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A comprehensive multimodal 
dataset for contactless lip reading 
and acoustic analysis
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Small-scale motion detection using non-invasive remote sensing techniques has recently garnered 
significant interest in the field of speech recognition. Our dataset paper aims to facilitate the 
enhancement and restoration of speech information from diverse data sources for speakers. In this 
paper, we introduce a novel multimodal dataset based on Radio Frequency, visual, text, audio, 
laser and lip landmark information, also called RVTALL. Specifically, the dataset consists of 7.5 GHz 
Channel Impulse Response (CIR) data from ultra-wideband (UWB) radars, 77 GHz frequency modulated 
continuous wave (FMCW) data from millimeter wave (mmWave) radar, visual and audio information, 
lip landmarks and laser data, offering a unique multimodal approach to speech recognition research. 
Meanwhile, a depth camera is adopted to record the landmarks of the subject’s lip and voice. 
Approximately 400 minutes of annotated speech profiles are provided, which are collected from 20 
participants speaking 5 vowels, 15 words, and 16 sentences. The dataset has been validated and has 
potential for the investigation of lip reading and multimodal speech recognition.

Background & Summary
In general speech recognition tasks, acoustic information from microphones is the main source for analyzing the 
verbal communication of humans1. The speech process is not just a means of conveying linguistic information, 
which can also provide valuable insight into the speaker’s characteristics such as gender, age, social and regional 
origin, health, emotional state, and in some cases even their identity. Recently, the automatic speech recognition 
(ASR) technique has already matured and been marketed2. In addition to sound signals, the series of physiolog-
ical processes that produce sound, such as lip movement, vocal cord vibration, and head movement, also retain 
semantic and speaker information to some extent. On the other hand, there are two main limitations in specific 
environments that only audio information can not perfectly work for ASR: silent speech recognition (SSR) and 
multiple speakers environments. Both issues can be solved if considering the speaker physics properties and will 
be explained in following paragraphs.

First, SSR can be considered a significant branch of speech recognition that provides understandable and 
enhancing communication methods to assist patients with severe speech disorders. In recent years, research in 
silent speech recognition has explored a variety of approaches, including wearable sensors, radar-based systems, 
and other non-invasive techniques, to address the challenges of capturing and processing speech-related infor-
mation. The contactable methods mainly focus on detecting brain and muscle activity with electroencephalo-
gram (EEG) sensor, articulator movements headset and other types of implantable sensors3. However, contact 
based methods are highly dependent on wearable and implant sensors, which is dedicated to patients but does 
not collect a large dataset from a normal person. Meanwhile, users should consider the potential health risk of 
contactable devices. For voice disorder and other patients who maintain the capability to control the vibration 
of vocal folds and face muscles, non-invasive SSR has the potential to improve their quality of life compared to 
electronic sensors.
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In addition, in scenarios with multiple speakers, the microphone captures the sounds from the surroundings 
without distinguishing the person’s identity, which seriously lowers the accuracy of speech recognition. This 
issue is similar to the cocktail party effect4, which is a phenomenon in which an individual can focus on one 
conversation despite being surrounded by several other simultaneous conversations. The effect is mainly attrib-
uted to the brain’s ability to process auditory frequency and highlight certain sounds, allowing the individual to 
focus in on the source of interest without being easily distracted. However, it is a challenge to separate different 
sources only using acoustic data. In this case, additional radar or laser devices can assist the model in distin-
guishing the audio according to the physical information. For example, the proposed work5 combined the audio 
and radar signals to filter after added noise. And Secondly, the voice information including tone and speaking 
habits of individual contains a variety of personal data that can be used to create a unique voice fingerprint, such 
as speaking habits and intonation. This will cause a risk of sensitive data leakage, as the voice fingerprint could 
be used for identification. For the wireless sensing side-based algorithm, vocal folds vibration focuses only on 
the tone of speech, which does not include privacy information. Third, previous speech recognition research 
has focused mainly on visual-based mouth movements, posing a risk of lack of privacy and overlooking internal 
mouth movements.

In this paper, we proposed a dataset of human speech by collecting data from multiple sensors information 
while people are speaking specific corpus. The contributions of our dataset are concluded in following points:

	 1.	 In this work, we present a novel dataset that incorporates multiple modalities for silent speech recognition, 
including ultra-wideband (UWB) radars, millimeter wave (mmWave) radar, and depth camera data, which 
we believe will be a valuable resource for researchers in the field. The dataset is expected to reduce the 
labour for researchers who expect to work on SSR from wireless signals or enhancing audio signals.

	 2.	 Our system takes into account the physical movements of all parts of the head during human speech, 
including mouth movements and vibrations of the vocal cord, which is illustrated in Fig. 1.

	 3.	 The diverse range of modalities in our dataset offers ample opportunities for conducting research in the 
field of speech recognition. The range contains but is not limited to the following application: radar-based 
vowels and words classification, speaker identification, speech enhancement in noisy environment, ra-
dar-based lip reconstruction, etc.

