substrate. The effective permittivity is then used to determine the relative permittivity of 

the medium, which removes the permittivity contribution from the substrate. The above 

analysis is valid for any sensor in an interferometer system, provided the impedance 

changes during measurements are small enough that reflections can be ignored. 

Extracting the permittivity of the medium from the effective permittivity, however, is 

dependent on the device geometry. 

 

 

Fig. 4.3. Cell permittivity determination process. The schematic starts at the transmission 

line model. The parameter 𝛾𝑙 is calculated from S21 using Eq. 4.2. This parameter is used 

to obtain 휀𝑒𝑓𝑓 , which describes the permittivity of a microstrip if it were surrounded by a 

homogeneous medium. Equations (4.6)-(4.10) are used to determine the media 

permittivity, 휀𝑚𝑒𝑑𝑖𝑎, prior to cell measurements, where a cell is represented by the circle. 

The thickness and permittivity of the glass cover, htop and 휀𝑡𝑜𝑝, the channel height, hmut, 

and the electrode width, w, are constants defined by the device geometry and materials. 

When a cell passes under the electrode the overall mut permittivity changes, labeled as 

∆휀𝑐𝑒𝑙𝑙. 
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Closed form solutions based on conformal mapping are commonly used to relate 

effective and relative permittivity of microstrip devices; however, these models are  

typically intended for single layer microstrips. For multi-layered structures curve fitting 

techniques can be used, but this is a difficult endeavor. Due to the multilayer structure of 

the microstrip and the large permittivity of the mediums we found the variational method 

in the Fourier domain along with the transverse transmission line (TTL) technique [4.3], 

described in Chapter III, to be more accurate than conformal mapping-based models and 

more computationally efficient compared to full-wave electromagnetic methods. Since 

the microstrip line is embedded in an inhomogeneous medium the propagating mode is 

approximated as quasi-TEM, for which the effective permittivity is related to the 

capacitance by [4.4] 

 
휀𝑒𝑓𝑓 =

𝐶

𝐶0
 (4.6) 

where C is the capacitance of the multilayered microstrip line per unit length and C0 is 

the capacitance of the microstrip line with all dielectric layers replaced by air. The 

capacitance of the microstrip line can then be determined from the variational expression 

of line capacitance in the Fourier domain discussed in Chapter III. The Y-admittance 

parameter for the two-layer microstrip from equation (3.25) is 

 
𝑌∗ = 휀𝑚𝑢𝑡 coth(𝛽ℎ𝑚𝑢𝑡) + 휀𝑡𝑜𝑝 {

휀𝑡𝑜𝑝 + coth(𝛽ℎ𝑡𝑜𝑝)

1 + 휀𝑡𝑜𝑝 coth(𝛽ℎ𝑡𝑜𝑝)
} (4.7) 

where htop (1 mm) and hmut (9 μm) are the substrate and channel thicknesses, respectively, 

and 휀𝑡𝑜𝑝 is the dielectric constant of the glass substrate. 
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So, the effective permittivity, 휀𝑒𝑓𝑓 , is determined from S-parameter measurements 

using Equations (4.1)-(4.5), then 휀𝑚𝑢𝑡  is obtained using look up tables. Due to the 

complexity of Equation (3.21) there is no closed form expression for 휀𝑚𝑢𝑡 so look up 

tables were used to determine 휀𝑚𝑢𝑡 from the measured 휀𝑒𝑓𝑓 . The variational method 

model for the microstrip sensor was used to generate two tables, one relating 휀′𝑚𝑢𝑡 and 

휀′𝑒𝑓𝑓 , and one for 휀"𝑚𝑢𝑡 and 휀"𝑒𝑓𝑓 , by sweeping one of the values of 휀𝑚𝑢𝑡 (real or 

imaginary), and calculating the corresponding part of 휀𝑒𝑓𝑓 .  The maximum error created 

by using the tables was found to be less than 0.01% for ε’ and less than 0.5% for ε”. The 

permittivity extraction process is summarized in Fig. 4.3. When a cell passes under the 

electrode the overall mut permittivity changes. The cell measurements discussed in this 

dissertation are referring to the peak change in permittivity, Δ휀𝑐𝑒𝑙𝑙, which occurs when 

the cell is centered under the electrode. 

The measured propagation constant is also used to determine the impedance of the 

medium. The potential at point a in Fig. 4.1(a) is [4.7] 

 𝑆11 = 𝐵𝑚𝑢𝑡𝛤𝑚𝑢𝑡 + 𝐵𝑟𝑒𝑓𝛤𝑟𝑒𝑓 , (4.8) 

where Γmut and Γref are the reflection coefficients at the inputs of the sensor path and the 

reference line in Fig. 4.1(a), and the constants Bmut and Bref describe all other components 

in the system. The constants are calibrated out using the same two calibration materials 

by 

 
 
𝑆11
𝑚𝑢𝑡 − 𝑆11

𝑐𝑎𝑙1

𝑆11
𝑐𝑎𝑙2 − 𝑆11

𝑐𝑎𝑙1 =
𝛤𝑚𝑢𝑡 − 𝛤𝑐𝑎𝑙1
𝛤𝑐𝑎𝑙2 − 𝛤𝑐𝑎𝑙1

, (4.9) 

with reflection coefficients defined as 
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 𝛤𝑚𝑢𝑡,𝑐𝑎𝑙 =

𝑍𝑖𝑛
𝑚𝑢𝑡,𝑐𝑎𝑙 − 𝑍0

𝑍𝑖𝑛
𝑚𝑢𝑡,𝑐𝑎𝑙 + 𝑍0

, (4.10) 

and input impedances 

 
 𝑍𝑖𝑛
𝑚𝑢𝑡,𝑐𝑎𝑙 = 𝑍𝑚𝑢𝑡,𝑐𝑎𝑙

𝑍𝐿 + 𝑍𝑚𝑢𝑡,𝑐𝑎𝑙 tanh 𝛾𝑚𝑢𝑡,𝑐𝑎𝑙𝑙𝑚𝑢𝑡,𝑐𝑎𝑙
𝑍𝑚𝑢𝑡,𝑐𝑎𝑙 + 𝑍𝐿 tanh 𝛾𝑚𝑢𝑡,𝑐𝑎𝑙𝑙𝑚𝑢𝑡,𝑐𝑎𝑙

. (4.11) 

So, Equations (4.9) and (4.10) are used to determine the input impedance of the 

sensor, 𝑍𝑖𝑛𝑚𝑢𝑡, then Equation (4.11) is solved numerically to get the complex impedance 

of the mut, Zmut. For calibration, the impedance of the microstrip line is determined from 

Equation (3.31). The permittivity and impedance extraction process are summarized in 

Fig. 4.4. 

 

 

Fig. 4.4. Algorithm to determine the permittivity 휀𝑚𝑢𝑡 and complex impedance Zmut from 

S-parameter measurements. 
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To validate the model described above the effective permittivity, 휀𝑒𝑓𝑓 , was 

calculated from relative permittivities, 휀𝑚𝑢𝑡, and compared with simulation using 

ANSYS High Frequency Structural Simulator (HFSS). The microstrip line was simulated 

by sweeping the real and imaginary parts of 휀𝑚𝑢𝑡 and calculating 휀𝑒𝑓𝑓  using Equations 

(4.4) and (4.5), and the propagation constant 𝛾 from HFSS using [4.6]  

  𝑓0 =
𝑛𝑐

2𝑙𝑚𝑢𝑡√휀′𝑒𝑓𝑓

 
(4.12) 

where 𝑓0 is the resonance frequency due to reflections, c is the speed of light in free space 

(~ 3 × 108 m/s), and n is the harmonic integer.  

 

 

(a)      (b) 

Fig. 4.5. Comparison of variational method models against HFSS simulation of effective 

permittivities (a) 휀′𝑒𝑓𝑓  and (b) 휀"𝑒𝑓𝑓  vs. relative permittivities 휀′𝑚𝑢𝑡 and 휀"𝑚𝑢𝑡 for the 

two-layer microstrip line sensor. The permittivity model described in Chapter III shows 

good agreement with HFSS simulation. 
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 The simulated and calculated values for 휀𝑒𝑓𝑓  for the two-layer microstrip 

configuration described in Chapter III are plotted in Fig. 4.5, where WML = 10 μm, hmut = 9 

μm, htop = 1 mm, 휀𝑡𝑜𝑝 = 3.78, and 휀𝑚𝑢𝑡 represents the unknown material permittivity in 

the sensor. To validate the permittivity extraction technique for the full microwave flow 

cytometer system with an RF interferometer, broadband permittivity measurements of 

isopropyl alcohol (IPA) and ethyl alcohol were compared with measurements from [4.5], 

shown in Fig. 4.6. 

 

 

   (a)      (b) 

 
Fig. 4.6. Measured and reported [4.5] permittivities of (a) isopropyl alcohol and (b) 

ethanol 
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CHAPTER FIVE 

 
DETECTION AND IDENTIFICATION OF SACCHOROMYCES  

YEAST SPECIES 
 
 

5.1 Investigation of Yeast Microwave Specificity 

A significant number of single cells need to be measured over a wide frequency 

range for a microwave specificity analysis to identify species or other cell characteristics.  

Therefore, in-flow cell measurement, instead of measuring trapped cells, is necessary. 

