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ABSTRACT

This thesis presents two novel methods for isolated word speech

recognition based on sub-word component". A digital neural network is

the fundamental processing strategy in beth methods.

The first design is based on the 'Separate Segmentation &

Labelling' (SS&L) approach. The spectral data of the input utterance is

first segmented into phoneme-like units which are then time

normalised by linear time normalisation. The neural network labels the

time-normalised phoneme-like segments./8.36% recognition accuracy is

achieved for the phoneme-like unit.

In the second design, no time no-malisation is required. After

segmentation, recognition is performed by classifying the data in a

window as it is slid one frame at a time, from the start to the end of

of each phoneme-like segment in the utterance. 73.97% recognition

accuracy for the phoneme-like unit is achieved in this application.

The parameters of the neural net have been optimised for

maximum recognition performance. A segmentation strategy using the

sum of the difference in filterbank channel energy over successive

spectra produced 80.27% correct segmentation of isolated utterances

into phoneme-like units.

A linguistic processor based on that of Kashyap & Mittal [84]

enables 93.11 % and 93.49% word recognition accuracy to be achieved

for the SS&L and 'Sliding Window' recognisers respectively. The

linguistic processor has been redesigned to make it portable so that it

can be easily applied to any phoneme based isolated word speech

recogruser,
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CHAPTER ONE

SUB-WORD APPROACH TO ISOLATED WORD RECOGNITION

1.1 Introduction

Work on automatic speech recognition has been going on for almost

40 years now. Researchers have realised that the constraints within

which an automatic speech recogniser must perform make it a very

complex problem. Current knowledge related to speech recognition is

insufficient to achieve the goal of a universal (continuous speech,

speaker independent) speech recogniser. The approach adopted has

been to relax some of these constraints in order to enable a limited

solution to the problem. Some major problems (giving nse to the

different categories of speech recognisers) [1], [2] are:

i), Variation in speech between individuals (interspeaker variations).

This problem may be got around by automatic speaker adaptation.

Such systems are referred to as "speaker dependent" systems. In

situations where more than one speaker must use the system, "speaker

independent" systems must be used. These systems compensate for

interspeaker variations but have lower recognition rates than "speaker

dependent" systems.

ii). Word segmentation in continuous speech.

In continuous speech, pronounciation of consecutive words affect

each other and it is often difficult to determine where one word ends
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and another begins. Furthermore, the characteristic acoustic patterns of

words exhibit much greater variability depending on context. One way

this problem has been tackled is to separate the words by pauses

(minimum pause duration is usually about 100 milli-second), giving rise

to isolated word recognition. Thus speech recognition systems may be

further classified as "Continuous Speech Recognition Systems" (CSRS),

and "Isolated Word Recognition Systems" (IWRS).

iii). Psychoacoustic experiments have shown that human beings

subconsciously use their own knowledge of the language (syntactic,

semantic, pragmatic) and the context within which a sentence is

spoken to restore missing phonemes, syllables or words (due to noise;

speaker generated or environmental) and to resolve ambiguous words

in continuous speech [3],[4]. This idea has led to the application of

knowledge sources to aid the recognition process. Such systems are

termed "Speech Understanding Systems" (SUS). The aim here is not

the recognition of each and every word in the utterance but rather the

intent of the message, hence "understanding". These systems come

under the field of Artificial Intelligence and are subject to considerable

research effort elsewhere.

Speaker dependent isolated word recognition through whole word

matching is the least complex, and to date, the most successful

category of speech recognisers. Most commercial recognisers belong to

this category, claiming recognition accuracy in excess of 95% for a

typical vocabulary size of around 250 words (IBM's Tangora-20 has a

vocabulary size of 20,000 words) [5]. From the users' point of view, this

is also the most unnatural way of speaking (since the utterance has to
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be preceded and followed by a pause). Thus the goal of speech

recognition must be towards the recognition of continuous speech.

Although template matching and hidden Markov models are the

established techniques on which to base speech recognition systems,

there has been a trend towards learning systems because of difficulties

of defining consistent algorithms giving adequate performance with

speech data [5]. By nature, the speech signal has high degree of

variability and this has made it difficult to model mathematically. This

IS a common problem to all aspects of pattern recognition where real

data is used.

WISARD, a general purpose pattern recognition device, is an

example of a learning system [6], [7]. It is based on the n-tupling

method, first proposed by Bledsoe and Browning [8], and has been

applied with considerable success to problems in visual pattern

recognition (character recognition [9], face recognition/verification [10],

etc). In 1983/4 it was decided to extend the application of these nets to

the field of speech recognition. A. Badii and M.J. Binstead have

experimented with speaker dependent isolated word recognition for a

set of 16 words, and have reported recognition accuracy of over 90%

[11], [12]. The particular 16 words were chosen so that the word-set

consisted of groups of similar sounding words which would be difficult

to recognise since they were confusable. Further development of this

work forms the basis of this dissertation.

Remaining at the single speaker isolated word level, the aim is to

recognise the word-set of Badii and Binstead through a different

approach. Instead of matching the whole word during the recognition

process, this should be done at the sub-word, preferably "phonemic"

level.
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Isolated Isolated Word Continuous,
whole word' 'phonemic' - Speech- -Recognition Recognition Recognition

Figure 1.1 Isolated word 'phonemic' recognition as an

intermediate stage towards CSR.

Research into the recognition of isolated words (based on the

concept of whole word recognition) by a WISARD n-tuple recogniser

has been completed and the results have been encouraging [12]. This

technique appears to be at least as good as other existing methods.

The next step, in my . .VIew, IS the application of these nets to

recognition of continuous speech. As continuous speech recognition

(CSR) is a very complex and formidable task, I propose that this work

should be towards an intermediate stage between IWR and CSR, as

shown in figure 1.1, ie. the problem of IWR through the recognition of

the different acoustic events (phoneme-like elements) that constitute

the word uttered. Upon recognition of the phoneme-like elements, these

may then be arranged together in the sequence in which they were

recognised to produce the phonetic transcription of that word. The

reason why this approach is considered as an intermediate stage

between IWR and CSR is that the problem of segmenting the word

into phoneme-like elements is also applicable to CSR, but CSR has in

addition the word boundary segmentation problem mentioned earlier in

(ii). By remaining at the IWR level, the word boundary segmentation

problem is eliminated and it becomes possible to focus on the problem

of segmenting the word into sub-word units. The principles needed to

accomplish this task would be applicable, perhaps with some
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modification, to the recognition of continuous speech. Thus one of the

aims of this work is to act as a stepping stone from IWR to CSR using

the WISARD n-tuple pattern recogniser. This also seems to have been

the approach taken by Makino & Kido, who first designed a word

recognition system based on phoneme recognition using discriminant

filters [13], and then applied this approach, with some modification, to

phoneme recognition in continuous speech [14]. Billi et al [15], also

hold this view.

The sub-word unit based approach is also the established technique

In the design of large vocabulary isolated word recognisers [16], [17],

and it is this class of speech recognisers that this work is more

specifically related to. This work is intended to be an investigation into

techniques for the design of large vocabulary isolated word recognisers

using WISARD nets.

1.2 Definition of Problem

IWRS store in memory a reference set of word features (also

referred to as templates or prototypes) for each word in the system's

vocabulary. The unknown input word is compared with the templatets)

of each word to determine which prototype it is most similar to. As a

consequence of this method, two of the problems that will occur as the

vocabulary of the system is increased [3], are:

(i), Memory requirements for storing the word reference patterns

increases.

(ii). Response time increases linearly with the size of the vocabulary.
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The technique of matching all reference prototypes with the

unknown input word becomes inefficient and it becomes essential to

use other methods that reduce storage and computation time. This

involves improvements in reference pattern representation and search

strategies. Rather than store the reference pattern for the whole word,

the need is for the recognition of the whole by analysis of the

component subparts that constitute the word, and then grouping these

together to form larger units. This makes it necessary to adopt a

segmentation and labelling scheme, a technique also used in CSRS.

The purpose of segmentation is to divide the utterance into discrete

units (ie the subparts). The process of labelling associates a symbol

corresponding to the recognised unit with each of the segments.

Spoken words can be represented as strings of phonemes. There

are about 44 phonemes in standard Southern British English [18], [19].

Taking the phoneme as the unit for recognition, if it can be recognised

with a certain degree of accuracy, then it should be possible to

recognise an unlimited vocabulary of English words with a recogniser

consisting of only 44 classifiers (one for each phoneme). Thus this

approach offers a solution to the problem of increasing storage

requirements with increase in the vocabulary of an IWRS based on

matching whole word templates. The computational expense of

recognising phonemes is also small compared with that required for

whole word recognition since there are more words than phonemes

(hence there are fewer classes to match the unknown input with), and

also because phonemes are smaller than words. Furthermore, correction

of errors can begin upon receipt of each phoneme (there is no need to

wait for all the phonemes in the word to be recognised) by applying

phonotactic rules [19]. These rules express which combinations of
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phonemes are possible and which are prohibited in the language. This

would help in speeding up the recognition time.

Thus this approach has considerable appeal and much ASR

research has been directed towards automatic phoneme recognisers.

The main focus of the ARPA Speech Understanding Project [20] also,

has been the transformation of phonemes into words with the aid of

knowledge from nonacoustic sources (syntax, semantics, pragmatics).

Although all researchers are unanimous as to the need to base the

recognition strategy at the sub-word level, opinion is divided as to

what the optimal unit for recognition is. The ideal unit would be the

phoneme except that evidence seems to suggest that it does not exist

in reality but is a linguistic unit useful for transcription of speech [16],

[21]. An utterance is not merely the result of stringing phonemes

together, end to end, as this would require that the articulators move

from one phoneme position to the next instantaneously. Since all

moving parts have mass and hence inertia, this would be mechanically

impossible. What actually happens is that as the utterance proceeds

from one phoneme to the next, the target articulator position for that

phoneme is approached but generally not met. Thus the articulations

only approximate to the ideal target positions for the phonemes in the

utterance. This phenomenon is known as coarticulation [1], and as a

consequence of it, cues for the identification of a phoneme may be

spread over adjacent phonemes. The sound pattern of a phoneme is

influenced by both the preceding and following phoneme. Some

researchers have therefore proposed the use of a larger unit than the

phoneme, such as the syllable [21], [22], [23], demi-syllable [24], and

the diphone [25].

The diphone is composed of half of one phoneme followed by half

of the next (by segmenting speech at the steady state centres of the



8

phonemes). In this way the coarticu1atory influences of the two

phonemes on each other (ie the transitions from one phoneme to the

other) can be incorporated into the recognition process. More reliable

detection may be effected by the use of a unit the size of a syllable

since the coarticulatory transitions are captured within a larger unit. A

major drawback with the use of these units as the basis for recognition

is that they make the recognition set (ie. the number of classes to be

recognised) too large, for example, there are over a thousand syllables

in the English Language. Thus the phoneme has continued to receive

attention as the unit upon which to base recognition.

Although it is not possible (due to coarticulatory effects) to define

phoneme boundaries with precision [26], one approach has been to

devise automatic algorithms to segment speech on the basis of acoustic

boundaries [27]. The method is to look for significant changes in the

acoustic characteristics over the entire utterance. The segments thus

created are normally referred to as "phoneme-like elements" in

acknowledgment of the fact that they are not phonemes in the

linguistic sense. Based on this principle, an improved method for

automatic segmentation of isolated utterances into units roughly

corresponding to phonemes is suggested in Chapter 3. The segment

created may now be labelled by matching with the reference

prototypes. A design for a WISARD n-tuple speech recogniser based on

this approach is presented in Chapter 4.

Whereas the above method is to determine the segment boundaries

and then to label the segment, in the centi-second labelling method,

the utterance is considered as a sequence of 10 milli-second frames.

Each frame is labelled by matching with the reference prototypes and

frames with the same label are grouped together to form a segment

that corresponds to the phoneme. This approach is also sometimes
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referred to as "Segmentation-by-Recognition" or "Recognition-then­

Segmentation" since the spectral frames are first recognised and then

grouped into a segment. A design for a WISARD n-tuple speech

recogniser based on similar idea is presented in Chapter 5.

Both system designs mentioned above make three types of errors,

namely insertion errors, deletion errors and substitution errors.

Insertion and deletion errors are due to errors in segmentation of the

utterance. If the segmentation process is not perfect (to date there IS

no segmentation algorithm that can claim error-free segmentation of

speech) some sounds may be completely missed, causing deletion errors

or extra segment boundaries may be inserted, causing insertion errors.

Substitution errors are due to misclassification of a segment at the

recognition stage. It may be possible to recover from some of these

errors by applying a linguistic processor to the string of labels output

by the speech recogniser. In Chapter 6, a linguistic processor due to

Kashyap & Mittal [28], was implemented and applied to the output

from the n-tuple recogniser. The aim was to see how much the

performance of the n-tuple recogniser can be improved by

complementing the recogniser with phonotactic rules and string error

correction techniques. A disadvantage of the Kashyap & Mittal

linguistic processor IS that it has to be adapted to the speech

recogniser it is being used with (phoneme replacement weights need to

be calculated from the performance statistics of the speech recogniser),

Modification to make this design portable is suggested in this chapter.
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1.3 Overview of Techniques in Phonetic Isolated Word

Recognition

The processes involved in the recognition of isolated utterances

usmg a phonetic analysis approach are shown in figure 1.2. With

reference to figure 1.2, an outline of the various techniques applied at

each stage of the phonetic isolated word recogniser will be presented. A

discussion of the different approaches researchers have taken In

implementing such systems is also included. Thus this section IS

intended as a review of the techniques and work done in this branch of

the field of speech recognition.

Overall, the recognition system in figure 1.2 may be divided into

two parts; the pre-processer section and the recognition section.

1.3.1 The Pre-processer Section

The pre-processer section of the system compnses the acoustic

analysis stage and the feature extraction stage.

1.3.1.1 Acoustic Analysis

This stage is concerned with the extraction of acoustic parameters

from the speech waveform. The objective is to transform the speech

signal in such a way as to enhance certain properties that would

enable its detection with ease and efficiency, and also lead to a

reduction in the data rate. Frequency-domain representation is the

prefered method with most if not all workers in the speech recogniton

field today. This is motivated by the fact that it is known that the

human ear acts as a power spectrum analyser [3], [28]. Time-domain

representations such as zero-crossing rate and energy measurements

have also been used [29], [30]. Experience has shown that the
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frequency-domain representation is richer in information than the zero­

crossing and energy measurements in time-domain representation.

Popular methods for analysis in the frequency domain are :

(i) Fourier analysis [31]

This technique enables analysis of the speech signal's spectral

energy distribution and its variation with time. The speech signal is

divided by filtering into about 20 to 30 frequency bands, covering the

range of frequency of human speech. The output of each filter gives a

measure of the energy in that frequency band. Recognition can be

effected by comparing the energy levels with those of a template. It

may be implemented by the use of the fast Fourier transform (FFT) or

a bank of analogue band-pass filters. The latter method is used for

speech transformation to the frequency domain in the work presented

in this dissertation. Although the spectrum is indicative of the shape of

the vocal tract, extraction of formants is difficult because the spectrum

also has superimposed on it the spectrum of the glottal excitation

(voice pitch). Use of a suitable analysis window (usually 10 msec) helps

to reduce this effect. However, for a recognition scheme based on the

extraction of formant frequencies, the LPC method is used.

(ii) Linear predictive analysis [32]

Linear Predictive Coding (LPC) is considered as one of the most

important developments in speech recognition research. The method

predicts the amplitude of a speech wave at a given instant from a

weighted sum (or linear combination) of its amplitudes at a small

number (8 to 14) of earlier instances. The coefficients or weights that

give the best estimate of the true speech wave can then be

mathematically converted into an estimate of the amplitude spectrum.
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This method is equivalent to treating the vocal tract as a pipe of

varying circular cross-section, ie. as a sequence of resonant cavities.

Since this method models the vocal tract (and not the vocal chord

vibration), the resulting spectrum is smooth due to absence of the pitch

harmonics. Thus the formant structure of the speech wave is clearly

identifiable. This property greatly reduces the difficulties with the

estimation of formant frequencies (used to classify vowels and

sonorants) and formant trajectories (used to classify diphthongs).

As it is possible to obtain the vocal tract area function and vocal

tract length estimate from the LPC model of the vocal tract [33], this

enables the normalisation of any speaker's vocal tract shape and length

to some standard value. This is considered to be a major contribution

towards the goal of achieving speaker independence in speech

recognition.

The linear predictive residual proposed by Itakura [34] as a speech

sound similarity measure has made it possible to perform all

preprocessing and similarity measurements simply in the time domain

and hence easier implementation of the LPC method.

As a result of the advantages afforded by the LPC method, it

appears to be the most popular technique. However, a study by White

& Neely [35] has concluded that LPC and bandpass filtering are

approximately equivalent bases for measuring speech waveform

similarity.

(iii) Cepstral Analysis [31]

This method is used to remove the glottal excitation from the

speech spectra obtained through FFT such that the spectra due to the

vocal tract only remains. The cepstrum is obtained by performing FFT

on the logarithm of the FFT on the speech waveform. The lowest
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quefrency peak in the cepstrum corresponds to glottal pitch frequency.

After filtering out the pitch effects and performing the inverse FFT on

the resulting cepstrum, the desired smoothed speech spectra is

obtained.

1.3.1.2 Feature Extraction

After acoustic analysis, the speech signal IS In a form of

representation that is suitable for comparison with the system

prototypes ([34], [35]). In some systems, there is a further feature

extraction stage. Here, a number of additional features are calculated

from the data from the acoustic analysis stage ([29], [36], [37], [38]).

These features are used in the segmentation and labelling stages. Some

of the most commonly extracted features are discussed below.

Reddy [27] used zero-crossing density and intensity level

measurements directly on the speech waveform in order to segment it.

The speech wave was first divided into a succession of "minimal

segments" of 10 msec duration. Intensity levels were used to group

together acoustically similar minimal segments to form larger

segments. Zero-crossings were used to resolve ambiguities. Bursts and

fricatives can be reliably detected using zero-crossings [29].

Schwartz & Makhoul [26] detected the presence of fundamental

frequency of voicing from the linear prediction residual to segment into

voiced and unvoiced portions. However, this can be more easily done by

comparison of energy concentration in the high frequency (3700 - 5000

Hz) and low frequency (100 - 900 Hz) regions [39].

Kasuya & Wakita [40], Weinstein et al [39] apply a threshold to

the energy function for silence detection (indication for stop consonants

and pauses). When the energy falls below the threshold, the segment is
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marked as a silence segment. Sambur & Rabiner [29] use the spectral

energy's variation over time to segment the utterance of a digit into

initial, medial and final regions.

K. Tanaka [38] extracts local peaks of the spectrum envelope from

the output of a 46 channel filterbank which approximately correspond

to formants. Itahashi et al [36] digitally filter the speech signal into

four frequency bands. The three lower bands correspond to the first

three formants of certain vowels. McCandless [41] has developed an

algorithm for tracking formants during voiced sounds, from the linear

prediction spectra. As mentioned earlier in (ii) Section 1.3.1.1, the

formants and their trajectories are commonly used in the classification

of vowels, sonorants and diphthongs.

Das & Stanat [42] used the gross spectral shape (energy in low,

mid and high frequency bands) as part of 23 features derived from a

20 filter vocoder-type speech analyser for segmenting utterances. Cole

et al [43] used the ratio of high frequency energy to low frequency

energy to discriminate between certain groups of letters ( B,P,V vs

D,T,Z and F vs S ) in their isolated English letter recogniser,

FEATURE.

This completes the pre-processor section of the recogmser. Data

from the feature extraction stage may now be passed to the recognition

section where the recognition process is performed.
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1.3.2 The Recognition Section

The recognition section of the system compnses the segmentation

and labelling stage, and the word matching stage.

Having extracted the desired features in the appropriate form from

the speech data input to the pre-processing section, the task of this

section of the system concerns the storage of reference speech patterns

consisting of these features (training) and its comparison with the

unknown input (labelling). The approach is to construct suitable models

that are provided with a priori knowledge of the speech patterns to be

recognised, and against which the unknown patterns are compared to

perform recognition. The model outputs a label corresponding to the

class that it associates the unknown pattern to. The word matching

stage attempts to match the sequence of labels output by the models to

one of the entries in the systems lexicon.

1.3.2.1 Speech Pattern Recognition Models

Two methods have been most successfully used for the modelling of

speech patterns; template matching and hidden Markov models (HMM).

However, limitations in the performance of these models have led

researchers to continue considering alternative approaches. An

approach that is currently receiving much attention is the application

of neural network models (also known as 'connectionist models') to

speech recognition, an example of which is the WISARD n-tuple

pattern recogniser. This will be the subject of the next chapter.

The concept behind the HMM approach is presented in brief. The

references given may be consulted for further information. The

template matching method is covered in greater detail. This is because

the problem of segmentation of utterances associated with phonetic
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recogniser designs based on this approach is also applicable to designs

based on the WISARD n-tuple technique presented in this dissertation.

In fact, the WISARD n-tuple recogniser with a tuple size of 1 is

equivalent to template matching.

Hidden Markov Models

This method [44] has recently become popular (before the 1980s,

template matching by dynamic time warping was the most widely used

approach) and is successfully competing with the template matching

method as the model for basing speech recognition systems. The

technique is a statistical method for the classification of observation

sequences. It made its first notable appearance in Baker's DRAGON

connected speech recognition system [45], [46] at Carnegie-Mellon

University. The works of Jelinek [47] and Levinson et al [48] are also

considered important contributions. More recently, this technique has

been implemented in IBM's Tangora-20 word recognition system [49],

capable of handling a vocabulary of 20,000 English words with an

average error rate of 5.4%.

The basic idea is to characterise each recognition unit (ie. word,

syllable, phoneme, diphone etc.) by a model that generates patterns of

features representative of that recognition unit. Thus each unit within

the recognition set is represented by an HMM. As with the template

matching method, the task of recognition is to find the model that best

matches the input feature patterns (eg, LPC coefficients), and this is

the model with the highest probability of generating the observed

sequence of input feature patterns.

With the input utterance in the form of a sequence of frames of

feature vectors, the HMM consists of a sequence of states, each state
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being associated with one or more frames of the input feature vector.

It can change state at each frame interval and this is determined by

the transition probabilities for the state that it is currently in. Each

state is also characterised by a probability distribution function which

gives the probability (called output probability) that, being in that

state, a particular acoustic feature vector is produced. These

parameters express the behaviour of the HMM, and are determined by

using either the forward-backward algorithm (also called the Baum­

Welch algorithm) or the Viterbi algorithm. Time-scale variability, which

is handled by the DTW technique in the template matching method,

can also be achieved in HMMs by allowing the model to stay in the

same state for succeeding frames, or to skip the next state in the

Markov chain.

The advantage of the HMM approach is that it permits the

modelling of phonetic units without the need to segment the utterance.

The disadvantage is that it requires large amounts of training data to

obtain reliable probability estimates. The set of training utterances

have to be chosen with care so as to include a reasonably high number

of occurances of all defined units, and also that they occur in different

contexts (to account for coarticulative effects).

Template Matching

The most common approach to labelling speech segments is the

template matching method. The segments corresponding to each

acoustic-phonetic unit (syllable, phoneme, diphone etc.) are stored as

templates in the training phase. In the recognition phase, each of the

segments of the input speech are, in tum, directly compared with each

of the templates using distance measures such as Euclidian distance,

Chebyshev distance or the Itakura distance (if LP coefficients are
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stored as templates). To compensate for variation in speaking rate, and

hence the duration of different samples of the same phonetic segment,

the dynamic time warping (DTW) algorithm [50] performs time

normalization during the comparison between the unknown input

segment and the template. The segment is assigned the label of the

template that gives the best match ie. the template with the minimum

test-to-reference pattern distance.

Before the template matching process can begin, the input

utterance must be converted to segments of desired type ie. syllable,

phoneme etc. The next section considers in detail, techniques for

segmentation and labelling implemented in phonetic recogniser design

based on the template matching method.

1.3.2.2 Segmentation and Labelling

This stage of the system attempts to use some or all of the

features obtained from the pre-processing section to segment the speech

input to units of the desired size (syllable, phoneme etc). Much work

has been done on automatic segmentation of speech. There are two

basic approaches to the problem, namely context dependent

segmentation and context independent segmentation.

(i) Context independent segmentation

No explicit information is required. This approach utilizes only the

acoustical information contained in the speech signal being

segmented [51], [52]. Parameters (eg. spectral change from one

sampling period and the next) extracted from the speech signal are

compared with a threshold value and a boundary is indicated when
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the threshold is exceeded. The advantage of this method is that it

is easy to implement.

(ii) Context dependent segmentation

This approach utilizes the explicit information that is known a

priori [39], [53]. It is known that certain parameters perform

better than others at detecting certain acoustic-phonetic features in

the incoming speech signal, ego zero-crossing measurements for

detecting fricatives and bursts, and energy related measurements

for detecting voicing. Thus the idea is that if measurements

indicate that the segment of speech under consideration is of a

particular phonetic category, then the appropriate feature

parameter is selected to detect the segment boundary.

Another problem is the SIze of the segmented units. Researchers

have not been able to agree as to which type of unit the speech signal

should be segmented [54]. Although segments the size of demi-syllables

and diphones have been considered, three approaches appear to figure

prominently :

(i) Segmentation into syllable sized units.

(ii) Segmentation into phoneme-like units.

(iii) Segmentation into broad phonetic sequences.

1.3.2.2.1 Syllable Segmentation and Labelling

Attempts at designing phonetic type-writers have shown that

effects of concatenating units the size of phonemes are unpredictable
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since the phonetic manifestation of a phoneme varies greatly depending

on context.

O. Fujimura [21] proposed that the syllable be adopted as the

minimal phonological segment unit since coarticulatory effects across

syllable boundaries (wherever they are clearly defined) are mostly

natural and universal (unlike phoneme boundaries). He suggests that

together with prosodic information of the syllable, syllable

concatenation will be efficient and requrre simple boundary

manipulation. Classification of syllables should be in terms of classes of

features: nucleus, initial and final, and then in terms of subclasses

within each class ie. a hierarchical strategy. He also proposed the

measure of 'vowel affinity' to constrain admissable syllable structures

in English. Mermelstein [22] has however shown a case where this

phonological criteria tends to break down.

Mermelstein [22] defined a "loudness" measure for the speech

signal obtained from the speech power spectrum and used it to

segment speech into syllabic units. Relative loudness maxima represent

potential syllabic peaks and relative loudness minima as potential

syllabic boundaries. The term 'syllabic unit' was introduced to refer to

these speech segments to differentiate them from syllables defined at

the phonological level. Tests on 430 syllables showed 6.9% syllables

missed and 2.6% extra syllables. Possible contractions across words in

continuous speech may cause the syllable count for a sequence of words

to be smaller than the individual syllable count. A set of rules

predicting such phenomena may be used to take this effect in to

account.

Following Mermelstein's line of concept, Kasuya & Wakita [40]

have proposed the intersyllabic segment (a sound segment bounded by

two successive syllable centres) instead of the syllabic segment as the
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unit of analysis. Their basis is that syllable centres are more reliably

detected than syllable boundaries, and that it also reduces the number

of alternative hypotheses that will have to be considered at the higher

linguistic level. The RMS energy of the input signal is used to detect

dips and peaks which are then classified as consonant segments or

vowel-like segments. Since this work relies on detecting syllable nuclei

(vowel-like segments) claiming 96.1% syllable nuclei correctly detected,

the methods are also useful in syllable based work.

The syllable based approach for speech recognition is most popular

In Japan. This is because Japanese is a clearly syllable based

language. Japanese syllables take the simple form of a consonant

followed by a vowel (CV) or monosyllables. In addition, they are limited

in number up to about 100. Thus the syllable is a suitable unit upon

which to base recognition of Japanese speech. The syllable has also

received considerable attention in France for similar reasons.