Methods
Firstly, we conducted a literature review to establish the necessary sensors and experimental setup for 
radar-based speech recognition, given the absence of a standard and corpus. Meanwhile, we demonstrate the 
availability of all the sensors we adopted and then establish our data collection approach, referencing previous 
work.

Literature survey of radar-enabled speech recognition.  There are various kinds of sensors has been 
adopted for speech research: UWB, mmWave radar and laser speckle detector6. For SSR task, the work of UWB 
demonstrated the lip reading work with the vowels of [æ], [i], [ә], [ɔ:], [u:] and static scenario, with a face mask. 
The result of 95% approves that the mouth motion produces informative signals for UWB sensing7. FMCW radar 
is also an optional choice which has been proven in the result of the paper8. The mentioned work adopts point 
clouds of human mouth while speaking as data feature for classification work of 13 words with 4 speakers. It gains 
88% accuracy using Linear Regression classifiers. To expand the work and exploit more possibilities, we added 
sentences for data collection regarding the reference. Besides, mmWave FMCW radar has been used for speech 
enhancement in the published works5,6. These two researches have distinct focus directions: the paper5 consid-
ered the distance coefficient for radar signals and successfully make speech enhancement system implementa-
tion in 7 meters; and works6,9 on audio separation of multiple speakers with radar-based spatial information. 
For laser-related information, paper10 proposed a remote measurement technique for healthy individuals that 
involves capturing the reflected laser speckle from the surface of the neck skin. This system is capable of capturing 
the micro-vibration on the surface of the neck produced by blood pressure, which can also be adopted for the 
extraction of voice signals without audio signals through detecting the vibration caused by throat. Inspired by 
mentioned works, we decided to adopt radar sensors of FMCW radar and UWB radar, laser speckle detection 
system, and Kinect camera for mouth skeleton stream and speech voice as the source of our multimodal dataset.

Fig. 1  Schematic diagram of the Multimodal signals.
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Furthermore, we conclude the dataset of those multimodal based speech recognition works in Table 1. To 
the best of our knowledge, most open-access datasets in speech recognition focus on audiovisual topics instead 
of considering radio signals. Although there has been research talking about wireless signals based speech pro-
cessing, it is difficult to get the dataset from authors. Therefore, our core contribution is establishing a contactless 
based speech dataset for research on combination of audio signals and physically vibration from wireless signal.

Data acquisition scheme.  The overall data collection system was organized by four laptops and four 
types of sensors: Microsoft Kinect V2 for audio and video including mouth landmark, X4M03 UWB radar from 
NOVELDA, AWR2243 mmWave radar from Texas Instrument, and laser measurement system for physical vibra-
tion of human speech. The selection of devices is referred from mentioned previous research. To keep the data 
synchronised with different sensors, we used the TCP/IP connection to control the distinct host laptops with the 
same network time protocol (NTP) for recording the time stamp while data collection. A multi-threaded con-
trol script has been developed and employed that automatically initiated and terminated data recording scripts, 
minimizing data recording latency to the greatest extent. Once we run the script on a master laptop, the master 
will send the commands to the other three sockets in series. The mean delay from the master to sockets of other 
devices is around 80 ms, which is considered in our post-synchronization processing. Furthermore, we employed 
expert supervision and manual calibration to ensure time synchronization across different sensors. We calibrated 
the devices, monitored the data collection process, and made necessary adjustments throughout the entire data 
collection. Considering the potential research for speech recognition, we designed three data collection schemes 
shown in the following. The adopted corpus is recorded in an additional folder in our dataset.

•	 Single person speech of vowels, words and sentences.
•	 Dual-person speech simultaneously of complex sentences.
•	 Single person speech of vowels, words and sentences with different distance from radar to speakers.

The details of data collection from specific sensor are demonstrated below, with experiment setup shown in Fig. 2.

Speech voice.  We used Kinect v2 for collecting vocalised speech. With the enable Kinect v2 to collect the 
accurate acoustic information. The sample rate of audio data is 16 kHz, and bit depth is 16-bit. The frequency 
range of recording audio is up to 8 kHz, that can cover the frequency range of human voice.

Mouth skeletal points.  The Kinect v2 is also used in collecting the facial landmark information. A RGB 
camera and an infrared camera are intergrated in kinect v2. By measuring the time of flight (ToF) using the IR 
camera Kinect can get the depth image. Meanwhile, we use the lip recognition method proposed in paper11 for 
extraction of the lip skeleton, which is provided as part of our dataset.