Additionally, the measurement system fluctuations should be much smaller than cellular 

heterogeneity within a cell species or strain, or smaller than intercellular differences for 

the analysis to be meaningful, as illustrated in Fig. 5.1. The measurement frequency 

should be tunable, since the frequencies that provide the best information for 

differentiation are unknown. At the same time, high sensitivity measurements are 

necessary, since the difference between cells within a population are expected to be 

small.  In this chapter the results from using the multi-frequency tunable microwave flow 

cytometer described in Chapter IV to examine two brewing yeast species is presented. 

A schematic of the microwave flow cytometer is shown in Fig. 4.1(a) and the 

assembly is in Fig. 4.2. The operating principle for this device was described in Chapter 

IV and in [5.1]. For this device setup, the sensing electrode is placed in the shorter path 

and an attenuator is used on the reference (ref) path to balance the loss between the two 

paths to maximize measurement signal-to-noise ratio (SNR).  
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Fig. 5.1. An illustration depicting the utilization of two microwave properties to 

identify/distinguish different species and strains. 

 

The measurement procedure for cell or particle measurements is as follows – 

1. Calibrate the VNA using a standard thru, reflect, line (TRL) calibration kit to 

ensure the effects of the cables connected to the power dividers is nulled. 

2. Calibrate the sensor with two liquid standards using the procedure outline in 

Chapter IV. This removes the effects of all components outside the sensing zone. 

3. Pump the particle/cell solution into the sensor and determine operating points by 

measuring the broadband response. Generally this step cannot be done prior 

because of the varying permittivities between the calibration liquid and cell media 

permittivities, which shifts the interferometer operating points. 

4. Measure S-parameters at a single frequency while pumping cells. A cell 

concentration of ~2×104 cell/mL pumped at 20 μL/hr will typically capture 20-
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100 signals per minute. Tradeoffs between the VNA sampling rate and the pump 

rate can be made for faster throughput or less noise, where a higher sample rate 

(larger intermediate frequency) enables faster pump rate but increases system 

noise. For the 10 μL electrode a minimum of 15 data points is required for a 

single cell to ensure the peak signal is captured. 

5. Adjust operating frequency and repeat Step 4. A typical measurement consisted of 

six single-frequency measurements with each measurement taking 2-5 minutes. 

 
5.1.1 System evaluation with polystyrene particles 

The microwave flow cytometer system was evaluated first using polystyrene 

particles (PSP) with various diameters (3.0 µm to 7.3 µm).  The PSP measurements were 

used to determine the sensor accuracy, sensitivity, and precision.  

Five spherical polystyrene microparticles with diameters- 3.0, 4.4, 5.5, 6.2, and 

7.3 µm were suspended in DI water and pumped through the sensor at a rate of 20 μL/hr 

using a syringe pump to obtain signals for the six targeted frequency points shown in Fig. 

4.1. These frequencies were 7.65, 5.55, 3.96, 2.38, 0.800, and 0.265 GHz. When a 

particle passed under the microstrip line, a shift in S21 was observed, which corresponded 

to a change in the complex permittivity due to the permittivity contrasts between the 

cell/particle and medium. 

Fig. 5.2 shows a typical S21 signal and the corresponding permittivity change with 

DI water as the background reference.  The signals are obtained with the same particle 

that passes through the sensing electrode multiple times. The particle was manually 
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controlled to pass back and forth across the sensing electrode to test the repeatability of 

the measurement. The particle position was controlled by first injecting the particle 

solution into the sensor and waiting several minutes until the particles stopped moving. 

The particle’s lateral position can then be precisely controlled by raising and lowing the 

tubes connected to the inlet. The measurement time step is approximately 10 ms.  The 

average shifts of 휀′ and 휀" were 0.760±0.013 and 0.145±0.006, respectively. The results 

show that microwave flow cytometer is sensitive, and the measurements are repeatable. 

 

 

Fig. 5.2. Multiple measurements of a single 5.5 μm particle at 3.96 GHz. The average 

shifts of 휀′ and 휀" were 0.760±0.013 and 0.145±0.006, respectively.  The differences 

between measurements can be attributed to noise having a small effect on the peak shift 

value. 
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Fig. 5.3 shows the measured results of 150 5.5 μm PSP particles measured one at 

a time.  The average shifts for all the particles are 0.660±0.044 (휀′) and 0.112±0.022 (휀").  

The coefficients of variation of Δ휀′ and Δ휀" are 5.40% and 17.53%, respectively.  

Compared to 13.64% particle volume variation, the system has good measurement 

accuracy. 

 

 
Fig. 5.3. Scatter plot of permittivity shifts for 150 5.5 μm PSP particles measured at 

3.96 GHz. 

 
Fig. 5.4(a) shows measured ΔS21 of PSPs with different diameters.  The minimum 

detectable PSP particle and permittivity change, which yields an SNR of 3:1, is frequency 

dependent as shown in Fig. 5.4(b). The sensitivity decreases at lower frequencies due to 

decreasing electrical length.  At higher frequencies, the sensitivity flattens out because of 

increased sensitivity to mechanical noise in the cables. The predicted smallest measurable 

PSP particle is 1.7 μm diameter, assuming a linear relationship between volume and 

signal size, which would occur at 2.38 GHz. 
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(a) 

 
(b) 

Fig. 5.4. (a) Scatter plot of the observed S21 shift for various sizes of microparticles at 

1.81 GHz. Each point represents the peak induced shift, plotted as magnitude vs. phase. 

(b) Minimum detectable shift in permittivity and minimum detectable PSP diameter for a 

3:1 SNR. 
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5.1.2 Yeast cell measurement 

The second evaluation of the microwave flow cytometer system probed viable 

and non-viable S. cerevisiae and S. pastorianus, two popular species of yeast used in the 

production of beer, for signal characteristics. The two species are nearly identical in size 

and shape, which makes visual identification difficult [5.9, 5.12]. Both are elliptical in 

shape and vary from 7 to 10 μm long and 4 to 7 μm wide [5.10, 5.11]. The similar 

morphologies are a result of S. pastorianus being a hybrid S. cerevisiae and another 

species, S. eubayanus, which also gives S. pastorianus a double size genome [5.9, 5.16, 

5.17]. As such, biochemical techniques such as mass spectrometry and polymerase chain 

reaction (PCR) must be employed to identify closely related species [5.13-5.15]. These 

techniques are expensive and time consuming. The ability to rapidly distinguish between 

similar species such as these could provide a valuable new methodology for 

microbiologists. 

When yeast from either species were killed by heat shock there was no noticeable 

change in morphology, provided the temperature was not so high to completely 

breakdown the cell membrane. High temperature and subsequent cell death is known to 

increase membrane permeability [5.16]. Consequently, there were no visual differences 

between the two yeast species and the two states for each condition (live and dead). Thus, 

the differences in microwave properties were due to the inherent differences between the 

cells. S. cerevisiae and S. pastorianus cells, shown in-flow in the sensor in Fig. 5.5, were 

grown in Yeast Extract-Peptone-Dextrose (YPD) medium until a concentration 

greater than or equal to 106 cells/mL was reached, typically around 24 hours. 
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(a) 

 

(b) 

Fig. 5.5. Microscope images taken of live (a) S. cerevisiae and (b) S. pastorianus cells in-

flow. The two strains, whether alive or dead, are visually indistinguishable.   
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The cells were diluted 40:1 DI water:cell medium immediately before taking 

measurements. Since measurements are taken for individual cells, the consistency of the 

cell concentrations between measurements is not of concern, but rather the consistency of 

the medium as that will affect the baseline permittivity. Dead cell samples are obtained 

by killing yeast in 90°C water for one minute. The effectiveness of the methods used for 

cell growth and killing the cells were confirmed by performing cell viability counts using 

Trypan blue and a hemocytometer, shown in Fig. 5.6. Trypan blue selectively stains for 

dead cells, making the dead cells appear darker in color. Live cells with intact membranes 

are not stained, making them appear lighter in color. We found S. cerevisiae live samples 

are at least 97% viable and dead samples contain less than 1% viable cells and S. 

pastorianus live samples are over 99% viable and dead samples have less than 2% viable 

cells. 

All samples were prepared to be as uniform as possible to keep the baseline 

permittivity constant throughout measurements. However, due to the complex biological 

processes taking place during cell growth, there will always be slight differences in the 

media, shown in Fig. 5.7. We found the solution media permittivity had a maximum 

standard deviation between measurement samples of 0.9 for 휀′ and 0.3 for 휀", occurring at 

0.265 GHz and 0.8 GHz, respectively, and the percent difference between media 

permittivities was less than 3% for all frequencies except for 휀" at the same two 

frequencies, although the larger differences are exaggerated due to the small values of 휀". 

The effects of these differences are minimal compared to the intrinsic differences 

between cells within a given population.  
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 (a)       (b) 

        

 (a)       (b) 

Fig. 5.6. Stained (a) live and (b) dead S. cerevisiae cells and (c) live and (d) dead S. 

pastorianus cells. 
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Fig. 5.7. Comparison of the complex permittivity of the media solution with water. The 

media solution values are the average values of all samples at each frequency. 