The syllable structure is composed of a syllabic nucleus preceded

and followed by consonant clusters (initial consonant clusters and final

consonant clusters respectively). Consequently, the common approach is

to identify vowel and consonant segments in the input signal. A

popular method is syllable matching based on the dynamic time

warping (DTW) algorithm using templates created from CV and VCV

type syllable utterrances ([55], [56]). VCV sections are relatively easily

segmented by locating the vowel portion as syllable nuclei. Moreover it

also contains the transition feature between phonemes avoiding the

difficulty of exactly identifying consonant boundaries. Hataoka et al

[57] segment the input speech into CV or VCV sections by first

locating stationary intervals, and then detecting the vowel interval

from the stationary parts. The consonant part lies within the interval

between two vowels, and is recognised by DP matching with VCV
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reference templates. Although this work is aimed at phoneme

recognition, it presents a method for the automatic creation of VCV

reference templates applicable to syllable based recognition. Stationary

interval detection rate of 100%, vowel interval detection of 97.4% and

vowel deletion rate of 2.6% are claimed.

Another approach proposed by Gauvain [58] is to create the

reference pattern for each word by concatenating isolated syllable

templates, and then matching with the test utterance using DP. The

advantage of this method is that it bypasses the problem of

segmentation of the speech training and test data. The results show an

error rate of 12% compared with 6% for matching whole word

templates. This suggests that improvement may be expected by using

syllable prototypes extracted from words (ie naturally spoken

utterances) in order to take in to account the allophonic variations due

to coarticulative effects within syllables. This implies the use of a small

number of context sensitive templates for each syllable ([59], [60]).

Hoge et al [59] apply clustering technique [61] to the training segments

to build three representative templates for each initial and final

consonant segment considering three different vowel contexts (front,

neutral and back).

Another method is to obtain the result of syllable recognition in

the form of a syllable lattice as a mechanism against failure in the

matching stage. The matching score for each syllable candidate in the

lattice acts as a reliability measurement. The lattice can be fed into a

linguistic processor for error correction ([56], [62]). With a lattice depth

of 10 syllables, the correct syllable is to be found in the lattice 96.6%

of the time.

Tanaka & Kamiya [62] perform syllable identification by using

syllable descriptions in which phonological variations of syllables (eg,
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vowel reduction or vowel deletion) have been accounted for. The

method is to characterise the speech input in to one of 18 symbols

every 8 ms. The syllable is identified (upto three candidates are

chosen) by matching a sequence of these symbols with syllable patterns

in descriptive form, taking in to account phonological variations.

Syllable hypotheses are generated from a rewrite rule table to account

for syllable substitution/deletions. Top down verification is then

performed on the syllable lattice to check syllable concatenation.

Accuracy of 93.7% is reported.

1.3.2.2.2 Segmentation and Labelling of Phoneme-like Units

From the practical point of view, this approach is the most

appealing considering the small number of phonemes in comparison

with the number of words in a language. The main advantage is that

in languages which use alphabetic writing of any kind (as opposed, for

example, to ideography in Chinese) the letters and their combinations

reflect (with varying degrees of consistency) a linear arrangement of

phoneme realizations. Sequences of phoneme-like segments can be

transformed into strings of letters in conventional orthography with a

minimum of rules and vocabulary lookups when it is desired that the

output of a speech recogniser should be used in a speech-to-text

conversion. However, its implementation has proved to be difficult.

Phoneme segment boundaries cannot be identified with absolute

certainty ([26], [63]). To cope with this problem the following strategies

have been tried :
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(i) Phonetic lattice.

The context within which a word is spoken causes acoustic

variations that can lead to ambiguities in segmentation and labelling

[26]. To cope with these ambiguities, some vagueness is incorporated in

to the recognition process ([26], [64]), ie. rather than making a single

decision, alternative choices in the form of a lattice are generated so

that the correct class is included, and hence increasing the chances of

correct recognition. The disadvantage is that many other words are

found (depending on the amount of vagueness) in addition to the

correct word. The BBN HWIM system performs more than a single

segmentation of any region of the utterance producing a lattice of

segments enabling different paths to be taken within the region [26].

(ii) Centi-second Labelling.

This method is also called the "Recognition-then-Segmentation" or

"Segmentation-by-Recognition" approach [1]. It involves the labelling of

each 10 milli-second (hence centi-second) speech spectral frame by

matching with a set of spectral prototypes for each phoneme. Centi­

second segments with similar labels are then grouped in to a single

phone. The boundaries of a segment are determined by a change of

classification between two adjacent time samples. Errors in labelling

are most likely to occur at the transistional part between two

phonemes.

(iii) Separate Segmentation and Labelling.

Together with centi-second labelling, this method has been the

common approach. The segmentation of an utterance into phoneme-like

units and the classification of these segments is treated as independent

parts. The basis for much of the work using this method is the fact
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that speech is composed of intervals such as quasi-stable intervals in

which the parameters remain in almost constant state, and transient

intervals in which parameters undergo gradual change [65], [27]. Reddy

[27] uses intensity levels of the time domain speech waveform to

determine acoustically similar 10 msec segments, and groups all

segments that lie within a tolerance interval to form a sustained

segment.

The mean-square distance between succesive spectra may be used

as a measure of their dissimilarity. A threshold may be applied to this

measure to determine segment boundaries (Beninghoff & Ross [51]).

The setting of the threshold is critical. If set too high , segment

boundaries may be missed (segment deletion errors), and if too low,

then extra boundaries are detected (segment insertion errors).

An approach proposed by Charbonneau & Moussa [52] is to apply

multidimensional scaling analysis on the 25 channel speech frequency

power spectra to reduce it to a lower dimension of 7 channels. The 7

channels represent a point in a 7 dimension space in which a

transition between two phonemes induces a significant variation on at

least one axes. 4% segment insertion error, 19% segment deletion error

are reported. 95% of the boundaries detected were correct.

L. Kot [66] proposes a segmentation technique based on the

Syntactic Theory of pattern recognition developed by K.S. Fu [67], and

which has also found favour with P. Mermelstein [68] and R. de Mori

[69]. It makes use of the similarity relations among the momentary

spectra composing the dynamic spectrum of an utterance. These

relations are described by a context sensitive grammar, thus a priori

information concerning the structure of the dynamic spectra of the

speech signal is required. 90% correct segmentation of Polish

utterances is reported.
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The method of Bridle & Sedgwick [70] is to represent frames

within a segment by an average spectrum. The aim is to minimise the

spectral deviations within the segment from its corresponding average

spectrum. A "segment evaluation function" measures how well any

given portion of the utterance can be represented as a single segment.

The segmentation process finds the sequence of segments which best

represents the whole utterance.

R. Andre-Obrecht proposes a statistical approach [71], [72]. The

speech signal is modelled by an AR statistical model and test statistics

are used to sequentially detect changes in the parameters of the model.

Jumps in the model parameters always correspond to an articulatory

or an acoustic change. Most segments are stationary parts of

phonemes.

The above discussion outlined some of the different approaches to

segmentation of speech into phoneme-like units. The following

discussion considers the labelling of these segments.

The labelling technique common to most designs of isolated word

recognisers based on recognition of phoneme-like templates is the

template matching method with dynamic time warping of the unknown

input segment with the reference phoneme-like templates. The

differences are mainly in the approaches to phoneme representation.

Some of these approaches will be discussed by considering some system

designs based on this technique.

To deal with time-varying patterns by algebraic operation, the

method adopted by K. Tanaka [37] is to express phonemic values by a

matrix composed of acoustic parameters, in which the time factor is

taken into account in its column components. Phonemes are defined in

terms of potential functions within this matrix space. Some of the

phoneme regions are considered to be of complex shapes. A linear
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combination of Gaussian subpotential functions are chosen to represent

such phoneme regions. This enables the system to function with little a

priori knowledge of individuality and coarticulation.

Since speech sounds do not fully occupy the space of all possible

sounds that may be represented by a multi-dimensional feature space,

a technique known as vector quantization is used to reduce the data­

rate of the speech signal. Spectral data at each sampling interval (also

called a "frame") is compared with a set of pre-stored reference frames

(called a codebook). Each frame of the codebook is associated with a

different output symbol. Each frame of the input signal is replaced by

one from the codebook to which it is 'nearest' (according to a distance

metric), thus the speech signal is transformed into a sequence of

symbols. This process is used in the word recognition system of

Sugamura et al [73] based on their proposed SPLIT (Strings of

Phoneme-LIke Templates) method. 256 phoneme-like templates are

generated by applying the vector quantization technique to a few

thousand frames selected arbitrarily from training utterances. The

training word is divided into 16 msec segments (frames) and each

segment is compared with and assigned the symbol of the phoneme-like

template which minimises the spectral distance between the two. In

this way, the word templates are represented as sequences of phoneme­

like templates. In the recognition stage, the spectral distance between

each frame of the input word and each phoneme-like template is stored

as an element of a distance matrix. Summing the elements of this

matrix gives the total spectral distance between the input word and

each word template. This distance measure is minimized using

dynamic time warping.

The approach of Makino & Kido [13] is to first locate the typical

frame of the phoneme-like segment. Phoneme recognition is achieved
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by applying the Bayes decision method to the output of a discriminant

filter for that typical frame. The output of the discriminant filter is a

weighted summation over 7 frames preceding and following the typical

frame, of the sum of the logarithmic output of a 29 channel band pass

filter. The weight vectors have been preset for each of 11 features such

as fricative, nasal, voiced plosive etc. The standard pattern of each

phoneme was made using samples extracted manually by visual

inspection. Since a preset number of frames are considered for each

typical frame, no time normalisation is required. An overall correct

phoneme recognition score of 75.9% is reported. Word recognition of

92.4% was achieved by calculating the likelihood between every item of

the word dictionary and the phonemic sequence output from the

recogniser. Probabilities of insertions, omissions, and substitutions of

phonemes are also taken in to account during computation.

An interesting approach is that of computer generated phonemes

(CGP) proposed by Hinton & Siegel [74]. The CGP is a vector of

features (LPC coefficients, zero-crossing rate, energy) generated to

represent consistent regions of speech and hence model the different

phonetic sounds of the word. The CGP is created when the speech

signal indicates that the vocal tract is relatively stable (by measuring

similarity between successive frames), or when an unvoiced fricative

(high zero-crossing rate) occurs at the beginning or end of a word.

When such points are detected, an "anchor frame" is established. The

CGP consists of the individual average of the features of a preset

number of frames prior to and following the "anchor frame". The

averaging is done to remove transient variations in the features for

that segment of speech. Slowly varying speech sounds such as vowels,

glides, liquids and diphthongs are represented by more than a single

CGP. This technique has the effect of speech compression since a small
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number of CGPs will represent a relatively large segment of speech.

Each word is thus represented by a string of CGPs. To account for the

different variations in utterances of the same word, each word in the

classifiers vocabulary can be expressed by CGP strings of different

lengths and/or CGP sequence. Classification is made by dynamic time

warping between the test word and the reference templates for each

word.

Whereas the methods discussed above recognised a phoneme by

measuring similarity to all phoneme templates simultaneously as a

single process, the approach of Morii et al [75] (implemented In

hardware by Hiraoka et al [76]) is to perform discrimination of

phonemes individually for vowels, semi-vowels and consonants.

Consonants are further classified into groups of phonemes with similar

features, and then the individual phoneme is discriminated from within

this group.

A recent approach which is a knowledge based approach (hence

beyond the scope of this thesis but is being mentioned here for

completeness), is that of top-down phoneme verification [77], [78], [79].

Previously, the top-down approach, which is based on hypotheses

verification, was applied to sentence level verification and word level

verification. The expectation is that extending this approach to the

phoneme level may produce more accurate recognition. Indeed,

Morishima et al [77] achieved an average recognition accuracy for

fourteen consonants of over 96% . Knowledge of possible coarticulations

caused by phoneme concatenations is contained in a knowledge source.

This is used to verify the phoneme sequence hypothesis derived from

the word verification level.
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1.3.2.2.3 Segmentation and Labelling of Broad Phonetic

Sequences

The variability of phoneme sounds makes reliable identification of

correct sequence of phoneme classes a difficult objective to achieve.

Then there is also the problem of lexical access for very large

vocabularies. The idea of segmenting an utterance into a sequence of

broad (coarse) phonetic classes was proposed by Shipman & Zue [80] as

another approach to this problem. They have demonstrated this method

to be an effective and efficient way for discriminating among words in

a large lexicon.

Their approach is to segment the utterance into a sequence of six

manner of articulation labels; vowel, strong fricative, weak fricative,

stop, nasal and glide. The lexicon is partitioned into equivalence

classes. An equivalence class is a set of words for which the

segmentation process produces the same sequence of broad phonetic

labels. For a 20,000 word lexicon, there are an average of 35 words per

equivalence class. The largest equivalence class has about 200 words,

which is only 1% of the lexicon. Thus the unknown utterance after

segmentation into sequence of broad phonetic labels, is narrowed down

to one of the equivalence classes. Detailed phonetic analysis identifies

the input with one of the entries in the equivalence class.

Since less detailed distinctions are needed to produce a broad

phonetic representation than a detailed phonetic representation (eg,

phonemes) they are relatively more robust to acoustic variability due to

phonetic context, and even across different speakers (useful for speaker

independent recognition). A situation when an error can occur due to

variability in the speech signal is deletion of a phoneme. This will

affect the sequence of broad phonetic labels representing the utterance,

and hence cause the selection of an incorrect equivalence class. Some
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broad phonetic classes are confusable. For example, a noisy stop gap

results when the closure in the stop gap is incomplete, causing it to be

labelled as a weak fricative. This problem may be overcome by

allowing multiple representations of the word In the lexicon.

Huttenlocher & Zue [81] have studied how variability in the speech

signal affects the broad class representation. Their study revealed that

the phonetic information around stressed syllables are much more

important in recognition than the information around unstressed

syllables. This is due to the fact that phonetic segments around

unstressed syllables are more variable than those around stressed

syllables and hence less reliable in recognition. Furthermore, almost all

segment deletions occur around unstressed syllables. This suggested

that the words be classified according to those phonemes around

stressed syllables only and to disregard those around unstressed

syllables.

Lagger and Waibel [82] propose a knowledge source that uses

coarse phonetic information to derive the coarse phonetic class

segments. To correct for errors, dynamic programming is used to align

the errorful coarse class string to the coarse class strings of the

lexicon.

The effectiveness of this approach has established it as a useful

alternative for large vocabulary isolated word recognition.

1.3.2.3 Word Matching

The output from the segmentation and labelling stage consists of a

string or lattice of phonetic symbols associated with the unknown input

utterance. The function of the word matching stage of the system is to
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identify this string of symbols or lattice with an entry in the lexicon

and output it as the recognised word.

The segmentation and labelling process produces three types of

errors; insertion and deletion errors due to errors in segmentation, and

substitution errors due to misclassification by the labelling process

owing to ambiguities in the speech data for the phoneme-like segments.

Thus error correction must be performed on the string (or lattice) of

phonetic symbols before attempting to match it with a word in the

systems lexicon. This is achieved by applying a linguistic processor to

the string of phonetic symbols.

One approach is to use a distance function to measure the

closeness of the phonetic string to a word in the system's lexicon, and

to choose the word that is closest to the phonetic string as the final

decision of the speech recogniser. The Hamming distance may be used

if the two strings to be compared are of the same length. The

Levenstein distance [83] is commonly used if the two strings are of

different lengths. This method transforms a string 8 1 into another

string 8 2 by substituting n, symbols, inserting n; symbols and deleting

nd symbols. The Levenstein distance is defined as the minimum

number of these operations required to transform 8 1 into 82 , as given

below:

LD(81 --> 82 ) = min tn, + n, + nd )

nB'~,nd

The phonotactic rules of a language express which combination of

phonemes are possible and which are prohibited. An approach proposed

by Kashyap & Mittal [84] uses these ru1es to eliminate the invalid

phoneme combinations generated by the string transformation process.

This step produces a few words that are possible correct
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representations of the phonetic symbols string input to the linguistic

processor. The distance between each word in the set of possible words

produced by the error correction process and the phonetic symbols

string is computed and the utterance is recognised as the word that

gives the minimum distance and also has an entry in the lexicon.

1.4 Summary

Isolated word recognition by matching whole words is the most

successful approach to speech recognition. One problem with this

approach is that as the vocabulary of the speech recogniser is increased

ie. large vocabulary isolated word recognition, there is a corresponding

increase in computation time and memory requirements for template

storage. The solution to this problem has been to base recognition at

the sub-word level. The idea is to segment the word into smaller units

and then to recognise the word as a sequence of these units.

Three approaches are most commonly used in implementing this

method; segmentation of the word into syllable sized units,

segmentation into phoneme-like units, and segmentation of the word

into a sequence of broad phonetic units such as fricative, stop, nasal

etc. The phoneme-like unit is chosen as the sub-word unit for the work

presented in this dissertation.

To recognise the sub-word units, the two most common approaches

are template matching by the dynamic time warping technique and

hidden Markov models. The output from the speech recogniser is a

string of labels corresponding to the sub-word units within the

unknown word input to the recogniser. Recognition errors in the string

of labels output by the recogniser may be corrected by a linguistic

processor.
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CHAPTER TWO

NEURAL NETWORKS IN SPEECH RECOGNITION

2.1 Introduction

The established models (state of the art) for basing the design of

speech recognisers are the template matching and hidden Markov

model approaches. These models are relatively simple descriptions of

the speech recognition process, hence experience has shown that a limit

in their performance is reached after which further improvements

become very difficult to achieve. In the words of M. Allerhand [85]

"Basically these simple models are just not rich enough to

describe a process as specialised as speech recognition."

Researchers have therefore continued to explore alternative approaches

to this problem.

Since human beings are the best pattern recognisers to date,

many research groups have investigated if the cognitive processes of

the brain may be achieved by models based on the structure of the

brain [86], [87], [88]. Work on pattern recognising neural networks

mainly began in 1943 with the McCulloch and Pitts Model of the

neuron. The 1950s saw much interest in neural networks, one of the

most popular being Rosenblatt's perceptron. In 1969, Minsky & Pappert

demonstrated limitations in the perceptron approach, as a result of

which interest in this area of research diminished. However,
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researchers such as S. Grossberg, J.A. Anderson and J. Hopfield in

U.S.A., E. Caianiello, T. Kohonen and I. Aleksander in Europe [89],

and S. Amari in Japan, continued work on neural networks during the

1970s.

Recent work in the U.S. by Hopfield, Rumelhart and McClelland,

Sejnowski, Grossberg and others [88], [89], in developing new network

topologies and training algorithms has led to a resurgence of interest

in the field of neural networks. Workers elsewhere have also made a

significant contribution; Aleksander, Stonham & Wilkie's WISARD [6],

a visual pattern recognition device capable of operating at TV frame

rates [91], Kohonen's self organising feature maps [92], and K.

Fukushima's neocognitron that can distinguish and read handwritten

numbers [93]. The neocognitron can separate out and recognise 4-digit

numbers in 0.8 second.

The year 1987 has seen the start of significant activity by the

neural networks community at an international level. The first IEEE

International Conference on Neural Networks was held in San Diego,

and the International Neural Network Society was founded.

That the neural network approach is now established as a

credible approach towards replicating human behaviour in machines

can be seen from the fact that Japan's Ministry of International Trade

and Industry (MIT!) (of which S. Amari is a key adviser) is to

announce the formation of a study group to formulate plans for a new

national neurocomputer project expected to match the fifth generation

computer project in scale [94]. Giant companies such as IBM Corp. and

Texas Instruments Corp. have also invested in neurocomputers [86].

Most of the work on the speech recognition problem has been

based on the algorithmic approach ie. to mathematically model the

speech recognition process and implement it as a computer program on
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a conventional computer. The disadvantage of this approach is that

before a computer can be programmed to carry out a function, that

function must first be understood and then an algorithm must be

devised for implementing it. It is admitted that current knowledge on

many aspects of speech recognition (as with other areas of pattern

recognition) is incomplete (eg. acoustic-phonetics). Neural networks

offer a way round this problem. They learn from experience (like

humans do) and no programming is involved. Examples of the patterns

to be recognised are input to the net and the net adjusts its

parameters (ie, learns). After the net has learnt all the desired

patterns, should a pattern similar to one it has "seen" during the

learning phase be input to the net again, the net makes an association

between the two. Currently, not much is known regarding the

functioning of the brain. Neural network researchers (eg. Rumelhart &

McClelland) hope that studies of the behaviour of neural nets may

offer clues as to how the brain might function.

Recent books dealing with speech recognition [95], [96], [97], do

not mention the alternative approach offered by neural networks.

Holmes [98] gives it a very brief mention. The application of neural

network models of Rumelhart & McClelland (the PDP group) and

Kohonen to the speech recognition problem has enabled the neural

network approach to be accepted as a genuine alternative to the

traditional algorithmic approach to speech recognition.

2.2 Review of Neural Networks in Speech Recognition

Most of the initial work with neural nets dealt with pattern

recognition problems related to vision (eg. character recognition). The
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works of the PDP Group and Kohonen have been the most successful

at demonstrating the effectiveness of neural networks in speech

recognition.

(i) The TRACE Model

The TRACE model of McClelland & Elman [89] consists of a

very large number of parallel processing units arranged at three levels;

feature, phoneme and word levels (fig. 2.1). This architecture is

motivated by the fact that perception experiments with humans

indicate that different sources of information are used in recognising

words and the phonemes within them. The input speech stream is

divided into 5ms time slices. The model processes 500 ms of speech

(100 time slices). Since speech patterns of phonemes are affected by

context, McClelland & Elman prefer to identify phonemes by examining

the speech stream for characteristic patterns rather than segment into

separate units.

The feature level compnses a bank of feature detectors

(acuteness, diffuseness, voiced etc.) at each time slice. At the phoneme

and word levels, there are detectors for each phoneme and each word

respectively. For each phoneme there are copies of phoneme detectors

spanning several feature slices. These detectors are arranged so that

they overlap. This procedure is repeated for the word level.

Processing is performed in the model by the excitatory and

inhibitory interactions of the units. There are excitatory bidirectional

connections between feature units and phoneme units consistent with

those features, and between phoneme units and the word units

representing words that contain those phonemes. Connections between

units on the same level are inhibitory.
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Phoneme identification is influenced by information from the

feature level and also by the lexical effects produced by feedback from

the word level to the phoneme level. When information from the

feature level is lacking, the lexical level is able to compensate for this.

It also enables the model to recover when the start of words are

distorted. A difficult problem in speech recognition is to determine the

word boundaries when the phoneme that a word ends with and the

phoneme that the following word begins with are the same. TRACE IS

able to perform word segmentation in such cases.

The major drawback with TRACE is that the phoneme and word

levels consist of copies of detector units overlapping in time, requiring

the replication of connection patterns between features and phonemes,

and between phonemes and words. Besides this there are the usual

stumbling blocks for speech recogmsers; speaking rate, speaker

characteristics and noise.

II §~~/t~:~fi~tr
- ~B~·T:~i:::S:S3~1·S?

Figure 2.1 The three level architecture of the TRACE model
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(ii) Kohonen's "Neural" Phonetic Typewriter

Kohonen's "neural" phonetic typewriter [99] is probably the only

existing neural net based speech recogniser brought to a commercial

stage. It uses an ffiM PC AT as the host processor and can operate in

one of two modes; transcribing dictation of unlimited text (92% to 97%

accuracy), or isolated word recognition from a 1000 word vocabulary

(word recognition accuracy of 96% to 98%). The basis for the design is

the self-organising neural net model proposed by Kohonen. This is a

two-dimensional array of output nodes (neurons) that adapts itself to

input speech spectra in such a way that groups of nodes in different

parts of the net become sensitised to the different phones in speech.

The representations of the phonological features in speech by the

network are called phonotopic maps [92].

The network is organised as a two-dimensional array of nodes.

The external input to the net consists of 15 channel speech spectra.

The input is connected in parallel to all nodes in the network enabling

the input speech spectra to be applied simultaneously to all nodes.

Lateral interactions between nodes is provided by feedback connections.

The strength of these connections varies with distance as per the

"Mexican hat" function.

To produce the phonotopic maps, all the weights from the

external inputs to the nodes in the network are initialised to small

random values. An input pattern vector (15 channel speech spectra) is

applied to the net and by computing the distance between the input

vector and the weight vectors for all nodes, the node that best matches

the input is located. The weight vectors for this node and all other

nodes in its neighbourhood (the size of this neighbourhood is

predefined) are updated. The weight vectors of nodes outside this

neighbourhood remain unchanged. The next input pattern vector is
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presented to the net and the process is repeated. As more input vectors

are presented to the net, the size of the neighbourhood of the best

matching node is slowly decreased with time. After sufficient input

vectors have been presented to the net (about 5,000), the net

topologises itself in an orderly manner. The various nodes of the

network become sensitised to spectra of different phonemes. In the

speech spectral data, the spectra is clustered around phonemes and the

self-organisation process in this network is able to find these clusters.

The nodes are labelled by using spectra of known phonemes. If now

unknown spectra are input to the net, the node with the weight vector

closest to the input responds.

The net acts as a vector quantiser with the node weight vectors

defining the vector quantisation of the input signal space. Comparison

with vector quantisation (VQ) algorithm using K-means clustering have

demonstrated that Kohonen's self organising feature map algorithm

provides VQ codebooks superior to those created by the clustering

algorithm [100].

An attractive feature of this neural network is that learning is

unsupervised. Speech spectra are presented to the net and the self­

organising process enables the net to adapt to the speech data. The net

finds the relevant features in the speech signal by itself.

As a result of the recent interest in neural nets for speech

recognition, other neural network models such as the Boltzmann

machine [101], and single/multilayer perceptron [102], are being

experimented with.

The temporal nature of speech is a major problem for speech

recognisers. Dynamical networks are being assessed in this connection
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[103]. The network alters its behaviour to try to follow the input and

hence adapt to changes in the speech rate. Recurrent networks have

been shown to be able to represent temporal dependencies internally

[104].

The standard model of speech as used In LPC Ignores

nonlinearities in the speech production system. A multilayer neural

network trained as a nonlinear predictor of the speech signal gives

predictions with lower mean square error than LPC of the same order

[105]. Furthermore, feeding the predicted samples back into the

network enables the network to generate a signal with power spectrum

similar to the spectrum of the original speech. This shows that the

network is able to approximate the dynamical equations that produce

speech.

In the next section the WISARD N-tuple pattern recogmser

which is the basis for the speech recogniser designs presented in this

work, is briefly reviewed.

2.3 WISARD Nets

Despite the disillusionment to research into neural networks

caused by Minsky & Pappert's analysis of the perceptron, Aleksander

and his colleagues continued to research towards a neural network

based artificial vision system capable of working at TV frame rates.

The result was the WISARD system (Wllkie, Stonham & Aleksander's

Recognition Device) [6], [7], capable of processing a 512 x 512 binary

picture in real time. A review of work relating to artificial vision with

single layer WISARD nets is made by Hassan [106].
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The WISARD net is a hardware realisation of the N-tuple

sampling method for pattern recognition proposed by Bledsoe &

Browning [B]. Figure 2.2 shows the basic structure of a WISARD net

based pattern recogniser. The binary pattern to be processed (ie.

trained/classified) by the network is stored in a 2 dimensional binary

array referred to as the 'retina' (so called since the WISARD system

was designed as an artificial vision system). Each class of patterns to

be recognised by the network is represented by a discriminator. Each

discriminator is a single layer network of random access memones

(RAMs). (Aleksander has shown that a RAM in terms of logical

function is equivalent to a neuron [7], [107]). N bits are sampled from

the 'retina' and grouped together to form an N-tuple. Each N-tuple

sampled from the 'retina' has a corresponding RAM in each class

discriminator, and the N-tuple is the address of a cell in that RAM.

The number of RAMs required per class discriminator is numerically

equal to the number of N-tuples needed to sample the whole 'retina'.

