891 research outputs found

    A mean field neural network for hierarchical module placement

    Get PDF
    This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    GRAPH-BASED APPROACHES FOR IMBALANCED DATA IN FUNCTIONAL GENOMICS

    Get PDF
    The Gene Function Prediction (GFP) problem consists in inferring biological properties for the genes whose function is unknown or only partially known, and raises challenging issues from both a machine learning and a computational biology standpoint. The GFP problem can be formalized as a semi-supervised learning problem in an undirected graph. Indeed, given a graph with a partial graph labeling, where nodes represent genes, edges functional relationships between genes, and labels their membership to functional classes, GFP consists in inferring the unknown functional classes of genes, by exploiting the topological relationships of the networks and the available a priori knowledge about the functional properties of genes. Several network-based machine learning algorithms have been proposed for solving this problem, including Hopfield networks and label propagation methods; however, some issues have been only partially considered, e.g. the preservation of the prior knowledge and the unbalance between positive and negative labels. A first contribution of the thesis is the design of a Hopfield-based cost sensitive neural network algorithm (COSNet) to address these learning issues. The method factorizes the solution of the problem in two parts: 1) the subnetwork composed by the labelled vertices is considered, and the network parameters are estimated through a supervised algorithm; 2) the estimated parameters are extended to the subnetwork composed of the unlabeled vertices, and the attractor reached by the dynamics of this subnetwork allows to predict the labeling of the unlabeled vertices. The proposed method embeds in the neural algorithm the \u201ca priori\u201d knowledge coded in the labeled part of the graph, and separates node labels and neuron states, allowing to differentially weight positive and negative node labels, and to perform a learning approach that takes into account the \u201cunbalance problem\u201d that affects GFP. A second contribution of this thesis is the development of a new algorithm (LSI ) which exploits some ideas of COSNet for evaluating the predictive capability of each input network. By this algorithm we can estimate the effectiveness of each source of data for predicting a specific class, and then we can use this information to appropriately integrate multiple networks by weighting them according to an appropriate integration scheme. Both COSNet and LSI are computationally efficient and scale well with the dimension of the data. COSNet and LSI have been applied to the genome-wide prediction of gene functions in the yeast and mouse model organisms, achieving results comparable with those obtained with state-of-the-art semi-supervised and supervised machine learning methods

    A Fusion of Variational Distribution Priors and Saliency Map Replay for Continual 3D Reconstruction

    Full text link
    Single-image 3D reconstruction is a research challenge focused on predicting 3D object shapes from single-view images. This task requires significant data acquisition to predict both visible and occluded portions of the shape. Furthermore, learning-based methods face the difficulty of creating a comprehensive training dataset for all possible classes. To this end, we propose a continual learning-based 3D reconstruction method where our goal is to design a model using Variational Priors that can still reconstruct the previously seen classes reasonably even after training on new classes. Variational Priors represent abstract shapes and combat forgetting, whereas saliency maps preserve object attributes with less memory usage. This is vital due to resource constraints in storing extensive training data. Additionally, we introduce saliency map-based experience replay to capture global and distinct object features. Thorough experiments show competitive results compared to established methods, both quantitatively and qualitatively.Comment: 15 page

    Digital Receivers

    Get PDF

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    corecore