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ABSTRACT 

EIS ANALYSIS OF SHEAR ENHANCED MICROFLUIDIC  

LAB-ON-A-CHIP DEVICE 

 

by 

 Mehnaz Mursalat 

Electrochemical sensors and biosensors have received much attention owing to the 

feasibility demonstrated regarding instrumental simplicity, decent cost, and portability 

during the detection of a wide range of biological and pharmaceutical macromolecules. 

Carbon-based nanomaterials, including carbon nanotubes, have garnered tremendous 

interest for their unique thermal, mechanical, electronic and catalytic properties while 

designing these sensors. Whenever the macromolecules interact with a bio-recognition 

element on the electrode transducer surface, a measurable change in the electrical current 

or potential takes place. To achieve lower limits of detection, the use of sensor surfaces 

modified with nanostructured materials such as nanotubes, or nanoparticles is becoming 

increasingly significant. The study aims to design a CNT-based electrochemical glass 

sensor which purifies monoclonal antibody in the presence of its biorecognition element 

(e.g. an antigen). The system utilizes an open-flow carbon nanotube platform for 

monoclonal antibody purification using impedance-based sensing (EIS). The open flow 

allows rapid concentration of the target molecules and shear-enhanced specificity leading 

to maximum hydrodynamic shear force. Interdigitated electrodes are used to trap multi-

walled carbon nanotubes. The principals involved in fabricating such a device can be 

applied for the detection of some other pharmaceutical molecules. At the same time, CNTs 

replaced by ZnO and Al2O3 based nanomaterials can also be taken into account for 

detection of various macromolecules for better sensitivity and better specificity. 
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CHAPTER 1 

 INTRODUCTION 

 

Microfluidics involves the control and manipulation of fluids ranging from microliters (10-

6) to picoliters (10-12) in an array of channels with dimensions as low as tens to hundreds 

of microns [1]. These devices exhibit excellent analytical performance in sensing 

biomolecules without consuming high energy while minimizing dead volume, void volume 

or sample carry over [2]. The high surface to volume ratio contributes to increased reactions 

[2]. They also have inherent advantages like a decrease in sample and reagent consumption 

leading to significant reductions in operational cost [3]. Further, the microfluidic devices 

are portable, reliable and multi-functional. Hence, microfluidic devices are indeed being 

explored across a vast plethora of applications from sensing to nanoscale purification [3]. 

Glass has been the material of choice in constructing microfluidic device owing to its 

superior thermal conductivity, surface stability, and solvent compatibility [4]. Further glass 

has high optical transparency, well-defined surface chemistries, and excellent high-

pressure resistance make it a substrate of preference for many microfluidic and non-

microfluidic applications [5]. Glass is also biocompatible, chemically inert, and 

hydrophilic and allows efficient coatings [5]. 

The use of microelectrodes is prevalent in microfluidic devices. Microelectrodes 

are three-dimensional electrodes that have excellent sensitivity for electro-analysis [6]. The 

three-dimensional architecture of the microelectrodes leads to increased penetration of the 

electric lines of forces into the bulk, while the nano-ordered texture results in increased 

surface area [6]. This increase in size facilitates electron transfer rates and creates more 



2 
 

sites for the attachment of molecular probes [6]. Microelectrodes have been used for the 

rapid detection of nucleic acids in aM and pM concentrations [7]. Microelectrodes are ideal 

for samples where low volumes are desired owing to their small dimensions [7, 8]. By 

reducing down, the dimensions of the electrode and the electrochemical cell, an increase 

in the diffusional flux to the electrode surface can be achieved [8]. Another major 

advantage that microelectrodes introduce is the decrease in noise and a concomitant 

increase in signal to noise ratio [9].   

In microfluidics, Electronic Impedance Spectroscopy (EIS) based sensing has 

proven to be an efficient method for biomolecule characterization [10]. It is a 

nondestructive technique used for the analysis of charge transport owing to chemical 

diffusion, adsorption or desorption in a system [11]. EIS appears to be an extensively 

applied tool in corrosion and battery studies where changes in surface properties of 

materials take place as a result of variations in surface chemical composition [12, 13]. For 

the analysis of biomolecules, many of the existing methods require them to be modified 

with fluorescence dyes, enzymes, redox or radioactive labels whereas EIS incorporates a 

label-free nondestructive detection methodology [11, 14]. Further, EIS ensures accuracy 

and repeatability in measurements, thus its superiority over other existing 

voltammetry/amperometry methods such as cyclic voltammetry and potential coulometry 

used for the characterization or sensing of biomolecules [15]. Cyclic voltammetry requires 

analyte concentrations of 10–3 to 10–5 M while EIS achieves a significantly lower detection 

limit in the nanomolar region [16]. The same goes with potential coulometry whose 

detection limit ranges in the molar region [17]. 



3 
 

In EIS, electrochemical impedance is usually measured by applying an AC 

potential across an electrochemical cell [18].  This small amplitude sinusoidal voltage 

signal results in a measurable current response[18]. The electrochemical changes occurring 

at electrodes are translated as either resistive or capacitive property change of materials. 

This change is called a change of impedance. The obtained EIS data is commonly analyzed 

by fitting it to an equivalent electrical circuit model that consists of common electrical 

components such as resistors, capacitors, and inductors [19]. For example, any electrolytic 

reactions at the electrode are modeled as a charge transfer resistance coupled with a 

constant potential element. The Debye double layer that forms at the electrodes is modelled 

as a capacitor. The EIS models and their physical interpretation is described in details in 

Chapter 3 [19].One of the major reasons for choosing carbon nanotubes (CNT) in this work 

is CNT’s advantageous chemical, mechanical, thermal and electrical properties.  These 

properties include high electrical conductivity, high tensile Strength and flexibility and low 

Thermal Expansion Coefficient [21]. 

Carbon Nanomaterial-based electrochemical sensors have been used for detection 

of various analytes such as antibodies, antigens, proteins and DNA [20]. Carbon possesses 

the capacity to hybridize into sp, sp2 configurations with narrow gaps between their 2s and 

2p electron shells [21]. It has been found that this simple hybrid structure can facilitate 

the sensitive detection of the biomolecule.  Provided if on the interaction of the biomolecule 

with carbon material specifically at the sp, sp2 hybridization, a π electron orbital is formed 

[21]. This π electron increases the conductivity which is a quantitative and qualitative 

measure of the biomolecular interaction [20]. Existing antibody detection method include 

enzyme-linked immunosorbent assay (ELISA), radioimmunoassay, and electrophoretic 
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immunoassay. However, these techniques involving e extensive sophisticated 

instrumentation is complex and require expensive reagents [22]. Therefore there is a critical 

necessity to develop cost-effective Lab-on-a-chip microfluidic devices with enhanced 

sensitivity, reliability, repeatability and low detection limit that incorporate EIS as the 

detection methodology. [23] 

An active research area is a study of monoclonal antibodies (mAbs) [24].  The 

increasing demand of mAbs and polyclonal antibodies (pAbs) is fueled by their promise to 

treat multiple diseases including cancer, rheumatoid arthritis, and cardiovascular disease 

[25]. Hence, there is an increasing demand for a large number of highly specific and 

sensitive mAbs for research, clinical and therapeutic use. mAbs effectiveness as a 

therapeutic agent is high if they demonstrate a long serum half-life, low immunogenicity, 

a high affinity for the antigen, and can neutralize the activity of the antigen. In fact, over 

the past decade, a high demand of high purity mAbs has been observed for the purpose of 

direct labeling by biomarkers [24, 25]. For mAb extraction, cell lines are created by fusing 

a mouse myeloma with mouse spleen cells from an immunized donor [26]. The mAbs are 

then expressed by this cells. Cell lysis is done and the cell culture fluid (CCF) (contains 

the lysis contents of the cells) collected. Any mAb purification methodology from the CCF 

has to prevent contamination from foreign proteins (such as insulin or transferrin) [27]. 

These contaminants can mimic the binding of the mAbs to the cells upon binding to the 

specific membrane-bound receptors [27]. Thus, the presence of this foreign proteins 

restricts the use of insufficiently purified mAbs for any biological testing system as any 

adverse effect might be falsely attributed to the mAbs [28]. The purification process for 

mAb needs to reliably and predictably produce a product suitable for human use. Impurities 
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such as host cell protein, endogenous viruses, DNA and endotoxin, aggregates and other 

species demand removal while maintaining an acceptable yield [20]. Further, impurities 

introduced during the purification process has to be removed. The impurities include 

leached Protein A, extractable from resins and filters and so on [24, 29]. Thus, mAbs 

purification strategies require high purity of mAbs with no contaminants.  

The existing methods to purify mAbs include Gas Chromatography (GC) and High-

pressure liquid chromatography (HPLC) [30]. However, these methods are cumbersome 

and often fail to achieve the desired level of purification. Further these methods require 

extensive instrumentation with large expenses. However, microfluidics can be a serious 

alternative that offers the advantages of low sample consumption, is cost-effective, simple 

and can be easily packaged into a small device [31] [32].  

To avoid the problems in mAbs purification, a microfluidic platform is envisioned 

that uses shear force to achieve effective purification. Further, this platform will allow 

affinity testing and for testing the efficacy of mAbs. The platform is adapted from an earlier 

work by Dr. Basuray that has interdigitated electrodes, and a microchannel packed with 

carbon nanotubes (CNTs) functionalized with an oligo (a short single-stranded DNA 

(ssDNA)) [5, 6]. A solution compromised of target ssDNA (ssDNA complementary to the 

oligo) and other ssDNA flows through the platform [33]. At a given solution velocity the 

target ssDNA remains hybridized to the oligo while any non-target ssDNA is sheared off 

the oligo; breaking the hydrogen bonds. Thus, it can be hypothesized that the shear forces 

in the microchannel are close to the hydrogen bond strength at some flow rate. It is well 

documented that a mAb-antigen pair has a significantly weaker binding force in 

comparison to the hydrogen bond of the DNA [34]. Thus the shear-enhanced flow at 
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different flow rates can specifically bind mAb to antigen and can also shear mAbs from 

the antigen. This binding and stripping event of the mAbs to the CNT-mAbs complex 

triggers changes in the observed EIS signal observed. Thus, EIS can be used to interpret 

the binding strength and structural changes of the mAbs [35].   