Thus for a 'retina' size of x x y bits, and tuple size of n, the number of

N-tuples required to map the whole 'retina' is (x x y)/n. Each RAM in

the class discriminator is a 2n x 1 bit RAM (ie. the size of the RAM is

dependent on the N-tuple size).

The mapping of the 'retina' into N-tuples may be done in one of

two ways; linear or random mapping. For linear mapping, n

consecutive bits are grouped to form the n-tuple. The next n-tuple

would be formed from the next consecutive n bits and so on until the

whole 'retina' has been mapped. For random mapping the n bits are

sampled at random from all unmapped bits in the 'retina'.

The N-tuple size and number of patterns in the training set

affects the classification performance of the net [lOB]. Experiments

have shown that for a given N-tuple size, performance improves with
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increase in size of the training set up to a certain point beyond which

performance drops with further increase in the size of the training set.

The net is said to have saturated. By increasing the N-tuple size the

net can accommodate a training set of a larger size before saturation

occurs. Performance improves with Increase in N-tuple size but a

larger training set may be needed (compared with that for a smaller

N-tuple size).

An interesting aspect of the N-tuple method of sampling the

patterns input to the network IS that it enables the network to

generalise and hence recognise patterns other than those in the

training set [108]. The patterns that the network generalises are

variations of those it has been trained on. This a useful feature to

have in a speech recogniser.

Training the WISARD net is a simple and fast process. No

complex training algorithms are needed as with most other neural

network models (eg. error back propagation algorithm [88], and

Kohonen's self organisation algorithm [92]). To train the net, initially,

all class discriminators are cleared and then examples of patterns to be

recognised are placed in turn, on to the 'retina'. The pattern on the

'retina' is mapped into N-tuples and a '1' is written to the RAM

locations addressed by the N-tuples, in the discriminator assigned to

the class to which the training pattern belongs. All training patterns

belonging to a particular class are trained in to the discriminator

assigned to that particular class. Provided the net does not saturate, as

many patterns as necessary may be trained into the discriminator

without requiring extra memory to accommodate these patterns. Also,

the N-tupled representations of each pattern trained is retained in the

discriminator. In contrast, a template matching based pattern

recognition system requires all training patterns belonging to a
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particular class to be averaged into a single template representing that

class or else have a template for each training pattern in which case

memory requirement increases with the number of templates.

To classify a pattern, the test pattern is placed on to the 'retina'.

The 'retina' is mapped into N-tuples and the RAM locations addressed

are read for each class discriminator. The score of a class discriminator

for the test pattern is obtained by summing the number of 1's output

by the RAMs in the discriminator. Thus the class discriminator whose

N-tuple states are most like those of the test pattern will give the

highest score. The test pattern is assigned the label of that class

discriminator. This pattern classification scheme is both simple (as

compared with other methods such as template matching) and

extremely fast ego a WISARD net with N-tuple size of 2 (ie. 2-tuple)

can classify a 512 x 512 binary image in about 0.25 second. A WISARD

net is therefore able to respond in real time. The response time

depends mainly on the size of the 'retina' and on the RAM access time.

In general, for a WISARD net (single layer network) with c class

discriminators, R = {rHr2,ra, ....r.] is the set of responses (ie. scores) from

all class discriminators to a pattern input to the network, then

(i) The response of the network, R, to the input pattern is the

response of the class discriminator with the highest response.

R = MAX (R) = r M

(ii) The decision of the network, D, ie. the class that the network

identifies the input pattern with, is the identity of the class

discriminator with the highest response (rM)'

D=M
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(iii) The confidence of the decision, ~, is the difference in response of

the highest responding discriminator and the next highest one.

The following section discusses the application of single layer

WISARD nets in speech recognition.

2.3.1 Single Layer WISARD Nets in Speech Recognition

Most of the work with WISARD nets has been related to

problems in artificial vision. In 1983, the research group of A. Badii

and M.J. Binstead was initiated under the guidance of T.J. Stonham

and A. Jones to investigate the recognition of isolated words by single

layer WISARD nets [11]. Owing to resource constraints Badii &

Binstead used a word-set comprising 16 isolated utterances from a

single speaker to evaluate their isolated word speech recogniser. These

utterances were chosen such that there were sets of rhyming words

which would be confusable to the recogniser [12]. The input to the

recogniser consisted of 8-bit samples from a 19 channel filter bank

(FFT). Each word was treated as a separate class thus there were 16

discriminators in the recogniser. An average word recognition accuracy

of 94.25% was achieved for this word-set with an 8-tuple WISARD

recogmser, For comparison purposes, results were also obtained for

recognition of this word-set using the conventional DTW based

template matching scheme. 89.2% average word recognition accuracy

was obtained for this approach. Thus significantly better recognition

performance was achieved with the WISARD net based speech
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recogniser. This was despite the fact that no time normalisation was

incorporated into the WISARD net speech recogniser. Furthermore, the

WISARD approach has virtually no computational overhead compared

with that required for DTW.

Experiments were also performed for vowel detection [12]. The

vowel samples were obtained from a 16-channel filterbank every 5 ms.

The vowel samples in the set of utterances used for evaluating the

WISARD net vowel detectors were handcrafted. After training the

vowel detectors using these samples, classification was achieved by

sliding a window across the test utterance and observing the response

of the discriminators (vowel detectors). The idea is that when the

sliding window encounters samples corresponding to vowels in the

utterance, the discriminator trained to detect that vowel would respond

strongly. The discriminators' response in non-vowel regions of the

utterance would be low. To account for variations in the duration of

the vowel samples, each vowel detector comprised six discriminators

with each discriminator windowing a different length of time. 61.8%

vowel recognition accuracy is reported.

The results obtained for isolated word recognition using WISARD

nets are comparable with those reported for other methods such as

template matching, and suggest it to be a useful alternative approach

to speech recognition deserving further study. The work presented in

this dissertation is also aimed at isolated word recognition from the

word-set of Badii & Binstead but through the sub-word approach (the

Badii & Binstead isolated word recogniser is based on the whole word

matching approach). The advantages of the sub-word approach over the

whole word matching approach were discussed in Chapter 1.

The WISARD net has features that make it suitable for use in

speech recognisers. The training procedure is very simple (examples of
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speech patterns to be recognised need only be presented to the net)

and the nets can be trained very quickly (no iterative training

algorithms required). However, training has to be supervised ie. the

speech patterns to be trained must be labelled so that it can be trained

into the correct discriminator. WISARD nets are easy to implement in

hardware and at a low cost, ego for the speech recogniser designs

proposed in Chapters 4 and 5, the 22 class discriminators representing

the phoneme-like segments to be recognised can be accommodated in a

1 Mbit RAM. The low computational overheads in classifying patterns

will enable the speech recogniser real time response. The generalisation

feature may enable the speech recogniser to cope with some of the

variabilities in the input speech patterns. The fact that many training

patterns belonging to the same class can be trained in to the same

discriminator is particularly useful for implementing the sub-word

approach to speech recognition. It is known that the context in which a

phoneme occurs affects its spectral patterns, thus the recogniser would

need to be trained with examples of the contextual variations of each

phoneme to be recognised. With a WISARD net based recogniser, all

contextual variations of a phoneme may be trained into a single

discriminator assigned to that phoneme, and the discriminator will

retain the N-tupled representation of each of these training patterns.

This would not be possible in a template matching system without

multiple templates for each phoneme. Also, the number of RAMs

required per class discriminator is independent of the number of

examples in the training set (provided the net does not saturate).

The following chapters of this dissertation discuss two designs

using the single layer WISARD net for isolated word speech recognition

based on the sub-word approach.
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2.4 Summary

Limitations in the performance of speech recogmsers based on

conventional algorithmic approaches is due to the fact that current

knowledge of the speech recognition process is incomplete, thus the

models used are simple descriptions of the speech process. The neural

network approach requires no programming. Examples of the speech

data to be recognised are presented to the network and the network

adapts to this data (ie. learns). A learning algorithm enables the

network to find the relevant features in the speech signal.

The work of McClelland & Elman (TRACE) and Kohonen (self

orgamsmg network) has established neural networks as a serious

alternative approach to achieving speech recognition In machines.

Currently various neural network models are being applied to different

aspects of speech recognition.

The WISARD neural network model is an implementation in

hardware of the N-tuple method for pattern recognition first proposed

by Bledsoe & Browning. It has features that make it suitable for use

in speech recognition. The training procedure is simple and fast since

the iterative learning algorithms needed for training most other neural

networks are not required. The net is able to respond in real time to

input patterns since very little computation is required in the

classification process. The net's generalisation feature may enable it to

cope with small variations in the input pattern (in relation to the

patterns it was trained on). The cost of implementing the WISARD net

in hardware is low.
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CHAPTER THREE

SEGMENTATION OF ISOLATED WORDS

3.1 Introduction

To perform isolated word recognition by the sub-word unit based

approach, it is first necessary to partition the word into segments

corresponding to the chosen sub-word unit. Phoneme-like segments are

chosen as the sub-word unit for the work presented in this

dissertation. There are two approaches to the segmentation problem:

(i) Some measurements are performed on the spectral data for the

utterance and the spectral frames where these measurements exceed a

preset threshold are marked as boundaries of the phoneme-like

segment.

(ii) The spectral data from the utterance is considered as frames

over a fixed time interval (commonly 10 ms), Each frame is labelled as

belonging to a phoneme-like segment. Frames with the same label are

grouped into a single segment.

In this chapter, an improved method for automatic segmentation

of isolated utterances into segments of the size of phoneme-like units

based on the first approach mentioned above, is presented.

Listening to a word being spoken, the phones are clearly

discernable. Therefore on examining a spectral representation of the
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word, it is expected to observe a similarity between the spectral

patterns corresponding to a particular phone, and that the spectral

patterns would change as the utterance proceeds into the following

phone. These observations suggest the use of distance calculation

between successive spectral frames as a measure of their dissimilarity,

which is then compared to a distance threshold. The instant in time

when this measure exceeds the threshold value is marked as a

segment boundary (Beninghof & Ross [51]). The approach of ltahashi et

al [36] is also based on this idea, except that the distance calculations

are performed on a set of nine features extracted from filters covering

formant regions. They calculated the Euclidean distance between

consecutive feature frames, as defined by (3.1).

t = 1,2,..... (3.1)

where rti and {,.l.i denote the ith feature at frame time t and t-l .

In the same way, a Euclidean distance measure can be defined

to calculate the spectral distance between consecutive spectral frames

obtained from a filterbank, which can then be used to segment speech

utterances. First however, the word-set of Badii & Binstead which was

used as the database to test the segmentation technique, and later on,

the performance of the phoneme-based WISARD n-tuple isolated word

speech recogniser, is introduced.

3.2 The Word-Set

The word-set contains sixteen words [11], [12]. The particular

words were chosen so as to produce groups of similar sounding words



53

similar sounding words that would be difficult to recognise SInce they

are confusable. This aspect of the word-set makes it a suitable

database for phoneme-based recognition experiments. The recogniser

can be trained on a phoneme-like segment from an utterance of a

particular word, and tested not only on other utterances of the same

word, but also on different words containing the same phoneme. The

word-set is as follows:

Win

Want

One

Run

Begun

Cooler

Rudder

Wonder

Two

Shoe

Tattoo

Toot

Toothache

Tee

See

Three

The database as obtained from Badii & Binstead consisted of

digitized time samples of fifty isolated utterances of each of these

sixteen words spoken in an acoustic chamber. The utterances were

bandlimited to 12.5 KHz and digitized by a 16-bit AID converter at a

sampling frequency of 25 KHz.

For the purpose of this work, frequency domain representation of

each isolated utterance was required. This was achieved by outputting

the digitized speech samples through a 16-bit D/A converter connected

to the input of a 16-channel filterbank IC (ASA-16). The filterbank

channel outputs were sampled every 0.64 ms by an 8-bit AID converter,

and every five spectral frames were averaged into one frame in order

to smooth the data. Thus each averaged spectral frame corresponds to

3.2 ms of speech. In this way, spectral data consisting of a sequence of

such averaged spectral frames were obtained for each utterance.
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3.3 Euclidean Distance Measure for Spectral Dissimilarity

Considering spectral data from a filterbank with n channels, a

spectral frame at sample time t, ft, is represented by a point in an n­

dimensional vector space, the co-ordinates being given by the filterbank

channel energies [3], [51]. The spectral dissimilarity between two

frames ft and ft. 1 may now be given by redefining the Euclidean

distance given by (3.1) as

t = 1,2,.... (3.2)

where c denotes the filterbank channel number.

This Euclidean distance measure has been applied to the

spectral data of isolated utterances from the word-set of Badii &

Binstead, obtained from a 16-channel filterbank. Plotting spectral

distance between consecutive frames versus time results in plots

similar to those obtained by Beninghof & Ross [51] (although they used

the mean-square distance measure). The plot contains peaks and

valleys, where the valleys indicate regions with similar spectral frames,

and the peaks show dissimilar frames. Peaks above a threshold value

are candidates for segment boundaries since spectral frames are most

dissimilar at these points, indicating transition in the sound. To

confirm this notion, time samples of the utterance corresponding to

spectral frames within segments obtained by this segmentation process

were played back through a D/A converter connected to an audio

amplifier and speaker system. It was found that most of the segments

corresponded to phones in the word segmented, thus the peaks indicate

acoustic boundaries.
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Figure 3.1 Spectral Euclidean distance us Time

This method seems to be an effective technique for segmenting

speech into phoneme-like units. It requires no a priori data; the

information in the spectral data is sufficient to perform segmentation.

Also, the distance calculation does not require much computation.

There is however a problem in that not all the peaks detected are

phone boundaries, as evidenced by the plot of spectral Euclidean

distance versus time for the word 'Begun', shown in figure 3.1 .

Referring to figure 3.1, 's' marks the start of the utterance, and

'e' the end of the utterance. Peaks marked '1' to '4' are phone segment

boundaries. The segments correspond to phones as follows:

Phone Segment

fbi 's' - '1'

11,1 '1' - '2'

/gl '2' - '3'

IN '3' - '4'

In! '4' - 'e'
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These peaks may be easily located by applying a suitable

distance threshold. However from figure 3.1, it is clear that there is a

problem with this method in that other peaks such as the one marked

'*' will also be picked since it is higher than the threshold, causing a

segmentation error (on the diagram, only one peak is marked as an

example representative of other peaks that may be marked as segment

boundaries by an automatic segmentation algorithm based on the

method being discussed).

Figure 3.2 shows some examples of this type of error in other

words ('Rudder', 'Win' and 'Run'). The phone segments are as follows:

Rudder Win Run

Phone Segment Phone Segment Phone Segment

Irl 's' - '1' Iwl 's' - '1' Irl 's' - '1'

IN '1' - '2' 1f,1 '1' - '2' 1/\1 '1' - '2'

Id/ '2' - '3' In! '2' - 'e' In! '2' - 'e'

lal '3' - 'e'

The simplicity of this method and its reasonably good

performance (in the sense that although there are extraneous peaks,

the phone boundaries are also represented) at locating possible phone

boundaries suggested that effort be made to make it robust to

segmentation errors of the type discussed. One possible approach is to

incorporate heuristics into the segmentation process [53]. These rules

are formulated from observations of the word samples and would

determine when a peak that exceeded the threshold may be accepted

as a segment boundary. This option was tried but it was found to be

difficult to cope with the variabilities in the speech samples using ad

hoc rules at this stage. The approach was therefore to try different
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distance measures and modifications to these distance measures, to

investigate if these unwanted peaks could be eliminated or at least

reduced in number. If this can be achieved, heuristics applied at this

stage would be easier to formulate and better results could be expected

since the confusion caused by the unwanted peaks is reduced.

Figure 3.2 Spectral Euclidean distance us Time

2

40

30

20

10

Rudder

15

10

5

30

20

10

1 *

•

2 *

* 2

Win

Run



58

3.4 Weighted Euclidean Distance Measures

The Euclidean distance measure was modified such that the

lower frequency channels had a higher weighting. This is because the

lower frequencies are more important than the higher frequencies for

intelligibility (Beninghof & Ross [51]). The weighted Euclidean distance

measure with higher weighting given to the lower frequency channels

of the 16-channel filterbank is given by

II;

d, = [ L {(17 - c)lftc - ft.l)}2 ]lfl, t = 1,2,..... (3.3)
~~,

Figure 3.3 shows the results of plotting spectral distance by

lower-frequency-weighted Euclidean distance versus time. Comparison

with figures 3.1 and 3.2 show no improvement as regards the removal

of the unwanted peaks.

A weighted Euclidean distance measure with higher weighting to

the higher frequency channels of the filterbank, given by (3.4) was also

tried. Results obtained with this distance measure (figure 3.4) show

that it makes matters worse (as was expected).

15

d, = [ L {c(ftc - ft.l,c)}2 rfl
, t = 1,2,..... (3.4)

(,~,
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Figure 3.3 Spectral low-frequency-weighted Euclidean distance vs Time
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Fig. 3.4 Spectral high-frequency-weighted Euclidean distance us Time
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3.5 Chebyshev Distance Measure for Spectral Dissimilarity

Since the Euclidean distance measures failed in improving the

segmentation errors, another spectral distance measure, the Chebyshev

distance was tried. The Chebyshev distance (also known as city-block

distance) is defined as

t = 1,2,..... (3.5)

The spectral distance plots using the Chebyshev distance as the

measure of spectral dissimilarity are shown in figure 3.5 . Though the

unwanted peaks are still present, these results are an improvement

over those obtained using the Euclidean distance measures (figures

3.1 - 3.4). The peaks marking the segment boundaries are more

prominent than in the preVIOUS plots as the unwanted peaks are

reduced in magnitude (relative to the segment boundary peaks).

Another advantage is that the Chebyshev distance is computationally

less expensive than the Euclidean distance since the squaring

operations needed in the calculation of the Euclidean distance are

avoided.

3.6 Sum of Channel Difference as a Spectral Dissimilarity

Measure

The Chebyshev distance IS the sum of the magnitudes of the

differences in channel energies at frame times t and t-L, For the next

experiment this distance measure was modified so that only the sum of

the differences in channel energies over consecutive frames were
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considered. This results in what will be referred to as the 'sum of

channel difference' measure, defined in (3.6) as

16

d, = L (ftc - ft.1) ,
tel

t = 1,2,..... (3.6)

Figure 3.6 shows the spectral dissimilarity plots obtained using

this spectral distance measure. These results are clearly better than all

the previous results in achieving the objective of reducing confusion in

the segmentation process due to the extraneous peaks. In this case, the

phone segment boundaries are marked by the peaks and troughs on

the plot. A characteristic of these plots is that the location of the

segment boundaries alternates about the time axis. This greatly

simplifies the process of locating these boundaries. The first boundary

always occurs in the positive half of the plot because the filterbank

channel activity increases as the utterance begins, and is marked by

the highest peak. The next boundary is in the negative half of the plot,

and is the point with the largest negative value. This process repeats

for the remaining segments in the utterance. In this way, the

unwanted peaks that occurred in the plots obtained using the

Euclidean and Chebyshev distance measures, have been rejected since

they are lower in magnitude than the peaks that indicate the segment

boundaries.

Another advantage of the 'sum of channel difference' measure

over the Euclidean and Chebyshev distance measures is that of the

three, it requires the least computation.
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Figure 3.5 Spectral Chebyshev distance vs Time
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Figure 3.6 Sum of channel difference us Time
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3.7 Segmentation of the Word-set

The results of applying the segmentation technique using the

'sum of channel difference' measure to the utterances in the word-set

are presented in this section.

Although the rule is that segment boundaries alternate about the

time axis, the only exception (ie, for the utterances in the word-set)

was found in the segmentation of the word 'Wonder', as illustrated in

figure 3.7. This concerns the location of the boundary marked '3', which

is the boundary separating the phones In! and Id/. To detect this

boundary, a rule was incorporated into the segmentation process based

on the behaviour of the spectral distance measure as observed-in figure

3.7. To consider the point '3' as a boundary, firstly, the magnitude of
---~

the 'sum of channel difference' at this point must be above the

threshold, and secondly, some of the spectral frames before this point

must be similar ie. the spectral distance is small. This indicates that

they represent the same sound and therefore a change in the sound is

occurring as the point in question is approached.

Wonder

e

Figure 3.7 Segmentation of the utterance 'Wonder'
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A problem that occurs with the segmentation of sustained vowels

such as Ii/ in 'See', lui in 'Two', le ..1 in 'Toothache' and lal in 'Wonder',

using this segmentation technique is that they are split into two

segments in almost 30% of the occurances of these vowels. An example

of this can be seen for the segmentation of 'Wonder' in figure 3.7 . The

segment '4' - 'e' represents l't}l but has been split into two segments at

'5'. This type of segmentation error, called an insertion error, is not

peculiar only to this segmentation technique as other researchers have

had similar experience [109]. However, this is not a grave problem as

in the training phase of a speech recogniser, these segments can be

tagged as being training samples of the same vowel, and in the

recognition phase, allowance is made so that two consecutive segments

can be recognised as belonging to the same vowel. By approaching the

problem in this way it is now possible to consider the insertion of a

segment boundary in a sustained vowel segment as an acceptable

segmentation result and therefore is not treated as a segmentation

error.

The application of the 'sum of channel difference' segmentation

method to the word-set of Badii & Binstead produces the twenty-two

segment categories listed in Table 3.1. With the exception of the

utterance 'Three', all the words in the word-set are segmented into

phoneme-like units and can be represented by twenty phonemes. The

remaining two segment categories are obtained from the segmentation

of 'Three' and will be represented in this work as lerl and lri/. These

segments contain parts from adjacent phonemes in the utterance. The

segment lerl consists of the voiceless fricative leI at the start of the

utterance and part of the approximant Ir/. The remaining portion of Irl

is combined with part of Ii/ to give the lri/ segment. 'Three' was also

segmented as "/erlli/" (Table 3.2).



Table 3.1 Segmentation results for the 'sum of channel difference'

segmentation method

Segment Error (%) Deletion (%) Insertion (%)

fbI 10.20 8.16 0.00

1,,1 21.00 17.00 0.00

Ig/ 8.16 6.12 0.00

IN 17.67 1.20 0.00

In! 33.33 22.67 0.00

/k/ 13.00 10.00 1.00

lui 15.33 13.00 0.30

III 68.00 68.00 0.00

I~I 35.33 35.33 0.00

Irl 10.00 6.00 0.00

lsI 0.00 0.00 0.00

Iii 0.67 0.67 0.00

It! 6.75 5.50 1.00

Iwl 12.50 12.00 0.00

Ijl 52.00 4.00 44.00

131 30.00 28.00 0.00

lrel 10.00 8.00 0.00

181 22.00 14.00 6.00

Id/ 52.00 52.00 0.00

lef.! 6.00 4.00 0.00

18rl 8.00 2.00 6.00

lri/ 2.00 2.00 0.00

67

Average: 19.73% 14.53% 2.65%
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The twenty-two segment categories are treated as twenty-two

separate classes for the purpose of recognition. Table 3.1 gives the

segmentation results for the 'sum of channel difference' segmentation

method applied to the utterances from the word-set of Badii &

Binstead. The performance of the segmentation method is tabulated in

terms of the segmentation errors. The following conditions were

considered to be segmentation errors :

(i) Incorrect placement of the segment's boundaries.

(ii) Deletion of a segment boundary causing the segment to be

merged with the adjacent segment.

(iii) Insertion of a boundary within a segment causing the segment to

be split into two segments.

The 'Error' column in Table 3.1 is the overall error rate ie. it

includes errors from all three error conditions mentioned above. The

'Deletion' and 'Insertion' error columns show the deletion and insertion

errors in the overall error rate. 2697 segment samples were used to

evaluate the performance of the segmentation technique.

The proposed segmentation technique has an average overall

error rate of 19.73%, most of which are segment deletion errors

(14.17%), and the average segment insertion error rate is 2.65%. Thus

the average error rate from incorrect boundary placements is 2.91%.

These results compare favourably with other segmentation methods, ego

Charbonneau & Moussa [52] have reported segment deletion error of

19% and segment insertion error of 4% for their phoneme segmentation

method based on the multi-dimensional scaling technique.

There were no errors in the segmentation of lsi while the poorest

results are those for III and lal in the word 'Cooler' (due to deletion of



69

boundary between lui and /lJ, and /lJ and leI), In! and Idl in 'Wonder'

(deletion of boundary between In! and Id/), and I! I in 'Shoe'. I J I is the

only segment that suffers significant insertion errors. Sustained vowels

lui, Iii, letl and I~I are exempted from segment insertion errors as these

are taken into account in the training and testing procedures of the

speech rescogniser.

These results are on the whole considered as encouraging

keeping in mind the simplicity of the segmentation technique, but the

segment deletion error rate needs to be improved to enable its use in a

practical speech recognition system. The following suggestions are

therefore made for improving the segmentation accuracy.

(i) Using an automatically adjustable threshold [36] for segment

boundary decision will help to reduce the segment deletion

errors. Some indication of the intensity of an utterance may be

used to choose a suitable threshold level.

(ii) Complementing the segmentation process with more information

from the acoustic signal, such as energy [22], and zero-crossing

measurements [110].

(iii) Complementing the segmentation process with heuristics [53] to

determine if peaks detected may be accepted as segment

boundaries.

(iv) Co-operation from the speaker in producing clearly articulated

utterances (tired sounding utterances are very likely to cause

segmentation errors).



Table 3.2 Segmentation of the words in the word-set

Win: Iwl,lf,I,In!

Want : Iwl,l::JI,In!,1tJ

One : Iwl,1/\1,In!

Run : Irl,1AI,In!

Begun: /b/,AI,IgI,lAI,In!

Cooler : lk/,IuI,IJ/,1al

Ik/ ,lui,Ill,Ial,Ial

Rudder : Irl,lAI,Id/,1al

Irl,l/lI,ld/,1al,lal

Wonder : Iw1,1/\1,In!,1d/,101

IwI,/IlI,ln!,1d/ /01,1al

Two : ItJ,IuI

1t!,1u1,lui

Shoe : 111,IuI

111,IuI,IuI

Tattoo : ItJ,Ire/,ltJ,IuI

Itl,lreI,1tJ,IuI,IuI

Toot: ItJ,IuI,It!

ItI ,1u1,1u1,1tJ

Toothache : ItJ,IuI,I8/,1ef./,1k/

1t!,1u1,181,Ie'I,Ie~/,1k/

Tee : ItJ,IiI

1t!,1i1,Iii

See : Isl,lil

Isl,lil,lil

Three: lerl,lri/,1i1

lerl,lri/,1i1,1i1

lerl,lil

lerl,lil,lil

70
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The word-set of Badii & Binstead in terms of the labels assigned

to the twenty-two segment categories is given in Table 3.2 (Appendix A

gives the sound in an utterance that these segment labels represent).

Of these twenty-two segment categories, twenty correspond to

phonemes. The remaining two segment categories are partial

combinations of two phonemes (fer/ and /ri/) from the segmentation of

the word 'Three'. Alternative segmentations are shown for words

containing sustained vowels. For convenience, these twenty-two

segment categories will be referred to in the following chapters of this

work as phoneme-like segments while it is acknowledged that two of

these segment categories (fer/ and /ri/) are not in fact phoneme-like.

The recognition of the words in the word-set as a sequence of

the segments indicated in Table 3.2 is dealt with in Chapters 4 and 5.

The segmentation errors were corrected before passing the segments to

the speech recogniser so that the error rate of the recognition process

could be evaluated.

3.8 Summary

To recognise an utterance as a sequence of phoneme-like units, a

method for picking out the phoneme-like units in the utterance IS

required. One approach, which is presented in this chapter, is to

determine the boundaries of the phoneme-like units within the

utterance based on some spectral measurements. Spectral frames

where these measurements exceed a preset threshold are marked as a

boundary. All spectral frames within these boundaries are associated

with that particular phoneme-like unit.



72

An improved segmentation method based on the idea of spectral

dissimilarity measurements as proposed by Beninghoff & Ross IS

suggested in this chapter. The method is to sum the difference In

channel energies for consecutive spectral frames in the utterance.

