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Abstract: A new bio-imaging method has been developed by introducing an experimental 

verification of capacitively coupled resistivity imaging in a small scale. This paper focuses on the 

2D circular array imaging sensor as well as a 3D planar array imaging sensor with spectroscopic 

measurements in a wide range from low frequency to radiofrequency. Both these two setups are 

well suited for standard containers used in cell and culture biological studies, allowing for fully 

non-invasive testing. This is true as the capacitive based imaging sensor can extract dielectric 

spectroscopic images from the sample without direct contact with the medium. The paper shows 

the concept by deriving a wide range of spectroscopic information from biological test samples. We 

drive both spectra of electrical conductivity and the change rate of electrical conductivity with 

frequency as a piece of fundamentally important information. The high-frequency excitation allows 

the interrogation of critical properties that arise from cell nucleus. 

Keywords: Cell and cell tissue imaging; miniaturized tomography; capacitively-coupled electrical 

resistivity tomography.  

 

1. Introduction 

Bioelectrical impedance is commonly used to characterize cells and biological tissues [1-2]. As it 

is primarily dependent on the cellular morphology, bioelectrical impedance enables to reflect the 

physiological and pathological status of cells and tissues, and has been used in the application of 

determining the cell type [3], cell viability [4-5], and cell concentration [6]. In addition, bio-impedance 

also has frequency-dependent characteristics, which allows the good discrimination of cells or tissues 

based on the analysis of polarization over frequency [7-8]. Based on these principles, electrical 

tomography (ET), which enables the spatial bioimpedance mapping, is developed as a non-

destructive, non-invasive, quantitative, label-free, and compact visualization method for cells and 

tissues characterization.  

ET is a soft-field imaging technique which is sensitive to both conductivity and permittivity 

within the region of interest (ROI). Different from the other spatially resolved electrical impedance 

methods which measure the bio-impedance directly, such as microelectrode array [9-10] and 

scanning electrochemical microscopy [11], the bioelectrical impedance of cells and tissues obtained 

by ET is inferred from the reconstruction of boundary electrical measurements. In ET, the boundary 

conditions are determined and measured by injecting an under-radiofrequency AC excitation signal 

to a set of sensor array. With the sensitivity matrix and reconstruction algorithm, the distribution of 

electrical properties within the sensing region can be reconstructed from the boundary measurements 

[12-14]. Electrical impedance tomography (EIT), which allows the continuous visualizations both in 
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the time domain and the frequency domain with high temporal resolution, is one type of ET [15]. In 

addition to electrically monitoring the cell viability [16-18] and the osmotic pressure changes of cell 

membranes [19], EIT has been introduced for 3D culture monitoring [20-21]. However, it should be 

noted that the electrodes of ET are in direct contact with the cell medium during the imaging process, 

which may result in the polarization effect and the contamination of the electrodes. The unpredictable 

measurement error rose by the effects will limit the accuracy of excitation signal and influence the 

signal strength for the miniature EIT application.  

In 2013, the capacitively coupled electrical resistance tomography (CCERT) was proposed to 

implement the real-time contactless imaging of the sensing area based on the theory of capacitively 

coupled contactless conductivity detection (𝐶4𝐷) [22]. CCERT can be regarded as an adaption of 

electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) [23-24], where 

ERT is a specific branch of EIT that only reflects the internal conductivity distribution. Compared 

with the traditional EIT, there is no direct contact between the electrodes and the conductive medium 

as an insulation layer is inserted between them in the CCERT system, so the drawbacks of the contact 

problems can be overcome. With the advantages of non-contact, non-invasive and non-destructive, 

CCERT has been applied for the industrial application [25-27] and biomedical imaging [28]. Though 

the studies of medical applications of CCERT is limited, the studies of brain imaging [29] and breast 

cancer detection [30] with CCERT demonstrate its potential in medical imaging. In addition, the 

experiment results suggest that better discrimination of different biological tissues can be achieved 

by CCERT. The reason for that is a broader frequency domain is possible to be used in the CCERT 

system, providing a more comprehensive dielectric information for biological tissues [30]. By 

referring to these applications, the miniature CCERT system is suggested to be a good alternative to 

the EIT system for cell-based imaging and assays. 

Compared with another capacitive array-based imaging technique for cell imaging, 

microelectrode array (MEA) [31-32], the image resolution of CCERT is relatively low. Like all the 

other ET techniques, the image resolution of CCERT is limited by the non-linear sensitivity of the 

electrical field and the reconstruction process involving ill-posed inverse problem. Applying the 

optimized reconstruction algorithm, e.g. adding regularization term, can improve the image 

resolution. The recent study also shows promising results of applying machine learning to 

reconstruct ET images [33-34]. The additional advantage of using CCERT for cell and tissue 

characterization is that it has the potential to provide regional information both 2D and 3D imaging. 

