33 research outputs found

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    A comprehensive multimodal dataset for contactless lip reading and acoustic analysis

    Get PDF
    Small-scale motion detection using non-invasive remote sensing techniques has recently garnered significant interest in the field of speech recognition. Our dataset paper aims to facilitate the enhancement and restoration of speech information from diverse data sources for speakers. In this paper, we introduce a novel multimodal dataset based on Radio Frequency, visual, text, audio, laser and lip landmark information, also called RVTALL. Specifically, the dataset consists of 7.5 GHz Channel Impulse Response (CIR) data from ultra-wideband (UWB) radars, 77 GHz frequency modulated continuous wave (FMCW) data from millimeter wave (mmWave) radar, visual and audio information, lip landmarks and laser data, offering a unique multimodal approach to speech recognition research. Meanwhile, a depth camera is adopted to record the landmarks of the subject’s lip and voice. Approximately 400 minutes of annotated speech profiles are provided, which are collected from 20 participants speaking 5 vowels, 15 words, and 16 sentences. The dataset has been validated and has potential for the investigation of lip reading and multimodal speech recognition

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    AI enabled RF sensing of Diversified Human-Centric Monitoring

    Get PDF
    This thesis delves into the application of various RF signaling techniques in HumanCentric Monitoring (HCM), specifically focusing on WiFi, LoRa, Ultra-wideband (UWB) radars, and Frequency Modulated Continuous Wave (FMCW) radars. Each of these technologies has unique properties suitable for different aspects of HCM. For instance, 77GHz FMCW radar signals demonstrate high sensitivity in detecting subtle human movements, such as heartbeat, contrasting with the capabilities of 2.4GHz/5GHz WiFi signals. The research extends to both large-scale and small-scale Human Activity Recognition (HAR), examining how ubiquitous communication signals like WiFi and LoRa can be utilized for large-scale HAR, while radar signals with higher central frequencies are more effective for small-scale motions, including heartbeat and mouth movements. The thesis also identifies several unresolved challenges in the field. These include the underutilization of spatial spectral information in existing WiFi sensing technologies, the untapped potential of LoRa technology in identity recognition, the sensitivity of millimeterwave radar in detecting breathing and heartbeat against minor movements, and the lack of comprehensive datasets for mouth motion detection in silent speech recognition. Addressing these challenges, the paper proposes several innovative solutions: • A comprehensive analysis of methodologies for RF-based HCM applications, discussing challenges and proposing potential solutions for broader healthcare applications using wireless sensing. • Exploration of communication signals in HCM systems, especially focusing on WiFi and LoRa sensing. It introduces the continuous AoA-ToF maps method to enhance HCM system performance and the LoGait system, which uses LoRa signals for human gait identification, extending the sensing range to 20 meters. • Development of a FMCW radar-based structure for respiration detection, incorporating an ellipse normalization method to adjust distorted IQ signals, reducing the root mean square error by 30% compared to baseline methods. • Collection and analysis of a large-scale multimodal dataset for silent speech recognition and speech enhancement, including designing experiments to validate the dataset’s utility in a multimodal-based speech recognition system

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    Wi-Fi based people tracking in challenging environments

    Get PDF
    People tracking is a key building block in many applications such as abnormal activity detection, gesture recognition, and elderly persons monitoring. Video-based systems have many limitations making them ineffective in many situations. Wi-Fi provides an easily accessible source of opportunity for people tracking that does not have the limitations of video-based systems. The system will detect, localise, and track people, based on the available Wi-Fi signals that are reflected from their bodies. Wi-Fi based systems still need to address some challenges in order to be able to operate in challenging environments. Some of these challenges include the detection of the weak signal, the detection of abrupt people motion, and the presence of multipath propagation. In this thesis, these three main challenges will be addressed. Firstly, a weak signal detection method that uses the changes in the signals that are reflected from static objects, to improve the detection probability of weak signals that are reflected from the person’s body. Then, a deep learning based Wi-Fi localisation technique is proposed that significantly improves the runtime and the accuracy in comparison with existing techniques. After that, a quantum mechanics inspired tracking method is proposed to address the abrupt motion problem. The proposed method uses some interesting phenomena in the quantum world, where the person is allowed to exist at multiple positions simultaneously. The results show a significant improvement in reducing the tracking error and in reducing the tracking delay

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    corecore