Frames where this measurement exceeds the threshold level are

marked as the segment boundaries. Testing this segmentation method

on utterances from the word-set of Badii & Binstead produced 22

segment categories. All except two of these segment categories are

phoneme-like. The two exceptions were from the segmentation of the

word 'Three' in the word-set. This segmentation method has an overall

error rate of 19.73% from which 14.53% are segment deletion errors

and 2.65% are segment insertion errors. The remaining 2.91% errors

are due to incorrect boundary placement.
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CHAPTER FOUR

RECOGNISER DESIGN BASED ON THE

SEGMENTATION AND LABELLING APPROACH

4.1 Introduction

SEPARATE

A design for a WISARD n-tuple isolated word recogniser based

on the separate segmentation and labelling (SS&L) approach is

presented in this chapter. In this method the utterance is first

segmented into phoneme-like segments. Each segment is then labelled

in turn by the recognition process. The output from the recogniser is a

string of labels. Each label in the string corresponds to a phoneme-like

segment in the utterance input to the recogniser.

Figure 4.1 shows the stages in the design of the speech

recogniser. These stages are discussed in the following sections.

4.2 Acoustic Analysis

This stage consists of the ASA-16 integrated circuit, which is a

16-channel filterbank. The input speech signal is transformed by the

filterbank into frequency spectral frames as explained in Chapter 3,

Section 3.2. The filterbank is sampled every 0.64 ms by an 8-bit AID

converter, and every five frames are averaged into one frame to smooth

the spectral data. Thus each averaged frame represents 3.2 ms of

speech.



Recognised
Output

Train
Discriminators

ech
IUt

Acoustic . Segmentation --. Time . Data .c.. ..
Analysis Nonnalisation Reduction

. Test . ,.,
Discriminators

Spe
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Figure 4.1 The stages in a speech recogniser based on the separate
segmentation and labelling approach
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4.3 Segmentation

This stage applies the segmentation technique using the 'sum of

channel difference' spectral distance measure proposed in Chapter 3,

Section 3.6, to the averaged spectral frames from the acoustic analysis

stage. It outputs the frame number of the segment boundaries

detected.

4.4 Time Normalisation

Owing to time-scale variabilities as a result of variations in the

speaking rate, segments of a phoneme from different utterances have

different durations. Furthermore, by nature, some phonemes such as Iii

and lui have longer durations than others like /hI and It. I. This

necessitates a time normalisation scheme. The idea is to stretch or

squash the segments to a standard length. There are two methods [35]:

I). Linear time normalisation.

ii), Dynamic time warping (DTW).

DTW, a dynamic programming technique [50], is the superior

technique and is now the established method for performing time

normalisation of speech data. Whereas the linear time normalisation

method performs uniform distortion of the time scale, DTW is a non­

linear time normalisation technique performing selective distortion by

allowing different parts of the segment to be shortened or lengthened

more than others, which is what happens when a talker speaks faster

or slower. It performs the optimum alignment between the unknown
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and reference templates. However, it is difficult to implement with a

WISARD system because both the unknown and reference patterns

should be of the same type, ego spectral data. In the WISARD system,

the reference data which is stored in the discriminators consists of n­

tupled data whereas the unknown input segment consists of spectral

data. Thus the unknown input and reference data are of different

types.

The linear time normalisation method is easily implementable

with an n-tuple system since it does not involve the reference data. It

operates on the data in the unknown input segment only. For this

reason, it was chosen as the time normalisation technique in the

design of the WISARD speech recogniser. It also requires less

computation than DTW.

4.4.1 Linear Time Normalisation

This method uses the beginning and end points of the phoneme­

like segment (ie the segment boundaries) to divide the segment into a

fixed number of equal intervals. The frame sample values at these

intervals will now represent the segment. In this way, all phoneme-like

segments can be converted into the same number of frames.

It was chosen to time-normalise the phoneme-like segments into

20 frames. This was because the smallest segments in the word-set

consist of 9 frames whereas the larger segments average around 40

frames thus 20 frames seems an appropriate size since it is around

twice the smallest segment, and half the larger ones. As each frame

comprises data from each of the filterbank's 16 channels, the time­

normalised phoneme-like segment is representable by a 16 x 20 matrix.
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The frame channel sample values at the time-normalised

intervals within the segment are calculated by the linear interpolation

method.

4.4.1.1 Linear Interpolation

f(t)

f(t l ) - - - - - - - - - - - - - _

t

Figure 4.2 Linear interpolation of point t i given points t 0 and t 1

Referring to figure 4.2, given points flto) and fl~), the point fl11)

may be interpolated by assuming that flto) and fl~) lie on a straight

line. flt) is then defined as

f(t 1) - f(to)

(t 1 - to)
(4.1 )

Definition (4.1) can be applied to the filterbank spectral frames if

to and ~ represent spectral frame times, and flto) and flt l ) are energy

levels for filterbank channel c, Ecto and Ect , , at frame times to and ~.

Then from (4.1), the interpolated energy level, Ect~, is given by

c = 1,2,....,16 (4.2 )
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The interpolation points are determined by dividing the

phoneme-like segment into 20 equal intervals. The interpolated channel

energy at these intervals are calculated in two ways, as illustrated by

the following example. Consider a phoneme-like segment with more

than 20 frames, say 50 frames. The interpolated channel energy values

will be calculated at intervals of 2.5 frames (50/20 = 2.5). Figure 4.3

shows the channel energy values for one of the sixteen channels for the

first four frames of the segment (marked 'A' to 'D'). The first

interpolated energy value is to be calculated at frame time t = 2.5.

I
C

I
12 I

11 •I
I

D

• B I
A I

I t=2.5

I
I

1 2 3 4 t

60

40

20

Figure 4.3 Two methods for calculating the interpolated energy
value at frame time t = 2.5

Two approaches were tried in the calculation of the interpolated

energy value.

(i) Since the interval at which the energy value is to be interpolated

lies between frames 2 and 3 (ie. points 'B' and 'C'), it is therefore

assumed that the interpolated point lies on a straight line

passing through points 'B' and 'C' ie. '11" and can be calculated
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usmg (4.2). This process is repeated for the remaining

interpolation points within the segment, and also for the other

channels in the frame. This approach will be referred to in this

work as the "unaveraged points interpolation method".

(ii) From figure 4.3, it can be seen that there are two frames (points

'A' and 'B') that precede the interpolation point at time t = 2.5.

In this method, points 'A' and 'B' are first averaged to produce a

new point, 'E', the value of which is the average of the energy

values at points 'A' and 'B', and the position of this point is the

average of the poistions of 'A' and 'B'. The interpolated point now

lies on the straight line passing through this averaged point 'E'

and point 'C' ie. '12' , and can be calculated using (4.2). This

process is repeated for the remaining interpolation points within

the segment, and also for the other channels in the frame. This

approach will be referred to in this work as the "averaged points

interpolation method".

The "averaged points interpolation method" differs from

"unaveraged points interpolation method" because in the case of the

latter, the calculation of the interpolated point takes into account the

immediately preceding and following frames (ie. 'B' and 'C') only, while

ignoring other data (eg, point 'A') which may be useful in

discrimination of the phoneme-like segment. The "averaged points

interpolation method" requires more computation than the "unaveraged

points interpolation method" but may help improve the recognition of

long phoneme-like segments such as lsi in the word 'See' since this

method considers all spectral frames within the segment in the

calculation of the interpolated points, whereas the "unaveraged points
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interpolation method" would ignore some of the spectral frames, which

may be useful in the discrimination of the phoneme-like segment.

After time normalisation, the phoneme-like segment IS

representable by a 16 X 20 matrix. Since the 20th interpolated frame

coincides with the last frame of the phoneme-like segment, the

interpolated energy values for the former will work out to be the same

as that for the latter, so there is no need to calculate the 20th

interpolated frame. For this reason, only the first 19 interpolated

frames are calculated for the phoneme-like segment and these are

forwarded to the Data Reduction Stage of the recogniser.

4.5 Data Reduction

After the time normalisation stage, all phoneme-like segments

are converted to 19 time-normalised spectral frames. Since each frame

comprises 16 channel energies, the data is representable by a 16 x 19

matrix.

Following Badii & Binstead, three different types of encoding

were tried; linear encoding, thermometer encoding and Gray encoding,

to reduce the 8-bit channel energy data to 4 bits [11], [12].

(i) Linear encoding

The most-significant 4 bits of the 8 bit channel energy sample

are chosen as the 4-bit encoded data.
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(ii) Thermometer encoding

The 8-bit channel energy level has a range from 0 to 255. This

interval is divided into 5 equal parts and mapped into 4 bits as

follows:

[0 , 50] ---> 0000

[51 ,101] ---> 1000

[102,152] ---> 1100

[153,203] ---> 1110

[204,255] ---> 1111

(iii) Gray encoding

In this encoding method, the 8 bit range of values (0, 255) are

divided into 16 equal subintervals. Each interval is represented by a

4-bit value chosen in such a way that the Hamming distance between

the 4-bit encoded value for adjacent intervals is always 1, as given

below.

[0 , 15] ---> 0000

[16 , 31] ---> 0001

[32 , 47] ---> 0011

[48 , 63] ---> 0010

[64 , 79] ---> 0110

etc.

The encoded data can now be used in training the system or in

the case when the system has already been trained, to test its

recognition performance.
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4.6 The Recognition Module

Figure 4.5 shows the recognition module of the system. The 4-bit

encoded data from the data reduction stage is stored in a spectral

frame store which is a 2-dimensional bit array. Since the data is in the

form of a 16 x 19 matrix where each of the sixteen channels is encoded

as 4 bits, the dimensions of the spectral frame store is therefore

(16 x 4) bits x 19 bits (figure 4.4).

Channel 16

Channel 2

Channel 1

Frame: 1 2
- - - -----'=

18 19

Figure 4.4 Spectral frame store layout
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The function of the spectral frame store is to enable the encoded

data from the data reduction stage to be manipulated when mapping it

onto the WISARD 'retina'. Each column on the spectral frame store

maps onto the corresponding column on the 'retina' ie. column '1' of the

spectral frame store maps onto column '1' on the 'retina', and similarly

for the remaining columns. Two mapping methods were used.

(i) "Direct mapping" method

The data in the spectral frame store column is mapped directly

on to the corresponding 'retina' column in a one-to-one

correspondence as shown in figure 4.6 below. Therefore each

column on the 'retina' is an identical copy of the corresponding

column on the spectral frame store.

Spectral Frame Store Column

Channel: 1 2 15 16

Retina Column

Figure 4.6 Direct mapping of spectral frame store to 'retina'

(ii) '~cross channel mapping" method

The data in the spectral frame store column is mapped on to the

corresponding 'retina' column by sampling bits from across
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channels. This mapping method enables n-tuples to be formed

from samples of data bits taken across spectral channels. The

mapping is dependent on the n-tuple size. For a 4-tuple based

system, the data bits are sampled across four adjacent channels

on the spectral frame store column and mapped on the

corresponding 'retina' column as shown in figure 4.7. Similarly,

an 8-tuple based system would require sampling bits across eight

adjacent channels in the same manner.

Spectral Frame Store Column

Channel: 1 2 3 4 13 14 15 16

Retina Column

Figure 4.7 Across channel mapping to 'retina'

Since each bit in the spectral frame store maps onto a bit in the

WISARD 'retina', the 'retina' is also a 2-dimensional bit array with the

same dimensions as the spectral frame store, ie. (16 x 4) bits x 19 bits.

n bits in the 'retina' are grouped together to form an n-tuple. There

are two ways to map the 'retina' into n-tuples: linear mapping and

random mapping, as mentioned in Chapter 2, Section 2.3. Each n-tuple
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addresses a random access memory (RAM) in the class discriminator.

In this recogniser design, there are 22 discriminators, one for each

phoneme-like segment in the word-set to be recognised. The number of

RAMs per discriminator depends on the tuple size, and is equal to the

number of tuples needed to map the whole 'retina'. Tuple sizes of 4

and 8 were experimented with in this work. For a tuple size of 4 (ie.

4-tuple), 304 4-tuples (16 x 4 x 19/4) are required to map the whole

'retina'. This implies that each class discriminator contains 304 RAMs,

where each RAM is a 24 x 1 bit RAM. Therefore each discriminator has

a memory size of 4,864 bits, and the total memory requirement for all

22 discriminators in the system is 107,008 bits. For a tuple size of 8

(ie. 8-tuple), 152 8-tuples are needed to map the entire 'retina', ie. 152

RAMs are required per class discriminator. Each RAM is a 28 x 1 bit

RAM. This gives a memory size of 38,912 bits per discriminator, ie. a

memory size of 856,064 bits for all 22 discriminators. This has

particular commercial significance since the hardware requirements in

terms of programmable logic can be accomodated in a single 1 Mbit

memory chip.
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4.7 Training the Recogniser

To train the recogniser, training samples of phoneme-like

segments were taken from selected words as indicated in Table 4.1.

Not all the phoneme-like segments in these words were used to train

the speech recogniser. These phoneme-like segments (ie. not used for

training) are marked as 'I-f in the transcription of the words in the

training set.

Table 4.1 Words from which the training samples were selected

Training Set

Begun : /hI, kl, Igl, 1111, In!

Cooler : /k/, lui, Ill, I-I

See : Isl,lil

Run : Irl,1-1,1-1

Two : ItJ,IuI

Win : Iwl, /1,1, I-I

Tattoo : I-I, lrel, It!, I-I

Want : Iwl, I;JI, In!, ItJ

Rudder : I-I, I-I, Id/, lal

Shoe : Ill, I-I

Toothache: I-I, I-I, leI, le..l, /k/

Three : lerl, lri/, I-I
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To account for variations in the phoneme-like segment due to

context, samples were taken from different words ego In! from 'Begun'

and 'Want', ItJ from 'Two', 'Want' and 'Tattoo', and lui from 'Two' and

'Cooler'.

Initially, all the discriminators are cleared (ie, all discriminator

RAMs are set to '0'). Each of the phoneme-like segments is trained into

its respective discriminator in the following manner. With the training

sample mapped onto the WISARD 'retina', the discriminator associated

with this sample class is selected. From the 'retina', n-tuples of the

desired size are mapped (linear or random mapping) to the

discriminator RAMs, and a '1' is written into the RAM locations

addressed by the n-tuples.

4.8 Testing the Recogniser

With the phoneme-like segment to be recognised mapped onto

the WISARD 'retina', n-tuples of the desired size are mapped (linear or

random mapping) to RAMs in all the discriminators. RAM locations

addressed by the n-tuples are read for each class discriminator. The

output of a class discriminator is the sum of the output of all RAM

cells (in that discriminator) addressed by the n-tuples mapped from the

contents of the 'retina'. The unknown phoneme-like segment is assigned

the class of the discriminator giving the highest score.
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4.9 Evaluation of the Recogniser

The basic design of the phoneme recogniser IS now complete.

There is a choice of options in the implementation of certain parts of

the design. The choices are:

(i) "Unaveraged points interpolation method" or "Averaged

points interpolation method" for time normalisation.

(ii) Linear, Thermometer or Gray encoding for data reduction.

(iii) "Direct mapping" or "Across-channel mapping" of spectral

frame store to WISARD 'retina'.

(iv) Linear mapping or Random mapping of WISARD 'retina' to

n-tuples.

(v) Tuple size.

Tests were conducted with different combinations of these

options, the aim being to determine the combination that enables the

recogniser to give the best performance. The speech samples consisted

of 50 utterances of each word in the word-set. 25 of these utterances

(from the words in the training set) were used to train the recogniser.

The remaining 25 utterances of each word were used to test the

recogniser. To evaluate how the performance of the recogniser varies

with the amount of training, training is increased in steps of five

examples of each segment in the training set, up to twenty trainings.

At each step the performance of the recogniser is noted. Tuple sizes of

4 and 8 were used.
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4.9.1 Experiments with ''Unaveraged Points Interpolation

Method" for Time Normalisation

For these set of experiments, the following system configuration

was used:

(i) Unaveraged points interpolation method for time

normalisation.

(ii) Direct mapping of spectral frame store to WISARD 'retina'.

Results were obtained in turn for Linear, Thermometer and Gray

encoders at the Data Reduction stage, with n-tuple sizes of 4 and 8,

and linear and random mapping of the WISARD 'retina' for generating

the n-tuples. The aim behind this first set of experiments is to find the

system configurations that give the best results (the less promising

ones would be discarded). These would then be used as the basis for

the next set of experiments which would attempt to improve these

results.

Linear Encoder

Tables 4.2 - 4.5 grve the results for Linear encoder at the Data

Reduction stage, and n-tuple sizes of 4 and 8, with linear or random

mapping. In general it can be said that 8-tuple gives better results

than 4-tuple, and similarly for random mapping over linear mapping.

The best average recognition rate is 58.04% obtained for 8-tuple with

random mapping, and 20 trainings of each member in the training set.
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Thermometer Encoder

Tables 4.6 - 4.9 give the results for Thermometer encoder. These

results are very much inferior to those obtained using the Linear

encoder. This is mainly due to the log25 bits encoding accuracy and the

way in which the recognition decision was performed. A phoneme-like

segment was correctly recognised only if the class discriminator

assigned to that segment gave the highest recognition score. The case

of a 'tie' ie. two or more class discriminators (one of which is the

correct class discriminator) giving the highest score, was treated as an

incorrect recognition result. The results obtained for Thermometer

encoding showed that a high proportion of the incorrect recognition was

due to 'ties'. In the case of some of the phoneme-like segments, this

was over 90%. This is because since the Thermometer encoder divides

the range 0 - 255 into 5 equal subintervals only (Section 4.5), the

range of these subintervals are large enough to cause the similar

phoneme-like segments to generate the same 4-bit code sequence. This

is reflected in the results shown in Tables 4.6 - 4.9, where in general,

the average recognition accuracy deteriorates with increasing training.

As with Linear encoding, 8-tuple gives better results than 4­

tuple, and similarly for random mapping over linear mapping. The best

recognition rate is 36.44% for 8-tuple/random mapping and 5 trainings.

Gray Encoder

Tables 4.10 - 4.13 give the results for Gray encoder. Of the three

encoders used, this method produces the best result. An average

recognition accuracy of 67.17% is achieved for 8-tuple/random mapping

with 20 trainings. As with the previous two encoders, 8-tuple gives

better results than 4-tuple, as does random mapping compared with

linear mapping.
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From the results obtained for these experiments, in general, the

following observations were made :

(i) The 8-tuple recogniser is superior to a 4-tuple recogniser.

(ii) Random mapping gives better results than linear mapping.

(iii) Gray encoder is the best of the three encoding methods.

Furthermore, comparison of Tables 4.2 and 4.4 with Tables 4.10

and 4.12 respectively show that they are identical. This is because for

the linear mapping case, Linear encoding and Gray encoding are

equivalent since both encoders quantize the range 0 - 255 into 16 equal

intervals.

For both Linear encoding and Gray encoding, in the 4-tuple case

it is seen that recognition accuracy peaks at 15 trainings whereas

performance improves with increasing training for the 8-tuple case.

This suggests that for the 4-tuple case, after 15 trainings, further

training may be causing saturation of the discriminators.



Table 4.2

Linear_encoding &: ..-tuple Linear_mapping
Table 4.3

Linear_encoding & 4-tuple Random_mapping

93

Trainings : 6

Class

fbi 62.50

1&1 46.83

Ig/ 45.83

IN 40.73

In! 78.39

IkJ 33.25

lui 46.73

11/ 0.00

I~ 65.58

Irl 60.00

lsi 4.00

rll 40.95

It! 92.60

Iwl 51.67

Ifl 56.00

r.i 40.00

1m! 4.35

leI 50.00

Idl 88.00

lew 38.62

18rl 28.00

lril 8.33

10 15

Accuracy (%)

64.17 50.00

79.67 98.00

50.00 66.67

44.80 52.97

67.58 67.03

39.33 37.33

37.27 31.71

12.00 20.00

80.89 68.74

60.00 62.00

4.00 8.00

40.60 41.33

84.96 85.98

30.29 52.58

72.00 64.00

44.00 60.00

21.74 21.74

37.50 37.50

92.00 88.00

22.92 34.46

44.00 36.00

0.00 0.00

20

8.33

83.58

58.33

59.40

45.42

8.00

43.12

16.00

52.76

90.00

4.00

24.23

78.98

37.58

80.00

60.00

8.70

16.67

92.00

36.22

32.00

0.00

Trainings : 5

Class

fbi 70.83

III 32.50

Ig/ 54.17

/AI 29.40

In! 80.53

IkI 12.16

lui 76.70

111 0.00

IaI 60.85

Irl 44.00

lsi 8.00

fs/ 40.29

It! 96.98

Iwl 74.83

III 56.00

~ 20.00

ltel 8.70

181 75.00

Idl 76.00

le<l 34.77

19r1 36.00

lril 0.00

10 15

Accuracy (%)

75.00 62.50

79.75 81.67

83.33 87.50

56.93 74.67

37.08 14.81

45.08 55.17

48.19 41.77

0.00 0.00

71.48 48.24

70.00 82.00

8.00 8.00

47.11 32.54

83.48 84.98

42.54 42.62

80.00 80.00

36.00 72.00

8.70 8.70

41.67 37.50

94.00 98.00

48.72 58.17

36.00 36.00

0.00 0.00

20

8.33

71.50

83.33

77.20

5.39

38.83

59.47

8.00

«.78

92.00

12.00

18.29

79.48

21.33

92.00

68.00

4.35

25.00

90.00

64.43

20.00

0.00

Average: 44.19 46.35 49.27 42.51 Average: 44.44 49.69 50.31 «.71

Table 4.4

Linear_encoding & 8-tuple Linear_mapping

Table 4.5

Linear_encoding &: 8-tuple Random_mapping

Trainings : 5

Class

fbi 68.33

III 53.00

Ig/ 50.00

IN 40.70

In! 83.78

IkJ 59.58

lui 50.95

11/ 8.00

~ 46.04

Irl 62.00

lsi 8.00

rll 60.58

It! 94.50

Iwl 61.75

III 52.00

101 36.00

ltel 4.35

181 60.00

Idl 84.00

lell 30.61

lerl 32.00

lril 8.33

10 15

Accuracy (%)

75.00 70.83

77.50 85.67

50.00 75.00

46.40 50.53

76.39 78.42

79.92 87.92

55.36 45.69

20.00 32.00

60.41 70.63

52.00 56.00

8.00 12.00

49.18 39.93

90.96 94.96

28.42 40.54

72.00 68.00

40.00 68.00

17.39 21.74

64.17 58.33

96.00 94.00

37.18 42.79

36.00 48.00

0.00 0.00

20

62.50

83.67

70.83

50.63

60.89

85.83

65.36

32.00

64.59

78.00

20.00

44.01

93.96

40.46

92.00

72.00

21.74

45.83

98.00

38.94

40.00

0.00

Trainings:

Class

fbi

III

Ig/

/AI

In!

IkI

lui

111

lal

Irl

lsi

rtf

It!

Iwl

III

I:JI

1m!

191

Idl

lel./

18rl

lril

5

87.50

49.00

50.00

14.73

87.92

45.33

61.76

0.00

39.91

34.00

8.00

48.31

97.48

76.88

48.00

20.00

4.35

83.33

86.00

28.52

32.00

0.00

10 15

Accuracy (%)

91.67 87.50

71.50 77.67

62.50 91.67

26.13 40.83

77.17 81.25

51.58 63.67

70.24 48.82

0.00 4.00

76.59 77.65

54.00 74.00

16.00 20.00

42.93 60.23

93.48 92.48

48.67 55.62

76.00 76.00

36.00 64.00

17.39 8.70

70.83 70.83

96.00 96.00

24.36 44.23

44.00 36.00

0.00 0.00

20

83.33

71.75

83.33

44.13

48.58

59.33

74.33

16.00

84.76

88.00

12.00

52,43

91.48

47.67

96.00

68.00

8.70

70.83

98.00

54.33

24.00

0.00

Average: 46.11 51.01 56.41 57.33 Average: 45.59 52.14 57.78 58.04



Table 4.6

Thermometer_encoding '" 4-tuple Linear_mapping Table 4.7

Thermometer_encoding '" 4-tuple D--d ....... om_mappLDg
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Training! :

Class

fbi

It!

Ig/

W

Int

Ik1

lui

N

It!

IrI

lei

N

ItJ

/wI

III

lit

lei

191

Idl

Ie"

I9rl

lril

5

4.17

24.50

4.17

83.63

0.00

18.00

7.27

0.00

9.24

30.00

20.00

27.04

66.90

49.58

80.00

32.00

4035

37.50

18.00

34.46

20.00

16.67

10 15

Accuracy ('11»

0.00 0.00

26.33 22.17

20.83 16.67

82.77 46.53

0.00 0.00

16.00 0.00

10.21 11.17

4.00 0.00

15.19 2.00

42.00 8.00

16.00 4.00

30.98 25.12

52.35 30.69

25.33 3.04

84.00 84.00

24.00 8.00

17.39 17.39

0.00 0.00

2.00 0.00

18.43 12.18

4.00 0.00

8.33 8.33

20

0.00

8.00

8.33

40.77

0.00

0.00

15.76

0.00

2.00

8.00

4.00

24.98

30.19

3.04

88.00

8.00

17.39

0.00

0.00

12.18

0.00

8.33

Trainings:

Clan

IbI

III

Ig/

IAI

InI

IkJ

lui

111

tal

frI

lei

N

ItJ

/wI

III

t:JI

lei

191

Idl

Ie"

I9rl

lril

5

4.17

32.67

50.00

88.57

4.75

26.00

23.78

16.00

27.09

32.00

20.00

29.77

66.40

50.62

84.00

28.00

4.35

37.50

32.00

33.01

20.00

25.00

10 15

Accuracy ('lI»

0.00 0.00

67.33 55.00

66.67 62.50

86.93 61.13

2.72 0.67

24.00 12.00

17.76 21.23

12.00 16.00

37.09 34.43

46.00 52.00

20.00 4.00

27.10 25.79

54.88 58.35

21.42 32.42

84.00 84.00

32.00 36.00

17.39 13.04

0.00 0.00

34.00 28.00

32.69 32.69

8.00 8.00

41.67 25.00

20

0.00

44.75

58.33

66.80

0.00

12.00

26.40

20.00

31.09

72.00

4.00

30.31

56.85

20.29

88.00

44.00

13.04

0.00

24.00

35.10

4.00

41.67

Average: 26.70 22.73 13.60 12.68 Average : 33.44 33.35 30.10 31.48

Table 4.8

Thermometer_encoding & 8-tuple Linear_mapping
Table 4.9

Thermometer_encoding '" 8-tuple Random_mapping

Trainings : 5

Clas8

fbi 20.83

'" 24.42
Ig/ 33.33

IN 61.07

Int 12.17

/kJ 26.00

lui 41.71

N 24.00

/1/ 40.11

Irl 12.00

lei 20.00

iii 22.93

Itt 69.90

Iwl 58.71

IfI 76.00

~ 28.00

lei 4.35

191 33.33

Idl 40.00

Ie" 35.10

19r1 32.00

lril 16.67

10 15

Accuracy ('11»

8.33 0.00

95.83 75.25

66.67 66.67

65.83 65.03

2.08 1.39

22.00 0.00

38.31 40.74

20.00 24.00

40.20 28.94

38.00 52.00

20.00 8.00

24.27 29.25

60.35 57.25

25.42 44.50

84.00 76.00

28.00 24.00

21.74 21.74

12.50 4.17

36.00 34.00

25.00 20.83

12.00 4.00

8.33 8.33

20

0.00

67.00

25.00

59.50

0.69

0.00

28.09

24.00

23.76

66.00

8.00

29.94

56.29

16.17

84.00

36.00

8.70

0.00

30.00

30.93

0.00

8.33

Trainings:

C1aas

IbI

III

Ig/

IN

InI

/kI

lui

111

f¥

frI

lei

N

ItJ

Iwl

III

t:JI

lei

181

Idl

Ie"

19r1

IriI

5

4.17

34.67

62.50

82.07

6.11

26.00

27.85

24.00

28.50

32.00

20.00

30.81

67.90

53.67

84.00

40.00

8.70

33.33

44.00

46.31

20.00

25.00

10 15

Accuracy ('lI»

0.00 0.00

77.75 75.58

66.67 54.17

73.90 70.73

3.42 2.75

24.00 24.00

28.12 22.44

16.00 20.00

40.87 35.09

46.00 56.00

36.00 24.00

32.56 31.64

54.88 57.38

26.50 34.29

84.00 84.00

44.00 40.00

17.39 13.04

0.00 0.00

42.00 44.00

27.08 38.62

8.00 8.00

33.33 16.67

20

0.00

77.42

5U7

70.77

0.00

24.00

29.97

32.00

28.43

72.00

24.00

35.64

55.85

18.12

92.00

52.00

8.70

0.00

3800

42.79

8.00

25.00

Average : 33.30 34.31 31.19 27.38 Average : 36.44 35.57 34.20 35.86



Table 4.10

Gray_encoding &: 4-tuple Linear_mapping
Table 4.11

Gray_encoding &: 4-tuple Random_mapplnr
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10 15

Accuracy (%)

Trainingl :

Class

toI

1\1

Iv!
/AI

In!

fkI

lui

N

IW

lri

lei

iii

ItJ

/wI

ItI

r:t

ltel

lei

Idl

le&/

leri

lril

5

62.50

46.83

45.83

40.73

78.39

33.26

46.73

0.00

55.58

60.00

4.00

40.96

92.50

51.67

56.00

40.00

4.35

50.00

88.00

38.62

28.00

8.33

54.17

79.67

50.00

44.80

67.58

39.33

37.27

12.00

80.89

60.00

4.00

40.60

84.96

30.29

72.00

44.00

21.74

37.50

92.00

22.92

44.00

0.00

50.00

98.00

66.67

52.97

67.03

37.33

31.71

20.00

68.74

62.00

8.00

41.33

85.98

52.58

64.00

60.00

21.74

37.50

88.00

34.46

36.00

0.00

20

8.33

83.58

58.33

59.40

45.42

8.00

43.12

16.00

52.76

90.00

4.00

24.23

78.98

37.58

80.00

60.00

8.70

16.67

92.00

36.22

32.00

0.00

Trainings:

Claaa

IbI

1&/

Igi

IN

In!