 

Multiple time domain measurements were taken of four yeast samples, including 

two yeast species, S. cerevisiae and S. pastorianus, at two physiological states, live and 

dead. Measurements were taken one frequency at a time under the assumption that the 

solutions have a uniform distribution (i.e. uniform baseline).  Fig. 5.8 shows typical 

measurement results of S. pastorianus cells at 2.38 GHz. Each signal represents a cell 

passing under the ML, with the peak change in 휀′ and 휀” occurring when the cell is under 

the center of the electrode. 
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(a) 

 

(b) 

Fig. 5.8. (a) Typical time domain measurement of S. pastorianus yeast cells, taken at 2.38 

GHz. Each signal is due to a single cell passing through the sensor. (b) Scatter plot of the 

change in S21 magnitude versus phase at 2.38 GHz. The S-parameter data is used to 

calculate the complex permittivity, then the peak change in 휀′ and 휀" is used to obtain the 

cell population’s response. 
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Scatter plots for the six frequencies are shown in Fig. 5.9. Each point in the plots 

represents the absolute value of the difference between the average baseline value and the 

peak change in both 휀′ and 휀" for a single cell. 

The results show that yeast signals have a significant distribution, which is 

quantified in Tables 5.1 and 5.2. The distribution comes from various potential sources 

discussed above.  Additionally, multiple cells passing through the sensor simultaneously 

or cells passing under the electrode in an area where there is no ground plane may have 

attributed in part to the variations, but from microscope observations during measurement 

we estimate this occurring in less than 3% of measurements. Given the dilutions and the 

small areas without a ground plane relative to the areas that do contain a ground, the 

variations are mostly due to intrinsic differences between cells within the populations. 

Overall, viable S. cerevisiae has the largest distribution at the three frequencies, possibly 

due to larger microwave permittivity variations during the cell’s life cycle compared to S. 

pastorianus cells.  Further work is needed to understand the biological sources.  All yeast 

signals and signal distributions are frequency dependent.  At higher frequencies, yeast 

permittivity values (∆휀) are lower, but the distributions remain constant.  Different yeast 

species have different signals and permittivity values, which are also altered to different 

degrees by cell death.  Though signal overlaps exist, there are significant separations at 

each frequency point.  The differences indicate potential microwave specificity.  

 

 



 73 

 

  (a)      (b) 

 

   (c)      (d) 

 

(e)      (f) 

Fig. 5.9. Scatter plots of permittivity of known samples at (a) 265 MHz, (b) 800 MHz, (c) 

2.38 GHz, (d) 3.96 GHz, (e) 5.55 GHz, and (f) 7.65 GHz. Each data point represents the 

change in permittivity for a single cell or particle, with the x-axis being the real part and 

the y-axis the imaginary part. 
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Fig. 5.10 shows the measured 휀𝑀𝑈𝑇∗  vs. frequency with the water permittivity 

plotted for comparison.  The extracted 휀𝑀𝑈𝑇∗  follow water permittivity trend, as is shown 

in bulk cell measurements [5.2].  Figs 5.11 shows the trend of average yeast permittivity 

vs. frequency. 

At 265 MHz we see that the average value of Δ휀′ for the two species of dead cells 

are smaller than the live counterparts. This is likely due to a decrease in membrane 

capacitance caused by cell death, since the membrane capacitance of yeast cells remains 

constant while the cells are viable and drops to zero at cell death, and a smaller 

membrane capacitance would be observed as a decrease in the real part of the cell’s 

permittivity [5.4]. The difference observed between the two live species at the lowest 

frequency can also be described by differences in the cell’s membrane capacitances, since 

the permittivity of yeast membranes has been shown to be correlated to flocculation 

abilities of yeast cell species, with weaker flocculating cells having a higher permittivity 

[5.5]. In this work the authors observed that S. cerevisiae cells, which have a weaker 

flocculation ability than S. pastorianus cells, have a higher permittivity than S. 

pastorianus cells when measured in solution from 100 Hz to 100 kHz. The authors 

suggested the result was due to differences in cell surface charge between the two cell 

types, where a decrease in surface charge would decrease electrostatic repulsion between 

cells, and hence increase flocculation. However, a relationship between surface charge in 

yeast at the start of flocculation has not been found [5.18]. It has also been suggested that 

cell-surface hydrophobicity is responsible for flocculation in brewing yeast [5.19]. This is 

supported by measurements over the frequency range 40 Hz to 110 MHz showing that the 
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dielectric properties of the plasma membranes of live S. cerevisiae are strongly 

influenced by the properties of the hydrophobic layer of the cell membrane [5.20]. 

Regardless of the underlying mechanisms, our results are consistent with those reported 

in [5.5]. Although their measurements were performed at lower frequencies, the effects of 

membrane capacitance on permittivity have been observed at frequencies as high as 100 

MHz and is most likely the cause of our observations [5.8]. 

 
 

TABLE 5.1 
COEFFICIENTS OF VARIATION OF Δ휀′ 

Frequency (GHz) SC Live SC Dead SP Live SP Dead 5.5 μm 

7.65 58.2% 61.1% 41.2% 51.4% 5.06% 
5.55 42.1% 47.4% 41.7% 49.3% 3.78% 
3.96 51.9% 57.3% 45.3% 51.0% 5.40% 
2.38 43.2% 50.1% 38.9% 52.50% 4.78% 
0.80 57.8% 50.6% 38.9% 41.6% 5.50% 
0.265 57.0% 19.4% ND 18.7% 9.0% 

SC represents S. cerevisiae and SP represent S. pastorianus.  ND indicates permittivity 
values that were not obtainable.  
 

 
TABLE 5.2 

COEFFICIENTS OF VARIATION OF Δ휀" 
Frequency (GHz) SC Live SC Dead SP Live SP Dead 5.5 μm 
7.65 58.8% 52.1% 39.9% 44.8% 7.7% 
5.55 39.6% 42.3% 35.8% 39.8% 23.2% 
3.96 50.9% 58.8% 45.7% 33.9% 17.5% 
2.38 43.6% 43.9% 43.9% 52.9% 24.4% 
0.80 51.1% 119% 46.3% ND ND 
0.265 44.5% ND 40.7% ND ND 

SC represents S. cerevisiae and SP represent S. pastorianus.  ND indicates permittivity 
values that were not obtainable.   
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At frequencies 800 MHz and above, where microwave signals more readily probe 

structures within the cell membrane, it is possible that the difference observed between 

the two species is a result of S. pastorianus having a larger relative genome size (1.46) 

than S. cerevisiae (1.00) [5.9]. Regardless, due to the probing nature of high frequency 

signals several factors will influence measurements (nucleoplasm, cytoplasm, nucleus 

size, nuclear envelope thickness) and thus further investigation is needed to verify this is 

the only cause.  

The differences in Δ휀" observed between live and dead cells are likely due to 

increased membrane permeability caused by heat shock, meaning molecules in the 

external media can more readily diffuse across the cell membrane into the cell (and 

simultaneously, leakage of cytoplasmic ions) making the conductivity, and hence 휀", 

inside the cell more closely match that of the media [5.7]. At the lowest frequency (265 

MHz), this is supported by observations in [5.6], where the authors measured the 

dielectric properties of live and dead yeast cells in suspension from 60 kHz to 600 kHz 

and observed lower dielectric loss 휀" of dead yeast suspensions compared to live cell 

suspensions. Despite these measurements being at lower frequencies than ours, the trend 

should extend to higher frequencies since at higher frequencies, penetration of the 

microwaves into the cell increases and cell membrane effects have little impact on the 

measured complex permittivity. This means intracellular differences between cells 

become more apparent. At frequencies of 800 MHz and above, where internal cell 

properties are more readily observed, our results are consistent with those in [20], where 

the authors observed by way of electrorotation a significant decrease in cytoplasmic 
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(a) 

 
(b) 

Fig. 5.10. Average shift of (a) 휀′ and (b) 휀" for the four cell classes versus frequency, with 

DI water as the baseline reference. The background reference was changed to water to 

help illustrate the differences observed between cell types. The media changes slightly 

between measurements based on chemical makeup and temperature. Efforts were made to 

keep the media as consistent as possible across measurements, minimizing the resulting 

error. 
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(c) 

 
(d) 

 

Fig. 5.11. Average shift in (c) 휀′ and (d) 휀" vs. frequency for each of the five mixture 

classes. The relative consistency in the 5.5 μm particle signals and the consistently large 

variability from cells across frequencies indicates that any observed frequency 

dependence is due to intrinsic cell properties. 
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conductivity in S. cerevisiae, from 5500±500 μS/cm to 100-800 μS/cm, when the cells 

were killed by heat shock. This decrease in conductivity would result in a smaller Δ휀" for 

dead cells compared to live cells, which is what we observed in our measurements. 

This shift to internal cell properties being more readily observed at higher 

frequencies is apparent in the average Δ휀′ at 800 MHz and above, where we see that live 

cells have a larger (more negative) shift than their dead counterparts. This is due to the 

protoplasm of the live yeast having a smaller permittivity than that of the media (which is 

mostly water) [5.3]. Again, due to the increased membrane permeability the internal 

permittivity of the dead cells more closely resembles that of the media, while the 

permittivity of the live cell’s protoplasm is much smaller, resulting in a larger shift for 

live cells. Additionally, the increase in Δ휀′ above 265 MHz for dead cells can be 

explained by the membrane capacitance no longer having an observable effect. 