The relevant study shows that the 3D cell culture is suggested to be a more realistic and clinical 

approach for cell behaviors research and drug development [34-38]. Thus, the miniature CCERT can 

be developed as an effective visualization tool for cell/tissue characterization through 2D/3D imaging 

results. 

In this paper, a novel miniature CCERT system is investigated for cell and tissue imaging with 

two types of electrode arrays. For the conventional sensor structure of CCERT, which is in circular 

array, a higher sensitivity exists near the boundary of the sensing area while a lower sensitivity exists 

in the central area. Conversely, another sensor structure which is planar array based has a higher 

sensitivity in the central part but a lower sensitivity near the boundary. The combination of these two 

types of sensor may provide a uniform sensitivity in ROI. Thus, the tests of an 8-electrode circular 

array-based sensor and a 9-electrode planar array-based sensor were conducted separately for the 

preliminary imaging feasibility analysis. During the test, the E994A impedance analyzer (IA) was 

used to transmit the excitation signal and collect the resistance measurement data. To reduce the 

influence from the external field, the cell container and sensors were placed inside an electromagnetic 

shielding box. The mathematical model of these two types CCERT array sets are developed by finite 

element method (FEM). Time-difference method with multi-frequency is studied and the Spectro-

spatial total variation (TV) regularization algorithm is used to reconstruct the 2D images for circular-

array CCERT and 3D images for planar-array CCERT. The conductivity spectra as well as the 

reconstructed images of different bio-tissues are successfully obtained by CCERT. Findings and 

discussions are presented in the end for future research. 
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2. Background 

2.1. Bioimpedance of cell and bio-tissue 

When an external electrical field is applied to a material, the energy in the field is conservative, 

which is either lost in the form of heat due to the frictional motion of charge-carrying electrons or 

stored by the polarization. Though the energy can also be stored in the magnetic field, it is negligible 

for biomaterial. The response of the material to the applied external electrical field is quantitatively 

represented by the electrical properties, conductivity (𝜎 ) and the absolute permittivity (𝜀 ). The 

conductivity shows the ability to conduct/resist electrical current. The absolute permittivity 𝜀 = 𝜀𝑟𝜀𝑜, 

where 𝜀𝑟 is the relative permittivity/dielectric constant and 𝜀0 is the vacuum permittivity, shows 

the ability to store the energy. Since the polarization of the material is a convolution of the electric 

field applied at previous time with time variable, with the Fourier transform in respect to time, it can 

be written as a function of frequency. Therefore, the complex permittivity expressed as 𝜀∗ = 𝜀 +
𝜎

𝑗𝜔
 

with 𝑗2 = −1 is used to characterize the different materials as their response to the applied field is 

related to the frequency. It should be pointed out that the electrical properties of the material only 

remain constant in a very limited frequency range, and the value of the conductivity or permittivity 

may vary along with the frequency. In physics, the dependence of the permittivity on the applied 

frequency is defined as dielectric dispersion. 

Previous research has found that the biological tissues show a distinct response under a safe 

electrical excitation signal because of their electrical properties, which show the frequency-dependent 

characteristic [8]. In order to model the electric properties of the cell and tissues, studies about the 

cellular electrical model and bio-impedance have been undertaken. A simple shell model came up by 

Fricke [39-40] is shown in Figure 1a, where 𝐶𝑚  is the equivalent capacitor of the insulating 

membranes, 𝑅𝑖  and 𝑅𝑒  are the equivalent resistors of intracellular fluids (ICF) and extracellular 

fluids (ECF). This model describes the characteristics of bio-impedance and briefly explains the flow 

path of the alternating current at different frequency. When the electric field is applied at low 

frequency, the current only pass through the ECF as the membrane works as an isolator. However, 

the current goes through both ICF and ECF under the high excitation frequency. With this bio-

impedance model, the electrical properties of bio-tissues can be represented in a quantitative way.  

(a)         (b)   

Figure 1. (a) Fricke circuit. (b) Current path at different excitation frequency.       

Figure 2 plots the variation of the dielectric constant and conductivity of the biological tissues 

over a broad under-radio frequency range, and it’s clear to see the fall of the permittivity and the rise 

of the conductivity appears in three steps. These three major dispersions, α-dispersion (f < 1 kHz), β-

dispersion (1 kHz < f < 100 MHz) and γ-dispersion (f > 100 MHz), are caused by the polarization at 

different cellular mechanisms [8] [41]. α-dispersion is related to the ionic diffusion process at cellular 

membranes, 𝛽-dispersion is associated with the polarization of cellular membranes and protein, and 

𝛾-dispersion is caused due to the polarization of water molecules [42]. Different cells and tissues will 

present different dispersion. For example, the conductivity values of breast tumor tissues shown in 
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[43] is higher than that of normal tissues, and the conductivity difference between the tumor and 

normal tissues becomes bigger with the increase of frequency.  