IR-UWB radar.  Like Wi-Fi and Bluetooth, UWB is a short-range wireless communication protocol. The 
UWB was defined as the wireless transmission system of which the bandwidth exceeds 500 MHz, and each trans-
mit pulse of this communication system can occupy at least 500 MHz bandwidth. Instead of modulating with a 
carrier wave, IR-UWB relies on nanosecond (ns) to picosecond (ps) non-sinusoidal narrow impulse radio signals 
to transmit data. The time-based modulation technology increases transmission speed and reduces power con-
sumption. For speech recognition, the UWB system has the following advantages:

	 1.	 Strong anti-interference ability: From the RF mechanism, the pulse wave emitted by UWB is more resistant 
to interference than the continuous electromagnetic waves in short range. Specifically, the permitted work 

Dataset size Dataset usage Multimodal type Open access of dataset provided

RAVDESS21 7356 samples emotion recognition visual video stream, voice Yes

SpeakingFaces22 13000 samples biometric authentication, 
speech recognition

visual video stream, thermal 
video stream, voice Yes

UltraSE23 8000 samples of 5 seconds speech speech enhancement ultrasound signal, voice Not found

RadioSES24 5700 sentences speech separation and 
enhancement FMCW radar signal, voice Not found

Speckle detection25 1000 sample of speech speckle noise removal laser signal, voice Not found

Electromyogram26 660 words silent speech recognition high-density surface 
electromyogram Not found

SSR20 few samples for validation speech enhancement laser signals Not found

AV-corpus27 34000 sentences speech recognition audio and video Yes

IEMOCAP28 10039 samples of 4.5 seconds speech emotion recognition audio, video, face and hand 
markers Yes

TaL29 18221 samples speech recognition audio, video stream, ultra sound 
image Yes

Ours 6000 samples (including vowels, 
words and sentences)

silent speech recognition, 
speech separation, speech 
enhancement

FMCW radar signal, UWB radar 
signal, mouth skeleton, laser 
signal, and voice

Yes

Table 1.  Dataset review of multimodal based speech recognition works.
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frequency band of UWB is from 3 GHz to 10 GHz, which suffers less disturbance from the general 2.4 GHz 
WiFi system and other telecommunication signals.

	 2.	 The protocol yielded positive results, resulting in a reduction in power consumption for short-range com-
munication applications. The transmit power of the UWB transmitters was found to be typically less than 
1 mW, which extended the system’s operating time and minimized electromagnetic wave radiation to the 
human body.

After careful consideration of cost and feasibility, we have selected the XeThru X4M03, an IR-UWB radar sys-
tem on chip, as our UWB radar. The UWB RF specifications of this radar have been approved by ETSI (European 
Telecommunications Standards Institute) in Europe, and FCC (Federal Communications Commission) in the 
USA for commercial use in human living circumstances12.This device is a highly reliable sensor that is capable of 
detecting objects at a range of up to 10 meters. It is also capable of detecting objects in a wide range of angles, up 
to 180 degrees. This radar system has been adopted in a variety of research projects, ranging from human vital 
sign detection13,14 to activity recognition15.

For pulsed radars, the distance between the radar and the target can be determined by R c T
2

= ∗ Δ , where c 
represents microwave speed, ΔT represents the round-trip time of a single pulse, called time of flight (ToF). The 
signals of IR-UWB can be represented in Eq. 1, where the τ represents the ToF of signals impulses in fast-time 
range, t represents receiving time of frame in slow-time domain, Nd is the index of the dynamic path, a t( , )i τ  
represents the complex attenuation factor of the ith path; π− λe j2 d t( )

 represents the phase change of ith path; di(t) and 
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The format of the received signals consists of a fixed set of bins, determined by the timing of the transmitted 
pulses. These bins are indexed by fast-time and slow-time dimensions, as illustrated in Fig. 3. Fast-time and 
slow-time are two dimensions that are used to describe the format of the received signals in a UWB radar sys-
tem. Fast-time is the time it takes for the radar to transmit a pulse and receive the reflected signal. Slow-time 
is the time it takes for the radar to transmit multiple pulses and receive the reflected signals. The fast-time and 
slow-time dimensions are used to determine the format of the received signals, which is a fixed set of bins. These 
bins are used to store the information about the objects detected by the radar. The fast-time and slow-time 
dimensions are also used to determine the range of objects detected by the radar. By using the fast-time and 
slow-time dimensions, the UWB radar system can accurately detect objects in a wide range of distances. This 
makes the UWB radar system an ideal choice for a variety of applications, including human vital sign detection 
and activity recognition.

For data collection, we adopted Moduleconnector API which is supported by the radar on Windows 
MATLAB 2021b. The detailed parameters of radar are listed in the Table 2.

mmWave FMCW radar.  Although the IR-UWB radar is able to capture the vibration of sub-centimeter 
motion. The angle resolution is limited by the number of antennas. Meanwhile, for comparison of speech rec-
ognition performance using different modulation-based radars, we added one commercial off-the-shelf (COTS) 
77 GHz FMCW radar, AWR2243, for data collection. This high frequency enables radar signals to capture motion 

Fig. 2  Data collection setup with device label in the real scenario.
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in millimeter, that can be used for both lip motion and vocal folds detection. A FMCW radar chirp signals can be 
illustrated as Fig. 4.

Unlike IR-UWB radars that measure distance using the ToF of instantaneous impulses, FMCW radars rely 
on the difference in frequency between the transmitted and received signals from a linear variation of signals 
frequency. In other words, Doppler effect of moving target can be explored from difference between transmis-
sion frequency (ft) and shifted frequency (fs). The formula shows Doppler velocity of target relative to radar: 

=
−

v
c f f

ft

( )

2
s t .