To interpret the EIS results, the physics of the interactions of the CNT-Protein A-

mAb complex has to be represented as an equivalent circuit. It is hypothesized that the EIS 

signal is generated from local domain perturbations at the CNT interface. These domains 

are ~ nM due to the nanostructured CNT packing in the channel [36]. Thus EIS needed to 

be modeled in nano-domains to interpret it as equivalent circuits to describe the 

experimental details. These allows to develop correlations linking the equivalent circuit 

elements of physical processes and ultimately, linking antibody structure dynamics to EIS 

perturbations or signature [36]. Correlations also need to be developed for changes in EIS 

due to a perturbation in pH, ionic strength and flow rates (shear). The study here looks at 

the critical questions. Namely, how shear force can degrade the efficiency and affinity of 

the mAb specifically in physiologically relevant solutions and how pH and ionic strength 

in conjugation with shear, affect mAb efficiency and affinity.  

In this study, a simple monoclonal-polyclonal antibody attachment was analyzed 

for the ease of modeling an equivalent circuit. The selection of this simple system stems 

from the need of modeling an even more complex system that involves the binding of a 

mAb to Protein A. Further; it is shown how this study can be used to develop biosensors 

with high sensitivity for antibody detection. As this device is based on the electrical 

response of functionalized CNT to antibody binding, they can be easily turned to detect 

other proteins such as protein A, protein G or protein L by functionalizing CNTs with 
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appropriate antibodies [37, 38]. The results from such research work may turn out to be 

fruitful in elucidating several other biological mechanisms like antibody-antigen 

attachment, immobilization of protein and DNA melting [39, 40]. 

The rationale of pursuing an integrated approach combining microfluidic lab-on-a-

chip devices with shear enhanced flow is to establish the path towards development of mAb 

antibody purification without post-modification damages. This device should outperform 

traditional systems both in their portability, yield, and capture efficiency [41]. The packing 

of the CNT inside the microchannel should have unprecedented high surface to volume 

areas, large and sensitive electrical signal, and customizable surface chemistries, and 

therefore serve as an ideal platform to build novel mAb analysis systems [42]. Also, the 

frequency and waveform tunability of the EIS signals from the interdigitated electrodes 

will make them especially suitable for engineering novel approaches to carry out 

simultaneous affinity and efficacy testing of the antibodies. This lab-on-a-chip device is an 

integrated approach for studying, analyzing and purifying monoclonal antibodies in situ 

[43].  

In this report, Chapter 2 introduces mAbs, its use in therapeutic and biomarker 

studies. Chapter 2 discusses in details the desired degree of purification needed for mAb, 

along with the advantages and disadvantages of current methods to purify mAbs. The 

mechanism and the chemistry involved during purification of mAbs are also highlighted.  

Chapter 3 introduces the basic EIS principles, EIS data interpretation, classical EIS 

circuit models and the concept of RC time or relaxation time, which is a unique property 

of an interface. [12]. In an electrochemical system, two simultaneous phenomena can take 

place at the electrode-electrolyte interface. These are charge storage (kinetic controlled) at 
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the interface or charge transfer (mass transfer control) across the interface. The RC time at 

the interface in conjunction with the frequency of the applied field determines the 

dominating physical phenomenon.  The discussion on RC time is followed by a brief 

discussion on the implementation of EIS in microfluidic devices in existing literature. 

Chapter 4 sheds some light on both the experimental protocols that were followed during 

the entire study and the data. First, the Nyquist plots obtained for both continuous and batch 

process are described in this chapter to show the enhanced sensitivity and the departure 

from classical results for the continuous process. The protocols involve CNT oxidation, 

chip fabrication, on-chip surface activation of CNT surface and mAb-pAb attachment to 

CNT complex. The results are analyzed in details, and their departure from classical 

equivalent circuits are examined. Finally, a model to fit the EIS data to an equivalent circuit 

is discussed.  
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CHAPTER 2 

PURIFICATION OF MONOCLONAL ANTIBODY 

 

In this chapter, mAbs are introduced with a discussion about its use in therapeutic and 

biomarker studies. Further, the different methods for antibody purification along with their 

advantages and disadvantages are discussed here. The desired degree of purification is also 

discussed. Further, the mechanism and the chemistry involved in the purification of the 

monoclonal antibody is discussed in details. 

 

2.1 Monoclonal Antibody: An Overview 

Monoclonal antibodies are the fastest growing area of research and study in the 

field of therapeutic drug and biomarkers in pharmaceuticals. The effectiveness of mAb 

usage in sensing platform stems from their high specificity and high affinity towards the 

targets. mAbs are large (~150-450 kDa) Y-shaped molecules with a complex three-

dimensional structure composed of four polypeptide chains [45]. The structure also 

comprises of two heavy chains (~50 kDa each) and two light chains (~25 kDa each) [44]. 

Both heavy chains and the light chains consist of variable and constant domains. The mAbs 

have two basic functional units, the ‘Fragment antigen-binding (FAB) region and the 

fragment crystallizable (FC) region[45]. The Fab fragments have two amino-terminal ends 

while the FC fragment is referred to as the stem or carboxyl-terminal end [45].   

There are many subclasses of mAbs like, IgA, IgD, IgE, IgG, IgM where the name 

is synonymous with the amino acid sequences of the heavy chain [46]. However, most 
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therapeutic mAbs belong to the IgG subclass. A typical mAb molecule (the prototype class 

of immunoglobulin is IgG) is made up of two identical antigen-binding sites at the ends of 

its Y arms[47]. The light and heavy chains contribute to the binding of antigens. Each 

antibody molecule is capable of binding with two identical antigens. The stem of the Y is 

known as the “hinge region” where the two arms meet [48]. The hinge region introduces 

segmental flexibility of the antibody molecule [48]. The amino-terminal end of an antibody 

is called the variable or V region, while the carboxyl-terminal end is called the constant or 

C region [49]. The C region is about the same size as the V region in the light chain, while 

the C region is about three to four times larger than the V region in the heavy chain. The V 

Figure 2.1 A typical schematic of a monoclonal antibody consisting of a pair of “heavy 

chains” that creates and maintains the antibodies overall protein structure, and two 

“light chains”, which recognize and bind specific antigens. The genes for light chains 

are hypervariable. The CDRs come together at the amino-terminal end of the antibody 

molecule to form the antigen-binding site, which determines specificity. 
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regions of light and heavy chains are responsible for forming the antigen-binding sites[48]. 

Structurally, light and heavy chains consist of repeating, similarly folded domains. The 

light chain has one V-region domain and one C-region domain, whereas the heavy chain 

has one V region and three or four C region domains.  Most of the variable parts of the V 

regions are limited to several small hypervariable which are complementarity-determining 

regions (CDRs)[50]. The three CDRs in the light and heavy chains come together at the 

Figure 2.2 A schematic diagram of a monoclonal antibody demonstrating 1)  FAB region 

2)  FC region 3)  Heavy chain with one variable domain V followed by a constant domain 

C and a hinge region and to more constant domains. 4) Light chain with one variable and 

one constant domain region 5) Antigen binding site 6) Hinge regions. 
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amino-terminal end of the antibody molecule to form the antigen-binding site, which 

determines specificity [50].  

2.2 Monoclonal Antibody in Cancer Therapeutic and Biomarker Research 

Antibodies are a vital part of the immune system.  Normally, antibodies get activated in 

response to a foreign material i.e. antigen (such as a protein in a germ) entering the body 

[25].  The antigen attaches to the antibody to neutralize the effect of antigen and prevent 

the antigen from causing undesirable changes in the human body [51].  Over the years, 

scientists having to work on analyzing specific antigens, like those on the surface of cancer 

cells (target) to introduce an antibody that matches the specific antigen. Here, the ability of 

mAbs to be extremely specific to their target molecule is used for the treatment of 

cancer[52]. Thus the monoclonal antibodies are a relatively new type of "targeted" cancer 

therapy. This uniqueness in specificity also allows mAbs to be used as a potential 

biomarker for sensors and diagnostic devices [53]. Hence, the chemical structure of 

antibodies explains the three critical functions of antibodies [52, 54, 55]:  

(1) Binding versatility   

(2) Binding specificity  

(3) Biological activity 

Studies reveal that some animal and plant species are capable of responding to more 

than 100 million antigenic determinants and can even respond to artificial antigens that are 

non-existent [56]. Owing to the amino acid sequence variation in the arms of antibody 

molecules, each different antibody can bind specifically to one unique antigen [51]. All 

these features have allowed mAbs to be the driver behind the immunologic research and 

answering many basic and clinical questions associated with immunotherapy [57].  



13 
 

Cancerous cells, unlike normal human cells, go through rapid cell division causing 

various side effects. Till date, research on cancer treatment has primarily focused on the 

killing of this rapidly dividing cancer cells. Some of the methods for destroying cancer 

cells are near-infrared photothermal therapy (NIR), radio frequency ablation, plasma-and 

ultrasound-induced destruction [58-61]. Thus there has been a sustained research push over 

the last few decades in cancer treatment towards ‘Targeted therapy.' Targeted therapy is 

about identifying cancer cells by understanding the physic-chemical, cellular level 

dynamics, proteins on the surface and molecular pathway differences between cancer cells 

and normal human cells [62].  

The major challenge revolves around attacking the cancer cells without damaging 

the normal cells.  Invasive methods such as radio-frequency ablation, besides killing the 

cancerous cells also injures or kills normal cells and tissues.    However, mAbs can initiate 

an immune system response that can destroy the outer wall (membrane) of a cancer cell 

[54]. They block the connection between a cancer cell and cell growth promoting proteins. 

For the growth and survival of a cancerous tumor, continuous blood supply is needed. 

Some mAb drugs block protein-cell interactions often necessary for the development of n 

new blood vessels [63]. Certain proteins called regulators can bind to the immune system 

and prevent hyperactivity of the system. Further, the attachment of mAbs to a cell can lead 

to the self-destruction of a cancerous cell [56].  

Mabs can be designed as a delivery vehicle. For example, in a variation of 

radioimmunotherapy, attaching a small radioactive particle to a mAb transports the 

radiation treatment directly to target cells. This minimizes the effect of radiation on healthy 
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cells [64, 65]. Similarly, mAbs attached to a chemotherapeutic drug can deliver the 

treatment directly to the cancer cells while maintaining avoidance to healthy cells 

 

2.3 Methods of Purification 

In this section, various techniques currently used for the purification of mAbs are discussed 

along with their advantages and disadvantages. 