In summary, different biomaterials not only have different electrical properties under the same 

frequency but also show different dielectric dispersion among the frequency domain. These 

differences can be reflected through the bio-impedance, allowing the characterization and 

classification of cells and tissues. 

 

Figure 2. Dielectric constant and conductivity of bio-tissue in the frequency domain. (It’s taken from 

[7]) 

2.2. Measurement Principle 

A generic CCERT system consists of three parts: an array of electrodes, a data acquisition system 

and a host personal computer (PC). The whole construction of the proposed miniature CCERT system 

is shown in Figure 3.  

Sensors. There are two types of sensor-array for CCERT system based on the layouts of the 

electrodes. The conventional one is circular sensor-array where all the electrodes are equally mounted 

on the outer periphery of the culture dish, forming a circular ring. The reconstructed images 

produced with this kind of sensor are generally presented in 2D format [27-30]. Another 

configuration is the planar array-based set. The electrodes of this sensor type are attached at the outer 

bottom of the culture dish with the same adjacent gap between each other. As the sensing region of 

planar CCERT is above the electrodes with small depth, the 3D imaging can be realized through the 

planar array sensors. When an AC voltage signal is applied to one electrode pair, two coupling 

capacitors can be formed among the electrode, the insulating material and the conductive culturing 

medium. The aim of the culturing medium is to provide nutrients to bio-tissues and simulate the in 

vivo chemical environment. So, this conductive medium can be regarded as ECF. When the tissues 

are placed in the medium, the equivalent bio-impedance model (Zc) is, therefore, as same as the shell 

model shown in Figure 1a. In this way, the equivalent circuit between any transmitting and receiving 

electrode-pair can be simplified as a series connection of two capacitors and one bio-impedance. 

Array structure and the corresponding equivalent circuit of circular-array sensor and planar-array 

sensor are demonstrated in Figure 4.  

Data acquisition system. The data acquisition unit is used to obtain the resistance/conductance 

measurements from the electrodes. Suppose N is the total number of electrodes, and the electrodes 

are numbered in order. When electrode 1 is selected as the transmitting electrode, electrode 2 to N 

will work as the receiving electrode one by one. Following this step, electrode 2 is selected as the 

transmitting electrode, and electrode 3 to N will be the receiving electrode in turn. This process will 

repeat until the electrode N-1 and electrode N are the transmitting and receiving electrode, 

respectively. Consequently, a complete dataset has N×(N-1)/2 independent measurements in one 

measurement cycle. 

Host PC. The host PC is used for data storage, data analysis, mathematical modelling, and image 

reconstruction. 
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Figure 3. Construction diagram of an 8-electrode miniature CCERT system with circular-array sensor. 

  

                      (a)                                               (b)  

                                

                      (c)                                               (d) 

Figure 4. (a) Circular array. (b) Planar array. (c) Equivalent Circuit of circular CCERT with bio-tissue 

inside. (d) Equivalent Circuit of planar CCERT with bio-tissue inside. 

3. Methods 

CCERT is an imaging modality that estimates the internal conductivity distribution through the 

boundary resistance measurements by injecting AC voltage to the electrodes. The whole imaging 

process composes of two steps. The first one, which is called as the forward problem, is calculating 

the boundary resistance measurements from a known conductivity distribution in the region of 

interest (ROI), based on what the sensitivity matrix that links the internal conductivity change and 

the boundary resistance change can be obtained. During the forward problem simulation, due to the 

nonuniform of the region Ω and nonlinearity of the electromagnetic field, it’s less likely to find the 

linear function showing the relationship of the internal electrical property distribution and the 

boundary measurements. Therefore, a critical process is using the finite element method (FEM) to 

discretize the sensor model and the ROI into a limited number of voxels [12]. Following this, the 

second step is providing the reconstruction images of the internal conductivity distribution through 

the experimental boundary measurements with the sensitivity matrix and the reconstruction 

algorithm. However, the number of the voxels that need to be reconstructed is far more than that of 

the independent measurement data, so the reconstruction process, which is known as the inverse 
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problem, is severely ill-posed. Increasing the number of the electrode-pair can improve the situation 

but introduce higher requirements of the hardware design. Adding the regularization term to the 

reconstruction algorithm is then generally used to solve the problem. More details of the model 

simulation and image reconstruction are explained as followed.  

3.1. Electromagnetic field modelling  

The sensor model is defined by the unique electromagnetic field and the boundary conditions. 

Giving the assumptions that the CCERT system is operated under low frequencies and small field 

strengths, the dynamic electromagnetic field can be regarded as the quasistatic electromagnetic field. 