5.2 Machine Learning for Mixture Prediction 

To better understand if microwave measurements can be exploited to discriminate 

yeast species and the viability of the yeast, a prediction model was developed using the 

measurement data described above. Quadratic discriminant analysis (QDA) was used for 

frequencies above 2.38 GHz and above since the data obtained appears to have a normal 

distribution. K-nearest neighbor (KNN) and linear discriminant analysis (LDA) was used 

for the lowest two frequencies due to having some data on only the x- or y-axis (Fig. 

5.9(a) and (b)).  

QDA uses a quadratic decision surface to classify measurements, as show in Fig. 
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5.12. It is a generative classifier that assumes each measurement class has a 

Gaussian distribution. The probability density function (PDF) 𝑁(𝜇, 𝛴) in D dimensions is 

defined as 

 
 𝑁(𝑥|𝜇, 𝛴) =

1

√(2𝜋)𝐷𝑑𝑒𝑡𝛴
exp (−

1

2
(𝑥 − 𝜇)T𝛴−1(𝑥 − 𝜇)) (5.1) 

Where μ is the mean vector and Σ is the covariance matrix. Generative classifiers model 

the joint probability distribution of the inputs and their targets, i.e. the permittivity 

changes and the cell classes, respectively, to find the maximum likelihood solutions for 

the class-specific priors (proportion of data points that belong to a class), means, and 

covariance matrices of the PDF in Eq. 5.1. 

KNN, on the other hand, is a non-parametric, or discriminative, classifier that 

generates classification surfaces using the k closest training examples from the data set 

(training set). Euclidean distance was used as the distance metric, which for points p and 

q located at (𝑝1, 𝑝2) and (𝑞1, 𝑞2), respectively, in Cartesian coordinates is 

 𝑑(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 (5.2) 

When an unknown object is input, the object is classified by a plurality vote of its 

neighbors based on the most common class of its k nearest neighbors. A k of 5 was used 

for all classifications models discussed in this chapter and in Chapter VI. Examples of 

decision surfaces from the two models is shown in Fig. 5.12. 

For both QDA and KNN models the training data consists of five classes- the four 

yeast classes (S. cerevisiae and S. pastorianus, live and dead) and 5.5 μm particles, which 

could represent debris in an application such as cell monitoring during fermentation, 
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(a) 

 

(b) 

Fig. 5.12 classification surfaces from (a) quadratic discriminant analysis and (b) k-nearest 

neighbors for 2.38 GHz, corresponding to the scatter plot in Fig. 5.9(c). 
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which would contain a significant amount of grain particulates from the mashing process 

that could potentially be misidentified as cells. Prediction models were developed and 

compared for individual frequencies. The performance of the prediction models can be 

measured using cross-validation, wherein the data is split into two groups – the training 

set and the test set. The prediction model is trained with the training set and the error rate 

is estimated with the test set. For k-fold cross-validation the data set first split into k 

groups, one group is taken as a test set and the remaining groups are used as the training 

set to generate a model. The model is then discarded, and the process is repeated until all 

k groups have been the held out as the test set. The k-fold cross validation error is given 

as the average error rate of all models, given in Table 5.3. 

TABLE 5.3 
CROSS-VALIDATION ERRORS 

Frequency (GHz) QDA KNN 
7.65 33.2% 37.4% 
5.55 32.2% 34.9% 
3.96 32.1% 35.8% 
2.38 27.1% 19.1% 
0.80 34.4*% 29.1% 
0.265 15.0*% 10.7% 

* Linear discriminant analysis (LDA) was used to generate prediction models since QDA was not possible. 

The sample data sizes used in the prediction models and the 10-fold cross 

validation data set sizes are given in Table 5.4 and Table 5.5, respectively. The prediction 

algorithm, starting from raw S-parameter data, is shown in Fig. 5.14. 

The performance of the machine learning algorithms can be visualized using 

confusion matrices, as shown in Fig. 5.13, which summarizes the results of a 

classification problem. Each row of the confusion matrix represents the true class and  
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TABLE 5.4 
MACHINE LEARNING SAMPLE SET SIZES 

Frequency (GHz) SC   Live SC Dead SP Live SP Dead 5.5 μm Total 
7.65 166 260 544 315 66 1351 
5.55 109 243 214 328 64 958 
3.96 550 184 501 348 150 1733 
2.38 135 213 192 234 68 842 
0.80 458 295 324 351 65 1493 
0.265 558 322 563 80 41 1564 

 

TABLE 5.5 
10-FOLD CROSS VALIDATION SET SIZES 

Frequency (GHz) Training Set Size Test Set Size Classifier 
7.65 1216 135 QDA 
5.55 862 96 QDA 
3.96 1560 173 QDA 
2.38 758 84 KNN 
0.80 1344 149 KNN 
0.265 1408 156 KNN 

 

columns represent the predicted classes from the model; hence the main diagonal is the 

number of correctly identified classes and all other values are incorrect classifications. 

For example, in Fig. 5.13(b) the model predicted that 73 measurements were 5.5 μm 

particles, of which 68 were correct, 4 were incorrectly classified as SC Dead, and 1 was 

incorrectly classified as SP Live. The empty values mean none of the predicted 5.5 μm 

particles were incorrectly identified as SC Live or SP Dead. Summing all elements in the 

matrix gives the total sample set of the model. In a normalized confusion matrix, each 

row is balanced and represented as having 1.0 samples. In Fig. 5.13(b) row one indicates 

that 98.6% of the predicted 5.5 μm particles were correct, or 68 of the 69 predicted were 

correct. Confusion matrices for the remaining frequencies are given in Appendix A1. 
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(a) 

 

(b) 

Fig. 5.13 Confusion matrices from (a) KNN and (b) QDA classification algorithms at 

2.38 GHz. 

 

We found that 2.38 GHz and 265 MHz show the lowest uncertainty if using single 

frequency measurements, with cross validation errors of 19% and 10%, respectively, 

which supports the notion that certain frequencies are more sensitive to the minute  
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Fig. 5.14. The cell identification algorithm development. A quadratic classifier is used on 

known cell measurement data to create a decision surface. The regions on the surface can 

be used to classify unknown cell types in a mixture. 

 

differences between live and dead cells from the same species.  It also suggests that 

broadband measurements of the same yeast cell should enhance the differentiation power. 

To further test the sensing and prediction ability of the microwave flow 

cytometer, the permittivity extraction algorithms, and the models in Chapter IV, a 
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mixture of the five classes is measured at each frequency point. The mixture contained 

equal parts of the four yeast classes (22.2% each) and half as many 5.5 μm particles 

(11.1%). Prior to mixing, cell densities were measured using a spectrophotometer. Fig. 

5.15 shows typical time domain measurement signals at 2.38 GHz. 

TABLE 5.6 
PREDICTED CLASSIFICATIONS OF CELL MIXTURE 

Frequency (GHz) SC   Live SC Dead SP Live SP Dead 5.5 μm 
7.65 25.6% 17.9% 23.9% 21.4% 11.1% 
5.55 32.7% 18.3% 17.3% 15.4% 16.3% 
3.96 9.4% 17.2% 32.8% 14.1% 26.6% 
2.38 20.0% 21.8% 26.1% 22.4% 9.7% 
0.80 44.1% 5.6% 6.3% 28.0% 16.1% 
0.265 9.2% 35.9% 52.2% 0.0% 2.7% 

 
At least 100 data points were collected at each frequency, the prediction results at 

each frequency are shown in Table 5.6. While the cross-validation suggested that 265 

MHz would be the most accurate, the trained model is unable to distinguish between the 

two dead cell types and particles, all of which lie on the x-axis (Fig. 5.9(a)). Fig. 5.16 

shows the predicted classification of the mixture at 2.38 GHz, which agree reasonably 

well with expectations. This further supports the statement that the slight differences in 

the media for the individual cell measurements discussed previously produce minimal 

error, since that data was used for training the model. 

The accuracy of predictions could be increased further by using larger training 

data sets or by using multi-frequency measurements. In the case of multiple frequencies, 

decision trees could be used where differences are seen in only one or two classes at a 

frequency, such as S. cerevisiae and S. pastorianus live cells at 265 MHz, which can 

clearly be differentiated but the other classes have significant overlap. 
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(a)      (b) 

Fig. 5.15.  Time domain measurements of (a) 휀′ and (b) 휀" at 2.38 GHz showing typical 

signals for each of the five classes measured. Signal snippets were taken from known 

sample measurements and spliced together to demonstrate their differences. 

 

 

Fig. 5.16. Predicted classifications of mixture at 2.38 GHz. Predictions were made using 

KNN with the training data shown in Fig. 12(c). 
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As shown in Fig. 5.9, significant distribution at every frequency is observed for 

each yeast class, with live S. cerevisiae having the largest. A major contributor to the 

variations comes from cells being in different stages of growth within the samples, since 

it is known that budding yeast and single yeast cells have different microwave dielectric 

behaviors [5.3]. Nevertheless, the variation between frequencies, shown in Tables 5.1 and 

5.2, is consistent, which indicates that the cell populations are uniform between 

frequency measurements.  So, any observed frequency dependence reflects intrinsic cell 

property change vs. frequency. With this assumption, there is a clear frequency 

dependence of both 휀′ and 휀" for all four cell classes, as is highlighted in Figure 5.11, 

whereas the 5.5 μm particle responses are much more uniform. Furthermore, we see that 

the difference in Δ휀" is more significant at lower frequencies for the two live species 

while the difference of the dead cells remains roughly the same at all frequencies. The 

uniformity of the dead cell responses can be explained by the leakage of cytoplasmic ions 

resulting from membrane damage caused by heat shocking the cells to cause cell death. 