 

2.3.1 Salt Precipitation (Ammonium Sulfate) 

Ammonium sulfate precipitation is one of most widely used methods for removing proteins 

in solution [66]. Proteins in aqueous solutions form hydrogen bonds with water due to the 

polar and ionic groups on the solution. Highly charged small ions such as ammonium and 

sulfate when added in large concentrations compete with proteins for binding with water 

[66]. This prevents the hydrogen bonding between the protein from the water molecule, 

resulting in a decrease in its solubility and precipitation. However, this method has a much 

poorer yield compared with all the other available methods. Factors affecting protein 

precipitation are the number of polar groups, the precipitation temperature, the solution pH 

and the molecular weight of the protein. The concentration of ammonium sulfate at which 

antibodies precipitate varies with antibody type [66]. Further, post sulfate precipitation, the 

resulting antibodies are also contaminated by high molecular weight proteins. Hence, this 

purification method is unsuitable when high yields, high purity is required or no post-

modifications are required. 
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2.3.2 DEAE Ion exchange ( Batch Chromatography ) 

Ion exchange chromatography has a very widespread use for antibody purification and is 

often applied as the second step post ammonium salt precipitation [67]. The principle of 

ion exchange chromatography works by utilizing the differences in the isoelectric points 

of antibodies and other serum proteins [67]. The antibodies bind to the column when the 

pH of the column (like anion exchange column such as DEAE cellulose) is reached below 

the isoelectric point of antibodies.  Though the antibody purity from DEAE 

chromatography is slightly better than ammonium sulfate precipitation, it is still low when 

high purity is a requirement [67]. Depending on the level of antibody purity required, 

DEAE chromatography has to be coupled with further purification steps. Hence, DEAE 

chromatography is almost always costly as it is a multiple step purification method [67]. 

 

2.3.3 Caprylic Acid 

Short-chain Caprylic acid under mildly acidic conditions precipitates most of the serum 

proteins except for IgG molecules [68]. This type of precipitation is useful when large 

volumes are used [68]. However, this purification process yields impure antibody fractions 

[68]. Hence, to enhance collection efficiency, the caprylic acid method has to be coupled 

with other purification steps, such DEAE ion exchange chromatography [66].  

 

2.3.4 Hydroxyapatite Chromatography  

A comparatively rapid and efficient process for large scale purification of antibodies is 

column chromatography on hydroxylapatite [70]. In this method, antibody yields are high, 

and the level of purification achieved is also good. Serum from hyperimmune animals or 
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with ascites fluid (from mAb production) is used here. Even if the purification degree with 

hydroxylapatite chromatography is quite high, this preparative step has to be coupled with 

other purification steps [70]. Further, this method always results in high post-modifications 

in atibodies [70]. 

 

2.3.5 Gel Filtration (Sephadex, Sepharose)  

Gel filtration on Sephadex or Sepharose (medium-sized beads, exclusion limit of 300,000 

to 500,000 daltons for globular proteins) is useful for the separation of antibodies of the 

IgM isotype [71]. These molecules are relatively larger than IgG antibodies and other 

molecules in serum and facilitate separation [71]. Nevertheless, gel filtration has to be 

combined with other methods, such as, ammonium sulfate precipitation to obtain highly 

pure antibodies [71]. 

 

2.3.6 Antigen Affinity  

Immuno-affinity chromatography on an antigen column is the most popular and most 

effective method to purify antigen-specific antibodies from serum, ascites fluid or culture 

media [70]. In this procedure, water-insoluble immune-adsorbents are prepared by covalent 

coupling of pure antigen to a solid supports [28]. One of the most popular methods is 

coupling antigen to cyanogen bromide activated agarose beads. These beads are 

subsequently filled into a column. The antibodies specific to the antigen are allowed to 

bind; unbound antibodies and contaminating proteins are removed by several washes. 

Finally, specific antibodies are eluted by low and high pH buffer cycles [28]. High-affinity 

antibodies may not elute under these conditions. Elution with chaotropic ions (e.g. KSCN) 
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is done then [28]. The major advantage of immunoaffinity chromatography is the unique 

ability to isolate antibodies from a mixed pool [28]. The disadvantages of this method are 

the requirement of large quantities of pure antigen and secondly, the elution conditions can 

lead to the loss of antibody by inactivation [28]. 

 

2.3.7 Capillary Isoelectric Focusing 

One method that has merged the advantages of microfluidics with chromatographic 

separation techniques for highly reproducible results of monoclonal antibody purification 

and specificity analysis is Capillary isoelectric focusing (CIEF) [71]. CIEF characterizes 

the charge of the proteins and separates the different charges according to their isoelectric 

points (pI), the characteristic pH at which the net electric charge is zero [72]. Though 

multiple methods for CIEF exist in literature, most methods consist of filling the 

microfluidic channel or a capillary with a mixture of protein sample and ampholytes 

followed by application of a high electric field [24, 71-73]. The ampholytes constitute a 

pH gradient in the capillary, and the proteins are focused into the pH region that 

corresponds to their PI [72]. The contents of the capillary are then mobilized past the 

detector by applying pressure to the inlet vial while maintaining the field strength. 

However, CIEF, using electrophoretic methods often adversely affect the structure and thus 

the function of the mAbs [74]. One major issue of this technique is that it is sensitive to 

high salt concentration and would result in a bad separation of protein charge variants [75]. 

Further, CIEF is highly susceptible to high protein levels in the sample. The final protein 

concentration which can be injected into the sample-ampholyte mixture, depends on the 

solubility of protein components and the sensitivity requirements [75]. The high 
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hydrophobicity and high molecular weight of antibodies often lead to precipitation during 

focusing at low concentrations [74]. High ionic strength can also negatively influence the 

process, causing long focusing times and mobility peak broadening [76]. 

The most advanced techniques of chromatography column separation such as 

Protein A affinity chromatography has been shown to be highly selective for mAbs, 

resulting in >95% purity [71]. The method entails the addition of a mixture of proteins to 

the column where the antibody specifically binds its target protein and retains itself on the 

column while other proteins are washed away [77]. The target protein can then be removed 

from the resin by a salt solution or buffer. However, the use of an immobilized protein as 

a ligand creates separation challenges; the ligand is prone to proteolysis, and this 

breakdown can cause its pieces to adhere to product molecules, thus creating a separation 

challenge. Additionally, the Protein A ligands cannot be exposed to alkaline conditions that 

are used to purify other column designs and require the use of high concentrations of 

chaotropic, creating a cost and disposal challenge [28]. Implementing this technique with 

low ligand removal requires considerable effort in development and is hard to implement 

into the routine analysis and regulated quality control. Implementing chromatographic 

methods in the later stages, when the sample size is smaller can make it feasible, but cannot 

guarantee high purification [67, 69, 78]. Additionally, the antigen molecules may suffer 

from many physical and chemical stresses during the process, introduce aggregation of 

mAbs and oxidation of tryptophan - creating shorter retention time of the antibody with 

oxidized tryptophan on the column, suggesting less hydrophobic interactions of the 

molecules with the chromatography process. 
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In the table below the existing methods for the purification of monoclonal antibody along 

with their advantages and disadvantages are summarized [28, 71, 85]: 

Table 2.1 Methods of Purification of MAbs along with their Advantages and 

Disadvantages 

 

Method Application, 

quality 

Advantage Disadvantage 

Ammonium Sulfate Bulk of serum γ-

globulins Useful 

for concentration, 

not recommended 

as single step 

Easy, cheap 

convenient for 

large volumes Low 

loss of antibodies 

Poor purification 

degree must couple 

with another 

purification step 

DEAE Ion Exchange Partial purification, 

not recommended 

as single step 

Cheap and 

convenient for 

large volumes and 

concentration 

Impure antibody 

fractions (but 

higher than with 

ammonium salt), 

must couple with 

another purification 

step 

Caprylic Acid Moderately pure 

IgG, not 

recommended as 

single step 

Cheap and 

convenient for 

large volumes 

Impure antibody 

fractions must 

couple with another 

purification step 
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Hydroxylapatite Relatively pure 

antibodies, not 

recommended as 

single step 

High yield of 

concentrated 

antibodies 

Impure antibody 

fractions must 

couple with another 

purification step 

Gel filtration Separation by 

molecular mass, 

not recommended 

as single step 

Relatively pure 

separation of IgM 

from other 

antibody molecules 

Low capacity High 

dilution of antibody 

fraction, not useful 

for IgG antibodies 

Protein An affinity Pure IgG with 

species and isotype 

selectivity Single 

step method 

High purification 

degree High yield 

Not suitable for all 

species and 

isotypes 

Antigen affinity Pure antibodies by 

selective antigen 

method Single step 

method 

High specificity 

and purification 

degree High yield 

Pure antigen 

required Method 

associated with loss 

and inactivation of 

antibodies by 

elution procedure 

 

2.4 Post Modifications in Antibody 

 Existing purification methods like affinity chromatography, GC, HPLC can lead to 

undesirable post modifications of antibodies. Post-transitional modifications are structural 

and chemical changes including cleavage of the peptide as a result of their covalent 
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attachment to functional groups or proteins during purification [79]. As these modifications 

alter the structure of antibodies, it affects their activity, stability, localization and 

interacting partner molecules[80]. Chemical alterations that usually occur during the post-

translational modification of antibodies include phosphorylation, methylation, acetylation, 

ubiquitination, nitrosylation, glycosylation, and lipidation [81]. Antibody Glycosylation is 

a common post-translational modification and has a critical role in antibody effector 

function. The modified molecule demonstrates unusual behavior during development due 

to the alteration of its intrinsic properties and stability.  In therapeutic cancer treatment post 

modification is undesired as it alters the structure of the antibody [82].  