Therefore, the mathematical model governed by Maxwell equation in the sensing region Ω can be 

described as [23]: 

 ∇ ∙ (𝜀(𝑥, 𝑦) +
𝜎(𝑥,𝑦)

𝑗𝜔
) ∇𝜙(𝑥, 𝑦) = 0,          (𝑥, 𝑦) ⊆ Ω                    (1) 

𝜎(𝑥, 𝑦) and 𝜀(𝑥, 𝑦) are the conductivity and permittivity distribution within Ω, respectively. 𝜙(𝑥, 𝑦) 

is the electrical potential and 𝜔 is the angular excitation frequency. As the system is driven by the 

voltage excitation signal, the following equation group lists the boundary conditions: 

{

𝜙𝑚(𝑥, 𝑦) = 𝑉𝑖

𝜙𝑛(𝑥, 𝑦) = 0
𝜕𝜙𝑡(𝑥,𝑦)

𝜕�⃗� 
= 0 

,          (𝑥, 𝑦) ⊆ Ω                             (2) 

where 𝑉𝑖  is the amplitude of the injected AC voltage signal. 𝑚 , 𝑛  and 𝑡  are the index of 

transmitting, receiving and floating electrode. �⃗�  represents the normal vector pointing out of the 

boundary. 

3.2. Sensitivity matrix 

In order to obtain the sensitivity matrix of CCERT, the adaptions of a complex capacitance 

system were made. Developed from (1), the integral relation between the complex capacitance and 

the distribution of conductivity and permittivity can be represented as the following formula [23]: 

𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = −
1

𝑉
∫ (𝜀 +

𝜎

𝑗𝜔
) ∇𝜙 dΓ                              (3) 

where 𝑉 is the potential difference of the electrode-pair and Γ is the surface of electrode. The value 

of the imaginary part of the complex capacitance is associated with the boundary resistance 

measurements.  

In the time difference imaging approach, the image is reconstructed by the subtraction of 

resistance value 𝑅𝑡1  and 𝑅𝑡2  measured at time 𝑡1 and 𝑡2 (𝑡1 ≠ 𝑡2). Under the multi-frequency 

excitation condition, when a small perturbation of the conductivity distribution ∆𝜎 happens over 

time, the measurement difference ∆𝑅 can be written as: 

∆𝑅 = 𝑓(∆𝜎, 𝜀, 𝜔)                                     (4) 

Here f  is the mapping from the electrical property changes to boundary resistance measurement 

changes. 

By discretizing the sensor and ROI into a limited number of voxels, the conductivity 

perturbation ∆𝜎  of each voxel, for i=1,…,N, where N is the total number of voxels, can be then 

linearly linked with the boundary resistance difference ∆𝑅𝑚,𝑛,𝜔 via the sensitivity matrix S.   

∆𝑅𝑚,𝑛,𝜔 = ∑ 𝑆(𝜎)𝑚,𝑛,𝜔 ∙𝑁
𝑖=1 ∆𝜎                               (5) 

where m and n are the index of the transmitting and receiving electrode, 𝑅𝑚,𝑛,𝜔 is the equivalent 

resistance between the electrode-pair at frequency ω. Based on the reciprocity theorem [44], the 

sensitivity matrix can be calculated as: 

𝑆(𝜔) = −∫
𝛺
𝐸1(𝜎) ∙ 𝐸2(𝜎)𝑑𝑉                        (6) 
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In this work, an 8-electrode circular CCERT system was tested for 2D imaging and a 9-electrode 

planar CCERT system was tested for 3D imaging. The sensitivity matrix of both types of the sensor 

is calculated by our in-house MATLAB based software on a 3D mesh model. In one measuring cycle, 

there are 28 =
8×7

2
 independent measurements and hence 28 sensitivity plots for circular CCERT. 

Similarly, planar CCERT collects 36 =
9×8

2
 independent measurements and derives 36 sensitivity 

plots. Due to the non-linear nature of the soft field, the field near the electrode has a higher sensitivity. 

Thus, the circular array-based sensor has a higher sensitivity near the boundary of ROI while a lower 

sensitivity in the central area. Conversely, the highest sensitivity of planar CCERT is at the center, 

while the lower one is at the boundary area. In Table 1, the sensitivity distribution of the electrode 

pair 1-5 and 4-6 is plotted as an example for both circular and planar array. Through the plots, it’s 

clear to understand how the sensitivity is distributed for the different array sensor. In addition, the 

sum of the sensitivity distribution between all electrode-pairs in a 2D co-plane is also demonstrated 

in Table 1, suggesting that a uniform sensitivity in entire imaging domain can be produced if both 

settings are used together.  

Table 1. The sensitivity distribution of the electrode-pair 1-5 and 4-6, and the sensitivity sum in 2D 

co-plane for circular array CCERT and planar array CCERT.  