The more significant frequency dependence of the live cells is due to the cell membrane 

having a larger effect at the lowest frequency (β-dispersion), 265 MHz, while at higher 

frequencies the cell membrane has little impact on measurements, and instead differences 

between the permittivity of the cell protoplasm and that of the media are observed. 

Similar phenomena for 𝛥휀′ is observed, except for a spike in S. cerevisiae live cells at 

2.38 GHz, where the membrane capacitance plays a significant role at 265 MHz but has 

little effect at higher frequencies. The large Δ휀′ observed in S. cerevisiae at 2.38 GHz is 
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caused by a more drastic difference between 휀′ of the protoplasm and 휀′ of the media, but 

the reason it occurs at this particular frequency is unknown. 

The frequency dependent properties make it difficult to compare the identification 

capabilities at higher frequencies with the two lowest frequencies, 800 MHz and 265 

MHz.   For some of the yeast classes we are only able to detect one of the permittivity 

values. Particularly at 265 MHz, where we only detect both 휀′ and 휀" for live S. 

cerevisiae. Due to this and the fact that live S. pastorianus is the only class where only 휀" 

is detectable, we can say that the differentiation of the two live species is solved at 265 

MHz. However, for the remaining three classes we see that there is significant overlap to 

the point where we are unable to differentiate at all. Adding more classes at this 

frequency could lead to even worse performance. A similar trend is seen at 800 MHz, 

where we can detect 휀′ and 휀" for both live species but roughly half of the dead cells we 

only see a signal for 휀′. This may be in part due to the lower sensitivity of the sensor at 

low frequencies, where the minimum detectable signals are nearly 10 times larger than at 

higher frequencies. Improved sensitivity at low frequencies could lead to increased 

microwave specificity. While this may make it difficult to differentiate more cell classes 

at these isolated frequencies, it may be useful when developing multiple frequency 

measurement prediction models. For example, the lower frequencies could be used to 

detect viability and higher frequencies could differentiate between these closely related 

species. 

This is further supported with the prediction models that were generated where we 

found that 2.38 GHz and 265 MHz had the lowest cross validation errors. However, when 
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the models were used to make predictions on cell mixtures, we were unable to 

differentiate between the two dead cells across the species, getting a 0% value for S. 

pastorianus dead and a significantly smaller than expected number of 5.5 μm particles. 

Additionally, it appears that a significant number of S. cerevisiae live cells were 

misclassified as S. pastorianus live. This is likely due to slight differences of the media in 

the mixture measurements from the media that was used for individual cell type 

measurements. Other potential sources of errors include – multiple cells passing under 

the electrode simultaneously, cells passing under the region of the microstrip for which 

there is no ground plane, and the vertical location of the cell in the channel. Future efforts 

will address these problems as well as concurrent multi-frequency measurements of 

individual cells and minimizing sources of error. 
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CHAPTER SIX 

 
DETECTION OF TRYPANOSOMA BRUCEI LIFECYCLE STAGES 

 
 

The parasite Trypanosoma brucei is a unicellular eukaryote that causes African 

sleeping sickness in humans and nagana disease in cattle. It has been studied extensively 

and has become a model organism for research on eukaryotic cell biology. The parasite 

completes its lifecycle between a vector tsetse fly and a mammalian host. The parasite is 

transferred to a mammalian host when a tsetse fly takes a blood meal and injects 

trypanosomes into the bloodstream. The bloodstream trypanosomes are transferred back 

when ingested by a tsetse fly, where the parasites are differentiated to procyclic forms in 

the fly midgut. When the parasite transfers between hosts it must undergo complex 

morphological and metabolic changes to adapt to the different extracellular environments 

since the bloodstream is rich in glucose and the fly midgut is not [6.14]. Both parasite 

forms are pleomorphic in size; in the insect vector, the parasite forms epimastigotes that 

typically range from 16-42 μm in length by 1-3 μm in width and in the mammalian host, 

the parasite forms trypomastigotes that typically range from 10-35 μm in length by 1-3 

μm in width [6.15]. Additionally, the cells are not rigid in structure and are continuously 

changing in shape, making it difficult to visually observe and identify cell form (Fig. 6.1) 

[6.20]. As such, any observed differences in microwave properties of the two parasite 

forms is likely due to differences in internal structures since microwave frequencies are 

beyond the β-dispersion region and are thus able to penetrate the cell wall [6.21]. 

Compared with optical methods, which require periodic sampling and the use of chemical 

labels, microwave sensing is capable of continuous, label-free monitoring at the single 
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cell level, which could enable researchers to better study the complex interactions that 

occur within cell populations during differentiation. Additionally, the use of microwave 

properties allows for standardized definitions of cell lifecycle stages, removing ambiguity 

that could arise when defining stages by visual inspection, since they may be similar 

morphologically, as is the case for T. brucei. In this chapter the measured microwave 

properties of two lifecycle stages of T. brucei cells- bloodstream form (BSF) and 

procyclic form (PCF) are presented. 

 

      

(a)      (b) 

Fig. 6.1. A top view of the sensing zone with (a) procyclic form (PCF) and (b) 

bloodstream form (BSF) T. brucei cells near the microstrip line electrode.  

 

6.1 Trypanosoma brucei preparation and measurements 

The measurement system in Fig. 4.1 was used to measure T. brucei cells at 0.8, 

1.32, 2.38, 3.96, 5.55, and 7.65 GHz. Multiple time domain measurements were taken of 

two lifecycle stages of T. brucei parasites - bloodstream form (BSF) and procyclic form 
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(PCF). BSF cells (strain 90-13) were grown in HMI-9 [6.9] supplemented with 10% heat- 

inactivated FBS (Corning, 35-101-CV) and 10% Nu-Serum IV (Corning, 355104) with 

growth conditions of 5% CO2 at 37°C. PCF cells (strain 29-13) were grown in SDM-79 

[6.10] supplemented with 10% heat-inactivated FBS (Corning, 35-101-CV) with growth 

conditions of 5% CO2 at 25°C. Procyclic cells of the pleomorphic cell line (strain AnTat 

1.1) were grown in SDM-79 or SDM-79θ (PCF media where glucose has been removed 

and dialyzed FBS (Corning, 35-071-CV) is used instead of standard serum) at normal 

PCF growth conditions (5% CO2 at 25°C). Cells were counted by optical flow cytometry 

and 1×107 cells were prepared for each measurement. The concentrated cells were 

subsequently diluted with media (HMI-9 or SMD-79) by a factor of 40:1 prior to 

microwave measurements. 

Measurements were taken following the procedure outline in Chapter V. Prior to 

each measurement the sensor was calibrated using air and water. The sensor was 

calibrated a second time following each measurement to ensure that the system was 

stable during measurements. Fig. 6.2 shows typical permittivity measurement results of 

PCF and BSF cells at 1.32GHz. At 2.38 GHz and below, changes in complex permittivity 

were detected but changes in the real part of the impedance, 𝑍𝑚𝑢𝑡𝑟𝑒 , were not seen for most 

cells. Likewise, above 2.38 GHz there were few Δε” signals, but changes in 𝑍𝑚𝑢𝑡𝑟𝑒  were 

observed, as shown in Fig. 6.3. This could be caused by two things- first, it could be that 

ε” of the cells were nearly the same as that of the media at higher frequencies, meaning 

that any differences are below the noise floor of the system, and/or second, the 

impedance mismatch of the sensor is larger at higher frequencies which increases  



 96 

 

(a) 

 

(b) 

Fig. 6.2. Typical time domain complex permittivity measurement of (a) PCF and (b) BSF 

cells, taken at 1.32 GHz. Each signal is due to a single cell passing through the sensor. 

The peak change in ε’mut and ε”mut is used to obtain the cell population’s response, shown 

in Figs. 6.7 and 6.8, where each point represents the peak change in ε’mut and ε”mut, or 

ε’mut and 𝑍𝑚𝑢𝑡𝑟𝑒  for a single cell. 
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(a) 

 

(b) 

Fig. 6.3. Typical time domain permittivity and impedance measurements of (a) PCF and 

(b) BSF cells, taken at 7.65 GHz. 

 

reflections (S11) and adds noise to the through signal (S21) of the VNA. This highlights the 

importance of measuring both the permittivity and impedance of cells, as it gives 

additional parameters if either Δε’mut or Δε”mut are not detectable. No signals for the 

imaginary part of the impedance, 𝑍𝑚𝑢𝑡𝑖𝑚 , were detected at any frequency. 
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6.1.1 Effects of media 

To ensure that any observed differences between cell forms were due to 

microwave properties of the cells and not that of the media, 3.4 μm x 5.1 μm ellipsoidal 

polystyrene particles were measured in the two media. As seen in Fig. 6.4 there was no 

discernable difference between the measured permittivity or impedance signals when the 

same particles were measured in different media, which indicates that the media are 

similar enough to not be a significant source of error. Hence, any differences between cell 

forms were caused by microwave properties of the two T. brucei forms. 