 

2.5 Antibody Attachment Mechanism 

The primary reason for choosing Carbon nanotubes (CNTs) as the binding 

platform for antibodies is owing to several thermal and mechanical properties [43]. These 

allow CNT’s to be used in a wide variety of applications in nanotechnology, electronics, 

optics and other fields of materials science [20]. Recent studies indicate that the CNTs 

brought down to sizes in the range of 1-100nm exhibit unique electrical, optical, chemical 

and pharmaceutical properties like high electrical conductivity, high tensile strength and 

flexibility and low thermal expansion coefficient [42]. Carbon nanotubes (CNTs) have a 

significant impact on the development of newer methodologies and devices useful for the 

analysis and the detection of various types of biomolecules such as DNA, protein, antigens, 

antibodies [43].  The detection sensitivity can be increased many folds in comparison to 

existing methods such as GC, HPLC. The extraordinary properties of carbon nanotubes 

have led to the demonstration of several applications of CNTs. However, commercial 
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realization of these CNTs and CNTs based devices require consistent quality of CNTs and 

these should be free of any impurity. The major advantages of nanostructured materials are 

listed below [42]: 

 Better sensitivity 

 Amplified electrical signal 

 Help improve the mobility of macromolecules to the surface of the antibody-

functionalized electrodes 

 Provide a unique confined environment for a particular macromolecule-specific-

captured antibody to interact with pharmaceutical molecules. 

Controlling the covalent binding of antibodies onto functionalized carbon nanotubes is a 

key step in the design and preparation of nanotube-based microfluidic devices   A  mAb is 

linked to either multi-walled (MWCNTs) or double-walled carbon nanotubes (DWCNTs) 

using different attachment chemistries[83]. Two types of strategies have been reported To 

run conjugation of the immunoglobulins (Ig) to CNTs, [83]: 

1) Covalent bonding  

2) Non-covalent interactions 

A covalent bond offers good stability and better binding selectivity due to its ability 

to directly control the location of the antibody [23]. On the contrary, a noncovalent 

interaction between an Antibody and the nanotubes may lead to conjugates with 

insufficient stability and selectivity [46]. Further in noncovalent interaction, the antibody 

is linked to a polymer adsorbed onto the CNT surface [84]. This approach limits the use of 
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the conjugates in-vivo because the polymer can be displaced by other biological 

macromolecules resulting in dissociation of the Ig protein from the nanostructure [85].  

One of the key steps during introducing the covalent bond is surface activation. 

NHS and Sulfo-NHS are commonly used to prepare amine-reactive esters of carboxylate 

groups for chemical labeling, crosslinking and solid-phase immobilization applications 

[86]. Carboxylates (-COOH) reacts with NHS or Sulfo-NHS in the presence of a 

carbodiimide such as EDC forming a semi-stable NHS or Sulfo-NHS ester [87]. This reacts 

with primary amines (-NH2 present in antibodies) to form amide crosslinks. The usage of 

NHS or Sulfo-NHS enhanced the coupling efficiency of carbamide reactions. Both NHS 

and Sulfo-NHS are soluble in aqueous and organic solvents [87]. However, NHS activation 

decreases water-solubility of the modified carboxylate molecule. The charged sulphonate 

group in sulpho-NHS increases activation as it preserves or increases water-solubility of 

the modified molecule [87]. Although prepared NHS or Sulfo-NHS esters are sufficiently 

stable to process in a two-step reaction scheme, both groups will hydrolyze within hours 

or minutes, depending on water content and pH of the reaction solution. NHS esters have 

a half-life of 4-5 hours at pH 7, 1 hour at pH 8 and only 10 minutes at pH 8.6. Hence, the 

best results are obtained when NHS-activated molecules are used promptly for reaction to 

the amine-containing targets [88]. The activation reaction with EDC and Sulfo-NHS is 

most efficient at pH 4.5-7.2. EDC reactions are performed in PBS buffer at pH 7.5. The 

response of Sulfo-NHS-activated molecules with primary amines is most efficient at pH 

7.2-8. Sulfo-NHS-ester reactions are usually performed in phosphate-buffered saline (PBS) 

at pH 7.2-7.5 [88].  The attachment of mAbs with Protein A is one of the major steps in 

monoclonal antibody purification [88]. It is important to understand the mechanism of  
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mAbs-Protein attachment. Protein A binds to the FC region of IgG molecule around the 

hinge, which contains five highly homologous FC-binding domains and binds at least two 

IgG molecules simultaneously. The precise region of the FC that binds to protein A can 

also bind to other molecules such as protein L or protein G [89]. Hence, it is 

called consensus binding site (CBS). The CBS is largely hydrophobic in character, with 

relatively few polar residues and has a high level of solvent accessibility[89]. These 

features indicate burial of hydrophobic residues as a strong driver of binding and 

electrostatic interactions [89]. Hydrogen bonds at certain highly conserved sites have also 

been indicated in binding. According to Delano et al., the CBS undergoes considerable 

conformational changes when binding to a ligand [90]. In fact, the nature of the change in 

Figure 2.3 Schematic of the Sulfo-NHS/EDC conjugation reaction. Carboxylates (-(-

COOH)  reacts with NHS or Sulfo-NHS in the presence of a carbodiimide such as EDC 

forming a semi-stable NHS or Sulfo-NHS ester. This reacts with primary amines (-

NH2 present in antibodies) to form amide crosslinks. 
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conformation depends on the ligand, highlighting the flexibility of this region. Even though 

flexibility implies good structural recovery after the conformational change, under 

antagonistic conditions such as low pH there may be greater vulnerability to detrimental 

levels of structural alteration [90].  
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CHAPTER 3 

PRINCIPLES OF ELECTRONICIMPEDANCE SPECTROSCOPY 

 

This chapter deals with the basic principles of EIS are elaborated in details. Details on EIS 

data interpretation and the concept of RC time constant is introduced. The basic EIS circuit 

models are also introduced. Finally, the usage of EIS in microfluidic devices is discussed 

in detail.  

 

3.1 Background 

The concept of electrical impedance was first introduced by Oliver Heaviside in the 1880s 

[15]. In EIS, unlike general electrical circuits, the circuit elements represent complex 

physics behavior. Electrical impedance is the response from a system on application of an 

alternating current (AC) voltage signal V (Volt) with small amplitude VA applied at a 

frequency f (Hz). Hence unlike in direct current (DC) where the primary resistance to 

current is resistance, in AC the same resistance to current flow is called Impedance [12]. 

The AC voltage signal V(t) expressed as a function of time t is given by equation (1) [12]: 

𝑉(𝑡) =  𝑉𝐴 sin(2𝜋𝑓𝑡) = 𝑉𝐴𝑠𝑖𝑛(𝜔𝑡)  …………………………………...……….….(3.1) 

where 𝜔 the radial frequency of the applied voltage is 2𝜋𝑓 where 𝑓 is the frequency of the 

applied AC signal. The current response I(t) to a sinusoidal voltage input remains a sinusoid 

at the same frequency, however, with a phase shift 𝛷. If 𝐼𝐴 is the current amplitude, then 

𝐼(𝑡) can be expressed as in equation (2),  

𝐼(𝑡)  =  𝐼𝐴 𝑠𝑖𝑛 (𝜔𝑡 + 𝛷)…………………………………………………………..   (3.2) 
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The complex impedance is calculated by taking the ratio of input voltage V(t) and the 

output current I(t) as follows akin to Ohms’ Law for DC circuits. 

𝑍 =  𝑉(𝑡) / 𝐼(𝑡)  

     = 𝑉𝐴 𝑠𝑖𝑛 (𝜔 𝑡) / 𝐼𝐴 𝑠𝑖𝑛 (𝜔 𝑡 +  𝛷)…………………………………..…………. (3.3) 

     =  𝑍𝐴 𝑠𝑖𝑛 (𝜔 𝑡) / 𝑠𝑖𝑛 (𝜔 𝑡 +  𝛷) 

where 𝑍𝐴 is the absolute value, 𝑍𝐴 = |𝑍|. The impedance can also be represented in Euler 

notation as having a ‘real’ or in phase (𝑍𝑅𝑒𝑎𝑙) and ‘imaginary’ or ‘out of phase’ (𝑍𝐼𝑚) 

component as in equation 4. 

𝑍 =  𝑍𝑅𝑒𝑎𝑙 +  𝑗𝑍𝐼𝑚 ………………………………………………….……………….(3.4)  

Where the phase angle 𝛷 is related to the impedance as 𝑡𝑎𝑛 𝛷 =   
𝑍𝐼𝑚

𝑍𝑅𝑒𝑎𝑙
   

For a resistor (R) and a capacitor (C) circuit in series the equivalent Impedance is, 

𝑍1  =  𝑅 

𝑍2  =  
𝑗

𝜔𝐶
 

𝑍 =  𝑍1 +  𝑍2 = 𝑅 +  
𝑗

𝜔𝐶
…...…………………………………………………….……(3.5) 

If the same resistor (R) and a capacitor (C) as above is in parallel then the equivalent circuit 

is,  

𝑍 =   
𝑅

1+  (𝜔𝑅𝐶)2  
− 𝑗

𝜔𝑅2𝐶

1+  (𝜔𝑅𝐶)2 ……………….………….……………….(3.6) 

Here, C = capacitance, R= resistance 
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3.2 EIS Data Interpretation 

To interpret EIS into relevant physical processes, it is critical to describe an equivalent 

circuit that has an equivalent impedance similar to that observed from experiments. An 

equivalent circuit can be composed of a multitude of resistances and capacitances, like a 

parallel combination of capacitance and resistance or a series combination of capacitance 

and resistances [90].  To describe the process of fitting an equivalent circuit to an 

impedance model here is described the simplest form of an equivalent circuit, the Randles 

circuit. The Randles circuit defines the simplest system possible which is two electrodes dipped 

in an electrolyte. It consists of an active solution resistance RS in series with the parallel 

combination of the double-layer capacitance Cdl and a faradaic resistance RCT [90]. Often 

a Constant phase element (CPE) is used in place of the double layer capacity (Cdl) [91]. In 

the two electrode system, there are two separate regions, namely, the bulk and the interface. 