Structure Electrode-pair 1-5 Electrode-pair 4-6 Sensitivity sum in 

2D co-plane 

Circular array CCERT 

   

Planar array CCERT 

   

Colorbar 

(units: V/mS∙ 𝒄𝒎−𝟏)  

3.3. Spectrospatial image reconstruction 

Retrieving the unknown conductivity distribution from the boundary resistance measurements 

is generally solved based on the conventional least-square problem. With the multi-frequency 

excitation signals, the unknown conductivity changes and the boundary measurement data are in 4D 

format, which write as ∆σ = [∆σ𝜔1
, … , ∆σ𝜔𝑛

] and ∆R = [∆R𝜔1
, … , ∆R𝜔𝑛

], respectively. 𝜔𝑛 is the total 

number of excitation frequency.  Reconstructing the image for each frequency independently is the 

common way, while considering the frequency domain as a continuous vector can avoid repetitive 

use of the redundant information. Then the inverse problem can be written as:      

𝑎𝑟𝑔 𝑚𝑖𝑛
𝛥𝜎𝑖

1

2
‖𝑆∆𝜎𝑖 − ∆𝑅𝑖‖2

2, 𝑖 = 𝜔1, … , 𝜔𝑛                    (7)              

The common challenges for the soft field imaging modalities, including CCERT, are the 

nonlinearity of the electromagnetic field and the ill-posed problem. For a unique solution, the 

regularization term should be necessarily added to (5) as the additional information of the 

conductivity. Various image reconstruction algorithms have been developed over the past decades 

[45-48]. In this work, the spectral-spatial total variation (TV) algorithm is introduced to improve the 

reconstruction images, the regularized terms which correspond to the isotropic spatial TV and 

spectral TV can be represented as: 
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𝑎𝑟𝑔 𝑚𝑖𝑛
𝛥𝜎

‖𝛻𝑥,𝑦,𝑧𝛥𝜎‖
1
+ ‖𝛻𝜔𝛥𝜎‖1                     (8) 

and 

‖∇𝑥,𝑦,𝑧Δσ‖
1
= ∑ √(∇𝑥Δσ𝑖)

2 + (∇𝑦Δσ𝑖)
2 + (∇𝑧Δσ𝑖)

2𝑁
𝑖=1    

‖𝛻𝜔𝛥𝜎‖1 = ∑ √(𝛻𝜔𝛥𝜎𝑗)
2𝜔𝑛

𝑗=1                   (9) 

where ‖∙‖1  is the 𝑙1-norm and 𝛥𝜎 is the 4D conductivity perturbation. N is the total number of 

elements and 𝜔𝑛 is the total number of frequencies. In order to efficiently optimize the constrained 

problem and solve the L1 regularization, the Bregman iteration [49] is applied to (7). Then the iterative 

scheme of (7) can be written with an augmented Jacobian J̃ as follows: 

Δσ𝑘+1 = 𝑎𝑟𝑔 min
Δσ

‖∇𝑥,𝑦,𝑧Δσ‖
1
+ ‖∇𝜔Δσ‖1 + ∑

1

2
‖J̃Δσ − ΔR𝑘‖

2

2𝜔𝑛
𝑖=1                      (10) 

ΔR𝑘+1 = ΔR𝑘 − J̃Δσ𝑘+1 + ΔR                         (11) 

4. Experiment setup 

Experiments of miniature CCERT system are conducted separately with sensors in the circular-

array and the planar-array. Figure 5 shows the experimental setup and the two types array-set. The 

impedance analyzer (IA) Keysight 4990A was used to transmit the excitation signal and obtain the 

resistance measurement data. A stimulation voltage of 1V with frequencies from 20 kHz to 15 MHz 

was injected to the electrodes. The size of the cell/tissue culture dish used in this work is 35 mm base 

diameter, 10 mm height and 0.2 mm thickness of the wall.  

            

                                    (a)                                        (b)  

Figure 5. (a) Experimental setup. (b) Sensors in circular-array (top) and planar -array (down). 

Electrodes design. As CCERT is an adaption of ECT, the signal to noise ratio (SNR) depends on 

the area of electrodes [50], where the larger sensor enables a higher SNR and hence a higher 

sensitivity. In this work, for circular array-based sensor, there are 8 same size electrodes equally 

spaced around the outer wall of the culture dish. As the larger sensor electrode angle can optimize 

the system sensitivity [26], the electrode angle was designed as 32.8°, and the size of the electrode is 

10 mm × 10 mm. For planar array-based sensor, the electrodes are placed at the outer bottom of the 

culture dish. The size of the electrode is 5 mm × 5 mm, and the gap between any two adjacent 

electrodes is 5 mm.  

Electromagnetic shielding. It should be noted that an electromagnetic shield is used here to 

reduce the signal influence from the external electromagnetic field. Considering the size of the 

phantom and sensor, it’s challenging but necessary to reduce the system error. Figure 6 compares the 

background resistance measurement collected from the electrode pair 1-4 under the situation with 

and without the electromagnetic shield. Based on the study of biomaterial’s dielectric dispersion, the 

measured resistance data should decrease along with the frequency as the conductivity increase 

gradually. It can be clearly seen that the data collected with the shield shows the reasonable trends 

and value, while the data collected without the shield flows around the zero line, and even below 

zero at the high frequency. The negative resistance value can be explained with the influence brought 

by the parasitic capacitance of cables. Compared with the parasitic capacitance, the resistance signal 
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that can be measured is too small under the situation without shielding. Thus, it’s difficult for the 

impedance analyzer to calculate the correct resistance value, and a negative value can be produced. 