 

 

         (a)               (b) 

Fig. 6.4. Broadband measurements of (a) complex permittivity and (b) impedance of 3.4 

μm x 5.1 μm ellipsoidal polystyrene particles in the media used to grow BSF (HMI-9) 

and PCF (SDM-79) cells. 
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6.2 Measurement Results 

6.2.1 Frequency dependent impedance and permittivity 

Average shifts in complex permittivity and the real part of impedance are 

summarized in Fig. 6.5. The difference in Δε'mut between the two forms was smallest at 

800 MHz and increased with frequency, while the reverse was true for Δε”mut, indicating 

that the differences between the cell forms observed at lower frequencies (2.38 GHz and 

below) were due mostly to differing microwave losses caused by cells, while differences 

at 5.55 GHz and 7.65 GHz were primarily due to differing dielectric polarizabilities. At 

3.96 GHz there was not a significant difference in permittivity or impedance between the 

cell types. It should be noted that, while Δε”mut is plotted at 3.96 GHz and above, and 

Δ𝑍𝑚𝑢𝑡𝑟𝑒  is plotted at 1.32 GHz and 2.38 GHz, these signals were only detected for 

particularly large cells, or when two cells passed under the electrode simultaneously. As 

such, the values in Fig. 6.7 at those frequencies may not be an accurate representation of 

average cells. It should also be noted that while the differences in Δ𝑍𝑚𝑢𝑡𝑟𝑒  were minimal, it 

does enable the use of multivariate machine learning techniques discussed in Chapter V.  

 

TABLE 6.1 
T. BRUCEI SAMPLE SIZES 

Frequency (GHz) BSF PCF1 PCF2 PCF3 
7.65 99 63 50 123 
5.55 171 174 136 123 
3.96 52 182 114 129 
2.38 172 236 132 172 
1.32 121 267 163 226 
0.8 151 278 90 188 
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(a) 

 

(b) 

Fig. 6.5. Average shifts of (a) |ε’mut| and |ε”mut|, and (b) 𝑍𝑚𝑢𝑡𝑟𝑒  for the two T. brucei cell 

forms versus frequency. 
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(a) 

 

(b) 

Fig. 6.6. Average shift of (a) |ε’mut| and |ε”mut| and (b) 𝑍𝑚𝑢𝑡𝑟𝑒  for three lines of PCF cells 

and BSF cells versus frequency. 
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The total number of measurements is summarized in Table 6.1, where the values 

for 2.38 GHz and below represents the total number of complex permittivity signals 

measured, with one data point being a paired value of Δε'mut and Δε”mut, and the values  

for 3.96 GHz and above represents the total number of real permittivity and impedance 

signals measured (Δε'mut and Δ𝑍𝑚𝑢𝑡𝑟𝑒 ). 

To verify that any differences observed between BSF and PCF cells were 

independent of cell line, three lines of PCF cells were tested- the aforementioned strain 

29-13 (a 427-strain parasite) (PCF1) and pleomorphic cell line (AnTat 1.1, an EATRO 

1125 strain)) grown in either glucose-replete media (SDM-79) (PCF2) or glucose- 

deficient media (SDM-79θ) (PCF3). Average shifts in complex permittivity and the real 

part of impedance for the three PCF cell lines, plus the BSF cells, are summarized in Fig. 

6.6. 

The scatter plots shown in Fig. 6.7 also indicate that there was a difference in 

microwave properties between the two cell types, BSF and PCF, while the three PCF cell 

forms, shown in Fig. 6.8, have significantly more overlap. In these figures, each point in 

the plots represents the absolute value of the difference between the average baseline 

value and the peak change in ε’mut and either ε”mut or 𝑍𝑚𝑢𝑡𝑟𝑒  for a single cell. In the 

following section, a quadratic discriminate analysis will be performed to characterize the 

system’s ability to identify the two cell forms. 
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(a)      (b) 

   
(c)      (d) 

   
(e)      (f) 

Fig. 6.7. Scatter plots of the measured shifts in the real and imaginary parts of 

permittivity at (a) 800 MHz, (b) 1.32 GHz, and (c) 2.38 GHz and the real parts of 

permittivity and impedance at (d) 3.96 GHz, (e) 5.55 GHz, and (f) 7.65 GHz of BSF and 

PCF T. brucei cells. Each data point represents a single cell, with the x-axis being the real 

part of permittivity and the y-axis the (a)-(c) imaginary part of permittivity or (d)-(f) the 

real part of impedance. 
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(a)      (b) 

   
(c)      (d) 

   
     (e)      (f) 

Fig. 6.8. Scatter plots of the measured shifts in the real and imaginary parts of 

permittivity at (a) 800 MHz, (b) 1.32 GHz, and (c) 2.38 GHz and the real parts of 

permittivity and impedance at (d) 3.96 GHz, (e) 5.55 GHz, and (f) 7.65 GHz of three PCF 

cell lines. Each data point represents a single cell. 
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6.2.2 T. brucei life cycle classification 

To test the ability to classify T. brucei cell forms a quadratic discriminate analysis 

(QDA) model was developed using the paired features summarized in Chapter V. At 2.38 

GHz and below, |∆ε’mut| and |∆ε”mut| were used, and at 5.55 GHz and 7.65 GHz, |∆ε’mut| 

and ∆𝑍𝑚𝑢𝑡𝑟𝑒  were used. 3.96 GHz was left out due the inability to identify most cells. 

QDA uses the paired values at each frequency to create a quadratic decision surface to 

classify the two cell forms. The generated classification regions, with measured 

impedance and permittivity data overlaid, are shown in Fig. 6.9. To estimate the test error 

of the prediction model, 10-fold cross-validation was performed on the five prediction 

models shown in Fig. 6.9. 

The cross-validation error was found to be uniform across all models, with 7.65 

GHz having the largest error at 15.4% and 1.32 GHz having the smallest error at 10.1%. 

When the data from two additional PCF lines was added to the training model, where all 

three strains are combined as a single class, the cross-validation error was reduced to less 

than 10% for all frequencies except 7.65 GHz, which increased drastically to 24.6% due 

to the significant overlap of PCF2 and PCF3 with BSF. Comparing this to the three PCF 

cell lines on their own, i.e., when trying to classify the three PCF cell lines, the error 

increased to a minimum of 34% at 5.55 GHz, and a maximum of 50% at 2.38 and 3.96 

GHz. This further validates that the ability to differentiate BSF and PCF cells is 

independent of cell line. This also indicates that using both permittivity and impedance 

data of cells can improve predictive performance of microwave sensors. Additionally, 

classification regions could be used for standardized definitions of cell lifecycle stages. 
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   (a)      (b) 

  
   (c)      (d) 

  
(e)      (f) 

Fig. 6.9. Predicted classification regions with overlaid scatter plots of the training data 

using complex permittivity data at (a) 800 MHz, (b) 1.32 GHz, and (c) 2.38 GHz, and 

real permittivity and impedance data at (d) 3.96 GHz, (e) 5.55 GHz, and (f) 7.65 GHz. 

 



 107 

As seen in Figs. 6.7 and 6.8, wide distributions were observed at every frequency, 

highlighting the fact that cells in the same lifecycle stage and culture have significant 

variations. Some of the variance may come from measurement errors, such as multiple 

cells passing under the electrode simultaneously, varying vertical locations of cells, and 

cells passing under the region of the sensor that does not contain a ground plane. 

However, sample dilutions and the large number of cells measured minimized these 

errors and we estimate by using optical microscopy that these errors occurred in less than 

5% of signals. Additionally, the cultures were not controlled for cell phase within 

cultures, so it is likely there was a distribution of cell phases within cultures. For 

example, the BSF cells likely had a mixture of long slender (SL) and intermediate 

replicative forms which would likely have different microwave responses. 

For all frequencies measured the differences between the average |Δε’mut| (Fig. 

6.6(a)) of the three PCF cell types were significantly less than that of BSF cells. The 

same can be said of |Δε”mut| at 2.38 GHz and below, which were the frequencies used in 

the QDA model. The impedance signals (Fig. 6.6(b)) for the three PCF strains, however, 

overlap far less. Specifically at 7.65 GHz, where it is impossible to distinguish between 

the four cell types.  Despite this, the PCF strains still varied significantly enough from 

BSF cells at 5.55 GHz to improve the cross-validation error from 14% to less than 10%. 

This indicates the potential for microwave dielectric and impedance measurements to 

differentiate BSF and PCF cells independent of cell strain, which could allow for this 

method to be applied to an array of strains without the need for strain specific calibration 
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or a vast database. Further improvements could be made by employing multi-frequency 

measurements. 
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CHAPTER SEVEN 

 
MICROWAVE RESISTANCE TEMPERATURE DETECTOR 

 
 

Temperature is one of the most fundamental parameters of any physical system. 

Obtaining accurate temperature measurements in microfluidics is a challenge. The 

frequency and temperature dependent nature of polar liquids has been investigated 

thoroughly over the past several decades but precise temperature measurements in 

microfluidic chips is still a difficult task due to fast thermal transfer rates in small sample 

volumes, making it difficult to observe and account for local hot spots. In dielectric 

spectroscopy, where liquid references such as water and alcohols are often used due to 

being readily available in high purity, making their properties uniform and consistent 

between samples, inaccurate temperature measurements of reference materials can be a 

significant source of error when calibrating and testing instrumentation. 