The solution resistance Rs is a representation of the conductivity of the electrolyte and any 

resistance in the wires used to measure EIS. At the electrode interface, there are multiple 

paths for the ions in the solution. The ions can either collect near the interface as a charge 

storage mechanism, or they can react (Faradic Reaction) with the electrolytes. The storing 

of charge at the electrode-solution interface is called the Electrical Double Layer or the 

Debye Layer and is designated as Cdl in the equivalent circuit [36]. This double layer is 

formed as ions from the solution adsorb onto the electrode surface [12]. The magnitude of 

the double layer capacitance depends on many variables such as electrode potential, 

temperature, ionic concentrations, types of ions, oxide layers, electrode roughness and 

impurity adsorption [3, 12, 36]. The faradic resistor is represented as the charge-transfer 

resistance RCT. The Faradic resistor often leads to a depletion of ions at the interface. This 

results in the formation of a diffusive gradient from the bulk to the interface. This is 
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represented as the Warburg Element, WD, in the circuit. At higher frequencies, the Warburg 

impedance tends to be smaller since reactants are not allowed to have enough time to 

diffuse[79]. While at lower frequencies, the reactants get adequate time to diffuse leading 

to an increase in the Warburg impedance. For a linear system, the Warburg impedance 

appears as a straight line with a slope of 45° in a Nyquist Plot [80]. While on a Bode Plot, 

the Warburg impedance exhibits a phase shift of 45° [80]. 

There is an electrical double layer that exists on the interface of an electrode and its 

surrounding solution [79]. This double layer forms as ions from the electrolyte solution 

accumulate on the electrode surface. Along with the solution resistance, Rs and charge 

resistance RCT, diffusion also occurs accompanied by another impedance called a Warburg 

Figure 3.1 A typical Nyquist Plot showing a) the capacitive nature of a system at higher 

frequency b) the resistive nature of a system at lower frequency followed by an equivalent 

circuit diagram of the system. the impedance is represented as a vector of length |𝑍|. The 

angle between this vector and the x-axis is the phase angle Ф and the Warburg impedance 

appears as a straight line with a slope of 45°.  
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impedance RW. This impedance primarily depends on the frequency of the AC potential 

applied [79]. 

 The fitting of the model to the experimental data should be performed using 

complex nonlinear least-squares procedures available in various EIS data fitting computer 

programs to obtain the Randles circuit parameters [13]. The Randles equivalent circuit is 

one of the simplest possible models describing processes at the electrochemical interface. 

In real electrochemical systems, impedance spectra are usually more complicated and, thus, 

the Randles circuit may not give appropriate results [13].    

A Nyquist plot is a complex plane impedance diagram, where (ZIM) is plotted 

against (ZReal) [12]. In the Nyquist plot, the high-frequency region is closer to the origin 

while the lower frequency area is further from the origin. At high frequencies, the 

impedance of the system is chiefly capacitive, while at the lower frequency the impedance 

is chiefly resistive in nature. The Nyquist plot for a Randles cell is always a semicircle 

[13]. The solution resistance can found by reading the real axis value at the high-frequency 

intercept. This is the intercept near the origin of the plot. The real axis value at the other 

(low frequency) intercept is the sum of the polarization resistance and the solution 

resistance. The diameter of the semicircle is, therefore, equal to the polarization resistance. 

Alternatively, the EIS data can be interpreted using a Bode diagram. Bode plots are a very 

useful way to represent the gain and phase of a system as a function of frequency.  This is 

referred to as the frequency domain behavior of a system. One of the most commonly used 

test functions for a circuit or system is the sine wave [36]. The impedance is plotted with 

log frequency on the x-axis and both the impedance and phase shift on y-axis [36]. 
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A capacitor's impedance decreases as the frequency increases [36]. Capacitors also 

have an imaginary impedance component. The capacitive current follows a 90 ° phase shift 

on the voltage. The electrochemical systems modeled as a network of passive electrical circuit 

elements is called an “equivalent circuit.” The EIS response of an equivalent circuit can be 

calculated and compared to the actual EIS response of any electrochemical system. Two common 

classical electrochemical equivalent circuits that will be encountered during the experiments 

described in the next chapter are described here.  

Mixed Kinetics Controlled Diffusional Model 

The mixed Mixed Kinetics Controlled Diffusional Model takes both diffusion and mass 

transfer into account. This model is same as the Randles circuit but always with a Warburg 

Figure 3.2 Bode plot, showing the frequency domain behavior of a system. The 

impedance is plotted with log frequency on the x-axis and both the impedance and 

phase shift on y-axis 
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impedance [13]. An example of a simple kinetic controlled situation is PBS flowing 

through a 100 nm wide channel in a microfluidic device with Ti-Au microelectrodes, the 

Warburg element manifests itself in EIS spectra by a line with an angle of 45 degrees in 

the low-frequency region. Values of the charge transfer resistance and Warburg coefficient 

depend on physicochemical parameters of a system under investigation [91].  

 

 

Figure 3.3 Nyquist plot for a mixed kinetic control circuit where the impedance is 

represented as a vector of length |Z|. The angle between this vector and the x-axis is the 

phase angle Ф and the Warburg impedance appears as a straight line with a slope of 45°.  
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Voigt Model 

Voight model is usually encountered whenever there are coatings on the electrodes, and 

the system works as a multi-electrode system [13]. If we seek into the morphology of a 

bacterial cell in the electrolyte, there are tortuous paths in between. These paths may be 

physical pores filled with electrolyte. On the metal side of the pore, an area can be assumed 

of the bacteria that delaminates and a pocket filled with an electrolyte solution forms [13, 

91]. This electrolyte solution can be very different from the bulk solution outside of the 

bacterial cell. The interface between this pocket of the solution and the bacteria is modeled 

Figure 3.4 The equivalent circuit for mixed kinetics and diffusion model. The model 

consists of the impedance of a faradaic reaction that consists of an active charge 

transfer resistance Rct and a specific electrochemical element of diffusion W, which is 

also called a Warburg. The capacitor is denoted by CDL which is parallel to the 

resistors 
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as a double-layer capacitance in parallel with a kinetically controlled charge-transfer 

reaction 

3.3 Relaxation Time Constant 

Another critical parameter in the circuit is relaxation time 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜏 =  𝑅𝐶, often 

referred as the “RC” time of the circuit. As has been described before, the interface has two 

distinct pathways, a capacitive storage path for the charges and a parallel reactive path for 

charge transfer. This is thus a parallel RC circuit. As discussed before in equation 6, for a  

 

 

Figure 3.5 Nyquist plot for a Voigt Model where two semi-circles appear due to the 

system functioning as a multi-electrode system. The interface between this pocket of the 

solution and the bare metal is modeled as a double-layer capacitance in parallel with a 

kinetically controlled charge-transfer reaction. 

 



35 
 

resistor (R) and a capacitor (C) circuit in parallel the equivalent Impedance is, 

𝑍 = 𝑅
1+𝑗𝜔𝑅𝐶

1+𝜔2𝑅2𝐶2
=  𝑅

(1+𝑗
𝜔

𝜔𝑂

)

(1+
𝜔2

𝜔𝑂
2 )

…….......………………………………………..(3.7) 

where the relaxation frequency ωo = 1/RC. If ωo>> ω the circuit becomes open along the 

capacitor and the system becomes mass transfer controlled. Again, equation (7) can be 

written as 

𝑍 =  𝑅
(

𝜔

𝜔𝑂

)(
𝜔𝑂

𝜔
+𝑗)

(1+
𝜔2

𝜔𝑂
2 )

………………………………………………………(3.8) 

Now if ωo<< ω, the circuit gets shorted and that refers to a kinetic-controlled phase. A 

higher RC time means allowing the system to store more charge and it exhibits capacitive 

nature while low RC time translates into resistive nature of the system as there is less 

storing of charge [92]. 

 

3.4 EIS in Microfluidic Device 

In a microfluidic device, electrochemical changes occur at the electrodes on the 

application of an electrical field (AC voltage). Variations in the property of the electrolytes 

near the electrodes can be both resistive and capacitive [78]. The changes translate into 

impedance changes which can be represented as an equivalent electrical circuit model with 

common electrical components such as resistors, capacitors, and inductors [36]. In the last 

few decades, EIS has been used extensively in biochemical and medical applications, as it 

has proven to be a sensitive technique to detect and measure various biochemical or 
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biological events [5]. For example, it can be used for sensing the formation of antigen–

antibody complexes, immune-sensing, DNA characterization and detection of DNA 

hybridization, as well as characterizing living cells, both quantitatively and qualitatively 

[5, 9, 11, 35, 36]. Thus, the EIS technique, combined with microfluidics, micromachining, 

and MEMS techniques, is a very useful and valuable tool in biosensors for easy and fast 

characterization of bio-samples [15]. Further, there are numerous studies in the literature 

that use EIS to measure the dielectric properties of cells, tissues and other biomolecules 

such as an antibody, antigen, and protein [11]. Unlike a typical cell colony average data, 

the differences between individual single cells have been evaluated by incorporating EIS 

with microfluidic devices. However, the chip dimensions for single-cell analysis needs to 

be of the length scale of individual cells [11]. The dielectric properties of biological cells 

reveal information about cell size, membrane resistance, membrane capacitance and 

cytoplasmic conductivity [15]. The presence of subcellular components, such as vacuoles, 

can also potentially be detected using EIS. 

Other previous studies include glass-based chips with either multiple separate Pd 

electrodes, or a set of interdigitated Indium-Tin-oxide electrodes with which chromaffin or 

E. coli cells were characterized or detected, respectively [15]. Microscale impedance-based 

techniques were also used in Si-based chips, not to characterize the cells per se but to detect 

the variations in the suspension’s impedance caused by the release of ionic species by 

metabolizing cells [11]. Since diffusion of the molecules determines most of the bio- and 

chemical reactions to the adequate places, the short distances in a microfluidic device permit the 

rapid detection by reducing the diffusion times. Both the mass and heat transport are faster in a 

microsystem, allowing a quasi-equilibrium state for the biochemical processes [9]. A variety of 
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microstructures can be used for optimization of transport processes, like vortices, pillars, or 

herringbone. All these desired properties of microfluidic devices are favorable in many biological 

and medical applications [9].  The fact that the microfluidic device is fabricated in glass 

confers it some key advantages such as enabling EIS analysis in a wide range of frequency 

spectrum, transparency for ease of observation using standard and confocal microscope, 

and hydrophilicity of the microfluidic channel. This latter feature is of particular 

importance as it causes self-driving capillary-based movement of the measured sample 

within the device to the measurement area [9].  