Through the comparison, the benefit of using the shield is obvious, and more study about the shield 

design should be carried out in the future. 

 

Figure 6. Resistance data of electrode pair 1-4 collected with and without electromagnetic shield. 

5. Experimental Results   

The experimental results of miniature CCERT with circular and planar sensor array are 

demonstrated in this section. With 0.9% saline water as the conductive medium, the corn kernel and 

the piece of garlic were tested to investigate the characterization ability of this imaging modality. 

Boundary resistance measurements were obtained and recorded with the injection of multi-

frequency excitation voltage to the electrodes. As the β-dispersion is associated with the polarization 

of membranes, the frequencies were chosen from 20 kHz to several MHz. For circular CCERT, the 

images are reconstructed in 2D format. And for planar CCERT, both 2D and 3D results are presented.      

 5.1. Analysis of miniature circular CCERT sensor 

In the study of circular-array CCERT, the voltage at the frequency ranging from 3 MHz to 12 

MHz was selected for the spectroscopic imaging and the reconstructed conductivity stpectra. Figure 

7 shows the resistance measurements of the background conductive medium collected under 

different frequency. The measurement index indicates each independent measurement data obtained 

during one measuring cycle. It can be seen from the plot that the measurements of the same electrode-

pair decreases along with the frequency, reflecting the fact that the conductivity of background 

medium rises with the increase of frequency.      

 

Figure 7. The resistance measurements of background conductive medium at freqeuncies from 3 MHz 

to 12 MHz. 
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As the sensitivity is stronger near the boundary but weaker for the central area, and the location 

of the tissue can be man-made decided and controlled during the imaging, a corn kernel was placed 

near the boundary sensor. After collecting the resistance data for corn, the experiments were repeated 

for a similar size of garlic locating at the same place. The experiments setup and the multi-frequency 

reconstructed 2D images for corn and garlic are shown in Figure 8. The images produced at different 

frequencies for the same tested tissue are normalised with the same MATLAB colormap scale from 0 

to 1, which makes it clear to see the condcutivity variation along with the frequency. The number in 

the little box presented on the camera images is the order of the electrode. Through the results, it’s 

clear to see the conductivity for both corn and garlic sample increased with the frequencies from 

3MHz to 12 MHz. 

(a)               

(b)               

Figure 8. Experimental setup and reconstructed images for (a) corn and (b) garlic. 

Illustrated in Figure 9, the 2D imaging results measured with multi-frequency can be described 

by a 3D cuboid. The horizontal cross-section of the cuboid represents the 2D image obtained at each 

frequency, a black plane is demonstrated as an example in Figure 9a where X- and Y-axis indicate the 

pixel index. The vertical axis of the cuboid represents the frequency. Results shown in Figure 8 well 

reflect the conductivity change of the whole sensing region with the multi-frequency. But to analyze 

the reconstruction results in detail, the change of the reconstructed conductivity at selected pixels can 

be imaged over frequency. As explained by a red vertical plane in Figure 9b, the value of pixels in 

that column of each 2D images can be compared over multi-frequency. Figure 10a and Figure 10c are 

the images of value variation of the specified pixels along the centreline of the horizontal axis in 2D 

image at different frequencies for corn sample and garlic sample. Based on the spectral pixel profiles, 

the images in Figure 10b and Figure 10d are the derivatives of pixel value with respect to differences 

between two neighbouring frequency (constant interval steps of 10 KHz), correspondingly. The 

colormap scale showing alongside the images is an important indicator for tissue characterization. 

The red colour represents a higher value while the blue colour represents the lower value. In this case, 

the value below zero can be ignored as it might be caused by system error. For pixel value, the scale 

is up to 6.5 × 10−5 for corn and 7.8 × 10−5 for garlic. For derivative of pixel value, the maximum 

scale is 2.1 × 10−5 for corn and 1.7 × 10−5 for garlic. Therefore, the highest conductivity of garlic is 

higher than that of corn while the highest change ratio of garlic is lower than that of corn in such a 

wide frequency domain. Through the comparison of the specified pixels’ conductivity variation and 

its change rate for different bio-samples, better discriminations of them can be made. 

To see the conductivity variation in a more intuitive way, the conductivity spectra of corn and 

garlic is reconstructed in Figure 11 with the background medium as the conductivity reference. 
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Though the corn and garlic show similar conductivity tendency and simple derivates, the difference 

between them is noticeable. And in real life, different types of cells and tissues have different rates of 

the spectrum, which allows better discriminations with CCERT. From the conductivity spectra, the 

garlic has a higher conductivity than corn from 3 MHz to around 10.6 MHz. After that frequency, the 

value of them is close. It can be noticed that a sharper rise of conductivity for corn happens at 

frequencies from 7 MHz to 10 MHz. Figure 11b shows the derivative of their conductivity with 

respect to the frequency for that frequency range, where the corn has a higher change ratio than garlic. 