Except for modulation methods, AWR2243 radar contains 4 receive antennas and 3 transmit antennas, 
which is possible to adopt angle of arrival (AoA) for research in horizontal plane. In our experiment, we adopted 
4 receive and 1 transmit antennas to increase the sample rate. By adopting 4 channels at a snapshot, we can gain 
the angular resolution of 30 degree. In data collection, we utilised mmWaveStudio API on Windows with the 
configuration file. The parameters were set to the value shown in Table 2. The frequency response reflected by 
the radar signals was of paramount interest, particularly given the average fundamental frequency range of the 
vocal folds, which spanned from 85 Hz to 255 Hz16. Aligning with the Nyquist criterion, we adjusted our radar 
frame rate to 1018 Hz, ensuring the sampling rate exceeds twice the highest frequency present in the signal.

Laser-speckle system.  The laser measurement system consists of a 532 nm green laser diode (DJ532-40, 
Thorlabs) as transmitter and a high-speed CMOS camera from Basler as receiver, where the laser diode emits a 
laser beam pointing to the face outline of the testing subject and the camera captures the reflected laser speckle 
patterns. Both transmitter and receiver are fixed on a 1.2 m tripod, and the camera is connected with a laptop via 
an USB 3.0 cable for powering and data transferring. The green laser diode has a distance of approximately 1 m 
to the participants, it will produce an illumination spot of around 5 mm diameter on the human skin by consid-
ering the beam divergence. For the laser safety, laser power exposed on human skin is controlled to be less than  
0.5 mw (CLASS 1), therefore it is safe for long-term eye and skin exposure. The focal length and f-stop of the cam-
era objective are set as 25 mm and 0.95, respectively, allowing the camera system to detect the laser speckle from 
a very close range (0.1 m) to a relatively far range (up to 3 m). Furthermore, the size of the region of interest (ROI) 
window is chosen as 128 × 128 pixels, and the camera exposure time is set as 600 µs, shown in Table 3. The laser 

Fig. 3  IR-UWB impulse signals format.

(a) UWB radar setup

Parameter Value

Center frequency 8.745 GHz

Sampling frequency 23.328 GHz

Frame rate 300 Hz

Bandwidth 1.5 GHz

Number of antennas 1 Tx and 1 Rx

(b) mmWave radar setup

Center frequency 79 GHz

ADC Sampling frequency 10 msps

ADC samples 512

Frame rate 1018 Hz

Ramp End Time 60 us

Bandwidth 3.8 GHz

Range resolution 3.95 cm

Table 2.  Radar parameter setup of UWB X4M03 and TI AWR2243.
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and camera are carefully aligned before the experiments to ensure that the selected ROI includes the movements 
of speckles. For each measurement, the collected data is in a format of W × H × N, where W and H represent the 
width and height of the ROI, respectively, and the N equals to the number of frames within the measurement 
period. In our case, N is correlated with the sampling frequency of the CMOS camera, which is set as 1.47 kHz.

Participant.  There are 20 volunteers contributing to our experiment, who come from different country 
regions including Europe, China, and Pakistan. The volunteer information sheet is listed in Table 4. Our data-
set for speech recognition presents both opportunities for generalization and challenges due to the volunteers’ 
diverse backgrounds, resulting in distinct accents. To the issue bring from body size, we adopted an adjustable 
table for subjects that can keep the relative distance same between the head of speaker and different sensors. The 
characteristic of accents and speech habits can be extracted from our dataset with lip motion, vocal folds vibra-
tion, and audio, which has potential for related multimodal ASR research.

Meanwhile, all participants were informed about the purpose of the study, the implications of identifying 
information, and what was expected of them. They agreed to the open publication of identifiable information 
including voice signal in released dataset. Experiment consent forms were obtained from each participant prior 
to the experiments. The entire dataset collection project was ethically approved by the University of Glasgow 
College of science and engineering (approval no: 300210309).

Setup of data collection.  This section provides the data collection protocol including the introduction 
of corpus, experiment setup, and data formats. The corpus of the single person scenario is listed in Table 5, and 
specific setup is illustrated in Fig. 5. During data collection, we asked volunteers to pronounce a specific vowel/
word/sentence with timestamps on laptops. All laptops were synchronized using the same NTP server. During 
collection, volunteers were guided by automatic voice instruction to read the corpus and relax. The timestamps of 
audio instruction were instantaneously recoreded in kinect/timestamp. However, there is a few seconds of uncon-
trolled latency in activating all radars and laser equipment, which disrupted the devices’ ability to synchronize 
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Fig. 4  The plot of a single mmWave FMCW radar chirp in time and frequency domain.