 

3.5 Microelectrodes for Measuring EIS Spectra 

Microelectrodes are miniaturized forms of bulk electrodes. Another type of 

electrodes, tubular flow electrodes, are infrequently used today as they are difficult to 

fabricate and integrate with flow devices [7]. As such, their utility would be greatly 

augmented by coupling with a versatile small-volume fluid handling system such as digital 

microelectrodes [93]. In literature, deviations from classical electrokinetics are seen as the 

sizes of the electrodes are reduced significantly [93]. Some of the interesting phenomena 

observed are, merging of the electrical double-layer and diffusion regimes, as well as 

enhanced fluid density and viscosity effects in the double-layer region [9]. It is worthwhile 

to mention that significant efforts have been made to fabricate microelectrodes To obtain 

highly sensitive detection, numerous fabrication approaches have been developed to 

construct metal nanostructures, such as electrochemical synthesis1, metal colloid 

preparation, nanoparticle self-assembly, E-beam lithography, vapor-liquid-solid (VLS) 

growth. Although these methods have synthesized nanostructures on a substrate with 
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high scattering enhancement factor, most of them are not compatible with pre-fabricated 

micro-chip. So it is a great challenge to fabricate nanostructures selectively on target 

microelectrodes in-situ impedance measurement. Microelectrodes used for single-cell 

analysis require small size. However, the double-layer impedance of the microelectrode 

existing in the electrode-electrolyte interface is inversely proportional to the electrode 

surface area. Downsizing of the electrode will unavoidably increase its double-layer 

impedance and thus degrade the sensitivity of the impedance measurement19. 

Fabricating nanostructures on microelectrodes can enlarge the effective surface area and 

therefore enhance the sensitivity of the EIS measurement. 

Microelectrodes have a better signal to noise ratio than macro electrodes. As the 

size of an electrode decreases, mass transport to the electrode increases and the signal will 

decrease due to decreased electrode area. However, the potential (IR) drop, along with the 

background currents, significantly decreases. Hence, comparing the signal to noise ratio, 

the noise reduces faster than the reduction in signal, leading to a significant improvement 

in signal to noise ratio for microelectrodes [94, 95]. In summary, using a microelectrode 

over a macro electrode leads to increased fidelity or signal to noise ratio. Further, an array 

of microelectrodes also has a higher signal to noise ratio than a single electrode of the same 

size[96]. This is because the capacitive current (overall noise) is proportional to the active 

area (sum of the area of individual electrodes), while the signal is proportional to the 

geometric area (area of the electrode array) [96]. Microelectrode arrays have equal 

geometric areas to microelectrodes of similar size, but reduced active areas, improving the 

signal to noise ratio. The microelectrode is often coated with nanomaterials, which results 

in increased surface area [96]. This increases electron transfer rates and creates more sites 

http://www.nature.com/articles/srep16454#ref19


39 
 

for the deposition of molecular probes. Hence, microelectrodes are ideal for samples where 

low volumes are desirable owing to their high sensitivity [96]. 

Microelectrodes modified with carbon nanotubes (CNTs) are useful for detection 

sensors since the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be 

grown on carbon fiber microelectrodes (CFMEs), but the intrinsic electrochemical activity 

of carbon fibers makes evaluating the effect of CNT enhancement difficult[33]. Previous 

studies have successfully demonstrated the integration of individually addressable CNT 

microelectrode arrays, coupled with microelectronics and micro- fluidic systems, in 

bioassays to exemplify advantages of miniaturization and multiplex detection [20]. The 

following chapter discusses a similar CNT-based microfluidic system incorporated with 

microelectrodes for mAb purification, detection, and analysis. 
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CHAPTER 4 

EXPERIMENTATION 

 

In this chapter, the experimental protocols, results and discussion on the results are 

presented. The protocols discussed in details involve CNT oxidation, chip fabrication, 

running antibody solutions and discussion of the results. The departure in the EIS spectrum 

from batch to continuous is discussed in details. The Nyquist plots from the EIS data for 

CNT surface activation, antibody attachment, antibody wash-off and antibody purification 

is shown. The plots are discussed in details to look at the possible classical EIS equivalent 

circuits to fit the data. Finally, the classical circuits are considered in more details to 

examine as to why they do not fit the EIS data. 

 

4.1 Chip Fabrication 

Figure 2 illustrates the lab-on-a-chip device. It consists of three layers, a top and bottom 

interdigitated electrode array and a middle layer of Carbon Nanotubes. The channels are 

fabricated from a medical grade acrylic double sided pressure sensitive tapes from 

ARcare® (Tape No: 90445) having a total thickness of 200 µm (including tape and 

adhesive coating layers) with 50 µm thick polyester release liners [40].  The tapes are laser 

cut to a channel of dimensions 100µm X 100µm X 1 mm and sonicated to remove any laser 

aberrations. The release liner from one side is released and mounted onto a Transwell® 

membrane to create an open microfluidic device. The other release liner is then removed, 

and the laser cut channels sealed between the two interdigitated electrode glass slides. The 

interdigitated electrodes are thermally deposited electrodes of 25 nm gold (Au). 25 nm Au 
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is optically transparent with negligible electrical resistance. A 5 nm titanium (Ti) will bind 

Au to gold.  

Figure 4.1 Layer 1 (glass slide), Layer 2 (adhesive) and Layer 3 (glass slide) oriented. Layer 

1 has 4 square pads on the left-hand side, each connecting to an electrode array. Each square 

pad has a length of 5 mm and width of 5 mm. The electrode array has a length of 10 mm. In 

each electrode array, there are a parallel assembly of electrodes with a length of 500 µm and 

width of 10 µm with a distance of 30 µm between two electrodes 
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There had been a successful overcoming of challenges associated with the prevention of 

air bubble formation and leakage within the device. The interdigitation of the electrodes 

translates to a stronger electric field with amplified signal delivered by the Carbon 

Nanotubes. Upon connecting the device with an Electrical Impedance Spectroscopy (EIS) 

Machine, a DEP field is introduced to trap the CNTs within the channel. As seen in the 

above figure, the CNT solution will be introduced through the middle port. The 

Figure 4.2 (A) Chip assembly and alignment (B) Close-up on interdigitated electrode 

array. The process of depositing Ti (5nm) and Au (25 nm) layer on glass slides 

involves soft lithography and e-beam. A 1 micron double sided tape with a 500-micron 

channel goes in between the two glass slide aligned in an interdigitated manner.   
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interdigitating of the electrodes provides the stronger electric field with amplified signal 

delivered by the CNTs. The flow splits into two halves and is discharged out of the other 

two ports. The electrochemical impedance spectroscopy (EIS) is measured using an array 

of microelectrodes of width 10 µm and length 500 µm, as microelectrodes have a better 

signal to noise ratio than macro electrodes.  

As the size of an electrode decreases, mass transport to the electrode increases and the 

signal will decrease due to decreased electrode area. However, the power drop along with 

the background currents significantly decreases. Hence, comparing the signal to noise ratio, 

the noise reduces faster than the reduction in signal, leading to a significant improvement 

in signal to noise ratio for microelectrodes [94, 95]. Further, an array of microelectrodes 

has a higher signal to noise ratio than a single electrode of the same size. This is so because 

the capacitive currents (overall noise) is proportional to the active area (sum of the area of 

individual electrodes), while the signal is proportional to the geometric area (area of the 

electrode array) [96]. 

 

4.2 Carbon Nanotubes Oxidation 

As a prelude to the attachment of mAb with CNTs, the CNTs have to be oxidized. The 

oxidation introduces a high density –COOH group into the nanotubes [86]. The protocol 

followed here is adapted from previous works that involved CNT oxidation in increasing 

the number of –COOH groups. The protocol involves digestion of 0.01 g of multi-walled 

CNT (length: 50 nm, diameter: 8 nm) in 10 ml 15 N HNO3 at a temperature of 120° C for 

24 hours. An in-house reflux condenser set-up was built in the chemical hood in the lab To 

ensure further reliability. Upon digestion, the CNTs are repeatedly centrifuged in DI water 



44 
 

for 5 minutes at 3000 rpm. The repeated centrifuging and washing is conducted until the 

supernatant approximates pH 7. [86]  Once the desired pH level is achieved, CNTs are 

dried in vacuum.  

 

4.3 Carbon Nano Tube Loading in a Microfluidic Device 

The CNT are loaded through one of the ports in the device.  The device is connected to a 

function generator that applies a sinusoidal AC electric field with an RMS voltage of 10 V 

Figure 4.3 Experimental Set up for CNT oxidation that incorporates an in-house 

reflux condenser built in the chemical hood in the lab. 
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peak to peak at 1 MHz across the interdigitated electrodes. The 10 V field translates to an 

electric field of about 104 V/cm across the interdigitated electrodes. The high field makes 

the CNT more conductive than 1X PBS, the solution in which the CNT is put in. The 

interdigitated electric field traps the CNT along the electric lines of forces[35]. This kind 

of trapping in high electric fields for conductive particles is called as positive 

dielectrophoretic force traps [20]. Such traps have been shown to trap biomolecules and 

colloids in many microfluidic designs [29, 78]. 

The interdigitation of the electrodes ensures that a component of the dielectric trapping 

force field always opposes the drag force from the fluid flow, keeping the CNT’s trapped 

even under large shear forces (high flow rates). Thus the interdigitating of the electrodes 

Figure 4.4 (A) Diagram of assembled chip with inset showing the placement of the 

interdigitated electrodes with CNT trapped. (B)  Leak-proof flow of solution through 

the 500 um channel without any debris 
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translates to a stronger electric field that can trap the CNTs in the device under high shear 

force. 

 

4.4 Monoclonal Antibody Attachment 

The attachment of the mAbs to the CNTs was carried out monoclonal antibody attachment 

was conducted in both continuous and batch process.  The detailed protocol for both the 

processes is described in details below. 

Figure 4.5 Experimental protocol for separation of monoclonal antibodies. The protocol has 

three distinct chemical engineering unit operations namely capture, filtration and 

separation/purification, all achieved on a single chip 
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4.4.1 Batch Process 

A batch process is any manufacturing process that runs in short time bursts, where the 

quantity or scale of manufacture does not justify the continuous operation. Nearly all 

pharmaceutical production is done in batches. The motivation to design chemical 

processes into miniaturized, integrated fluidic devices stems from the advantages gained 

in efficiency by automation and parallelization, reduction in errors, high throughput, 

minimization of chemical usage, and portability of chemical analysis equipment to the 

point of use.  Here, we ran our monoclonal antibody protocol in a batch process. The well 

showed in figure 4.6 was constructed around one of the electrodes on the glass slide. EIS 

Figure 4.6 Experimental run for attachment of Anti Oxycodone mouse monoclonal 

antibody to functionalized CNT (in green) followed by Anti-mouse goat polyclonal 

antibody in a batch process with 0.1x PBS solution 
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data was obtained for CNT in 0.1x PBS solution followed by NHS-EDAC, monoclonal 

and polyclonal antibodies respectively. As the results from batch studies of EIS is well 

documented in the literature, we wanted a point of comparison with our continuous process 

as has been done elsewhere [20]. 