Contactless methods such as IR thermography enable remote temperature 

monitoring but have limited spatial resolution and low accuracy, often tens of degrees for 

metallic targets [7.5,7.6]. In situ methods based on fluorescence intensity ratio (FIR) 

provide high spatial resolution but low accuracy [7.7]. Dielectric sensing techniques have 

the advantage of fast response times; however, they are greatly limited by the types of 

samples they can use since the temperature-permittivity relationship is different for every 

liquid, as shown in Fig. 7.1, hence any formulation would only be valid for the specific 

liquid composition.  [7.1,7.2].  
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7.1 Temperature Dependence of Permittivity 

At RF and microwave frequencies polar liquids exhibit a relaxation behavior as 

shown in Fig. 7.1, where the relative permittivity is large at low frequency and decreases 

rapidly at the center relaxation frequency, fr. The behavior can be described by the single-

Debye relaxation equation 

 휀 = 휀∞ +
휀𝑠 − 휀∞

1 +
𝑗𝑓
𝑓𝑟

= 휀∞ +
휀𝑠 − 휀∞
1 + 𝑗𝜔𝜏

 (7.1) 

double-Debye relaxation equation 

 휀∗ = 휀∞ +
휀𝑠 − 휀ℎ

1 +
𝑗𝑓
𝑓𝑟1

+
휀ℎ − 휀∞

1 +
𝑗𝑓
𝑓𝑟2

 (7.2) 

and various other formulations. The static effective permittivity, 휀𝑠, and high-frequency 

effective permittivity, 휀∞, are both temperature dependent so the temperature should be 

monitored whenever using polar liquids as standards for calibration. 

Resistive temperature detectors (RTDs) are standard temperature sensor due to 

their flexibility, simplicity, stability, and high thermal sensitivity. For dielectric 

spectroscopy, they are ideal thanks to the resistance of an electrode being invariant with 

permittivity. RTDs operate by measuring the temperature dependent resistance of an 

electrode, given as 

 
 
𝑑𝑅

𝑅
= 𝛼𝑑𝑇 (7.3) 

which can be linearly approximated as 
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(a) 

 

(b) 

Fig. 7.1. Temperature dependent permittivity spectrum of (a) water and (b) isopropyl 

alcohol (IPA). The permittivity of water was calculated using the single-Debye equation 

(7.1) and IPA using the double-Debye equation (7.2). 
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  𝑅𝑇 = 𝑅𝑟𝑒𝑓(1 + 𝛼[𝑇 − 𝑇𝑟𝑒𝑓]) (7.4) 

where RT and Rref are the resistances at an unknown temperature T °C and at a reference 

temperature Tref °C, respectively, for a given conductor with temperature coefficient or 

resistance α(T). For a low-loss transmission line the loss from the conductor can be 

approximated as 

 
𝛼𝑐 ≅

𝑅

2𝑍0
 (7.5) 

where the resistance of rectangular conductor with cross-sectional area A, length l, and 

resistivity ρ is 

 
𝑅 = 𝜌

𝑙

𝐴
 (7.6) 

Combining Equations (7.4)-(7.6) gives the temperature dependent conductivity loss as 

 
𝛼𝑐 =

𝜌
𝑙
𝐴 𝛼𝐴𝑢∆𝑡

2𝑍0
 (7.7) 

with the constant temperature coefficient of resistance of gold, αAu, given as 3.4 x 10-3/°C 

[7.3]. From this it is clear that using a narrow width, thin film electrode maximizes the 

sensitivity of an RTD by minimizing the cross-sectional area and allows for a fast 

response time for the detector. 

The microwave RTD in Fig. 7.2 was fabricated using the liftoff process described 

above. The sensor was fabricated using two separate liftoff processes, the first used 

contact lithography to pattern the large metal structures and the second was done using 

electron-beam lithography to pattern a 500-nm wide, 500-μm long meandered microstrip 

electrode with 20/200-nm thick Cr/Au metal. A 40-um tall, 100-um wide  
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Fig. 7.2. (a) Microwave RTD sensor with PDMS microfluidic channel and (b) 

microscope image of the meandered microstrip electrode used as and RTD sensor.  

 

polydimethylsiloxane (PDMS) microfluidic channel was bonded to the glass substate 

using oxygen plasma treatment [7.9]. 

In the experimental setup, shown in Fig. 7.3, the sensor is placed on top of a 

hot/cold plate inside a conductive tube to ensure uniform temperature. The hot/cold plate 

uses two resistance temperature detector (RTD) sensors and a proportional–integral–

derivative (PID) controller to maintain stable temperatures. In this setup the full sensor 

setup is kept at the same temperature as hot/cold plate. Although the quartz substrate, 

microstrip feedline, and connectors also exhibit temperature dependent behavior, the 

change in loss tangent of the substrate over the desired operating range is less than 1% 

and Δαc due to the microstrip feedlines and connectors is several orders of magnitude  
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Fig. 7.3. Benchtop assembly showing the sensor inside a thermally conductive tube on a 

hot/cold plate. The temperature is controlled by the PID with two RTD sensors connected 

to the hot/cold plate. 

 
smaller than Δαc from the meander section, hence their contributions can be neglected 

[7.8]. 

7.2 Temperature Measurement Procedure 

Due to the small cross-sectional area of the microstrip line and small loss tangent 

of the quartz substrate, the attenuation of the sensor without a sample (휀𝑚𝑢𝑡 = 1) can be 

assumed to be entirely conductive loss from the microstrip meander section. When a 

liquid sample is added the change in loss will be a combination of a change in conductive 

loss due to temperature change of the microstrip and dielectric loss of the sample, i.e. 

 𝛼 = 𝛼𝑟𝑒𝑓 + 𝛼𝑐(𝑇) + 𝛼𝑑(휀) (7.8) 
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where α is the measured attenuation, αref is the attenuation without mut at a reference 

temperature, and αc and αd are the added conductive and dielectric loss from a liquid 

sample. 

 The temperature sensor can be calibrated by measuring the attenuation constant at 

a reference temperature, generally 0°C or 20°C, to get Rref and Tref from Equations (7.2) 

and (7.3), and the temperature can be determined from 

 
𝑇 =

1

𝛼
(
𝑅𝑇
𝑅𝑟𝑒𝑓

− 1) + 𝑇𝑟𝑒𝑓 (7.9) 

Then the permittivity can be measured after the interferometer is calibrated. The 

temperature and permittivity dependent propagation constant is 

  𝛾 = 𝛼 + 𝑗𝛽 = 𝛼𝑟𝑒𝑓 + 𝛼𝑐(𝑇) + 𝛼𝑚𝑢𝑡(휀") + 𝑗𝛽𝑚𝑢𝑡(휀
′) (7.10) 

and the permittivity can be determined using the Green’s function method variational 

expression for a three-layer microstrip, along with the single layer reduction (SLR) 

technique, which reduces the multilayer microstrip into an equivalent single layer 

structure and allows for the use of the familiar microstrip equations, with the equivalent 

height defined as [7.4] 

 ℎ𝑒𝑞 = ℎ1 (7.11) 

The equivalent permittivity of a single layer microstrip is 

 
휀′𝑒𝑞 =

휀′𝑒𝑓𝑓 − 1

𝑞
+ 1 

휀"𝑒𝑞 =
휀"𝑒𝑓𝑓
𝑞

 

(7.12a) 

 

(7.12b) 

with filling factor q defined as 
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𝑞 =

1

2
(1 + 𝑝) (7.13) 

where 
 

𝑝 =

{
 
 

 
 [1 +

12ℎ𝑒𝑞
𝑊

]
−1/2

,                                     𝑓𝑜𝑟 
𝑊

ℎ𝑒𝑞
> 1

[1 +
12ℎ𝑒𝑞
𝑊

]

−1/2

+ 0.04[1 −
𝑊

ℎ𝑒𝑞
]

2

, 𝑓𝑜𝑟 
𝑊

ℎ𝑒𝑞
≤ 1

 (7.14) 

A more accurate filling factor could then be obtained by using an iterative approach 

[7.10, 7.11]. However, for the temperature sensor presented here the first approximation 

of the filling factor was found to be sufficiently accurate.  

A comparison of the model against HFSS simulation using the structure shown in 

Fig 3.2(b) for a 500-nm wide, 500-μm long microstrip with a quartz substrate (휀𝑒𝑟1 =

3.78, h1 = 1 mm), and a 40 μm tall microfluidic channel (h2 = 40 μm) in PDMS (휀𝑟3 =

2.6, h3 = 2 mm), shown in Fig 7.4, where 휀𝑒𝑟2 is the mut permittivity (휀𝑚𝑢𝑡).  

When the sensor is connected to the microwave interferometer with an empty 

microfluidic channel (εmut = 1+j0) and the temperature is varied, the resistance of the 

microstrip line change but the propagation constant will remain constant. When a 

dielectric liquid is added both the propagation constant and the conductive loss will 

change with temperature. This effect can be seen in Fig. 7.5, where the phase of S21 

remains mostly constant when the temperature of the empty sensor is increased and the 

magnitude of S21 changes with temperature (Fig. 7.5(a)), and when water is added to the 

sensor both ∠S21 and |S21| change with temperature (Fig. 7.5(b)). 
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(a) 

 

(b) 

Fig. 7.4. Comparison of the (a) real and (b) imaginary permittivity calculations from the 

variational method with SLR model of a three-layer microstrip line and HFSS simulation 

of the RTD sensor. 
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(a) 

 

(b) 

Fig. 7.5. Time domain measurements of the microwave RTD sensor while (a) empty and 

(b) with water. 