(a) Laser transmitter setup

Parameter Value

Power 0.5 mw

Wavelength 532 nm

Working Mode continuous wave

Beam Divergence 12 mrad

Operating Current 330 mA

Operating Voltage 1.9 V

(b) Camera setup

FPS 1470

Gain 12

Exposure Time 600 us

ROI Size 128×128 pixel

Table 3.  Parameter setup of Laser speckle detection system.
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acquisition data. In this case, we decided to keep these devices recording for one minute and write timestamp 
while data collection is activated so that the signals can be cropped according to kinect timestamps. All were 
recorded alongside the data, which reduces the effort of manually separating the data.

Meanwhile, we also collected data via different distances in the single-person scenario and the two-person 
scenario, which is shown in Fig. 6, with corpus listed in Table 6. Instead of original 60 cm, we asked volunteers 
to sit 1.2 m and 2.2 m away from radar equipment, respectively, which is a potential for researchers to explore 
the relationship of radar-based audio detection with distance. In addition, in the two-person experiment, we 
kept one volunteer sitting in the same place as the single-person scenario, and then let another speaker sit on the 
left side of the first-mentioned volunteer. The two subjects were asked to normally read different corpus shown 
in Table 7, which was shown on the screen in one minute, without repeating words. The laser equipment was 
pointed to the first volunteer, and the kinect camera only took information from another subject. This kind of 
dataset will contribute to multiple audio source separation.

Volunteer index Age Gender Native language Education

1 25 Male Chinese BEng

2 25 Female Chinese BEng

3 24 Male Chinese MSc

4 25 Male Chinese BEng

5 22 Male Chinese BEng

6 25 Male Chinese BEng

7 31 Male Arabic MSc

8 24 Female Chinese BEng

9 30 Male English PhD

10 25 Male Chinese MSc

11 24 Male Chinese BEng

12 23 Male Chinese BEng

13 24 Female Chinese BEng

14 34 Female Arabic MSc

15 25 Female English BEng

16 30 Female Arabic MSc

17 25 Male Chinese BEng

18 25 Female Chinese MSc

19 24 Male English PhD

20 31 Male Arabic PhD

Table 4.  Volunteer information sheet.

Type Corpus Index Participants

vowel [æ], [i], [ә], [ɔ:], [u:] 1–5 in sequence User 1–20

word order, assist, help, ambulance, bleed, fall, shock, medical, sanitize, doctor, accident, rescue, 
emergency, heart, break 1–15 in sequence User 1–20

sentences

I need help. 1

User 1–20

Call for an ambulance. 2

The building’s on fire. 3

Can you smell smoke. 4

Where’s the fire escape. 5

There’s been an accident. 6

Is there a doctor here? 8

The staff sanitized the sickroom. 7

User 1,2,4,6,7Medical care is important. 9

Don’t worry about bleeding. 10

I am having trouble breathing. 7

User 3, 8–13I think I’m having a heart attack. 9

My heart is failling. 10

Need emergency treatment at shock stage. 7

User 5, 14–20He need a rescue for a heart attack. 9

Don’t worry about falling. 10

Table 5.  Corpus list for single subject experiment. The index of each participant is identical to the user label.

https://doi.org/10.1038/s41597-023-02793-w


8Scientific Data |          (2023) 10:895  | https://doi.org/10.1038/s41597-023-02793-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Record
The dataset is archived within figshare open access repository17, designed for ease of access and reproducibility. 
Detailed in this Fig. 7 is the file structure and content description of the dataset.

Data storage structure.  Processed data files, such as land_proc_<Repetitive_index>.csv, include columns 
for coordinates of detected landmarks by Kinect V2.0, among other variables. The methodology for data collec-
tion is expounded of previous sections in this document, providing the necessary context for dataset curation. 
After saving the data, all files were integrated into specific folders according to the data class, of which structure is 
illustrated in Fig. 7. The entire dataset was divided into raw data and processed data to match the limitation of file 
size. Firstly, due to the data size limitation of file, we put mmWave FMCW radar data and laser data in a separate 
folder and other sensors in another. The radar signals files were kept in binary format with radar timestamps in 
text format (FMCW radar signals of subject 12 were missing).

Meanwhile, information from kinect and two UWB radars was kept in same folder as the similar storage 
structure, which contains timestamps in JSON format, audio in WAV, landmarkers of user’s head in BVH, and 
UWB radar signals in MAT format. Additionally, to ensure a license-free distribution of the dataset, the preproc-
essed data was converted from MAT to NPY and BVH to CSV files regarding the usages. The description below 
completely introduces the statement of data files recorded in the proposed dataset.

Fig. 5  Detailed setup schematic diagram for single person scenario from (a) Top view and (b) Front view 
(Laser’s location is not fixed due to the camera based signals process only require the laser directly point to skin 
of subjects. The UWB radar facing to subject directly was called ‘xe2’ in dataset folder, another is called ‘xe1’).

Fig. 6  Detailed setup schematic diagram from top view of (a) second scenario which considers the distance of 
120 cm and 220 cm between sensor and speaker, and (b) third scenarios which considers speech data collected 
under multiple speakers. Camera was set to collect left speaker and laser to right speaker.
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Raw data statement. 