IkJ

lui

1\1

I'¥

Irl

lei

iii

ItJ

Iwl

1/1

1:11

Ire!

181

Idl

let!

I8rl

lril

5

58.33

54.92

66.67

71.53

77.08

2.00

68.97

0.00

67.58

60.00

4.00

33.66

98.00

82.88

56.00

28.00

8.70

58.33

82.00

62.66

32.00

0.00

10 15

Accuracy ('lll)

83.33 79.17

87.92 91.92

87.50 91.67

62.57 68.23

71.06 75.14

14.16 14.09

66.33 51.64

4.00 8.00

76.78 80.89

66.00 72..00

8.00 12.00

37.79 47.89

91.50 90.50

43.54 58.58

68.00 84.00

44.00 72.00

21.74 13.04

37.50 29.17

94.00 94.00

58.49 70.03

40.00 44.00

8.33 0.00

20

79.17

83.83

91.67

69.90

39.33

18.08

67.22

24.00

86.61

86.00

12.00

38.62

90.00

47.62

96.00

60.00

17.39

25.00

94.00

66.51

28.00

0.00

Average : 44.19 46.35 49.27 42.51 Average : 48.79 53.30 56.73 55.50

Table 4.12

Gray_encoding &: 8-tuple Linear_mapping

Table 4.13

Gray_encoding &: 8-tuple Random_mapping

10 15

Accuracy (%)

Trainings :

Class

toI

III

Ig/

IN

In!

fkI

lui

N

I1t

Irf

lsi

N

Itl

/wI

Iii

I~

Ire!

leI

Idl

Ie"

lerl

lril

5

58.33

53.00

50.00

40.70

83.78

59.58

50.95

8.00

46.04

52.00

8.00

50.58

94.50

61.75

52.00

36.00

4.35

50.00

84.00

30.61

32.00

8.33

75.00

77.50

50.00

46.40

76.39

79.92

55.36

20.00

60.41

52.00

8.00

49.18

90.96

28.42

72.00

40.00

17.39

54.17

96.00

37.18

36.00

0.00

70.83

85.67

75.00

50.53

78.42

87.92

45.69

32.00

70.63

56.00

12.00

39.93

94.96

40.54

68.00

68.00

21.74

58.33

94.00

42.79

48.00

0.00

20

62.50

83.67

70.83

50.63

60.89

85.83

65.36

32.00

64.59

78.00

20.00

44.01

93.96

40.46

92.00

72.00

21.74

45.83

98.00

38.94

40.00

0.00

Trainings:

Class

IbI

1&/

Igi

IN

In!

IkJ

lui

1\1

1:11

IrI

lei

iii

Itl

Iwl

ItI

I~

Ire!

181

Idl

le1/

lerl

lril

5

83.33

63.17

75.00

45.77

89.89

32.75

58.26

24.00

57.68

62.00

20.00

61.35

97.50

85.92

60.00

56.00

13.04

87.50

86.00

50.48

40.00

8.33

10 15

Accuracy (%)

87.50 87.50

88.00 91.92

83.33 91.67

52.13 58.57

85.19 87.92

55.58 67.67

74.48 50.62

28.00 32.00

77.04 81.78

64.00 72.00

16.00 28.00

52.24 63.10

95.00 92.00

49.54 70.83

84.00 88.00

64.00 76.00

21.74 17.39

70.83 66.67

96.00 96.00

52.56 78.37

48.00 52..00

16.67 26.00

20

87.50

85.83

91.67

65.97

71.86

71.75

73.78

36.00

90.67

88.00

24.00

53.64

92.00

68.75

96.00

68.00

21.74

75.00

98.00

68.59

48.00

0.00

Average : 46.11 51.01 56.41 57.33 Average : 56.73 61.90 67.04 6712
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4.9.2 Experiments with "Averaged Points Interpolation Method"

for Time Normalisation

The aim of this set of experiments is to determine which of the

two interpolation methods for time normalisation produces better

results. For these set of experiments, the setup was the same as in the

experiments in Section 4.9.1 except that the "averaged points

interpolation method" is used for time normalisation. Thus the

following system configuration was used:

(i) "Averaged points interpolation method" for time normalisation.

(ii) Direct mapping of spectral frame store to WISARD 'retina'.

The results obtained for the experiments in Section 4.9.1 showed

that 8-tuple gave better results than 4-tuple, and that Thermometer

encoding gave poor results. It was therefore decided to discontinue

experiments with n-tuple size of 4, and Thermometer encoding.

Tables 4.14 - 4.17 give the results obtained for this set of

experiments. As in the experiments of Section 4.9.1, Gray encoding

gives better results than Linear encoding, and random mapping

produces better results than linear mapping. Also, Gray encoding and

Linear encoding are equivalent for the linear mapping case (Tables

4.14 and 4.16). The highest recognition accuracy is 66.50% obtained for

Gray encoding with random mapping and 20 trainings. Comparing with

the corresponding results in previous experiments (Tables 4.5 and 4.6

for Linear encoding, and Tables 4.12 and 4.13 for Gray encoding) it is

clear that the system configuration with the "unaveraged points

interpolation method" gives the better results. This is however a

surprising result because the "averaged points interpolation method"
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uses data from all spectral frames in the interpolation process whereas

the former method only uses the spectral frames that immediately

precede and follow the interpolation point and so for phoneme-like

segments with more than 19 frames, data from certain frames will be

ignored in the interpolation process (Section 4.4.1.1).



Table 4.14 98
Linear_encoding '" 8·tuple Linear_mapping

Table 4.15

Linear_encoding '" 8-tuple Random_mappinr

Trainings : 5 10 15 20 Trainings: 5 10 IS 20
Class Accuracy (%) Class Accuracy (%)
fbi 58.33 70.83 66.67 62.50 IbI 87.50 91.67 87.50 83.33
/fJ 55.08 79.50 85.67 81.58 /f,/ 47.00 67.58 79.75 71.67
I'; 50.00 50.00 75.00 70.83 Ig/ 50.00 66.67 83.33 83.33
W 43.97 44.00 47.30 49.00 IN 14.70 29.37 40.00
In/ 80.39 75.06 77.72 59.58

44.90
In! 88.58 76.50 79.22 44.58

IkI 53.42 77.92 87.92 85.83 /kI 41.25 49.42 57.50 57.17
lui 48.81 53.54 44.98 65.66 lui 56.65 65.67 55.76 76.14
N 8.00 20.00 32.00 32.00 /II 0.00 0.00 4.00 20.00
N 47.62 61.92 68.65 68.15 /II 42.71 74.58 77.52 8-&.20
Ir/ 52.00 52.00 56.00 76.00 Irl 34.00 54.00 72.00 90.00
lsi 8.00 8.00 8.00 12.00 lsi 8.00 12.00 12.00 12.00
iii 53.48 48.56 41.51 46.14 fsI 53.46 51.35 57.43 47.16
It/ 94.50 89.96 95.48 93.96 Itl 98.50 95.98 94.48 91.98
/wI 63.79 28.42 41.54 40.50 /wI 80.88 45.50 51.58 45.58
111 52.00 68.00 60.00 92.00 III 48.00 72.00 76.00 96.00
IiJI 36.00 40.00 64.00 72.00 ~I 24.00 36.00 56.00 68.00
lei 4.35 17.39 21.74 21.74 lei 8.70 21.74 13.04 8.70
tel 50.00 54.17 62.50 45.83 leI 83.33 70.83 75.00 66.67
Idl 82.00 94.00 92.00 96.00 Idl 84.00 96.00 96.00 98.00

Ie'" 32.69 37.18 35.10 37.18 Ie'" 24.36 26.44 42.47 46.64
19r1 28.00 44.00 40.00 36.00 lerl 28.00 48.00 36.00 24.00
IriI 8.33 0.00 0.00 8.33 lril 0.00 0.00 0.00 0.00

Average : 45.94 50.66 54.72 56.95 Average: 45.62 52.33 56.66 57.27

Table 4.16 Table 4.17

Gray_encoding '" 8-tuple Linear_mapping Gray_encoding '" 8.tuple Random_mapping

Trainings : 5 10 15 20 Trainings : 5 10 15 20

Class Accuracy (%) Claaa Accuracy (%)

IbI 58.33 70.83 66.67 62.50 IbI 79.17 87.50 87.50 87.50

'''' 55.08 79.50 85.67 81.58 /11 63.17 90.00 93.92 85.83

I'; 50.00 50.00 75.00 70.83 I'; 75.00 83.33 91.67 91.67

IIJ 43.97 44.00 47.30 49.00 /AI 45.77 51.30 60.20 64.33

In! 80.39 75.06 77.72 59.58 In! 89.89 85.17 88.61 67.14

IkI 53.42 77.92 87.92 85.83 /kI 30.83 53.42 55.17 67.58

lui 48.81 53.54 44.98 65.66 lui 58.70 75.91 48.69 70.16

/II 8.00 20.00 32.00 32.00 /II 20.00 28.00 36.00 36.00

N 47.62 61.92 68.65 68.15 N 57.53 75.39 78.58 87.48

IrI 52.00 52.00 56.00 76.00 IrI 44.00 64.00 70.00 92.00

lsi 8.00 8.00 8.00 12.00 lsi 20.00 12.00 16.00 16.00

iii 53.48 48.56 41.51 46.14 N 61.07 52.24 63.33 63.87

Itl 94.50 89.96 95.48 93.96 Itl 97.50 96.00 95.00 93.00

/wI 63.79 28.42 41.54 40.50 /wI 84.92 49.58 68.79 64.75

III 52.00 68.00 60.00 92.00 Itl 60.00 80.00 68.00 92.00

/:JI 36.00 40.00 64.00 72.00 /:II 56.00 56.00 72.00 68.00

lei 4.35 17.39 21.74 21.74 lei 13.04 21.74 17.39 21.74

191 50.00 54.17 62.50 45.83 leI 87.50 75.00 70.83 75.00

Idl 82.00 94.00 92.00 96.00 Idl 84.00 96.00 94.00 98.00

lell 32.69 37.18 35.10 37.18 letl 52.56 48.72 74.52 68.91

lerl 28.00 44.00 40.00 36.00 terI 40.00 48.00 52.00 52.00

/riI 8.33 0.00 0.00 8.33 IriI 8.33 16.67 25.00 0.00

Average : 45.94 50.66 54.72 56.95 Average: 55.86 61.18 65.78 66.50
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4.9.3 Experiments with "Across Channel Mapping" of Spectral

Frame Store

The aim of this set of experiments is to determine which of the

two methods for mapping the spectral frame store to the WISARD

'retina' is more effective; the "direct mapping" method or the "across

channel mapping" method (Section 4.6). For the experiments of

Sections 4.9.1 and 4.9.2, the "direct mapping" method was used for

mapping the spectral frame store to the WISARD 'retina'. These

experiments showed that for time normalisation, the "unaveraged

points interpolation method" gave better results than the "averaged

points interpolation method" and so for further experiments, the

"unaveraged points interpolation method" only will be used for time

normalisation. Thus the following system configuration was used :

(i) "Unaveraged points interpolation method" for time

normalisation.

(ii) Across channel mapping of spectral frame store to WISARD

'retina'.

Tables 4.18 - 4.21 give the results for this set of experiments

using Linear and Gray encoders. Once again the best results are

obtained by Gray encoding with recognition accuracy increasing with

training. However, the following differences are observed in comparison

with the results obtained in the earlier set of experiments.

(i) For experiments with both Linear and Gray encoders, linear

mapping of the 'retina' to n-tuples gives better results than

random mapping.
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Best average recognition accuracy of 69.61 % is obtained with 20

trainings for Gray encoding with linear mapping (Table 4.20). This is

an improvement over the results for the previous experiments since the

best results obtained with the "direct mapping" method is 67.12%

(Table 4.17). Overall, the results obtained in this set of experiments

are an improvement over those obtained with the "direct mapping"

method and this suggests that for mapping the spectral frame store to

the WISARD 'retina', the "across channel mapping" method is the

better method.



Table 4.18

Linear_encoding &: 8-tuple Linear_mapping Table 4.19

Linear_encoding &: 8-tuple Random_mappinr
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Trainings :

Class

fbi

III

IgI

!AI

In!

fk1

lui

N

I¥

IrI

111

N

It/

/wI

III

t:1

Ire!

181

Idl

lelJ

JerI

lril

6

87.60

56.17

58.33

22.07

88.58

28.92

41.25

12.00

33.74

40.00

28.00

1111.71

95.00

74.71

60.00

20.00

8.70

83.33

62.00

33.01

20.00

8.33

10 15

Accuracy (CJI,)

100.00 100.00

77.75 75.67

83.33 87.50

33.47 38.37

87.92 88.61

39.08 63.58

56.87 59.74

24.00 20.00

60.83 75.«

50.00 58.00

16.00 24.00

112.17 49.93

97.00 95.50

49.62 64.92

84.00 88.00

32.00 68.00

21.74 17.39

75.00 62.50

84.00 90.00

30.93 37.18

40.00 36.00

0.00 0.00

20

95.83

79.67

79.17

40.83

79.25

71.67

74.60

32.00

78.87

82.00

20.00

«.02

92.48

65.96

88.00

76.00

17.39

75.00

88.00

44.88

36.00

0.00

Trainings:

ClaA

/bI

11/

Ig/

IN

In!

/kI

lui

N

'"Ir!
lsi

N

ItJ

/wI

Ifl

I:J/

Ire!

181

Idl

leel

18r!

IriI

6

79.17

47.08

54.17

9.87

86.50

18.33

59.62

0.00

43.65

38.00

8.00

43.77

98.00

78.96

62.00

24.00

8.70

91.67

82.00

29.97

24.00

0.00

10 15

Accuracy ('lIo)

83.33 79.17

79.75 81.75

76.00 87.50

28.73 32.80

79.81 84.61

24.25 38.58

69.64 63.08

4.00 4.00

67.64 71.13

56.00 76.00

12.00 20.00

38.01 37.71

95.50 97.00

55.79 62.83

60.00 60.00

32.00 66.00

17.39 17.39

83.33 83.33

96.00 96.00

22.27 34.46

36.00 44.00

0.00 0.00

20

70.83

75.50

87.50

40.97

68.47

46.83

80.83

12.00

84.61

94.00

24.00

31.67

92.98

69.63

96.00

72.00

13.04

79.17

96.00

64.33

44.00

0.00

Average : 46.20 54.35 59.11 61.89 Average: 44.43 50.29 55.79 60.21

Table 4.20

Gray_encoding &: 8-tuple Linear_mapping

Table 4.21

Gray_encoding '" 8-tuple Random_mapplnr

Trainings :

Class

fbi

III

IgI

IIJ

In!

IkI

lui

N

~

Ir!

III

N

IV

/wI

Itl

I:JI

lei

tel

Idl

lei/

ter!

IriI

6

100.00

71.33

75.00

40.80

91.92

36.83

42.64

20.00

48.46

68.00

28.00

64.64

96.00

84.88

64.00

64.00

8.70

91.67

82.00

61.«

32.00

0.00

10 15

Accuracy (CJI,)

95.83 91.67

83.83 85.92

91.67 87.50

56.10 70.03

87.86 91.31

47.33 69.67

64.38 64.26

20.00 20.00

63.06 88.22

68.00 80.00

20.00 24.00

67.75 66.62

97.50 95.50

59.71 69.75

84.00 92.00

64.00 88.00

21.74 17.39

91.67 91.67

94.00 94.00

53.52 63.52

36.00 62.00

25.00 16.67

20

83.33

87.92

87.50

67.70

77.19

73.67

75.20

44.00

93.94

94.00

28.00

68.83

94.00

73.83

96.00

92.00

17.39

83.33

98.00

47.60

48.00

0.00

Trainings :

Class

/bI

ItJ

Ig/

IN

In!

/kI

lui

N

lat

Irl

lsi

rll
It/

/wI

III

1:1

Ire!

191

Idl

Ie"

terI

IriJ

5

83.33

59.25

76.00

45.80

86.42

14.41

57.95

20.00

58.35

58.00

8.00

40.97

98.00

82.92

56.00

60.00

13.04

87.50

86.00

56.73

32.00

0.00

10 15

Accuracy (CJI,)

91.67 87.50

91.92 93.92

83.33 100.00

47.30 57.10

85.14 87.94

22.25 36.58

69.79 63.44

16.00 28.00

75.37 77.20

70.00 80.00

12.00 20.00

49.41 59.12

96.50 96.00

62.79 71.88

68.00 80.00

56.00 76.00

21.74 21.74

83.33 83.33

96.00 94.00

54.65 62.66

48.00 48.00

8.33 16.67

20

87.50

89.92

91.67

61.93

78.53

48.92

73.64

28.00

85.44

94.00

28.00

55.05

94.48

6779

92.00

76.00

13.04

79.17

98.00

60.90

112.00

0.00

Average : 66.92 63.32 68.62 69.61 Average : 53.62 59.62 65.50 66.18
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4.9.4 Adding Normalisation Techniques to the Recogniser

The basic design of the speech recogniser is complete and the

best average recognition accuracy of 69.61% is obtained for a system

with the following configuration:

(i) "Unaveraged points interpolation method" for time

normalisation.

(ii) Gray encoder for the Data Reduction stage.

(iii) Across channel mapping of spectral frame store to 'retina'.

(iv) n-tuple size of B.

(v) Linear mapping of 'retina' to n-tuples.

The following normalisation techniques ([3]) are introduced into

the speech recogniser design to attempt further improvement in the

recognition accuracy:

(i) Spectral energy normalisation.

(ii) Noise subtraction normalisation.

The aim of these normalisation techniques is to make the

spectral representation of the speech segments from the filterbank

more robust by reducing their variability and hence less confusable. It

is therefore expected that improved recognition accuracy will result.

4.9.4.1 Spectral Energy Normalisation

The spectral energy normalisation method employed in the

speech recogniser was first proposed by Shearme & Leach [35], [111].

Given a spectral frame, the method is to divide the energy in each
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filterbank channel by the sum. of the energy from all filterbank

channels for that frame, as given by

c = 1,2,3,...,16 (4.3)

where t; is the energy in filterbank channel c and Fe is the normalised

energy for that channel.

Tables 4.22 and 4.23 give the results for the speech recogniser

with spectral energy normalisation. As expected, these results are an

improvement over those obtained in the earlier experiments. The best

average recognition accuracy is 79.22% obtained with random mapping

and 15 trainings. This is an improvement of almost 10% over the best

recognition results in the earlier experiments (69.61%). This is

comparable with results for phoneme recognition achieved by other

researchers (Kashyap & Mittal achieved 78% phoneme recognition for

40 words but these were from six different speakers [84]).

With energy normalisation, the recognition of lsi has improved

vastly, but a drop in recognition accuracy for Iii has resulted. This is

mainly due to confusion with lui. No improvements were effected for

recognition of lre/. There has also been an improvement in the

recognition of 18rl and lri!.

Table 4.24 gives results obtained with spectral energy

normalisation for Gray encoding/8-tuple random mapping but with the

"averaged points interpolation method" for time normalisation.

Although the experiments of Section 4.9.2 showed that the "unaveraged

points interpolation method" gave better results than the "averaged

points interpolation method", with spectral energy normalisation, the

latter method gives slightly better results. Best average recognition

accuracy of 79.61% is achieved compared with 79.22% for the

"unaveraged points interpolation method".
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Table 4.22

Table 4.23
Gray_encoding A 8-tuple Linear_mapping

Gray_encoding &: a-tuple Random_m.ppinc

Trainings: 5 10 15 20 Trainings: 5 10 15 20
Cla8B Accuracy (%)

Class Accuracy (~)

fbi 87.50 95.83 95.83 95.83 fbi 91.67 100.00 100.00 100.00
It! 81.67 73.75 59.42 71.58

I" 81.75 94.00 89.92 88.00
Ig/ 66.67 87.50 87.50 87.50 Ig/ 70.83 83.33 95.83 95.83
/AI 78.77 87.80 83.80 80.53 W 78.17 83.80 75.80 71.70
In! 88.61 89.94 91.28 88.58 In! 96.67 95.31 94.00 92.67
IkI 85.67 89.67 87.50 89.58 IkJ 81.50 85.50 89.67 89.67
lui 77.43 83.94 82.12 87.40 lui 85.00 83.57 78.26 80.26
11/ 64.00 72.00 76.00 76.00 111 56.00 80.00 76.00 68.00
I~ 81.22 85.35 90.98 91.50 hi 91.82 95.89 94.04 94.09
Irl 72.00 78.00 86.00 92.00 11'1 92.00 94.00 94.00 94.00
lsi 64.00 60.00 80.00 68.00 lsi 64.00 68.00 68.00 68.00
iii 4.0S 7.50 21.91 18.41 iii 5.31 13.0S 38.65 37.54
ItJ 97.50 9S.00 98.00 98.00 ItJ 96.00 98.00 98.00 98.00
Iwl 82.96 61.83 70.92 75.96 Iwl 87.00 80.92 83.00 81.00
111 92.00 92.00 96.00 96.00 III 92.00 96.00 96.00 96.00
t:II 96.00 96.00 100.00 100.00 t:II 96.00 96.00 96.00 96.00
lei 17.39 17.39 21.74 21.74 lei 17.39 21.74 21.74 17.39
191 100.00 95.83 91.67 79.17 181 91.67 91.67 87.50 91.67
Idl 90.00 94.00 94.00 94.00 Idl 94.00 94.00 94.00 94.00
leI/ 65.39 59.46 59.46 59.46 Ie" 57.38 59.46 82.53 90.23
lerl 20.00 32.00 44.00 40.00 JerI 16.00 24.00 40.00 36.00
lril 16.67 33.33 25.00 33.33 lril 16.67 50.00 50.00 33.33

Average : 69.52 72.32 74.69 74.75 Average: 70.86 76.74 79.22 77.88

Table 4.24. Gray_encoding & S-tuple Random_mapping

"Averaged points interpolation method" for Time Normalisation

Trainings: 5 10 15 20

Class Accuracy (%)

fbi 87.50 100.00 100.00 100.00

IU 81.75 94.00 89.92 88.00

Ig/ 70.83 87.50 95.83 95.83

/AI 80.53 84.60 75.80 70.10

In! 96.67 96.00 94.67 93.33

IkJ 81.50 85.58 89.67 91.75

lui 86.51 87.21 82.55 81.50

111 56.00 80.00 80.00 64.00

hI 96.83 95.89 92.26 94.09

11'1 92.00 94.00 94.00 94.00

lsi 64.00 64.00 68.00 80.00

5.98 18.86 33.22 36.12fJ!

96.00 98.00 98.00 98.00Itl

87.00 80.92 84.00 82.00Iwl

111 92.00 96.00 96.00 96.00

96.00 96.00 96.00 96.00I:JI

17.39 21.74 21.74 17.39lei

91.67 95.83 91.67 100.00181

94.00 94.00 96.00 94.00Idl

57.38 63.30 86.38 90.23le<l

16.00 24.00 44.00 32.00IeI'I

8.33 50.00 41.67 33.33lril

70.72 77.61 79.61 78.53Average:
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4.9.4.2 Noise Subtraction Normalisation

The objective is to try to reduce the effect of background noise

on the speech spectral data which in turn should result In

improvement in the recogniser's performance. The method is to

determine the energy level of the background noise and to subtract this

energy from the energy of the input signal over the duration of the

utterance. The remaining energy level would be that due to the speech

signal only.

In the speech recogniser design, the background noise was

represented by a spectral frame just before the start of the utterance.

This spectral frame was subtracted from each of the spectral frames

obtained over the duration of the utterance [3]. The resulting spectral

frames represent the speech signal only and may now be energy

normalised.

Tables 4.25 - 4.28 give the results for the experiments with noise

subtraction normalisation. Since the energy normalisation experiments

have indicated that the "averaged points interpolation method" gives

slightly better results than the "unaveraged points interpolation

method", results were therefore obtained for both interpolation methods

(Tables 4.25 - 4.26 for the former method, and Tables 4.27 - 4.28 for

the latter method). These results continue to show that with energy

normalisation, the "averaged points interpolation method" gives higher

recognition accuracy. 78.23% average recognition accuracy is obtained

for Gray encoding/8-tuple random mapping with 20 trainings. Although

this is lower than that achieved with energy normalisation only

(79.61%), if recognition scores for /re/, jeri and /ri/ are ignored since in

all the experiments, these three classes have been the most difficult to

recognise, it is found that the results obtained with noise subtraction

normalisation have in fact been an improvement. Referring to Table
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4.24 (ie. results of the energy normalisation experiment), if recognition

scores for lrel, lerl and lri/ are excluded, then for the remaining

classes, the average recognition accuracy for 15 trainings is 86.52%

(scores for the 15 trainings case are considered since this has the best

average recognition accuracy). This compares with 87.23% (Table 4.27,

20 trainings) and 87.68% (Table 4.28, 15 trainings) for the noise

subtraction normalisation experiments.

Tables 4.29 and 4.30 show the word recognition accuracy (for the

Badii & Binstead word-set) for the 8-tuple based speech recogniser

with Gray encoding and the "averaged points interpolation method" for

time normalisation. A word from the word-set was considered to have

been correctly recognised only if all the phoneme-like segments in that

word were correctly recognised by the speech recogniser. The best word

recognition accuracy is 57.2%, achieved with random mapping of the

n-tuples and 15 trainings (Table 4.30). Comparing with the

corresponding accuracy at the phoneme-like segment level (Table 4.28),

it is seen that a higher word recognition accuracy is obtained for 10

trainings than with 20 trainings although the latter has a higher

accuracy at the phoneme-like segment level. About 70% of the words

that were considered to be errors In word recognition, had

misc1assification of one phoneme-like segment only. These errors may

be easily corrected by a linguistic processor. However, it may not be

possible to correct all of these errors, ego if the phoneme-like segment

Iii in the word 'Tee' is incorrectly recognised as lui, then 'Tee' will be

recognised as 'Two' which is a word in the word-set of the speech

recogniser.