The conductivity derivative, therefore, can be regarded as an extra indicator for tissue classification.   

In summary, the preliminary investigation of circular CCERT shows its promising potential in 

tissue characterization through reconstructed 2D imaging, spectral pixel images, the conductivity 

spectra profile and its derivatives with respect to frequency. 

    (a)   (b)  

Figure 9. Spectral cuboid: 2D images obtained with multi-frequency. (a) Horizontal cross-section 

represents the 2D image at one frequency. (b) Vertical cross-section represents the spectral images of 

selected pixels. 

(a) (b)  

(c) (d)  

Figure 10. (a) Conductivity spectral value of pixel for corn sample. (Colorbar units: mS/cm) (b) 

Derivate of pixel value with respect to frequency for corn. (Colorbar units: mS/cm Hz) (c) 

Conductivity spectral value of pixel for garlic sample. (Colorbar units: mS/cm) (d) Derivate of pixel 

value with respect to frequency for garlic. (Colorbar units: mS/cm Hz)   
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   (a)     (b)  

Figure 11. (a) Reconstructed conductivity spectra for corn and garlic with multifrequency circular 

CCERT. (b) Deriviate of conductivity with repect to frequency.  

 5.2. Analysis of miniature planarr CCERT sensor 

In the study of the miniature planar CCERT sensor, the experiments were carried out with 

frequencies from 20 kHz to 1.4 MHz with 500 equally selected sample points. During the test, the 

conductive medium just submerged the sample tissues. A single garlic sample was tested firstly for 

3D (x-y-z) image reconstruction and conductivity spectra analysis. Since the planar CCERT has a 

higher sensitivity in the central area, the garlic was placed at the center of ROI. Following that, the 

corn kernels were used to perform a control experiment of the single inclusion test and double 

inclusions test. To reduce the influence of each other, the corn kernels were located near the boundary 

edge of ROI. 

Before reconstructing images from the electrode measurements, a pretreatment of the initial data 

was conducted. Take the single corn test as an example, the initial 36 conductance (reciprocal of 

resistance) differences are plotted in Figure 12a. The “wdenoise” in MATLAB which uses an 

empirical Bayesian method with a Cauchy prior was applied to remove such a fluctuation, which can 

be seen in Figure 12b. Although these fluctuations in the frequency domain do not have an important 

impact on frequency domain images, it will have more impact on image derivatives. Both spectrally 

correlated imaging algorithms and smoothing of the measured data can address this problem without 

removing key information from the measured data. 

(a)   (b)  

Figure 12. (a) Initial conductance measurement differences, for all 36 measuremnets . (b) Conductance 

measurement difference with noise removed for all 36 measuremnets 

Illustrated in Figure 13 and Table 2, the conductivity variation of the garlic sample in the 

frequency domain was reconstructed through the spectral profile and images both in 2D and 3D 

formats. Only a selected number of the 500 frequency sample points are chosen to be demonstrated 

here. In Figure 13b, the 2D plots obtained with multifrequency are shown with the same colorbar, 

indicating the increase of conductivity along with the frequency. The conductivity spectral profile 

and its derivative in Figure 13c and Figure 13d reflect the change and the change rate of the equivalent 

conductivity of the entire garlic tissue with the background medium as the conductivity reference at 
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the frequencies from 20 kHz to 1.4 MHz. In Table 2, the images reconstructed in the format of sliced 

images of every four horizontal layer show the conductivity distribution in the 3D spatial domain at 

the same frequency point. For each 3D plot, the results are normalised into the same scale of colorbar. 

In addition, the value of the colorbar for 3D sliced images at each frequency shows how the relative 

conductivity vary in the frequency domain.  

          (a)         (b)  

      (c)  (d)  

Figure 13. (a) Experiment scenario for garlic sample. (b) Reconstructed 2D images with 

multifrequency. (Colorbar units: mS/cm) (c) Reconstructed conductivity spectra. (d) Derivative of the 

conductivity with respect to the frequency.  

Table 2. Sliced Image of Horizontal Layer for Single Garlic Sample with Multi-frequency 

0.27 MHz 0.45 MHz 0.63 MHz 1.08 MHz 1.35 MHz 

     

In order to further explore the detecting ability of planar CCERT, the control experiments were 

conducted with corn samples. Shown in Figure 14, a corn kernel was placed near the edge of ROI for 

the single inclusion test, then another corn was placed near the edge opposite to the first corn for the 
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double inclusions test. For each scenario, 2D images at multifrequency are compared. 3D 

reconstructions are also demonstrated by the sliced images of the horizontal layer.  