•	 Comprising raw data from all sensors, segregated by subject IDs. Each subject’s data is further segmented 
by type of modality, including laser data, FMCW radar signal, UWB radar signal and kinect based audio, 
facial skeleton and timestamps: <SetID>_<CorpusType>_<CorpusIndex>.bin: Raw FMCW radar signals 
in binary format.

•	 radarlog <SetID>_<CorpusType>_<CorpusIndex>.txt: Raw radar logs with timestamps.
•	 laser_data_index_<SetID>.mat: Laser data matrices with timestamps.
•	 timestamp_<Repetitive_index>.json: Kinect timestamp records including audio and landmark data.
•	 audio_<Repetitive_index>.wav: Original audio recordings.
•	 audio_<Repetitive_index>.bvh: Landmarks of facial expression.
•	 xethru_datafloat.dat: Raw UWB radar signal.
•	 timestamp_<Repetitive_index>.mat: UWB radar timestamps.

Processed data statement.  Each subject’s folder lies processed data in NPY format, with the same name 
of data files of sample_<Repetitive_index>.npy in separate folder, detailed as follows:

•	 kinect_processed: Data from Kinect processed to obtain landmarks of land_proc_<Repetitive_index>.csv, 
vocal features of audio_proc_<Repetitive_index>.wav and video frame features of boxes and landmarks of 
<frames_index>.npy, and mouth frame of <frames_index>.png.

•	 radar_processed: FMCW radar data tailored for specific signal characteristics.
•	 laser_processed: Laser data processed pertinent to facial recognition tasks.
•	 uwb_processed: UWB radar data tailored for specific signal characteristics.

Technical Validation
Effectiveness of the collected data is validated in three parts for validation and benchmark: signal processing and 
analysis, laser signals based speech separation, and multimodal based speech recognition.

Signals analysis.  In this section, we analyze the entire process of lip motion and vibration of the vocal fold 
combined with video frames of the skeletal mouth and information on the voice, as shown in Fig. 8.

For UWB and FMCW radar signals, we transferred the raw data to the Doppler spectrum, shown with the 
speech spectrum and skeleton motion. The Fig. 8. shows all synchronized data types that were collected in the 
dataset. For UWB data, to sanitize the stationary object, the raw signals were first multiplied by a moving target 
indication (MTI) filter, which is a radar process method that allows the UWB radar to detect and track targets 
that are moving in relation to the radar devices. From Eq. 1, we know that the channel impulses indicate different 
ranges. To consider all channel vibrations, we calculate the short-time Fourier transformation (STFT) result on 
each channel and then add all channels together, which is shown in Fig. 8.

For the FMCW radar, the primary step involves converting the IQ data to range-bin data via 1D-FFT. 
Notably, our approach emphasizes a distinct form of beamforming using FFT in the AoA (Angle of Arrival) 

Type Corpus Label Participants

vowels [æ], [i], [ә], [ɔ:], [u:] v1–5 in sequence

User 4 of 1.2 m and 2.2 m (Index No. 24 and 25 in dataset), 
User 5 of 1.2 m and 2.2 m (Index No. 26 and 27 in dataset)

words order, ambulance, medical, sanitize, accident w1–5 in sequence

sentences

Call for an ambulance s1

There’s been an accident s2

The staff sanitized the sickroom s3

Is there a doctor here? s4

Medical care is important. s5

Table 6.  Corpus list for supplementary experiments of changing the distance.

Type Corpus Label Participants

article From view of Kinect, volunteer on the left side read  
‘Mr Sticky’, on the right side read ‘The king of the birds’.

b1–11 User 6 (Left) and User 4 (Right), recorded in Index 21

b12–22 User 4 (Left) and User 6 (Right), recorded in Index 21

b1–11 User 4 (Left) and User 5 (Right), recorded in Index 22

b12–23 User 5 (Left) and User 4 (Right), recorded in Index 22

b1–11 User 5 (Left) and User 1 (Right), recorded in Index 23

b12–23 User 1 (Left) and User 5 (Right), recorded in Index 23

static sitting without speaking b24–26 User 5 (Left) and User 4 (Right), recorded in Index 22

Table 7.  Corpus list for supplementary experiments of two-person scenario. The reading materials are referred 
from corpus publication30.
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dimension. This FFT-based beamforming is designed to obtain precise angle information, capturing the location 
of radar signals and thus assisting in the accurate detection of movements, especially in the mouth and vocal 
folds. Instead of conventional methods that harness the velocity dimension with multiple chirps, our strategy 
elevates the frame rate to yield refined and continuous radar signals. With the vast capabilities of radars, it’s 
essential to filter out superfluous data. We employed MTI to sieve out noise echoed by static objects. Subtracting 
range-angle spectrograms at certain intervals aids in diminishing false alarms due to substantial indoor clutter, 
optimizing the clarity of our results. Consequently, by focusing on the radar strength within our range of inter-
est—which corresponds to the human’s location, we could discern detailed information about mouth movement 
and vocal fold vibrations18. Given the predetermined speaker location, the IQ signal regarding that specific 

Fig. 7  The structure of the multimodal speech dataset.
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range-angle bin can be extracted and analyzed19. As the benchmark validation, we only extract the amplitude 
variation of radar signal.