Table 4.25 Gray_encoding & 8-tuple Linear_mapping

'Unaveraged points interpolation method" for Time Nonnalisation
Table 4.26 Gray encoding & 8 tuple Ra do- . n M_lIUlppin(

"Unaveraged points interpolation method- for Time Nonnah&abon
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10 15

Accuracy (%)

Trainings : 5

Class

fbi 83.33

/II 85.58

Ig! 95.83

iN 80.50

In! 93.25

IkJ 81.33

lui 61.62

N 56.00

IW 86.78

Irl 70.00

It! 68.00

fI1 58.40

Itl 96.96

Iwl 80.00

III 100.00

1:1/ 96.00

lEI 17.39

lei 70.83

Idl 94.00

lell 49.68

lerl 12.00

lril 0.00

100.00

93.92

100.00

85.40

89.83

83.33

68.59

76.00

91.44

88.00

76.00

61.98

97.48

84.00

100.00

96.00

17.39

87.50

94.00

49.68

20.00

8.33

91.67

91.83

100.00

76.53

96.64

91.67

65.97

64.00

91.11

90.00

88.00

64.44

96.50

85.00

100.00

100.00

17.39

75.00

94.00

49.68

36.00

0.00

20

87.50

91.83

95.83

75.73

96.61

95.83

68.33

56.00

93.89

96.00

88.00

62.10

95.48

90.00

100.00

100.00

21.74

70.83

94.00

59.46

32.00

25.00

Trainings : 5

Class

fbi 75.00

11./ 83.75

IgI 87.50

/AI 74.90

In! 91.97

/kI 87.50

lui 79.14

N 60.00

!"¥ 92.83

Irl 80.00

III 80.00

N 43.72

Itl 96.98

Iwl 78.00

/JI 96.00

I:¥ 96.00

lrel 21.74

leI 62.50

Idl 94.00

lel./ 55.60

lerl 12.00

IriJ 0.00

10 15

Accuracy (%)

95.83 100.00

89.75 89.75

95.83 95.83

81.47 71.77

94.61 97.28

95.83 95.83

77.38 78.26

84.00 80.00

95.50 98.61

94.00 96.00

88.00 88.00

48.21 51.35

96.48 98.00

82.00 84.00

96.00 100.00

92.00 96.00

21.74 21.74

62.50 70.83

94.00 94.00

65.07 74.84

24.00 24.00

16.67 8.33

20

95.83

85.75

95.83

72.53

95.94

95.83

77.44

56.00

97.22

96.00

80.00

49.01

97.50

87.00

96.00

96.00

21.74

70.83

94.00

86.38

24.00

16.67

Average: 69.89 75.86 75.70 77.10 Average: 70.42 76.86 77.93 76.71

Table 4.27 Gray_encoding '" 8-tuple Linear_mapping

"Averaged points interpolation method" for Time Normalisation

Table 4.28 Gray_encodlng '" 8-tuple Random_mappln.

"Averaged points interpolation method" for Time NormaJiaation

10 15

Accuracy (%)

100.00 91.67

Trainings:

Class

fbi

1&1

Ig!

IN

In!

/kI

lui

N

•
Irl

It!

iii

Itl

Iwl

III

1:1

lrel

181

Idl

let!

18rl

IriJ

5

91.67

87.67

91.67

60.97

91.92

79.17

61.30

64.00

90.17

64.00

84.00

60.03

96.98

79.00

100.00

96.00

17.39

79.17

92.00

57.38

12.00

16.67

93.92

95.83

79.73

91.92

91.67

60.40

76.00

93.50

88.00

92.00

63.07

95.96

80.00

100.00

96.00

17.39

83.33

94.00

53.52

32.00

8.33

93.92

95.83

65.97

95.25

97.92

61.36

76.00

94.56

84.00

92.00

63.88

96.46

86.00

100.00

100.00

17.39

79.17

94.00

63.30

28.00

16.67

20

91.67

91.83

100.00

61.93

95.94

97.92

72.27

72.00

95.22

92.00

92.00

63.62

95.96

89.00

96.00

100.00

21.74

83.33

94.00

72.76

16.00

25.00

Trainings :

C1aB8

fbi

11/

IgI

N

In!

IkJ

lui

N

1#

Irl

lsi

fJl

Itl

Iwl

III

Q

lrel

I~

Idl

let.!

18rl

IriJ

6

95.83

87.83

91.67

69.97

95.22

77.33

81.38

64.00

93.50

92.00

84.00

56.62

97.00

73.00

96.00

92.00

21.74

75.00

94.00

55.60

12.00

0.00

10 15

Accuracy (%)

95.83 95.83

93.92 91.83

95.83 100.00

83.03 78.05

97.28 98.64

95.83 97.96

74.46 79.56

80.00 76.00

96.17 97.30

96.00 98.00

84.00 88.00

45.46 47.92

98.00 96.98

79.00 84.85

96.00 100.00

92.00 92.00

21.74 21.74

79.17 62.50

94.00 94.00

61.22 86.49

20.00 28.00

16.67 8.33

20

95.83

87.75

95.83

70.13

98.64

97.92

77.56

68.00

97.94

98.00

84.00

49.54

97.00

85.00

96.00

92.00

2174

75.00

94.00

90.23

24.00

25.00

Average: 71.51 76.66 76.97 78.19 Average: 72.99 77.07 78.36 78.23



Table 4.29 Word Recognition for Gray_encoding & S-tuple Linear_mapping Table 4.30 Word Recognition for Gray_encoding & S-tuple Random_mapping

"Averaged points interpolation method" for Time Normalisation "Averaged points interpolation method" for Time Normalisation

Trainings: 5 10 15 20 Trainings: 5 10 15 20

Word Accuracy (%) Word Accuracy (%)

One 25.0 75.0 58.3 58.3 One 52.0 87.5 87.5 87.5

Run 52.0 80.0 84.0 96.0 Run 72.0 100.0 100.0 100.0

Want 84.0 80.0 92.0 96.0 Want 80.0 84.0 84.0 92.0

Begun 62.5 70.8 62.5 66.7 Begun 58.3 79.2 75.0 58.3

Wonder 20.0 64.0 52.0 44.0 Wonder 48.0 68.0 68.0 48.0

Rudder 24.0 24.0 4.0 0.0 Rudder 52.0 40.0 28.0 16.0

Win 36.0 36.0 48.0 60.0 Win 12.0 28.0 44.0 40.0

Two 80.0 80.0 84.0 100.0 Two 92.0 88.0 84.0 88.0

Shoe 88.0 92.0 84.0 96.0 Shoe 96.0 92.0 96.0 96.0

Toot 32.0 20.0 8.0 16.0 Toot 60.0 52.0 52.0 36.0

Tattoo 16.0 16.0 20.0 28.0 Tattoo 20.0 24.0 20.0 24.0

Toothache 12.5 0.0 4.2 8.3 Toothache 12.5 8.3 16.7 29.2

Cooler 44.0 64.0 76.0 72.0 Cooler 52.0 76.0 76.0 68.0

Tee 52.0 56.0 56.0 60.0 Tee 56.0 48.0 56.0 56.0

Three 4.0 12.0 4.0 4.0 Three 0.0 4.0 0.0 0.0

See 40.0 48.0 56.0 60.0 See 36.0 32.0 28.0 32.0

Average: 42.00 51.11 49.56 54.08 Average: 49.93 56.94 57.20 54.44

~

o
00



b t g A n k u I ~ r s 1 t w J J re S d et Sf ri Samples

b 23 · . . · 1 · · · · · · · · · · · · · · · 24
t 1 45 . . · · 2 · · · · · 1 · · · · · · · · · 49
g · · 24 · · · · · · · · · · · · · · · · 24
A · · · 96 · · · · 15 . · · 6 · · 6 · · · · · · 123
n · · · · 146 · 1 · · · · · · · · · · · 1 · · · 148
k · 1 · · 48 · · · · · · · · · · · · · · · · 49
u 1 16 2 · 9 · 144 · · · · 7 2 · · · · · · · · 181
I · 1 . . · · 5 19 · · · · · · · · · · · · · · 25
~ · · 1 · 1 · · 108 . · · · · · · 1 · · · · · 111
r · · · · · · · · · 49 · · · · · · · · 1 · · · 50
s · · · · · · · · · 22 · 3 · · · · · · · · 25
1 · 2 2 · 8 · 38 · · · · 46 · · · · · · · · · 96
t · · · · · 3 3 · · · · · 193 · · · · · · · · · 199
w · · · · · · 11 · 2 · · · 84 . · · · 2 · · · 99
J · · · · · · · · · · · 25 · · · · · · · 25
J · · · · · · · · 2 · · · · 23 . · · · · · 25
re 2 2 2 · · 1 6 · · · · · 3 · · · 5 · 2 · · 23
S · 1 · · · · · · · · 8 · · · · 15 . · 24
d · · · · 2 · · · · · · 1 · · · · · 47 · · 50
et . · · · 2 2 · · · · · · · · · · 1 32 · · 37

Br . · · · 1 · · · · · · 17 · · · · 7 · 25
n · · 1 · · · 6 · · · · · 1 · · · · · 3 · · 1 12

Table 4.31 Confusion matrix for recogniser with Gray encoding / 8-tup1e Random mapping and 15 trainings

I--'
o
co
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Word recognition accuracy of 54.08% is achieved with linear

mapping of the n-tuples and 20 trainings (Table 4.29). This

performance is lower than that achieved with random mapping (57.2%).

Fewer trainings were also required in the random mapping case (15

trainings).

Table 4.31 grves the confusion matrix for the phoneme-like

segments for the recogniser with Gray encoding/8-tuple random

mapping and 15 trainings (since this gave the best word recognition

accuracy). With the exception of recognition of lrel, lerl and lri/, the

performance of the speech recogniser is encouraging. The poor

recognition of the segments lerl and lri/ suggests that the 'sum of

channel difference' segmentation method used at the segmentation

stage of the speech recogniser may be inconsistent in the segmentation

of the word 'Three'. This would cause variabilities in the speech data

for these segments and hence making them difficult to recognise. The

confusion of lerl with It/ is due to the greater number of It/ samples in

the training set thus the It/ discriminator was trained to a greater

degree than the lerl discriminator. This is confirmed by the confusion

of lei with It/. The greater training of the It/ discriminator causes it to

show stronger response to spectral data similar to that on which it was

trained (ferl, 181 and It/ all start with a burst). The poor recognition of

lrel is due to inconsistency in the articulation of this phone in the word

'Tattoo'. The speaker tended to shorten this phone and in two samples

of the utterance, it was deleted. The segment Iii tends to get confused

with lui. This suggests similarity between spectral data for Iii and lui.

However, the fact that Iii is more frequently confused with lui than

vice-versa is probably because there are more samples of lui in the

training set than of Iii (Table 4.1), hence the discriminator assigned to

lui has a tendency to respond stronger. Some samples of lui are
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confused with the segment It. I. These are samples of lui that were

produced when the segmentation process partitioned the sustained

vowel lui into two segments (Section 3.7,Chapter 3).

The low word recognition accuracy makes it necessary to

incorporate a linguistic processor in the design of the speech

recogniser. The linguistic processor would be the final stage in the

speech recognition system and its function is to perform error

correction on the class labels (corresponding to the phoneme-like

segments in the word) output by the 'Recognition Module' and hence

improve the word recognition accuracy. This subject is covered in

Chapter 6.

The 'Separate Segmentation and Labelling' method for the sub­

word approach to recognition of isolated words is just one scheme that

is implementable with the WISARD n-tuple pattern recogniser. In the

next chapter, the 'Sliding Window' approach is used to secure the same

goal.



112

4.10 Summary

A design for a WISARD n-tuple isolated word speech recogniser

based on the 'Separate Segmentation & Labelling' (SS&L) approach has

been presented in this chapter. The spectral representation of the

utterance input to the speech recogniser is obtained from a 16 Channel

filterbank IC. Using the segmentation method suggested in Chapter 3,

the spectral data is partitioned into phoneme-like segments. Since the

phoneme-like segments have varying durations, they are converted to a

fixed size by time normalisation using the linear interpolation method.

For data reduction, the 8-bit spectral data from the filter bank is

encoded to 4-bits using the Linear, Thermometer or Gray encoders.

Improvements In performance were achieved with spectral channel

normalisation and noise subtraction normalisation. Various

configurations are possible for the speech recogniser design. A series of

experiments with different configurations are conducted to arrive at the

setup for the speech recogniser that gives the best recognition

performance. The best recognition accuracy for the phoneme-like

segments in the word-set used in these experiments is 79.61%. The

best word recognition accuracy achieved is 57.2%. The word recognition

accuracy of the speech recogniser may be improved by incorporating a

linguistic processor into the design of the speech recognition system

(Chapter 6).
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CHAPTER FIVE

RECOGNISER DESIGN BASED ON THE SLIDING WINDOW

TECHNIQUE

5.1 Introduction

A design for a WISARD n-tuple phoneme-like segment speech

recogniser based on the sliding window approach is presented in this

chapter. This method involves sliding a window of a fixed duration

over the spectral data of the utterance, and labelling the windowed

data as belonging to one of the phoneme-like segments. In this design,

two window sizes are used. This idea is similar to the centisecond

labelling technique and in fact the speech recogniser design discussed

in this chapter was initially based on this method but was later

modified to the sliding window approach for reasons given in the next

section.

5.2 Design Based on the Centisecond Labelling Approach

In the centisecond labelling technique [1], spectral frames are

averaged over a 10 ms time duration to produce a centisecond frame.

Each centisecond frame is submitted to the recognition module for

labelling. Consecutive centisecond frames with the same label are

grouped together to form a single segment with that label. In this way,

the whole utterance is segmented and recognised at the same time.
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The overall layout of the recogniser design based on this concept

is shown in figure 5.1. Preliminary experiments with this design

suggested that certain modifications were necessary. Since each

spectral frame from the filterbank represents 3.2 ms of speech, three

such frames are averaged into a centisecond frame (the time duration

for three frames is actually 9.6 ms, but this is approximately a

centisecond). After the data reduction stage, each of the 8-bit 16

channel samples in each centisecond frame is reduced to 4 bits, thus

each centisecond frame is a single column of (16 x 4) bits (16 channels

encoded as 4 bits by the data reduction stage). As the centisecond

frame is the unit of recognition, the WISARD 'retina' is therefore a

single column of 16 x 4 bits. This implies that for a tuple size of 4,

only 16 4-tuples are needed to cover the whole 'retina', and therefore

only 16 24 x 1 bit RAMs are required per class discriminator, and in

the 8-tuple case, only 8 28 x 1 bit RAMs per class discriminator.

Although at first this appears attractive on the basis of discriminator

memory requirements for the design, tests showed that this

discriminator size is too small since training causes saturation of the

discriminator RAMs.

5.3 Design Based on the Sliding Window Approach

A solution to this problem is not to average the spectral frames

over 10 ms into a single frame but to consider spectral frames in

groups of three frames instead ie. to have a window the size of three

frames which is slid across the spectral data for the utterance. Thus

although the spectral frames are being considered over the same time

duration, the number of RAMs per class discriminator in a 4-tuple
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system has been increased from 16 to 48, and from 8 to 24 for the 8­

tuple system. This discriminator size is sufficient for the short

phoneme-like segments such as fbi and 11,1 but not for the

discriminators assigned to the longer phoneme-like segments such as

lsi, lui and Iii. A larger discriminator size is needed for recognition of

these segments. Furthermore, as there are many more frames in the

longer phoneme-like segments than In the shorter ones, the

discriminators assigned to these longer segments will have far more

training samples than discriminators assigned to the shorter ones and

therefore may tend to show greater response to the input speech

patterns (on account of their greater training) than the shorter

segment discriminators. This would increase the chances of

misclassification of the shorter segments.

As a result of these problems, the approach taken is to recognise

spectral frames from the shorter phoneme-like segments separately

from those belonging to the longer segments ie. to have two separate

banks of discriminators; one for the shorter segments, the other for the

longer ones. The discriminators assigned to the shorter phoneme-like

segments can process spectral data over a time duration of around 10

ms, whereas the longer phoneme-like segment discriminators may work

over a much greater time duration. This requires that a mechanism be

incorporated into the system design of figure 5.1 that will determine

the length of the segment to which the unknown input spectral frames

belong, ie. a segmentation process, which will then enable the

recognition module to select the appropriate discriminator bank. The

modified system design is shown in figure 5.2. Although this is now a

departure from the 'Recognition-then-Segmentation' philosophy of the

centisecond labelling technique since the speech spectral data is being

segmented beforehand to locate the segment boundaries and hence
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determine the segment duration, it still has in common the idea of

recognising the phoneme-like segment by labelling spectral data as a

sequence of subsegments that are around 10 ms in duration. In this

recogniser design, two subsegment sizes are used; four frames (ie, 12.8

ms) for short phoneme-like segments, and fifteen frames (ie, 48 ms) for

the long phoneme-like segments. This size is chosen because phoneme

perception experiments suggest that a certain duration of speech signal

is required for phoneme identification. Upto 30 ms is required for

vowels ([112]) and 30 ms or longer for stops ([113]).

The stages in the recogniser system design are shown in figure

5.2. The acoustic analysis, noise subtraction, channel normalisation,

segmentation and data reduction stages are the same as those in the

recogniser design in Chapter 4. This setup was chosen for the design

as it gave the best results with the recogniser design of Chapter 4.

5.3.1 The Recognition Module

Figure 5.3 shows the recognition module for this design. There

are two banks of discriminators. Discriminator bank'S' is assigned the

recognition of short phoneme-like segments such as fbI and ls-I, and

discriminator bank 'L' is assigned the recognition of long phoneme-like

segments such as lsI, lui and Ii/.

The segmentation stage uses the 'sum of channel difference'

segmentation method of Chapter 3 to determine the segment

boundaries, and hence the segment length for the input spectral

frames. This information is passed on to the Discriminator Bank

Selector.



Recognised
Output

Discriminator
--. 12.8 ms U Bank

Retina
r--+ S

Ir

on

Spectral
~

Discriminator Class Label
( . Frame Bank .. Sequence ..- -

Store Selector Unifier
r--+'

48 ms U Discriminator

-- Bank- Retina
r-. L

un
Analysis
ge

'" Segmentation..,

()

Fro
Data

Redu
St

Acousti

Train / Test

Figure 5.3 Layout of the Recognition Stage
~

~

co



120

Depending on the length of the segment, the Discriminator Bank

Selector selects the appropriate discriminator bank to operate on the

data in the spectral frame store.

Discriminator bank'S' has a 'retina' size of (16 x 4) x 4 bits ie.

it operates on four data reduced spectral frames ie. 12.8 ms time

duration since each spectral frame is of a duration of 3.2 ms. The

'retina' for discriminator bank 'L' operates on fifteen data reduced

spectral frames and therefore has a size of (16 x 4) x 15 bits, which is

equivalent to a time duration of 48 ms. Discriminator bank 'L' has

been assigned a bigger 'retina' for the reasons discussed earlier in

Section 5.2.

To keep the design flexible, all the phoneme-like segments to be

recognised are represented in both discriminator banks. This was done

to avoid having to determine which phoneme-like segments are to be

represented in either discriminator banks in order to assign the

discriminators to the phoneme-like segments. Depending on the

segment length threshold used by the Discriminator Bank Selector to

select the appropriate discriminator bank, some of the phoneme-like

segments will be represented in only one of the discrminator banks

while some will be represented in both banks.

The memory requirements for the discriminator banks are as

follows:

(i) Discriminator Bank'S' (short phoneme-like segments)

The 'retina' size is (16 x 4) x 4 bits.

For an n-tuple size of 4, 64 4-tuples are needed to map the

'retina'. For each 4-tuple there is a corresponding 2
4

x 1 bit RAM

in the class discriminator. Therefore each class discriminator has
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a size of 1K bits (64 x 24
) . Since there are 22 phoneme-like

segments to be recognised, and hence 22 class discriminators,

discriminator bank'S' therefore has a size of 22K bits.

Similarly, for the 8-tuple case, 32 8-tuples are required to map

the 'retina'. This implies that each discriminator has a size of 8K

bits (32 x 28
) , and therefore discriminator bank'S' has a size of

176K bits.

(ii) Discriminator Bank 'L' (long phoneme-like segments)

The 'retina' size is (16 x 4) x 15 bits.

For the 4-tuple case, 240 4-tuples are needed to map the 'retina'.

This gives each class discriminator a size of 3,840 bits, and

hence discriminator bank 'L' a size of 84,480 bits.

For the 8-tuple case, 120 8-tuples are needed to map the 'retina'.

This gives each class discriminator a size of 30,720 bits, and

hence discriminator bank 'L' a size of 675,840 bits.

Therefore, the total discriminator memory requirement for this

recogniser design is 107,008 bits for the 4-tuple based recogniser, and

856,064 bits for the 8-tuple based recogniser.
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5.3.2 Spectral Frame Store Sliding Window

After data reduction, the 4-bit encoded spectral data for the

whole isolated word is stored in the spectral frame store. By applying

an energy threshold in the manner suggested by Rabiner & Sambur

[114], the start of the utterance is detected. From this point, spectral

frames equivalent to 1 second of speech (ie, 312 spectral frames) are

retained by the spectral frame store. The segmentation stage identifies

the frames in the spectral frame store that mark the start and end of

the phoneme-like segments in the word. A window is opened in the

spectral frame store, and is aligned with the start of the phoneme-like

segment. The window has the same size and dimensions as the 'retina',

ie. (16 x 4) x 4 bits if discriminator bank '8' is selected, or (16 x 4) x

15 bits if discriminator bank 'L' is selected. The spectral frames that

lie within this window are mapped onto the corresponding 'retina'.

After operating on the bits mapped in the 'retina' (ie. n-tupling the

'retina' and training or testing the discriminators) the window is moved

forward one frame as shown in figure 5.4. The spectral frames within

the window are again mapped onto the retina and operated on. This

process is repeated until all the spectral frames within the phoneme­

like segment in the spectral frame store have been processed. Thus

this method involves sliding a window across the phoneme-like segment

one frame at a time, and operating on the contents of the window at

these window positions.
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5.4 Training the Recogniser

To train the recogniser, the training samples are the same as

those in the training set given in Table 4.1 (Chapter 4, Section 4.7)

used to evaluate the recogniser design in Chapter 4. This will enable a

comparison of the performance of these two recogniser designs.

Before training of the discriminators can commence, all

discriminators in both discriminator banks are cleared. The training

samples after passing through the preprocessor and data reduction

stages are loaded into the spectral frame store. The segmentation stage

identifies the frames associated with the phoneme-like segment to be

trained. Depending on the length of this segment, a 12.8 ms or 48 ms

window is aligned with the start of the segment and the corresponding

discriminator bank is selected. The class discriminator assigned to the

phoneme-like segment being trained is set to train mode. The 4-bit

encoded spectral data within the window is mapped onto the 'retina'.

The bits in the 'retina' are then grouped into n-tuples (4-tuple or 8­

tuple) using linear or random mapping, and a '1' is written into the

selected discriminator's RAM cells addressed by the n-tuples. The

window is moved forward by one frame and the data within the

window is trained into the discriminator as before. Thus to train the

discriminator on the whole phoneme-like segment, the window is slid

one frame at a time from the start to the end of the segment. At each

stage the data within the window is trained into the discriminator.

This process is repeated for all the phoneme-like segments in the

training set.

....



125
5.5 Testing the Recogniser

The procedure for testing the recogniser is similar to that for

training. The 4-bit encoded spectral data from the unknown input word

is loaded into the spectral frame store. The segmentation stage marks

the boundaries of the phoneme-like segments in the unknown input

word. The phoneme-like segments are to be recognised in the sequence

in which they occur in the unknown input word. Starting with the first

phoneme-like segment, a 12.8 ms or a 48 ms window (depending on

the length of this phoneme-like segment) is aligned with the start of

the segment, and the corresponding discriminator bank is selected. All

the class discriminators in the selected discriminator bank are set to

test mode. The data within the window is mapped onto the 'retina'.

Using linear or random mapping, the 'retina' is mapped to n-tuples (4­

tuples or 8-tuples). RAM locations addressed by these n-tuples are read

for each class discriminator in the selected discriminator bank. The

output of each discriminator (called the discriminator score) is the sum

of the contents of all RAM cells (in that discriminator) addressed by

the n-tuples mapped from the 'retina'. The spectral data within the

window is assigned the label of the class discriminator giving the

highest score. The window is then moved forward by one frame and

the process for labelling the window contents is repeated. Thus to

recognise the phoneme-like segment, the window is slid from the start

to the end of the segment and the spectral data windowed is labelled

for each window position as it slides across the segment. The

remaining phoneme-like segments in the unknown input word are

processed in the same manner.

As the window is slid across the spectral data for the phoneme-

like segment, the recogniser outputs a class label for the windowed

spectral data at each window position. Thus the result of recognition is
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a sequence of class labels representing the phoneme-like segment.

Since the spectral data scanned by the window belong to the same

phoneme-like segment, it would be expected that all the labels in the

label sequence output by the recogniser are of the same class.

Frequently however, the label sequence contains labels of other classes

due to misclassification by the recogniser. Therefore there is a need to

unify this label sequence into a single class label as the final decision

as to the identity of the unknown phoneme-like segment. This function

is performed by the 'Class Label Sequence Unifier'.

5.5.1 Class Label Sequence Unifier

Instead of outputting a single class label as the recognition

result at each window position across the phoneme-like segment, the

recognition process generates a list of alternative choices at each

window position as the window slides across the phoneme-like segment

ie. a lattice of class labels. Each column in the lattice gives the

possible choices of class labels for that window position over the

segment. The columns are arranged such that the class label of the

discriminator giving the highest recognition score is at the top of the

column. The next position in the column is occupied by the class label

of the discriminator that gives the next highest score and so on. A

final overall score for each class is obtained by summing the positions

that the class label occupies in each column in the lattice. The column

positions are treated as penalty points assigned to the class label

occupying that column position. The top of the column is position '0'

and has a penalty of 0 point. The penalty is therefore numerically

equal to the column position. Thus the lower down the column a class

label is, the less likely it is that it is the correct class and hence the
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higher the penalty assigned to it. The class label that produces the

lowest score when each class label's position is summed across all

columns in the lattice, is chosen as the identity of the unknown

phoneme-like segment being recognised. This technique is based on the

expectation that when a misclassification occurs at any window

position over the phoneme-like segment, the discriminator that actually

represents that phoneme-like segment will be among the top scoring

discriminators for that window position and hence its class label should

be found near the top of the lattice column. Consequently the penalty

will be small and the misclassification will therefore not significantly

affect the penalty score. The following example illustrates this method.

(0)

(1)

(2)

(3)

(4)

(5)

(6)

d* d* d* b t * t t t t

b* b* b* d* b* b d d d

t t t t* d d d d d

1 1 1 1 1 1 1 1 1

u u u U 2E 2E i i i

2E 2E 2E 2E U i 2E 2E 2E

i i i i i u u u u

Figure 5.5 Lattice output for recognition of / t I

Figure 5.5 shows the lattice input to the Class Label Sequence

Unifier for the phoneme-like segment /1,/ (only the first seven choices

are shown for each column in order to simplify the illustration). Class

discriminators that gave identical scores ie. the scores 'tied', are

marked by a '*'. In this case each of the classes involved are assigned
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the same penalty, P. If there are n 'tied' classes, then P is given by the

sum of the positions occupied in the lattice by these classes, Pi' divided

by the number of 'tied' classes, n, as defined by (5.1).

f\-l

P = ~ Pi I n
10"0

(5.1)

For example, from figure 5.5, Id/ and IbI are 'tied' at positions '0'

and '1' respectively for lattice column '0'. Applying (5.1), each are

assigned a penalty of 0.5 «0+1)12 = 0.5 ).