 



 121 

 Fig. 7.6 shows a comparison of the response of the sensor at varying temperatures 

with IPA and DI water. Since water has a larger permittivity that IPA, as seen in Fig. 7.1, 

both the magnitude and phase of S21 have a larger response when compared to the empty 

(air) baseline. When all mut is removed from the sensor and the test assembly is brought 

back to the baseline temperature of 20°C after 5 hours of measurements, the S21 signal 

returns to its baseline values, showing the stability and repeatability of the system. 

 

 

Fig. 7.6. Time domain response of the microwave RTD sensor with the temperature 

varied from 20°C to 50°C. 

 

From the measurement in Fig. 7.5(a) the limit of detection for the RTD is 

approximately ±0.1°C, assuming minimum SNR of 3:1. If higher sensitivity is required 

the microstrip can be lengthened, using Eq. 7.7 to determine the length based on desired 
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sensitivity. If higher spatial resolution is needed, e.g. for smaller volumes of solute, the 

electrode length can be reduced. 
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CHAPTER EIGHT 

 
CONCLUSION 

 
 

This dissertation presented a novel microwave flow cytometer a microwave flow 

cytometer for single cell detection and characterization. In Chapter II the operation of an 

RF interferometer was described, and it was demonstrated that a single stage RF 

interferometer can have negative group delay (NGD) and superluminal propagation (SP) 

properties, and power ration dependent frequency regions with large positive group 

delay.  These abnormal frequency regimes are formed due to RF guided wave 

interference.  Nevertheless, material-under-test (MUT) still interacts with traveling 

waves.  The arrangement of two-stage interferometers potentially enables high sensitivity 

operations.  When the first stage is built with commercial power dividers, the measured 

frequency sensitivity was increased by up to 7 times, which is comparable to the 

improvements with filters and resonators.  When using a quadrature hybrid based first 

stage, the frequency sensitivity improvement was up to 20 times.  The improvements 

occur at frequencies where the signal group delay is slow, regardless of if it is positive or 

negative.  Thus, two-stage RF interferometers, like other microwave sensors [8.1],  are 

attractive choices for many of biomedical, electronic, and industrial applications. 

In Chapter III a broadband microstrip line sensor for dielectric spectroscopy and 

microwave flow cytometry was presented. The design methodology and fabrication 

process were described. The sensor was shown to have high sensitivity and uniformity, 

which removes cell measurement uncertainty from unknown vertical cell position. An 

analytical model based on the Green’s function formulation of the variational method 
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with the TTL technique was also presented and used to determine a closed form quasi-

static model for microstrip line sensors that can be used to extract the permittivity and 

characteristic impedance of multilayer microstrip sensor. 

In Chapter IV the microwave flow cytometer system was developed using the 

interferometer system described in Chapter II and microstrip line sensor from Chapter III. 

Models were presented for extracted the unknown permittivity and impedance from 

liquid mut in any sensor in a microwave interferometer. The models were validated using 

HFSS simulations and standard liquid permittivities (IPA and ethanol), the models and 

validation measurements showed excellent agreement with the theoretical models. 

In Chapter V the microwave flow cytometer platform was used for single yeast 

characterization. We showed that membrane differences in two Saccharomyces yeast cell 

species, as well as two viability states, resulted in observable difference in both the real 

and imaginary parts of the permittivity at 265 MHz. We also showed that increased 

permeability of the cell membrane in dead cells, induced by heat shock, resulted in lower 

permittivity inside the cells compared with live cells of the same species at 800 MHz and 

above.  These properties were then used to differentiate between the two yeast species 

and determine their viability, as well as differentiate signals from polystyrene particles 

from that of the cells. 

The measurements were validated by creating machine learning prediction models 

at each frequency and testing them with mixtures containing live and dead cells from the 

two species and 5.5 μm particles. Of the frequencies tested, 2.38 GHz had the highest 

degree of specificity, indicating that cells have a stronger frequency dependence than was 



 126 

previously known and that this frequency dependence can be exploited for microwave 

cell characterization measurements. 

In Chapter VI the results of complex microwave permittivity and impedance 

measurements of two lifecycle stage forms of T. brucei cells was presented. The 

microwave flow cytometer was used to obtain in-flow measurements of BSF and PCF 

cells at multiple frequencies and demonstrate the system’s ability to identify the two cell 

forms. Three additional lines of PCF cells were measured to show that the ability to 

identify cell forms is independent of cell strain. Additionally, we showed that the cells 

have a stronger ε” dependence at lower frequencies (2.38 GHz and below) and a stronger 

ε’ dependence above 2.38 GHz. For measurements where ε” could not be detected, due to 

either ε” of the cells matching that of the media or large reflections caused by impedance 

mismatches, impedance signals were be used to improve classification performance. 

Lastly, polystyrene particles were used to show that differences in cell media had 

negligible effects on measurement accuracy. This leads to the conclusion that ∆ε’ and 

∆ε” measurements could be used to identify the two T. brucei lifecycle stage forms at 

lower frequencies (2.38 GHz and below), and ∆ε’ and ∆Zreal measurements could be used 

at higher frequencies (5.55 GHz and above).  Measurements were validated using a QDA 

prediction model, which had a maximum cross-validation error of 15.4% when using 

only one PCF strain and an error of less than 10% when using multiple PCF strains, 

showing that microwave-based sensors have great promise in label-free, real-time 

monitoring of cell cycles. 
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Chapter VII presented a highly sensitive microwave RTD sensor. The sensor was 

fabricated by electron-beam lithography to minimize the cross-sectional area of the 

electrode and maximize sensitivity. The sensor is capable of measuring temperature in a 

microfluidic channel to within 0.1°C. A model is presented to extract both the mut 

permittivity and temperature and it is demonstrated that temperature sensing mechanism 

is independent from the mut permittivity effects. 
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Appendix A 

Confusion Matrices for Yeast Classification Models 

 Figures A1 and A2 provide the confusion matrices for all classification models 

presented in Chapter V. The two lowest frequencies, 265 MHz and 800 MHz, have 

several data points with only a single measurement value (ε’ or ε”), so QDA is not 

appropriate since it assumes a two-dimensional Gaussian distribution. At these 

frequencies linear discriminant analysis (LDA) is used. QDA is used for frequencies 2.38 

GHz and above and KNN is used for all frequencies. 

 

  
 

  
 
Figure A1. Confusion matrices for the two lowest frequency measurements used for yeast 

cell classification in Chapter V. 
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Figure A2. Confusion matrices for the four highest frequency measurements used for 

yeast cell classification in Chapter V. 
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Appendix B 

Confusion Matrices for T. brucei Classification Models 

The figures below provide the confusion matrices for all classification models 

presented in Chapter VI. Models were created for the following data sets 

1. Figure B1: BSF and PCF1 cells (strain 1 in Chapter VI).  

2. Figure B2: All three strains of PCF cells without BSF cells.  

3. Figure B2: BSF and PCF cells with all three strains of PCF cells combined into 

one class.  

Tables B1, B2, and B3 give the cross-validation errors for the models created for 

each of the three data sets described above. For all data sets QDA and KNN models were 

created and for all data sets the two highest frequencies, 7.65 GHz and 5.55 GHz, use εre 

and Zre data, all other frequencies use εre and εim, as described in Chapter VI. 
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TABLE B1 
CROSS-VALIDATION ERRORS FOR DATA SET I 

Frequency (GHz) QDA KNN 
7.65 15.4% 17.3% 
5.55 13.9% 15.9% 
3.96 18.7% 20.4% 
2.38 11.0% 13.2% 
1.32 10.1% 10.8% 
0.80 13.3% 14.2% 

 

 

TABLE B2 
CROSS-VALIDATION ERRORS FOR DATA SET II 

Frequency (GHz) QDA KNN 
7.65 40.3% 44.5% 
5.55 33.4% 38.5% 
3.96 44.4% 46.3% 
2.38 49.8% 55.5% 
1.32 46.8% 53.6% 
0.80 45.2% 49.9% 

 

 

TABLE B3 
CROSS-VALIDATION ERRORS FOR DATA SET III 

Frequency (GHz) QDA KNN 
7.65 24.9% 24.6% 
5.55 9.38% 10.0% 
3.96 24.7% 23.4% 
2.38 8.16% 8.16% 
1.32 8.31% 8.18% 
0.80 13.5% 14.5% 
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Figure B1. Confusion matrices for the six frequencies measurements frequencies used for 

T. brucei cell classification in Chapter VI. The models used BSF and one strain of PCF.  
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Figure B2. Confusion matrices for the six frequencies measurements frequencies used for 

T. brucei cell classification in Chapter VI. The models used the three PCF strains. 
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Figure B3. Confusion matrices for the six frequencies measurements frequencies used for 

T. brucei cell classification in Chapter VI. The models used BSF as one class and PCF 

cells with all three strains of PCF cells combined into one class. 
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