 

4.4.2 Continuous Process 

The first step in the continuous process in the preparation of the immunoassay is the 

attachment of monoclonal antibodies to the CNT platform by performing NHS-EDAC 

chemistry as shown in figure 4.7.  NHS (0.4 mg/ml) and EDC (0.6mg/ml) are mixed in 5:2 

ratios and is charged at 2 µl/min over the CNTs inside the device. The –COOH group in 

Figure 4.7 Experimental run for attachment of Anti Oxycodone mouse monoclonal 

antibody to functionalized CNT (in green) followed by Anti-mouse goat polyclonal 

antibody in a continuous process with 0.1x PBS solution 
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the CNTs tend to activate within an hour after the NHS-EDC charge into the device. Next, 

1 nM Anti-oxycodone mouse monoclonal antibody (from Abcam) is charged at 2 µl/min 

and further shifts in the Nyquist plot is observed in the corresponding EIS data (figure 4.9). 

The frequency measurement was taken from 100 MHz to 1 kHz with an applied AC voltage 

of 1 V using a 4294A Agilent EIS machine.  

However, the curvature of the Warburg element is not clear and more studies need to be 

performed (as detailed in aim 2). Finally, secondary 1 nM anti-mouse goat polyclonal 

antibody specific to the Anti-oxycodone mouse monoclonal antibody is charged into the 

system at 2 µl/min. The chip is then washed in PBS for an hour at 5 µl/min to knock off 

the secondary antibodies to see whether the chip comes back to the original signal. All the 

flow rates were kept constant at 5ul/min. Moreover, for all the charges the buffer used was 

0.1x PBS with a pH of 7.5.  

 

4.4.3 Polyclonal Antibody Attachment 

Another set of on-chip experiment was run for Anti-mouse goat polyclonal antibody. The 

first step in the preparation of the immunoassay is as same as the attachment of monoclonal 

antibodies to the Carbon Nanotube platform by performing NHS-EDAC chemistry as 

described in section 4.4.1.  Again, NHS (0.4 mg/ml) and EDC (0.6mg/ml) was mixed in 

5:2 ratios and was charged over the functionalized CNTs inside the device for surface 

activation. The –COOH group in the CNTs tend to activate within an hour after the NHS-

EDC charge into the device. EIS reading had been taken for CNT in PBS followed by 

NHS-EDC charge. Afterward, the EIS data for polyclonal antibody has been obtained. All 
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the flow rates were kept constant at 5ul/min. Moreover, for all the charges the buffer used 

was 0.1x PBS with a PH of 7.5 

 

4.6 Results and Discussion 

The observed EIS spectrum (Nyquist curve) in figure 4.8 reflects the change in CNTs to 

macromolecule passage including surface activation in a batch process. There are no 

significant shifts of the Nyquist diagram when NHS-EDC is charged into the system or 

from the addition of polyclonal/monoclonal antibodies as has been observed elsewhere 

[20]. However, in the continuous processed (figure 4.9 - 4.11), a significant change is 

observed on the addition of NHS-EDC and adding antibodies. The Plots for CNT in 0.1x 

PBS and NHS-EDC do not overlap on top of each other. It is worthwhile to mention here 

that this is a first instance of carrying out EDC chemistry on a chip, where a measurable 

change in EIS signal has been observed (figure 4.9). The addition of primary antibody 

(mAb) to the CNT platform results in a shift in the electrical impedance that occurs as a 

result of binding of the primary antibody to the CNT surface. Finally, also on the addition 

of secondary 1 nM anti-mouse goat polyclonal antibody specific to the Anti-oxycodone 

mouse monoclonal antibody to the system at 2 µl/min, the EIS data changes significantly 

as observed in figure 4.9. As can be seen in figure 4.9, on washing with PBS for an hour, 

the EIS comes back to the original level. This in indicated by the mixed color of the first 

line in the graph plotted in Origin as both the red curve and the green curve superimpose. 

It is worthwhile to note that the PBS solution is washing out the loosely bound secondary 

antibodies from the primary monoclonal antibodies due to the extensive shear in the device.   
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Figure 4.8 A schematic illustration of impedance spectra in the form of Nyquist plots 

for a batch process,  a) Carbon Nanotube in 0.1x PBS, whose impedance is controlled 

by the diffusion of to the and from the electrode surface (in blue)  b) Surface activation 

by EDC-NHS exhibiting a  slight change in impedance (in blue)  c) Attachment of Anti 

Oxycodone mouse monoclonal antibody to functionalized CNT (in green) d) 

Attachment of Anti-mouse goat polyclonal antibody with monoclonal antibody 

exhibiting little shift in impedance and Warburg. 
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Figure 4.9 depicts the schematic representation of open flow CNT platform with the 

channel inset to show different zones and the electrode arrangements. In electrochemical 

studies of biomolecules by impedance measurements, the electronic and ionic currents 

around the electrode surface are governed by the Randle circuit. The circuit has a 

capacitance (CPEe) which is in series with diffusional Warburg Resistor (WS1). Re is the 

intrinsic resistance in the circuit while Le is the parasitic inductor in the circuit due to noises 

(see figure 4.12) [5]. It is well established that at lower frequencies, the current is resistive. 

At higher frequencies, the double layer capacitor (CPEe) dominates [5]. The EIS shift 

clearly indicated that the charge transfer resistance or R1 is decreasing from bare CNT to 

EDC activated CNT to monoclonal antibodies and increases on the addition of secondary 

antibodies). Interfacial charge transfer resistance (R1) which is in parallel with a double 

layer  

It is worthwhile to bear in mind the two competing phenomenon here. Firstly, CNTs, as 

they are touching the electrodes on the glass surface, behave as extended electrodes here. 

Secondly, the addition of more charge to the CNT surface from bare CNT to EDC-CNT to 

antibody functionalized CNT (OCab-CNT), decreases R1. On the other hand with the 

addition of the pAb antibody molecules, the electrode surface area of the CNT visible to 

the electrolyte decreases, leading to a decrease in R1. Initially, the addition of charge 

dominates (decrease in R1) while on the addition of the secondary antibodies, R1 increases 

due to the decreasing CNT surface area.  Unlike the monoclonal runs, upon polyclonal 

antibody charge right after EDC-NHS the plot shifts toward right denoting an increase in 

impedance, which was not the case regarding monoclonal antibodies. Such behaviors can 
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be attributed to the structural properties or orientation of the different antibodies or the 

Figure 4.9 A schematic illustration of impedance spectra in the form of Nyquist plots for 

a) Carbon Nanotube in 0.1x PBS, whose impedance is controlled by the diffusion to the 

and from the electrode surface (in black)  b) Surface activation by EDC-NHS exhibiting 

a significant rise in impedance accompanied by a pronounced Warburg (in blue)  c) 

Attachment of Anti Oxycodone mouse monoclonal antibody to functionalized CNTs (in 

green) with further shift in impedance and Warburg d) Attachment of Anti-mouse goat 

polyclonal antibody to monoclonal antibody with significant change in impedance and 

Warburg (in red).  e) PBS wash after 160 minutes that approximates the plot for 

monoclonal antibody attachment to functionalized CNTs. 
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charges on the surface on the CNT Individual attachment of both Anti Oxycodone mouse 

Figure 4.10 A schematic illustration of impedance spectra in the form of Nyquist plots for 

a) Carbon Nanotube in 0.1x PBS, whose impedance is controlled by the diffusion to the and 

from the electrode surface (in black)  b) Surface activation by EDC-NHS exhibiting a 

significant rise in impedance accompanied by a pronounced Warburg (in blue)  c) 

Attachment of Anti-mouse polyclonal antibody to functionalized CNTs (in red) with further 

shift in impedance and Warburg d) PBS wash after 160 minutes  
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monoclonal and Anti-caffeine mouse monoclonal antibody to functionalized CNT has been 

compared in the following Nyquist diagram. Both the antibodies exhibit prominent 

Warburg with a significant difference in their respective impedance based on their 

structures. The Anti Oxycodone mouse monoclonal demonstrates a steeper Warburg than 

that of the Anti-caffeine mouse monoclonal antibody. The steeper Warburg indicates a 

more capacitive process. This is due to the higher charge in the anti oxycodone antibody 

in comparison to the anti-caffeine antibody. From the figure, it can also be assumed that 

Figure 4.11 A schematic illustration of impedance spectra in the form of Nyquist plots 

for a) Attachment of Anti Oxycodone mouse monoclonal antibody with functionalized 

CNTs upon performing NHS-EDC chemistry (in green) b) Attachment of Anti-caffeine 

mouse monoclonal antibody to functionalized CNT. Both the antibodies exhibit 

prominent Warburg with a significant difference in their respective impedance based on 

their structures. 
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Anti Oxycodone mouse monoclonal is more conductive than Anti-caffeine mouse 

monoclonal antibody.  

 

4.7 Data Fitting 

Initial fitting of the data using a commercial EIS software Zview® from Scribner Associates 

gave us good fits. However, it could not fit the Warburg Resistor very well as can be seen 

in figure 4.12 (B). The fitting is poor, specifically, at lower frequencies when diffusion 

dominates, We believe that this is due to the incorrect boundary condition assumed in 

classical derivations of the Warburg resistance. However, the closed packing of the CNT 

can give rise to other resistances, including a possible convective resistance term (which 

has not been described before). This departure from classical formulations can be ascribed 

to the structure of the CNT inside the channel. Here, the CNT exists as nanostructured CNT 

wherein the ionic flux is confined in local nanodomains. Hence the boundary condition for 

the diffusion equation needs to be suitably modified into a mixed Robbin boundary 

condition. Further, the boundary condition as it depends on the nanostructured CNT 

surface, the antibody structure with its orientation of the charged groups can modify the 

ionic flux equation. This modification in the EIS spectra is seen in Figure where depending 

on the antibody moiety; different antibodies give rise to different Warburg signals.Hence, 

the Warburg element in the equivalent circuit can be modeled from first principles to 

represent the structure of the antibody primarily looking at the orientation of the charged 

molecules. The model will be verified by using different concentrations of mAbs and 

secondary antibodies. It is worthwhile to note that any correlations developed here would 
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be averaged correlations and not for single mAbs. Further, the EIS results need to be also 

modeled and how the circuit elements in the equivalent circuit correlate to changes in ionic 

strength, pH, flow rate (changing shear). 