Summing the positions in the lattice for each class and applying

(5.1) where classes are 'tied', the penalty scores are as follows:

11,/ --> 8.0

/hI --> 9.0

Id/ --> 10.0

III --> 27.0

lrel --> 43.0

lui --> 45.0

Iii --> 47.0

The segment is recognised as ItI since it has the lowest penalty

score.

Another approach to reduce the lattice to a single class decision

regarding the identity of the phoneme-like segment is to sum the

discriminator scores across the lattice for each class. The class with the

highest overall score is chosen as the identity of the phoneme-like

segment being recognised.
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5.6 Evaluation of the Recogniser

To arrive at a configuration for the recogniser that gives the best

results, the following options were experimented with:

(i) 'Direct mapping' or 'Across channel mapping' of spectral

frame store to WISARD 'retina'.

(ii) Linear or Gray encoding for data reduction.

(iii) Linear mapping or Random mapping of WISARD 'retina'

to n-tuples.

(iv) Tuple size (4-tuple and 8-tuple)

For the data reduction option, the Thermometer encoder was not

included in these experiments because the results obtained with the

speech recogniser design of Chapter 4 showed it to be much inferior

than the Linear and Gray encoders.

A 'segment length threshold' is used to select the discriminator

bank'S' or 'L'. For the experiments in Sections 5.5.2 and 5.5.3, the

'segment length threshold' was set to 20, ie. if the length of a

phoneme-like segment is less than 20 frames, then it is considered as a

short phoneme-like segment and Discriminator Bank'S' would be

selected to train/recognise it, otherwise it would be considered as a

long phoneme-like segment and hence Discriminator Bank 'L' is

selected. In Section 5.5.3, other values for the 'segment length

threshold' are experimented with to improve the recognition accuracy of

the recogniser.
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5.6.1 Experiments with 'Direct Mapping' of Spectral Frame

Store

Tables 5.1 - 5.8 give the results obtained for this set of

experiments.

For the 4-tuple case with both Linear and Gray encoders,

recognition performance peaks at 15 trainings, whereas performance

improves with training for the 8-tuple case, with the exception of Gray

encoding/8-tuple Random mapping (Table 5.8).

Comparing Table 5.1 with Table 5.5, and Table 5.3 with Table

5.7 shows that Linear encoding with linear mapping and Gray

encoding with linear mapping are equivalent.

For the Linear encoder, better results are obtained with linear

mapping than random mapping, whereas for the Gray encoder, random

mapping gives better results than linear mapping.

The highest recognition accuracy is 72.23% achieved with Gray

encoding/8-tuple random mapping, and 15 trainings (Table 5.8).



Table 5.1

Linear_encoding & 4-tuple Linear_mapping Table 5.2

Linear_encoding '" 4-tuple Random_mapp~
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Trainings :

Class

fbi

It.!

If)

IN

InJ

IkI

lui

11/

1;/

Irl

lei

N

Itl

Iwl

lSi

I~

lei

191

Id/

leil

19r1

IriJ

5

95.83

22.92

87.50

16.20

71.69

50.17

28.16

16.00

89.94

38.00

40.00

78.21

92.00

4.04

100.00

16.00

8.70

33.33

58.00

58.81

0.00

60.00

10 15

Accuracy (%)

95.83 91.67

31.25 35.42

83.33 83.33

21.07 15.40

76.42 68.31

56.42 66.83

51.12 41.16

24.00 28.00

89.94 86.76

60.00 60.00

80.00 68.00

27.25 19.62

69.42 67.88

19.17 38.33

100.00 100.00

16.00 20.00

4.35 8.70

33.33 37.50

60.00 62.00

66.82 74.84

62.00 48.00

16.67 25.00

20

100.00

31.25

79.17

22.60

71.00

66.83

40.13

28.00

83.32

58.00

28.00

20.83

47.79

37.42

96.00

32.00

4.35

25.00

62.00

65.07

48.00'

25.00

Trainings:

CIll8li

IbI

III

IgI

IN

Ini

IkI

lui

N

I"JI

Ir/

lei

III

Itl

/wI

III

1:1/

Ire!

191

Idl

le1l

19r1

lril

5

95.83

27.08

37.50

26.67

79.69

48.08

68.75

16.00

90.11

46.00

4.00

54.62

93.00

14.25

0.00

4.00

O.CO

12.50

58.00

74.20

8.00

25.00

10 15

Accuracy (~)

95.83 95.83

24.67 29.00

79.17 79.17

35.67 34.07

77.69 71.61

52.25 64.75

56.22 40.36

24.00 28.00

88.20 85.48

68.00 80.00

20.00 36.00

13.52 10.81

69.79 63.27

35.54 39.62

0.00 0.00

44.00 44.00

0.00 0.00

25.00 33.33

68.00 68.00

75.96 72.12

24.00 24.00

58.33 58.33

20

95.83

20.67

58.33

32.43

66.89

70.92

35.40

36.00

86.43

76.00

44.00

14.90

51.62

35.54

4.00

60.00

0.00

33.33

58.00

70.35

24.00

50.00

Average: 47.98 51.11 51.67 48.72 Average: 40.16 46.63 47.63 46.67

Table 6.3

Linear_encoding & 8-tuple Linear_mapping

Table 5.4

Linear_encoding '" 8-tuple Random_mapping

10 15

Accuracy (%)

Trainings :

Cla88

fbi

Iii

If)

IN

InJ

IkI

lui

11/

tal

Irl

lsi

(II

tu
Iwl

IJI

1;)/

lIE!

191

Id/

leil

ISrI

IriJ

6

91.67

27.00

58.33

43.33

94.61

83.33

58.53

24.00

89.86

65.33

36.00

37.66

93.48

36.29

100.00

36.00

13.04

16.67

58.58

59.46

16.00

8.33

87.50

29.08

79.17

51.33

89.83

89.58

61.93

28.00

91.06

66.00

80.00

40.56

91.94

29.33

100.00

44.00

4.35

33.33

62.00

67.15

36.00

41.67

91.67

37.25

83.33

40.63

91.19

93.75

63.69

32.00

88.98

64.00

76.00

36.37

87.90

28.50

100.00

56.00

4.35

50.00

62.00

70.99

44.00

25.00

20

95.83

41.25

70.83

47.17

93.22

95.83

69.31

32.00

90.76

68.00

76.00

37.64

89.90

50.62

100.00

68.00

13.04

41.67

64.00

72.76

60.00

8.33

Trainings :

Class

IbI

/lI

IgI

IN

Ini

IkI

lui

11/

Ial

Irl

lsi

(11

Itl

Iwl

II!

1:1

lIE!

191

Idl

lev

19r1

lril

6

83.33

37.50

20.83

23.60

98.00

46.17

64.76

16.00

93.50

60.00

4.00

69.94

94.00

14.12

60.00

20.00

8.70

0.00

58.00

66.51

0.00

41.67

10 15

Accuracy (~)

91.67 95.83

41.33 37.33

66.67 75.00

25.23 30.97

93.19 95.28

52.25 68.92

71.54 72.18

20.00 28.00

89.61 90.06

60.00 78.00

20.00 36.00

76.75 65.27

94.00 93.00

35.46 45.58

0.00 4.00

60.00 72.00

0.00 0.00

0.00 0.00

60.00 60.00

80.12 ~O.45

0.00 0.00

75.00 50.00

20

95.83

37.33

79.17

36.67

93.28

77.17

74.57

28.00

89.11

84.00

24.00

53.54

93.00

«.62

8.00

80.00

435

12.50

60.00

8045

0.00

33.33

Average: 52.11 59.26 60.35 63.01 Average: 44.12 50.58 5354



Table 5.5

Gray_eocodiol &: 4.tuple Linear_mapping Table 5.6

Gray_encoding i: 4·tuple Rand .
nan OIll_mapPUlC
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10 15

Accuracy ('ll.)

Trainings:

Class

fbi

11/

Iv)

iN

In!

IkJ

lui

N

Iii

Irl

Is!

N

Itl

Iwl

III

1:V

lei

lei

Idl

lev

lerl

lril

5

95.83

22.92

87.50

16.20

71.69

50.17

28.15

16.00

89.94

38.00

40.00

78.21

92.00

4.04

100.00

16.00

8.70

33.33

58.00

58.81

0.00

50.00

10 15

Accuracy ('To)

95.83 91.67

31.25 35.42

83.33 83.33

21.07 15.40

76.42 68.31

56.42 66.83

51.12 41.16

24.00 28.00

89.94 86.76

50.00 60.00

80.00 68.00

27.25 19.62

69.42 57.88

19.17 38.33

100.00 100.00

16.00 20.00

4.35 8.70

33.33 37.50

60.00 62.00

66.82 74.84

52.00 48.00

16.67 25.00

20

100.00

31.25

79.17

22.60

71.00

66.83

40.13

28.00

83.32

58.00

28.00

20.83

47.79

37.42

96.00

32.00

4.35

25.00

62.00

65.07

48.00

25.00

Trainings :

Class

fbi

I"
IgI

W

In!

IkI

lui

11/

I~

IrI

lsi

fa!

Itl

/wI

IS!

/:JI

lrel

191

Id/

Ie"

terl

lril

5

95.83

39.58

66.67

30.90

93.28

56.07

59.76

21.74

91.80

50.00

25.00

69.75

93.50

11.12

88.00

16.00

13.04

0.00

58.00

78.04

4.00

16.67

95.83

37.17

83.33

26.80

91.89

64.58

77.99

24.00

92.11

56.00

68.00

45.29

91.98

4-4.71

96.00

52.00

17.39

16.67

60.00

84.29

16.00

91.67

95.83

45.50

83.33

25.23

91.19

85.50

57.22

32.00

90.06

62.00

84.00

43.16

92.00

58.79

96.00

64.00

21.74

20.83

58.00

84.29

36.00

91.67

20

100.00

28.92

75.00

24.33

91.25

66.75

63.53

36.00

88.67

58.00

80.00

32.75

89.40

30.62

84.00

68.00

21.74

25.00

58.00

84.29

32.00

75.00

Average: 47.98 51.11 51.67 48.72 Average: 49.03 60.62 64.47 59.69

Table 5.7

Gray_encodinl " a.tuple Linear_mapping
Table 5.8

Gray_encodinl i: 8-tuple Random_mappm.

10 15

Accuracy ('To)

10 15

Accuracy ('ll.)

Trainings : 5

Class

IbI 91.67

/lI 27.00

IrJ 58.33

IN 43.07

In! 94.61

IkJ 83.33

lui 58.53

N 24.00

Iii 89.94

Irl 66.00

Is! 36.00

IiJ 37.65

Itl 93.48

Iwl 35.29

111 100.00

f;Jf 36.00

lei 13.04

lei 16.67

Idl 58.00

lel./ 59.46

19r1 16.00

lril 8.33

87.50

29.08

79.17

51.33

89.83

89.58

61.93

28.00

91.06

66.00

80.00

40.56

91.94

29.33

100.00

44.00

4.35

33.33

62.00

67.15

36.00

41.67

91.67

37.25

83.33

40.63

91.19

93.75

63.69

32.00

88.98

64.00

76.00

36.37

87.90

28.50

100.00

56.00

4.35

50.00

62.00

70.99

44.00

25.00

20

95.83

41.25

70.83

47.17

93.22

95.83

69.31

32.00

90.76

68.00

76.00

37.64

89.90

50.62

100.00

68.00

13.04

41.67

64.00

72.76

60.00

8.33

Trainings :

Class

fbi

II/

IgI

161

In!

IkI

lui

11/

lu

Irl

lsi

fa!

Itl

Iwl

111
1;)/

lrel

tel

Id/

Ie11

19r1

lril

6

95.83

43.58

75.00

58.07

82.69

85.50

56.17

32.00

78.22

82.00

56.00

81.55

81.50

57.62

100.00

56.00

17.39

0.00

64.00

90.00

0.00

41.67

95.83

45.42

83.33

54.57

98.64

93.75

77.56

32.00

94.17

82.00

88.00

72.69

94.00

62.71

100.00

84.00

17.39

8.33

60.00

84.29

12.00

58.33

95.83

53.58

83.33

46.47

98.67

95.83

74.60

32.00

93.89

82.00

100.00

63.08

92.50

70.88

100.00

84.00

17.39

33.33

62.00

86.38

40.00

83.33

20

95.83

53.58

87.50

46.53

97.31

95.83

79.46

36.00

91.83

78.00

96.00

53.04

91.46

64.79

100.00

80.00

2609

33.33

62.00

8638

4-4.00

5000

Average: 52.11 59.26 60.35 63.01 Average : 60.67 68.14 72.23 7041
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5.6.2 Experiments with 'Across Channel Mapping' of Spectral

Frame Store

Tables 5.9 - 5.16 give the results obtained for the recogniser with

'across channel mapping' of the spectral frame store. Tables 5.9 - 5.12

show the results obtained with the Linear encoder at the Data

Reduction stage, and Tables 5.13 - 5.16 are for the Gray encoder.

For the 4-tuple case, recognition performance Improves with

training for linear mapping with both Linear and Gray encoders

(Tables 5.9 and 5.13). With random mapping, recognition accuracy

peaks at 15 trainings for both Linear and Gray encoders (Tables 5.10

and 5.14), and further training causes a drop in the recognition

accuracy. For the 8-tuple based recognisers, recognition accuracy peaks

at 15 trainings for all cases (Tables 5.11, 5.12, 5.15, 5.16).

The Gray encoder gives significantly better results than the

Linear encoder, in fact, the recogniser with Gray encoding/4-tuple

random mapping is superior to the 8-tuple based recogniser with

Linear encoding.

Random mapping gives better results than linear mapping. The

results obtained with Gray encoding/4-tuple random mapping are

comparable with those for Gray encoding/8-tuple linear mapping.

Whereas experiments with 'direct mapping' of spectral frame

store showed that Linear encoding with Linear mapping is equivalent

to Gray encoding with Linear mapping (Section 5.5.1), these

experiments show that this relation does not hold for 'across channel

mapping' of the spectral frame store.

The best recognition accuracy is 69.99%, achieved with Gray

encoding/8-tuple random mapping. This is lower than that obtained for

the recogniser with 'direct mapping' of the spectral frame store

(72.23%).

.-



Table 5.9

Linear_encoding & 4.tuple Linear_mapping Table 510

Unear_encodinr " 4-tuple lUlndom_mappinc
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10 15

Accuracy ('!'o)

Trainings:

Clas8

fbi

11/

Ir)

IIJ

IrJ

IkI

lui

III

~

!rI

1&1

rll
It!

Iwl

lSI

/i¥

IE!

191

Idl

lev

lerl

lril

5

50.00

18.58

8.33

17.90

56.06

68.75

63.87

12.00

57.28

24.00

4.00

7.50

88.94

5.08

0.00

4.00

0.00

4.17

58.00

60.58

8.00

0.00

83.33

27.00

20.83

27.57

40.44

46.00

58.91

16.00

77.96

«.00

36.00

0.00

73.42

10.21

0.00

0.00

0.00

12.50

58.00

68.27

24.00

16.67

95.83

14.41

29.17

29.30

40.64

48.08

34.74

20.00

77.67

40.00

32.00

11.35

63.27

6.12

0.00

16.00

0.00

25.00

56.00

66.18

24.00

8.33

20

95.83

18.67

41.67

35.70

48.67

46.00

47.97

36.00

73.78

«.00

8.00

12.25

57.77

23.33

0.00

12.00

0.00

20.83

56.00

70.35

12.00

8.33

Trainings:

Class

IbI

IC/

IgI

1/11

IrI!

IkJ

lui

N

f;II

Irl

lsi

N

ItJ

Iwl

111

ft1I

lEI

191

Idl

lecl

lerl

lril

5

95.83

27.08

45.83

29.23

67.53

48.08

68.39

16.00

93.28

60.00

12.00

48.91

89.94

18.17

0.00

4.00

13.04

12.50

56.00

81.90

4.00

8.33

10 15

ACCuracy (%)

95.83 100.00

27.08 22.92

83.33 83.33

33.27 34.93

69.50 72.33

48.08 52.25

51.75 27.81

24.00 24.00

89.83 82.00

66.00 84.00

28.00 32.00

35.24 19.95

68.85 67.25

45.54 47.62

0.00 0.00

40.00 60.00

4.35 4.35

25.00 20.83

58.00 58.00

78.04 76.28

24.00 28.00

66.67 66.67

20

100.00

1241

6250

34.07

70.39

56.42

43.38

28.00

77.82

70.00

44.00

21.98

42.58

44.58

0.00

64.00

4.35

25.00

58.00

84.29

24.00

58.33

Average: 28.05 33.69 33.55 34.96 Average: 40.91 48.29 47.93 46.64

Table 5.11

Linear_encoding '" 8·tuple Linear_mapping

Table 5.12

Unear_encodJnr " 8-tuple lUlndom_mappinr

10 15

Accuracy (%)

10 15

Accuracy (%)

Trainings:

Class

IbI

11/

Ir)

IN

IrJ

IkI

lui

III

Ia!

Irl

lsi

fI!

It!

Iwl

III

1;)/

lei

lei

Idl

lev

lerl

lril

Average:

5

62.50

27.08

37.50

16.40

74.94

36.25

41.02

16.00

83.76

36.00

56.00

47.12

88.92

16.25

52.00

24.00

17.39

0.00

60.00

45.19

0.00

8.33

38.48

91.67

33.33

41.67

15.60

85.11

44.17

56.76

20.00

84.20

26.00

52.00

11.94

87.92

19.25

48.00

60.00

13.04

0.00

58.00

49.04

0.00

25.00

41.94

87.50

35.33

20.83

17.20

81.75

48.17

45.83

28.00

76.46

32.00

76.00

26.14

84.85

10.12

40.00

68.00

8.70

0.00

58.00

66.51

0.00

25.00

42.56

20

83.33

29.17

12.50

18.03

76.94

62.58

57.51

32.00

82.08

38.00

52.00

14.02

85.38

8.17

36.00

68.00

8.70

0.00

58.00

59.14

0.00

8.33

40.45

Trainings :

Class

IbI

I"
IgI

IN

IrI!

IkJ

lui

III

Ia!

Irl

lsi

rtf

It!

/wI

III

/:JI

lei

191

Idl

letl

lerl

lril

Average:

5

70.83

33.25

16.67

31.73

94.58

46.25

69.37

20.00

92.17

52.00

12.00

71.08

94.00

21.04

56.00

28.00

13.04

0.00

58.00

76.28

0.00

50.00

45.74

91.67

33.33

66.67

35.70

93.22

54.33

78.26

28.00

91.44

54.00

16.00

59.66

94.00

36.42

12.00

52.00

8.70

0.00

58.00

76.28

0.00

50.00

49.53

91.67

39.42

75.00

39.10

93.28

81.25

67.78

32.00

90.06

76.00

20.00

56.18

93.00

48.50

8.00

6400

1304

833

58.00

80.12

4.00

75.00

55.17

20

91.67

33.25

70.83

49.80

95.97

85.50

76.40

36.00

90.78

78.00

24.00

48.60

91.98

49.54

0.00

64.00

13.04

12.50

60.00

9023

4.00

41.67

-



Table 6.13

Gray_encoding & 4.tuple Linear_mapping
Table 6.14

Gray_encoding &: '-tuple RandoM_IIl.pplnr
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10 16

Accuracy ('To)

Trainings :

Class

fbi

III

Ig/

W

In!

fk1

lui

III

~

Irl

lsi

iii

It!

Iwl

111

~I

lei

191

Idl

leI!

IQrl

lril

6

96.83

37.33

46.83

9.90

74.28

66.76

60.88

28.00

83.70

18.00

0.00

62.76

94.60

16.17

48.00

4.00

8.70

4.17

58.00

72.43

0.00

8.33

95.83

35.42

29.17

17.13

64.17

70.92

80.06

28.00

69.78

44.00

28.00

2.52

90.46

15.21

96.00

12.00

4.35

8.33

60.00

64.97

24.00

8.33

100.00

33.33

33.33

20.43

71.67

89.67

69.64

32.00

78.19

40.00

28.00

9.48

81.31

6.12

80.00

20.00

4.35

12.50

58.00

66.82

16.00

0.00

20

91.67

27.08

41.67

34.13

73.76

79.25

64.65

32.00

70.28

44.00

32.00

11.48

73.81

27.42

52.00

20.00

4.36

20.83

60.00

74.62

12.00

0.00

Trainings:

Class

IbI

11/

Ig/

IN

In!

IkJ

lui

III

IN

ITI

lsi

N

ItJ

Iwl

ItI

I~

1m!

leI

IdJ

lell

IQrl

lril

5

100.00

35.42

75.00

40.60

95.89

52.17

54.69

20.00

88.67

64.00

24.00

73.36

93.60

31.38

84.00

36.00

13.04

16.67

68.00

72.43

0.00

25.00

10 15

Accuracy (%)

100.00 100.00

29.17 31.25

83.33 83.33

38.10 33.30

91.19 90.56

70.92 85.42

64.71 54.52

20.00 24.00

89.33 89.39

74.00 76.00

64.00 64.00

61.02 48.60

91.50 81.92

56.71 64.83

92.00 92.00

60.00 64.00

0.00 0.00

33.33 33.33

68.00 58.00

81.90 84.29

24.00 44.00

60.00 60.00

20

95.83

27.00

75.00

29.13

91.94

83.33

64.37

28.00

89.39

62.00

56.00

50.20

73.67

54.79

88.00

76.00

4.35

62.50

58.00

84.29

32.00

25.00

Average: 39.89 42.66 42.72 43.04 Average: 52.44 60.15 61.49 59.58

Table 5.15

Gray_encoding & 8-tuple Linear_mapping

Table 5.16

Gray_encoding &: 8-tuple Random_mapping

Trainings : 6

Class

IbI 91.67

III 47.67

Ig/ 75.00

IN 46.67

In! 91.86

IkI 60.50

lui 46.87

III 28.00

I~ 88.60

Irl 74.00

lsi 68.00

rJl 77.46

It! 91.46

Iwl 63.50

111 88.00

1;1 64.00

lei 17.39

leI 12.60

Idl 60.00

let! 68.91

lerl 0.00

lril 16.67

10 16

Accuracy ('To)

91.67 91.67

53.83 43.50

83.33 79.17

44.10 31.87

85.11 85.75

58.58 64.83

65.73 61.44

28.00 32.00

88.67 88.00

72.00 76.00

76.00 92.00

50.37 48.25

85.85 84.88

56.62 51.68

100.00 100.00

76.00 76.00

17.39 17.39

20.83 25.00

66.00 62.00

67.15 74.84

8.00 40.00

41.67 66.67

20

91.67

35.26

70.83

33.37

78.86

87.50

68.59

28.00

88.65

74.00

92.00

22.44

81.81

53.54

96.00

80.00

21.74

20.83

62.00

78.68

16.00

33.33

Trainings : 5

Class

IbI 95.83

N 43.58

Ig/ 75.00

IN 65.20

In! 98.64

IkI 81.33

lui 58.57

III 28.00

1:1 93.50

Ir! 80.00

lsi 44.00

iii 79.55

It! 93.50

/wI 50.62

111 92.00

t:1 64.00

1m! 13.04

leI 8.33

IdJ 60.00

le'/ 82.53

ler! 4.00

lril 41.67

10 15

Accuracy (%)

95.83 95.83

47.42 55.50

87.50 87.50

62.70 62.10

95.94 97.31

89.58 97.92

79.13 72.97

36.00 32.00

92.78 92.11

80.00 82.00

84.00 92.00

66.79 56.90

92.50 90.42

59.67 67.79

96.00 100.00

76.00 80.00

17.39 17.39

20.83 25.00

62.00 60.00

82.53 86.38

16.00 32.00

75.00 66.67

20

95.83

49.42

79.17

54.60

98.64

95.83

76.97

32.00

93.22

SO.OO

80.00

50.81

90.44

70.83

92.00

so.00

21.74

33.33

60.00

86.38

2800

58.33

Average: 57.21 60.77 63.31 59.78
Average: 61.50 68.89 69.99 68.52
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5.6.3 Experiments with the 'Segment Length Threshold'

The results of the experiments in Sections 5.5.1 and 5.5.2 show

that the best results are obtained for the recogniser with Gray

encoding and 8-tuple random mapping, and 'direct mapping' of the

spectral frame store. This configuration is adopted for the experiments

presented in this section. The aim of these experiments is to determine

whether the recognition accuracy of the speech recogniser may be

improved by using a different value for the 'segment length threshold'

used to select the required discriminator bank in the recognition

system.

Tables 5.17 - 5.23 give the results for this set of experiments.

Segment length thresholds of 17 frames to 28 frames were used. These

results show that the recognition accuracy may be improved from the

72.23% obtained with a 'segment length threshold' of 20 frames, to

73.97% for 'segment length threshold' of 24 frames (Table 5.21).

Table 5.24 gives the word recognition accuracy for the speech

recogniser with a 'segment length threshold' of 24 frames. 40.49% word

recognition accuracy is achieved with 20 trainings. As observed in the

case of the speech recogniser design of Chapter 4, it is found that

although a recogniser design may have the highest recognition accuracy

at the phoneme-like segment level, this does not imply that it also has

the highest word recognition accuracy. From Tables 5.21 and 5.24, it is

seen that the recogniser with 15 trainings has the highest recognition

accuracy at the phoneme-like segment level, but the recogniser with 20

trainings has a higher word recognition accuracy. About 50% of the

word recognition errors were due to misclassification of only one of the

phoneme-like segments in the word.



Table 5.17 Resulte for 'Segment Length Threshold' =17

Gray_encoding & 8-tuple Random_mapping
Table 5.18 Resulte for 'Segment Length 1'breebold' • 18

Gray_encoding '" 8-tuple RandoM_lIUlppinr
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10 15

Accuracy (%)

Trainings:

Class

fbi

1'1

Ir/
IN

InJ

IkJ

lui

/II

/?J

Irl

lei

rtf

Itl

Iwl

IfI

1:1/

lEI

181

Idl

let.!

lerl

lril

5

95.83

41.50

75.00

63.23

98.67

75.08

64.42

0.00

94.11

82.00

66.00

82.88

98.50

50.62

100.00

56.00

17.39

4.17

48.00

90.23

0.00

41.67

95.83

47.42

83.33

62.50

98.64

91.67

81.65

4.00

94.83

84.00

88.00

72.69

98.00

67.75

100.00

92.00

17.39

8.33

60.00

88.15

12.00

58.33

95.83

53.58

83.33

51.23

98.67

97.92

77.87

8.00

93.89

84.00

100.00

63.08

96.00

75.92

100.00

92.00

17.39

33.33

56.00

90.23

40.00

83.33

20

95.83

53.58

87.50

52.13

97.97

95.83

81.91

16.00

93.17

82.00

96.00

63.04

94.46

69.83

100.00

88.00

26.09

33.33

54.00

88.15

44.00

50.00

Trainings :

Class

fbi

III

Ig/

IN

InJ

IkJ

lui

111

lit

Irl

lsi

rtf

It!