Furthermore, we transferred the video to images with 30 frames per second and voice signals in spectrum, 
shown in Fig. 8 together with Doppler spectrograms of UWB and FMCW radar signals. To retrieve the sound 
signals from raw laser speckle data, an optical flow-based method, notably the Farneback algorithm, is utilized 
to estimate the displacement of laser speckles on participants’ faces. The input of this algorithm is every frame, 
denoted as a 2D function (f (x, y)), whereas a quadratic polynomial expansion is adopted to approximate the 
gray value of each pixel and its neighbors. The signals model based on the local coordinates of the selected pixel 
could be written as the Eq. 2.

f x x Mx n q( ) (2)T T= + +

where x is the local coordinate (x, y), M is a symmetric matrix equal to 
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and q is a scalar equal to C1, C1 to C6 are the coefficients of the quadratic polynomial expansion. The new signals 
could be expressed using a displacement index Δd as the Eq. 3 indicates.

Fig. 8  Multimodal data illustration including UWB and mmWave radar signal, laser, audio, image, and mouth 
skeleton points. From left to right columns, the first represents the volunteer is speaking of vowel ‘[ɔ:]’, second is 
speaking of word ‘bleed’, and the third is speaking of sentence ‘There’s been an accident’. The last row illustrates 
the camera vision of the volunteer’s mouth with the processed skeleton.
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− Δ = − Δ − Δ + − Δ + = + +f x d x d M x d n x d q g x x M x n q( ) ( ) ( ) ( ) ( ) (3)
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1 1 1 2 2 2

Simply let f x d g x( ) ( )− Δ = , then we can get n n M d22 1 1= − Δ , leading to the solution of displacement 
index. Then the computed optical flow needs to be filtered with a band-pass filter. The cut-off frequency of the 
filter is chosen to be 80 Hz and 255 Hz for removing the frequency components caused by non-speaking activi-
ties such as head and skin movement. Then we integrate all sorts of cropped data that were mentioned above and 
show the matched samples in Fig. 8.

Speech separation task assisted by laser signal.  Speech separation is used in a variety of applications, 
including telecommunications, hearing aids, speech recognition systems, and audio and video conferencing sys-
tems. These techniques typically involve analyzing speech signals from different sources and then using filtering, 
spectral shaping, or other signals processing methods to remove or reduce unwanted components while preserv-
ing or enhancing the speech signal. Since the components of the human voice are mainly in the same frequency 
band, the frequencies of the different components are mixed together. Therefore, identification in the frequency 
domain alone is almost impossible.

Laser speckle signals are able to observe the vibration of skin covering cheek through capturing the laser 
speckle motion. We empirically observe that there is a relationship between laser signals and audio signals. 
Previous work also approved that laser speckle signals can be used for audio denoising20, which can be repli-
cated with our dataset. Meanwhile, in our dataset, we introduce the laser speckle signals as the source of speech 
enhancement/separation in single channel case. As the validation example of speech enhancement application 
with laser speckle signal, we will introduce non-negative matrix factorization (NMF) based work which utilizes 
the processed laser signals to enhance the voice made from the speaker. Then the rest of the audio components of 
another speaker can be revealed. Validation experiments follow the scheme shown in Fig. 9. The input contains 
audio and laser signals from subject A, and delayed audio signals from subject B. First, we add up two audio input 
to simulate the complex environment of two volunteers speaking simultaneously. Then the laser and audio sig-
nals are synchronized with timestamp and frequency. Meanwhile, the audio signals were downsampled to match 
the vibration frequency limit of the vocal folds. After that, the applied short time fourier transformation with 
hanning window to get spectrogram of laser and audio signal. Then we applied NMF to the magnitude spectro-
gram to obtain a set of basis matrix and corresponding activation coefficients for each source. The decomposed 
basis matrices reflect the speech characteristic in the time domain. Two clusters of matrices can be separated 
depending on whether they are correlated with reference laser signals. Finally, we reconstruct the audio with 
time-frequency mask that was clustered. The detailed steps can be referred to the code with the dataset.

To explore the performance of our scheme, we selected the collected laser-audio dataset of sentences from 
No.17 and 18 subjects. We named the audio signals of laser target as recovered audio signals, and another as 
masked signals. The average signal-to-distortion ratio (SDR) and the signal-to-interference ratio (SIR) of recov-
ered signals are 1.04 dB and 35.97 dB respectively. Meanwhile, the performance of masked signals that were not 
correlated with laser signals, gains 0.0002 dB of SDR and 35.97 dB of SIR. Overall, this work provides another 
view of single channel based speech enhancement and separation tasks. Meanwhile, the data collected from third 
scenario provides raw signals under two volunteers’ speech, which is a good source for users to test their methods.