With the same scale of colorbar, 2D images of single corn indicate the rise of conductivity with 

the increase of frequency. In Table 3, sliced images at different levels show the spatial conductivity 

distribution of single corn sample, which is increasing alongside the vertical direction. In Figure 14b 

and Table 4, the images for the corn at the upper left corner show a similar conductivity variation 

tendency both in the spatial-domain and spectral-domain compared with the results in Figure 14a 

and Table 3. What’s more important is that the freshness of these two corn samples is not the same, 

where the corn kernel at the lower right corner is fresher. And this difference is successfully detected 

by miniature planar CCERT. Not only they show the different conductivity value in the spatial 

domain, but also the fresher corn has a bigger conductivity variation in the frequency domain. 

    (a)             

     (b)            

Figure 14. Experiment scenarios for the miniature planar CCERT sensor and the reconstructed 2D 

results (a) Single corn kernel. (b) Double corn kernels. (Colorbar units: mS/cm) 

Table 3. Sliced Image of Horizontal Layer for Single Corn Kernel with Multi-frequency 

0.31 MHz 0.54 MHz 0.77 MHz 1 MHz 1.26 MHz 
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Table 4. Sliced Image of Horizontal Layer for Double Corn Kernel with Multi-frequency 

0.31 MHz 0.54 MHz 0.77 MHz 1 MHz 1.26 MHz 

     

6. Discussions 

A novel lab on the chip-based miniaturized electrical tomography system has been developed 

for non-invasive and non-contact imaging of cells with an extended wideband spectral range. The 

chip consists of a circular array of 8-electrodes for 2D imaging, and a planar array of 9 electrodes for 

3D near subsurface imaging, which allows imaging of cells and biological samples located at any 

position within the array. We have developed a finite element model to numerically model the 

measurement and a novel inversion method for spectrally correlated image reconstruction. The 

reconstructions of different biological samples have been carried out through the spectral 

conductivity profile and its derivatives, 2D and 3D images.  

The miniature CCERT provides a flexible and high temporal method for the characterisations of 

cells and biological tissues. Due to the non-linear characteristic of the soft field, the sensitivity in the 

sensing region is not uniform. Therefore, it brings the challenges to image reconstruction and hence 

limits the resolution of images. The image resolution of CCERT should be improved by optimizing 

the reconstruction algorithm and developing a high-speed and high-precision data acquisition 

system in the future. Nevertheless, good discriminations of different biological samples have been 

made in this work by the proposed technique. The conductivity spectra of cancer cells have a bigger 

variation in the frequency domain than that of normal cells. Thus, the developed system would be 

useful in diagnostic and biomedical applications, such as cancer and cancer treatment monitoring, 

through characterizing the spatial electrical properties of tumour cell colonies. Understanding the 

tumour growth is essential for screening programs, clinical trials, and epidemiological investigations. 

It can be expected that spatially mapping the bio-impedance of tumour will benefit the study of the 

dynamics in tumours cells spreading and proliferation.  

In addition to the regional conductivity spectra, the profile of the change rate in electrical 

conductivity with respect to the frequency is successfully derived by our spectral correlative 

algorithm. In future biomaterial characterization, these derivatives could be useful for identifications 

and act as gradient terms for possible optimization schemes. Besides, the circular array sensor and 

the planar array sensor both show promising ability to image and characterize different tissues. Thus, 

the fusion of these two types of sensor can be carried out in the future to improve the image resolution 

with a more uniform sensitivity.   
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In summary, the 3D mapping ability with rich information demonstrates the potential of 

developing a microscale CCERT system for imaging cells in culture by mapping the spatial 

conductivity distribution under a wide range of frequencies. 

7. Conclusions 

A series of phantom experiments confirm the feasibility of miniature CCERT for bio-tissue 

imaging and characterization. The excitation frequencies ranging from 20 kHz to 12 MHz allow the 

comprehensive analysis of the bio-samples. To tackle the challenge of producing reliable 

measurement data from that wide frequency range and improve signal quality for the image 

reconstruction, the electromagnetic shielding, as well as the spectral denoiser of the measured signal, 

were recommended to be applied. From the spectral images, a spectrum plot of conductivity can be 

derived together with its derivative with respect to the frequency, which can be an additional way to 

interrogate the tissue and cell system under test. There is a complementary aspect between the planar 

and circular array as a higher sensitivity of circular array exists near the boundary of ROI while that 

of planar array exists at the central area of ROI, which means that these two array sets could be used 

together to provide a uniform sensitivity for the sensing area. Though the bio-imaging system 

proposed here has the limited spatial resolution, it still provides rich and unrivaled multi-

dimensional information on spatial, temporal, spectral changes that do not exists in other imaging 

methods. In future studies, the proposed imaging systems and method will be continually researched 

for a suitable cell/culture bio-sensing application.  
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