 

 

 

 

 

 

 

Figure 4.12 (A) Graphical presentation of the Nyquist diagram for a Randle circuit with 

an inset schematic of the circuit. Typical batch Nyquist plots are shown for bare CNT 

and CNT with mAbs in 1X PBS buffer in an applied AC field of 1 V at a frequency of 

100 MHz to 1KHz. Extrapolation to obtain R1 is not possible due to the loop double-

layer impedance signature. In fact, both bare and CNT with mAbs are indistinguishable 

at the important high-frequency end of the Warburg branch. (B) Fitting of the EIS signal 

from the running of the primary antibodies, NHS-EDC and bare CNT using Zview® 

Software. Clearly the fit is good at the higher frequencies which shows that the circuit 

model works at the higher frequency. However, the fit is poor at the lower frequencies 

which indicate that the classical diffusive Warburg element is wrongly described.  

 

 

A 
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CHAPTER 5 

CONCLUSION  

AND FUTURE WORK 

 

5.1 Future Work 

Raman spectroscopy is a powerful technique for solid-state in situ protein pharmaceutical 

analysis within glass containers or for separate samples [97]. The penetration of visible 

laser light through glass enables in-situ analysis to be performed without any sample 

manipulation [97]. The characteristic fingerprint feature of Raman spectra for proteins 

allows differentiation between protein product and placebo and between different protein 

products. Our system involves label-free non-invasive detection. A Raman analysis can be 

performed on the antibodies to ensure further reliability. Near-infrared Raman 

spectroscopy (NIRS) has gained increasing prominence as a tool for quantitative analysis 

of IgG and IgM antibodies[98]. It can also perform the analysis of thermal stability of the 

antibodies at various concentrations and helps distinguish unfolding from aggregation 

events. The Raman scattering technique is a vibrational molecular spectroscopy which, 

derives from an inelastic light scattering process. In our study, the analysis of mAbs 

structure can be performed with Raman spectroscopy, where a laser photon is scattered by 

the antibody and it loses (or gains) energy during the process [99]. The amount of energy 

lost is seen as a change in energy (wavelength) of the irradiating photon. This energy loss 

is characteristic for a particular bond in the molecule.  The Raman signal produces a precise 

spectral sample fingerprint, unique to each atom, a group of atoms or individual molecule. 

Also for the following reason Raman proves to be the most efficient method for the 

chemical and structural analysis of out antibodies [100]: 
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(i) Raman can be used to analyze in aqueous solutions,  

(ii) The intensity of spectral features is directly proportional to the concentration of 

the particular species,  

(iii) Raman requires little or no sample preparation, and  

(iv) The use of a Raman microscope provides very high level of spatial resolution 

and depth discrimination. 

Our microfluidic device proves to be an effective tool for qualitative analysis. 

However, challenges exist for using the chip for quantitative analysis. The replacement of 

a CNT-binding platform by ZnO will be done to approach from a quantitative analytical 

point of view, ZnO is an n-type direct bandgap semiconductor with a large exciton binding 

energy of 60 meV and Eg of 3.37 eV at room temperature[101]. Hence, it is regarded as a 

promising photonic material with near-ultraviolet (near-UV) emission, electric 

conductivity, piezoelectricity and optical transparency [102]. Using a solid–vapor phase 

thermal sublimation technique, nano comes, nanorings, nano-helixes/nano-springs, 

nanobelts, nanowires and nanocages of ZnO have been synthesized under specific growth 

conditions [103]. For our work, the vertical well-aligned ZnO Nanowire arrays can be 

prepared on glass templates where ZnO seed layers can be grown on glass via radio-

frequency sputter deposition. This shall pave the way for quantitative analysis through our 

device as the amount of ZnO nanowire is known once grown on the chip. 

 

5.2 Conclusion 

The significance of the proposed work is in the development of a new shear enhanced 

platform with real-time spectroscopic observation tools to study and purify monoclonal 
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antibodies. The lab-on-a-chip device will be used as a generic platform and can be 

interfaced with other drug manufacturing instruments for the rapid production of “on-

demand” drugs. Although a considerable amount of literature exists related to the 

construction of complex chromatographic techniques for the continuous production of 

mAbs, development of a simple, robust, high yield, large mAb capture ratio from cell 

culture fluid is nonexistent to date. This rapid, cost-effective, highly sensitive and selective 

microfluidic platform will use enhanced shear force to purify mAbs. Simultaneously, the 

interdigitated electrodes will use EIS to measure the binding event and strength (affinity 

testing) of mAbs to the antigen, allowing for an antigen microarray/ELISA from the same 

platform. Till now, there is no literature for shear studies of monoclonal antibodies. The 

critical questions asked here will be, whether the shear force can degrade the efficiency 

and affinity of the mAb, how do pH and ionic strength in conjugation with shear affect 

mAb efficiency and affinity. This is critical for optimization of flow based systems for 

manufacturing drugs as rapid continuous manufacturing becomes more and more 

commonplace. This will be accomplished by using multiple lab-on-a-chip devices 

simultaneously to do kinetic assay testing, and specificity tests on the chip. This device 

should outperform traditional systems both in their portability, yield, and capture 

efficiency. The packing of the CNT inside the microchannel should have unprecedented 

high surface to volume areas, high and sensitive electrical signal, and customizable surface 

chemistries, and therefore serve as an ideal platform to build novel mAb analysis systems.  
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APPENDIX 1 

NYQUIS PLOTS 

 

 

 

Figure A.1 A schematic illustration of impedance spectra in the form of Nyquist plots for a) 

Carbon Nanotube in 0.1x PBS, whose impedance is controlled by the diffusion to the and from 

the electrode surface (in black)  b) Surface activation by EDC-NHS exhibiting a significant 

rise in impedance accompanied by a pronounced Warburg (in blue)  c) Attachment of Anti 

Oxycodone mouse monoclonal antibody to functionalized CNTs (in red)  
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Figure A.2 A schematic illustration of impedance spectra in the form of Nyquist plots for 

a) Carbon Nanotube in 0.1x PBS, whose impedance is controlled by the diffusion to the 

and from the electrode surface (in black)  b) Surface activation by EDC-NHS exhibiting 

a significant decrease in impedance accompanied by a pronounced Warburg (in green)  c) 

Attachment of Anti Oxycodone mouse monoclonal antibody to functionalized CNTs (in 

blue) with further shift in impedance and Warburg d) Attachment of Anti-mouse goat 

polyclonal antibody to monoclonal antibody with significant change in impedance and 

Warburg (in red).  e) PBS wash after 160 minutes that approximates the plot for 

monoclonal antibody attachment to functionalized CNTs (dotted lines). 
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Figure: A.3  schematic illustration of impedance spectra in the form of Nyquist plots 

for a) Carbon Nanotube in 0.1x PBS, whose impedance is controlled by the diffusion to 

the and from the electrode surface (in black)  b) Surface activation by EDC-NHS 

exhibiting a significant rise in impedance accompanied by a pronounced Warburg (in 

blue)  c) Attachment of Anti Oxycodone mouse monoclonal antibody to functionalized 

CNTs (in green) with further shift in impedance and Warburg d) Attachment of Anti-

mouse goat polyclonal antibody to monoclonal antibody with significant change in 

impedance and Warburg (in red).  e) PBS wash after 160 minutes that approximates the 

plot for monoclonal antibody attachment to functionalized CNTs. 
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APPENDIX 2 

BODE PLOT 

  

Figure A.4 A schematic illustration of  the Bode plot for the batch process showing the 

impedance spectra the along the frequency domain. a) Carbon Nanotube in 0.1x PBS, 

(in black)  b) Surface activation by EDC-NHS c) Attachment of Anti Oxycodone mouse 

monoclonal antibody to functionalized CNTs (in green) d) Attachment of Anti-mouse 

goat polyclonal antibody to monoclonal antibody (in red).   
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Figure A.5 A schematic illustration of  the Bode plot for the batch process showing the 

phase spectra the along the frequency domain. a) Carbon Nanotube in 0.1x PBS, (in 

black)  b) Surface activation by EDC-NHS c) Attachment of Anti Oxycodone mouse 

monoclonal antibody to functionalized CNTs (in green) d) Attachment of Anti-mouse 

goat polyclonal antibody to monoclonal antibody (in red).   
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Figure A.6 A schematic illustration of  the Bode plot for the batch process showing 

the impedance spectra the along the frequency domain. a) Carbon Nanotube in 0.1x 

PBS, (in black)  b) Surface activation by EDC-NHS c) Attachment of Anti 

Caffierne mouse monoclonal antibody to functionalized CNTs (in green) d) 

Attachment of Anti-mouse goat polyclonal antibody to monoclonal antibody (in 

red). ).  e) PBS wash after 160 minutes that approximates the plot for monoclonal 

antibody attachment to functionalized CNTs. 
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Figure A.7 A schematic illustration of  the Bode plot for the batch process showing the 

phase spectra the along the frequency domain. a) Carbon Nanotube in 0.1x PBS, (in black)  

b) Surface activation by EDC-NHS c) Attachment of Anti Caffiene mouse monoclonal 

antibody to functionalized CNTs (in green) d) Attachment of Anti-mouse goat polyclonal 

antibody to monoclonal antibody (in red). ).  e) PBS wash after 160 minutes that 

approximates the plot for monoclonal antibody attachment to functionalized CNTs. 
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Figure A.8 A schematic illustration of  the Bode plot for the batch process 

showing the phase spectra the along the frequency domain. a) Carbon Nanotube 

in 0.1x PBS, (in black)  b) Surface activation by EDC-NHS c) Attachment of Anti-

mouse goat polyclonal antibody to monoclonal antibody (in red). ).  e) PBS wash 

after 160 minutes that approximates the plot for monoclonal antibody attachment 

to functionalized CNTs ( in green). 
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