Fig. 9  Speech separation scheme of mixed audio signals and laser-speckle signals using a NMF based method.
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Multimodal speech recognition.  For the benchmark of speech contents classification, we selected UWB 
radar, laser, audio and video data of 5 subjects and established a CNN-based ResNet classification network. The 
batch size is 16 and the primary learning rate is 0.01. Each model uses 80% data for training and 20% for valida-
tion and is trained for 50 to 100 epochs. The performance is shown in Fig. 10. It is evident that there is potential to 
improve speech recognition performance based on non-invasive UWB and laser technology.

Besides, we further considered a sensor fusion scheme that combines data from UWB radar and multiple 
sources for word recognition. We employed a multi-input ResNet18 for this task, which includes two input 
blocks consisting of a convolutional layer, a batch normalization layer, and a ReLU activation, as shown in 
Fig. 11. The initial feature extraction was completed by feeding spectrograms from the UWB radar and addi-
tional information into their respective input blocks. The resulting feature maps were then stacked along the 
channel axis and processed by ResNet18 for final analysis. Then, we also applied audio data on word recognition 
as comparison with radio-based methods. The performance of the multimodal based recognition systems is 
shown in Fig. 12. Meanwhile, we adopt the methods on sentences classification with the result shown in Fig. 13.

Another challenge encountered in real-world applications is the varied “context”. For instance, in our sce-
narios, the dynamic distance between a target and the receiver may cause a substantial performance decline for 
radar-based models trained on a fixed-distance dataset. However, obtaining new data samples to account for dif-
ferent “contexts” is often impractical. Consequently, we further explore the use of our dataset in transfer learning 
tasks, with the goal of enhancing the scalability of radar-based lip-reading systems. By fine-tuning a pre-trained 
model with minimal additional data, we strive to address the challenges posed by diverse contexts. We carried 
out experiments using UWB signals gathered from volunteer 4 at three distinct distances. The pre-training phase 
was conducted on data from the first distance, employing a batch size of 16, a learning rate of 0.01, and 50 to 
100 training epochs. Subsequently, we assessed the model’s performance at the second and third distances, both 

Fig. 10  Classification performance of human speech across 15 Words with confusion matrix of (a) UWB radar, 
(b) video stream, (c) audio signal, (d) laser speckle signals.
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with and without fine-tuning (utilizing the same training settings as the pre-training phase), focusing on its 
SSR performance. A comparison of sentence and word performance revealed that complex sentences presented 
greater challenges for SSR with radar. Additionally, we examined the impact of varying distances between the 
user and sensors in Fig. 14.

Usage Notes
The multimodal speech detection dataset is accessible with the doi link of the dataset17. Data users are encour-
aged to analyze the data with the example script provided with the dataset. The functionalities of the script are 
described in the following section. It is imperative to underscore that the processing structure we present serves 
as a foundational method. We anticipate and encourage readers to devise their own methodologies using the 
dataset, tailored to specific targets. We would like to recommend that the user who wants to process their own 
algorithm on raw data, pay attention to the synchronization among multiple sources with provided timestamps. 
All timestamp files of each sensor are listed in Fig. 7. To reduce the potential timestamp mismatch, our approach 
is to record the activation timestamp of each sensor meticulously. This timestamp is then used as a reference 

Fig. 11  Multi-modal sensor fusion scheme for word speech classification.

Fig. 12  Classification performance of human speech across 15 Words with confusion matrix of (a) the fusion of 
video and UWB, (b) the fusion of audio and UWB, (c) the fusion of video, audio and UWB.

Fig. 13  Classification performance of human speech across 10 Sentences with confusion matrix of (a) UWB 
signals, (b) the fusion of video and UWB, (c) the fusion of audio and UWB.
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to calculate the timestamp for each frame of data. Meanwhile, we created a github Repo to update the example 
processing code with dataset: https://github.com/G-Bob/Multimodal-dataset-for-human-speech-recognition. 
Finally, 7-ZIP was used to compress all the subfolders depicted in Fig. 7, making them easily downloadable for 
users.

Code availability
Matlab and Python scripts are provided in the codes directory of dataset for the users to replicate some of the 
figures:
• FMCW_Radar_process.m This script is used to load the raw signals recorded by the AWR2243 radar. Then 
it is used to visualise the first and second FFT through distance dimension and angle dimension, respec-
tively. Lastly, by reading the human location’s phase variation, we can get human-related signals, including 
lip motion. This step can be transferred to PYTHON and other coding methods which supports reading 
binary files.
• UWB_radar_process.m This script is used to load the raw signals recorded by the Xethru X4M03 radar and 
process the data to STFT spectrums. This step can be transferred to PYTHON and other coding methods which 
supports reading binary files.
• plot_InParallel.m This script provides a template to plot the spectrums that are shown on paper. First, the pre-
processing data is needed to be downloaded.
• uwb_cutting.py; mmWave_cutting.py; kinect_cutting.py; laser_cutting.py; This script can be utilised to cut the 
different data sequence in NPY format with given Kinect timestamp, and convert BVH to CSV files. In advance 
of this step, the radar signals should be processed to spectrums with provided raw data in DAT. This step can be 
directly used with the radar scripts we provide.
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