Iwl

!II

1;)/

lEI

leI

Idl

let.!

ter!

lril

5

95.83

43.58

75.00

60.83

98.67

75.08

63.18

8.00

94.11

80.00

56.00

82.21

97.00

50.62

100.00

56.00

17.39

4.17

54.00

88.15

0.00

41.67

10 15

Accuracy ('110)

95.83 95.83

45.42 53.58

83.33 83.33

60.10 49.63

98.64 98.67

91.67 97.92

80.41 77.05

20.00 20.00

95.60 94.56

82.00 82.00

88.00 100.00

72.69 63.08

97.00 95.00

66.75 74.92

100.00 100.00

88.00 88.00

17.39 17.39

8.33 33.33

66.00 58.00

86.06 88.15

12.00 40.00

58.33 83.33

20

95.83

53.58

.87.50

50.77

97.28

95.83

81.49

28.00

91.75

80.00

96.00

63.n

93.96

68.46

100.00

84.00

26.09

33.33

53.67

86.06

44.00

60.00

Average : 60.70 68.48 72.34 70.58 Average: 60.98 68.34 72.44 70.51

Table 5.19 Results for 'Segment Length Threshold' .. 19

Gray_encoding & 8-tuple Random_mapping

Table 5.20 Results for 'Segment Lencth 'l"hrNbo1cl' • 22

Gray_sncodinf '" 8-tuple RandoM_mappinr

Trainings :

Class

fbi

/f.I

Ir/

IN

InJ

IkJ

lui

/II

l<t

Irl

lsi

ftI

Itl

Iwl

!II

r.t

lEI

tel

Idl

le<l

lerl

lril

5

95.83

43.58

75.00

59.33

98.67

75.08

61.57

28.00

92.11

84.00

56.00

82.21

96.00

48.62

100.00

66.00

17.39

4.17

54.00

88.15

0.00

41.67

10 15

Accuracy (%)

95.83 95.83

45.42 53.58

83.33 83.33

59.37 50.47

98.64 98.67

91.67 97.92

78.80 75.83

28.00 28.00

94.83 94.56

82.00 84.00

88.00 100.00

72.69 63.08

96.00 94.50

63.n 71.88

100.00 100.00

88.00 88.00

17.39 17.39

8.33 33.33

54.00 54.00

86.06 88.15

12.00 40.00

58.33 83.33

20

95.83

53.58

87.50

50.53

97.31

97.92

80.69

20.00

92.50

80.00

96.00

53.04

93.46

68.79

100.00

84.00

26.09

33.33

56.00

92.31

44.00

50.00

Traininga :

Class

fbi

'"IgI

IN

InJ

IkJ

lui

111

l<t

Irl

lei

ftI

It!

Iwl

!II

IJ!

lEI

lei

Idl

Ie'"

lerl

lril

5

87.50

43.50

70.83

50.53

98.67

75.08

58.28

48.00

82.39

80.00

56.00

80.21

91.00

41.58

100.00

48.00

8.70

4.17

72.00

74.52

0.00

41.67

10 15

Accuracy ('110)

95.83 95.83

47.42 57.58

79.17 79.17

49.77 44.07

98.64 98.00

93.75 95.83

75.50 73.04

60.00 60.00

85.11 86.22

80.00 80.00

88.00 100.00

72.69 64.54

91.00 89.60

52.67 60.83

100.00 100.00

88.00 84.00

8.70 13.04

8.33 33.33

72.00 72.00

76.60 76.60

12.00 40.00

58.33 91.67

20

95.83

55.58

83.33

44.93

97.97

95.83

79.79

64.00

84.83

76.00

96.00

55.04

88.46

66.75

100.00

80.00

17.39

33.33

72.00

7868

44.00

50.00

Average : 61.70 68.29 72.54 70.59
Average : 59.67 67.89 72.51 70.44

-
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Table 6.21 Reaulu for 'Segment Length Threshold' =24

Table 6.22 Results for 'Segment Lencth ThnaboId' • 26Gray_encoding &: a-tuple Random_mapping
Gray-encodlnr " 8-tuple Randolll...mapplae

Trainings : 5 10 16 20
Trainings: 5 10 16 20Class Accuracy (%)
Class

Accuracy (')fbi 83.33 95.83 95.83 91.67
IbI 83.33 95.83 95.83 91.67M 45.50 55.67 57.67 53.06 It.! 53.75 59.92 65.92 61.75Ig! 66.67 79.17 79.17 83.33 Igi 62.50 83.33 79.17 79.17IN 42.50 40.07 38.43 41.46
IN 36.10 38.37 38.33 36.00In! 98.64 98.64 98.00 95.95 In! 99.33 98.64 98.00 97.97IkI 75.08 91.67 95.83 95.92 IkJ 73.00 89.58 93.75 95.83lui 56.20 70.35 70.14 76.80 lui 56.97 72.15 70.09 76.46N 52.00 76.00 80.00 84.00 /II 80.00 80.00 M.OO 88.00tal 75.04 82.76 88.20 95.50 IW 70.74 78.26 86.82 91.17Irl 74.00 74.00 74.00 72.00 Ir/ 64.00 64.00 64.00 62.00lsi 66.00 88.00 100.00 96.00 lsi 56.00 88.00 100.00 96.00N 79.65 72.69 65.21 52.08 iii 78.21 68.61 63.21 63.04It! 88.50 88.60 87.00 85.93 It! 88.00 88.00 86.50 85.46Iwl 36.54 45.68 61.71 63.64 Iwl 30.17 52.58 60.67 72.75111 100.00 100.00 100.00 100.00 111 100.00 100.00 100.00 100.00

1:1 60.00 92.00 96.00 88.00 r.t 68.00 96.00 92.00 88.00lrel 8.70 8.70 13.04 17.39 ItRI 8.70 8.70 13.04 13.04
lei 4.17 8.33 33.33 33.33 191 4.17 8.33 33.33 33.33
Idl 84.00 84.00 84.00 84.00 Idl 90.00 90.00 90.00 88.00
lev 66.51 74.20 88.15 91.89 lev 74.20 74.20 88.15 90.23
JerI 0.00 12.00 40.00 44.00 ISrl 0.00 12.00 40.00 44.00
lril 41.67 58.33 91.67 50.00 lril 41.67 50.00 75.00 41.67

Average: 58.85 68.02 73.97 72.54 Average: 59.95 68.02 73.54 72.07

Table 5.23 Reeults for 'Segment Length Threshold' • 28

Gray_encoding &: 8-tuple Random_mapping

Trainings: 5 10 16 20

Class Accuracy (%)

IbI 79.17 91.67 91.67 87.50

It.! 28.75 57.75 67.92 59.58

Igi 45.83 87.50 83.33 75.00

IN 32.87 35.90 37.50 38.40

In! 98.67 98.64 98.67 98.64

IkJ 73.00 89.58 91.67 93.75

lui 55.77 73.35 71.60 76.86

/II 84.00 80.00 88.00 92.00

M 59.87 63.26 73.39 80.26

Irl 48.00 48.00 62.00 48.00

lsi 56.00 88.00 100.00 96.00

fJi 78.21 68.61 62.91 54.38

It! 84.40 84.40 82.90 82.38

44.29 53.29 60.38 63.50/wI

m 100.00 100.00 100.00 100.00

76.00 84.00 84.00 84.00I:Y

8.70 8.70 13.04 13.04ItRI

4.17 8.33 25.00 25.00191

90.00 92.00 90.00 92.00Idl

66.51 68.27 78.37 86.38let.!

0.00 12.00 40.00 44.00fSrl

33.33 41.67 66.67 33.33lril

56.71 65.22 70.86 69.27Average :
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Table 5.24 Word Recognition for Gray_encoding & S-tuple Random_mapping

'Segment Length Threshold' = 24

Accuracy (%)

Trainings:

Word

5 10 15 20

One 20.0 29.2 32.0 54.2

Run 60.0 60.0 60.0 60.0

Want 12.0 24.0 28.0 68.0

Begun 37.5 41.7 41.7 41.7

Wonder 0.0 0.0 0.0 0.0

Rudder 8.0 8.0 8.0 8.0

Win 0.0 0.0 0.0 0.0

Two 60.0 68.0 80.0 88.0

Shoe 84.0 88.0 88.0 88.0

Toot 4.0 48.0 40.0 52.0

Tattoo 8.0 8.0 4.0 4.0

Toothache 0.0 0.0 0.0 0.0

Cooler 40.0 56.0 64.0 72.0

Tee 72.0 64.0 60.0 52.0

Three 0.0 4.0 16.0 4.0

See 32.0 56.0 60.0 56.0

Average: 27.34 34.68 36.36 40.49
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Table 5.25 shows the confusion matrix for the speech recogniser

with 'segment length threshold' of 24, and 20 trainings (Table 5.21).

The It I segment is frequently confused with lui. This is because

when the sustained vowel lui is split into two segemnts by the

'segmentation process, one of the two segments is of short duration. It

is the short lui segment that the 11,1 segment is confused with (and

vice-versa).

Generally, the confusion is with phoneme-like segments that are

similar. The 181 segment is confused with the ItJ segment. The ItJ

segment has more training samples than the 181 segment hence the

stronger response of the ItJ discriminator. A significant number of ItJ

samples are misclassified as fbI. These are ItJ segments from the

beginning of the word 'Tattoo'. Normally, the ItJ segment has a

duration of greater than 24 frames (the 'segment length threshold')

thus the Discriminator Bank 'L' would be used to recognise it. The ItJ

segments from the beginning of 'Tattoo' have a shorter duration than

the 'segment length threshold' and hence the speech recogniser

attempts to classify it using Discriminator Bank'S'. In this

discriminator bank, the discriminator assigned to fbI has most probably

had more training than that assigned to ItJ (since the duration of ItJ is

normally greater than the 'segment length threshold' thus it would

mostly be trained into the ItJ discriminator in Discriminator Bank 'L'),

therefore the fbI discriminator gives a stronger response to the spectral

patterns from ItJ (fbI and ItJ would have similar spectral patterns since

they are both 'stops'; voiced and unvoiced respectively).

The 'Sliding Window' technique is better at discriminating the

segments 18rl and lri/ in 'Three' than the 'Separate Segmentation and

Labelling' approach.



b t g A n k u I ~ r s 1 t w J J re a d et ar ri Samples

b 22 . · · · · · · · · · · · · · · · · 2 · · · 24
t 3 26 4 · · 2 14 · · · · · · · · · · · · · · 49
g · · 20 · · · · · · · · · 1 · · 1 · 2 · · 24
A · · · 51 · · · 21 2 · · 4 · · 23 . · 22 · · 123
n · · 142 · 2 · 3 · · 1 · · · · · · · · · · 148
k 1 · · · · 47 · · · · · · 1 · · · · · · · · · 49
u 9 10 2 · 4 1 139 2 · · · 7 · 2 · · · · 3 · · 2 181
I · · 1 · · · 2 21 · · · · · · · · · 1 · · · 25
~ · · 1 · I · · 106 . · · · · · · · · 3 · · · 111
r · · · · · · · · 7 36 · · · · · · 7 · · 50
s · · · · · · · · · · 24 · 1 · · · · · · · · 25
1 · 2 · · 2 1 29 5 · 50 · · · · · 3 · · 4 96
t 14 . · · · 2 2 · · · · 1 171 . · · · 6 · 3 · 199
w · · · · 3 · 2 · 21 3 · · 63 · · · · 7 · · · 99
J · · · · · · · · · · · 25 · · · · · · 25
J · · · · · · · · 3 · · · · · · 22 . · · · · 25
re 3 1 3 · · · 2 · · · · 3 1 · 4 · 6 · · 23
a · · · · 1 · · · · · 15 . · · · 8 · · · 24
d · · · · · · 1 · · · · 7 · · · · 42 · · · 50
et 1 · · · · · · · · · 2 34 . · 37
ar 1 · . 1 . · · 12 . · · · 11. 25
n · · . 6 · · · · · · · · · · · 6 12

Table 5.25 Confusion matrix for recogniser with Gray encoding/ 8-tuple Random mapping and 15 trainings
The 'segment length threshold' = 24

~

~
~
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5.7 Summary

A design for a WISARD n-tuple isolated word speech recogniser

based on the 'Sliding Window' approach has been presented in this

chapter. A 16-channel filterbank IC enables spectral data to be

obtained from the utterance input to the speech recogniser. Using the

segmentation method suggested in Chapter 3, the spectral data is

partitioned into phoneme-like segments. After spectral normalisation

and noise subtraction normalisation, the phoneme-like segment is

passed on to the data reduction stage where the 8-bit spectral data

from the filter bank is encoded to 4-bits using the Linear, and Gray

encoders. To train or classify the phoneme-like segment, a window of a

fixed duration (less than the duration of the phoneme-like segment) is

aligned with the start of the segment and slid one spectral frame at a

time across to the end of the phoneme-like segment. As the window is

slid across the phoneme-like segment, the spectral data windowed is

trained or classified. There are two banks of discriminators in this

speech recogniser (Discriminator Bank'S' and Discriminator Bank 'L').

By comparing the duration of the phoneme-like segment to be trained

or classified, with a 'segment length threshold', one of these

discriminator banks would be selected. If the number of spectral

frames in a phoneme-like segment exceeds the 'segment length

threshold', it is considered to be a long phoneme-like segment and

Discriminator Bank 'L' is selected for training or classification,

otherwise it is a short phoneme-like segment and Discriminator Bank

'S' is selected. Two window sizes (l2.8ms and 48 ms) are used in this

design. The 12.8 ms window is used with Discriminator Bank '8' while

the 48 ms window is used with Discriminator Bank 'L'.
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Various configurations are possible for the speech recogmser

design. A series of experiments with different configurations are

conducted to arrive at the setup for the speech recogniser that gives

the best recognition performance. The best recognition accuracy for the

phoneme-like segments in the word-set used in these experiments is

73.97%. The best word recognition accuracy achieved is 40.49%. By

applying the output of this speech recogniser to a linguistic processor,

the word recognition accuracy of this speech recogniser may be

improved (Chapter 6).
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CHAPTER SIX

LINGUISTIC PROCESSOR FOR ERROR CORRECTION

6.1 Introduction

The isolated word speech recogniser designs discussed in

Chapte.rs 4 and 5 transform the incoming acoustic signal into a string

of labels from a set of 22 class labels, 20 of which are phonemes. Due

to errors by the speech recognisers in the labelling of the phoneme-like

segments, some of the class labels in the string output by the speech

recogniser will be incorrect. The output string may be considered as a

noisy representation of the acoustic signal at the recogniser's input and

a string dissimilarity measurement such as the Levenstein distance

[83] can be used to match this output string with an entry in the

system's lexicon.

There are three types of errors that can occur in the recognition

process; insertion and deletion errors by the segmentation process, and

substitution errors as a result of misclassification of a phoneme-like

segment by the recogniser. These errors at the phoneme level lower the

word recognition rate of the recogniser. It is possible to improve the

word recognition rate by including in the design of the speech

recogniser a mechanism for correcting the errors in the label string.

For example, the word recognition system of Makino & Kido [13] has a

phoneme recognition accuracy of 75.9% but by allowing correction of

insertions, omissions and substitutions of phonemes, a word recognition

accuracy of 92.4% is achieved.

Just as the syntactic rules of a language dictate the meaningful

arrangement of words in the construction of sentences, the phonotactic
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rules of the language determine which combination of phonemes are

valid and which are prohibited in the construction of words. As the

output of the speech recognisers presented in Chapters 4 and 5 are

strings of class labels (almost all of which are phonemes) representing

the input word, it is therefore possible to apply a combination of

phonotactic rules and error correction rules as a linguistic processor to

the label string output by the recogniser in an attempt to improve the

word recognition accuracy. A linguistic processor based on this idea is

proposed by Kashyap & Mittal [84].

In this chapter, two designs for linguistic processing of the string

of labels from the isolated word speech recognisers of Chapters 4 and 5

are presented. The first design is an implementation of the method of

Kashyap & Mittal for error correction in strings. The second design is

a modification of the linguistic processor of Kashyap & Mittal. An

alternative approach for class label substitutions is suggested.

6.2 String Error Correction Method of Kashyap & Mittal

Given a word-set, W, containing all the words in the speech

recogniser's lexicon, and the phonetic transcription of these words, L,

the set of class labels (phonemes), P, that the words in the word-set

are constructed from, can be determined. A set of linguistic rules that

express the concatenation of two class labels for all members in L can

then be generated. This procedure is applied to the word-set of Badii &

Binstead used to evaluate the speech recogniser designs of Chapters 4

and 5. These speech recognisers recognise the words in the word-set as

concatenations of segments labelled from a set of twenty-two classes,

twenty of which are phonemes, the remaining two being combinations

of two phonemes ( lerl and lri/ ) from the segmentation of the word

'Three'.
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The set of class labels for the word-set are given by

P = {/hI,1f,I,IgI,lAI,In!,Ik/,1ul,lll,h1,1rl,ls/,Iii,

ItJ,Iw/,lJI,Itll,1rel,lel,ld/,1et,1,18rl,lri/}

The class labels in P may be divided into three groups :

(i) Vowels : If.!, IN, lul, I~/, Iii, I;J/, lre/, lef/

(ii) Consonants : /hI, Ig/, In!, /k/, Ill, Ir/, lsi, It/, Iw/, 18/, IdJ, Ill, lerl

(iii) Vowel/Consonant : lril

The class label lerl is grouped with the consonants SInce it

consists of the phonemes 181 and Ir/, both of which are consonants. The

class label lril may be considered as a consonant or vowel since it

consists of the phoneme Irl which is a consonant and Iii, a vowel. In a

string of class labels containing the label lriI, from the point of view of

the class label immediately preceding lriI, lril is considered a

consonant, but for the class label immediately following lriI, it is a

vowel.

The transcription of the word-set in terms of the concatenations

of the class labels in P, ie. L, is given in Table 6.1. Alternative

transcriptions are given for words containing sustained vowels since

the segmentation process used in the speech recogniser designs of

Chapters 4 and 5 tended to split some occurrences of sustained vowels

into two segments (Section 3.7, Chapter 3). The word 'Three' was also

segmented as "/erl lril Ii/" or "/erl Ii/" (Section 3.7, Chapter 3).



Table 6.1 Transcription of the words in the Lexicon, L

Win: Iwl,lt,I,InJ

Want: Iwl,lDI,InJ,ItJ

One: Iwl,lAI,InJ

Run : Ir/,lAI,InJ

Begun: fbI ,1"I,Ig/,1AI,InJ

Cooler: /k/,1u1,111,131

/k/,1u1,IlI,Ial,lal

Rudder: Irl,1AI,Id/,Ial

Ir/,lAI,Id/,1al,1al

Wonder : Iwl,lAI,InJ,Id/,131

Iwl,11t1,InJ,Id/,1al,131

Two : ItI,IuI

ItJ,IuI,IuI

Shoe : IIl,IuI

III,lui,lui

Tatoo0 : ItJ,Irel,ltJ,IuI

ItJ,Irel,ltJ,IuI,IuI

Toot : ItJ,IuI,ItJ

ItJ,IuI,IuI,1tJ

Toothache : ItI,IuI,I8/,1ef./,/k/

ItJ,IuI,18/,1ef,l,Iet,I,/k/

Tee : ItI,IiI

ItJ,IiI,Iii

See : Isl,lil

Isf,lil,lil

Three : ler/,lri/,1i1

ler/,lri/,IiI,IiI

ler/,lil

ler/,lil,Iii

147
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6.2.1 Linguistic Rules

The linguistic rules expressing the list of valid concatenation of

class labels for the word-set of Badii & Binstead have been devised.

They are as follows :

(i) Vowel/Vowel: Iii Iii, lui lui, le,,1 le1-/, 1;,1 hi, lriJ Iii

(ii) Consonant / Consonant : In! ItJ, In! Id/, lerl lriJ

(iii) Consonant/Vowel: CI 1t.1, C2 lui, C3 /AI, C4 I'dl,

Cs Iii, C6 I:JI, C7 100/, Cs le1-/,

where C I E CI , CI = [ /hI, Iwl ]

C2 E C2 , C2 = [ /k/, It/, IJI ]

C3 E C3 , C3 = [ Igl, Irl, Iwl ]

C4 E C4 , C4 = [ Ill, Id/ ]

Cs E c; c, =[ lsi, ItJ, lerl ]

C6 E C6 , C6 = [ Iw/]

C7 E C7, C7 = [ ItJ ]

Cs E c; c, = [ leI]

(iv) Vowel/Consonant: 1f,1 C g, lui CIO' IAI C I H IJI C 12,

1001 C13 , lef,1 C14

where C g E Cg, C, = [ Igl, In! ]

C lO E ClO , CIO = [ Ill, ItJ, lei]

C ll E c.: c; = [ In!, Id/ ]

C I2 E C12 , CI2 = [ In! ]

C I3 E C13 , CI3 = [ ItJ ]

C14 E C14 , C14 = [ /k/ ]
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6.2.2 String Distance Measure

Let z = b1,b2J....,bn , b, E P V i represent the class label string

output by the recogniser. If the recognition process was error-free, then

z will match exactly one of the entries in L, hence the word in W that

caused z is easily identified. Since the speech recogniser is prone to

error, z will in general not belong to L. The method is to substitute the

class labels b, in z by other class labels and hence generate strings

that match an entry in L. A distance measure is used to select one

string from the strings generated by the substitution process as the

word in the word-set, W, that caused z. The distance measure used in

this string error corrector is based on the probability of the error in

the classification of the phoneme-like segment by the speech recogniser.

For each class label (or phoneme) b, observed in z, there is a

possibility that it is actually the correct phoneme, or it may have been

substituted for some other phoneme. Therefore to perform correction,

this class label in z must be replaced by the actual ie. correct class

label. The possible substitutions for each class label in z are

determined from the recognition performance of the speech recogniser.

From the performance statistics, weights, uita.b), are assigned to each

substitution as a measure of the likelihood of such a substitution for

that class label. The smaller the value of this weight, the more likely

it is that this substitution occurred during the recognition process. The

weight w(a,b) indicates the chance that when some class label a is

observed, the actual class label is some other class label b.

Therefore, for each class label in P, a vector B, is defined. The

elements of B, are the possible substitutions for that class label

together with the weight for that substitution. Also included in this

vector is the deletion symbol ~. If during the error correction process a

symbol is to be deleted from z, it is replaced by A.
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To illustrate how this error correction process works, consider a

string z = b1b2b3 •

where bil = bi, and bin. = A

bile is the phoneme or class label to be substituted for b; and Wile

is the weight assigned to that substitution.

eli) Combine vectors B 1 and B2 to form a single vector B 12' The

components of B 12 are determined as follows :

Let B 1 =

Form strings by combining each element b1iw1) in B1 with all

elements in B2 as given below:

J. -- 1 2 p; k = 1,2....,q, ...., ,

Thus the new vector B 12 has elements consisting of the string

b1Jb2k with weight (wlj + W2k ) '

-



(iii)

(iv)

(v)

(vi)

(vii)
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From all elements b1.Jb2 lc(W lj + W 2lc) in B delete b ·f b - b
12' 2lc 1 21e - Ij so

that no two adjacent symbols in the string are identical.

Apply the linguistic rules (Section 6.2.1) to the elements in B
12

and delete those elements, b1Jb 2lc(W lj + w21e ) , that are not allowed

by the linguistic rules.

For strings b IJb2lc from the elements in B 12 that are identical,

delete the elements with the larger weight.

Combine B 12 with B 3 to form the vector B 123 by repeating steps

(ii) to (v) but with B 12 in place of B 1 and B 3 in place of B2.

For all elements in B 123 , from all strings containing the symbol l,

delete A; ego if an element of B 123 contains the string "ski", the

string becomes "si" after deleting A.

(viii) The string from the element in B 123 with the lowest weight that

matches an entry in L is taken to be the word that caused the

speech recogniser to output the string z..

Thus if x represents an element in B 123' then the distance

between z and x, D(z;X), is the sum of the weights of the various class

labels in x.

In the following two sections, the string error correction method

illustrated above is applied to the output from the speech recognisers

based on the 'Separate Segmentation and Labelling' (SS&L) approach

(Chapter 4), and the 'Sliding Window' approach (Chapter 5), in order to

improve their word recognition accuracy.

.-
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6.2.3 Application of the Linguistic Processor to the Output

from Speech Recogniser Based on the SS&L Approach

In order to apply this linguistic processor to the string of class

labels output by the speech recogniser, the weights for class label

substitutions must first be determined for this particular speech

recogniser. The weights for the class label substitutions were obtained

from the statistics of the recognition performance of the speech

recogniser for the samples from the word-set of Badii & Binstead.

Kashyap & Mittal do not show in their paper how they worked out the

weights. For the work presented in this chapter, the following method

was used to determine the weights :

w(a, b) denotes the weight assigned to the replacement of the

class label a in z by another class label b, and is defined as

w(a,b) = 1 - p(a,b) (6.1)

p(a,b) is the probability that the class label a is observed at the

ouput of the speech recogniser but the actual (ie. correct) class label is

b (ie, the speech recogniser has misclassified some class b as some

other class a). If n, is the total number of samples of class b input to

the speech recogniser, and na,b is the number of times that the speech

recogniser misclassifies class b as class a, then p(a,b) is given by

p(a,b) = na,b / n, (6.2)

Following Kashyap & Mittal, w(a,b) =0 if b =a, and

w(a,b) =1 ifb = A.



153

Table 6.2 Class label substitutions and associated weights

fbI --> b (0)
re (0.9)
t (0.99)
u (0.99)
A(1)

IAI --> A (0)
A (1)

Inl --> n (0)
i (0.92)

et (0.95)
u (0.96)
d (0.96)
~ (0.99)
w (0.99)
A (1)

lsI --> s (0)
A (1)

Iwl --> w (0)
r (0.99)
A (1)

IfI --> f (0)
A(1)

lri/ --> ri (0)
i (0.99)
A(1)

It I --> t (0)
re (0.9)
u (0.91)
1 (0.96)
i (0.96)
ri (0.96)
A (1)

/kI --> k (0)
re (0.96)
b (0.97)
6r (0.98)
t (0.99)
A(1)

PI --> ~ (0)
o (0.93)
A (0.99)
re (0.99)
w (0.99)
A (1)

let! --> et (0)
A (1)

161 --> 6 (0)
g (0.99)
A(1)

I;) I --> o (0)
A (0.88)
A(1)

Ig/ --> g (0)
re (0.94)
ri (0.96)
8 (0.96)
k (0.98)
1(0.99)
r (0.99)
i (0.99)
u (0.99)
~ (0.99)
A (1)

/11 --> 1(0)
A (1)

I r I --> r (0)
w (0.98)
A(1)

lrel --> re (0)
A (0.99)
~ (0.99)
r (0.99)
et (0.99)
o (0.99)
A (1)

18rl --> 8r (0)
A (1)

Iii --> i (0)
u (0.96)
t (0.99)
et (0.99)
A (1)

lui --> U (0)
ri (0.40)
i (0.59)

re (0.75)
1 (0.77)

w (0.86)
et (0.87)

t (0.94)
n (0.98)
t (0.98)
r (0.99)
k (0.99)
A (1)

I t I --> t (0)
8r (0.33)
8 (0.78)
s (0.85)

re (0.87)
k (0.94)
A (0.97)
J (0.97)
g (0.98)
t (0.98)
d (0.98)
b (0.99)
A(1)

Id/ --> d (0)
ri (0.84)
re (0.93)
r (0.98)

w (0.98)
g (0.99)
8 (0.99)

et (0.99)
t (0.99)
A(1)
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The choices for class label replacements and th . de associate

weights for the speech recogniser based on the 'Separate Segmentation

and Labelling' (SS&L) approach are given in Table 6.2. Appendix B

gives the data from which the weights were calculated. The

configuration of the speech recogniser is as follows:

(i) "Averaged points interpolation method" for time

normalisation.

(ii) Gray encoder for the Data Reduction stage.

(iii) Across channel mapping of spectral frame store to 'retina'.

(iv) n-tuple size of 8.

(v) Random mapping of 'retina' to n-tuples.

The speech recogmser with this configuration was selected for

experimentation with the linguistic processor because experiments in

Chapter 4 show that it offered the best results. The word recognition

accuracy of this speech recogniser is given in Table 4.30 (Chapter 4).

The highest word recognition accuracy is 57.2% achieved with 15

trainings although 78.36% recognition accuracy was achieved at the

phoneme-like segment level (Chapter 4, Table 4.28). Table 6.3 gives the

word recognition accuracy of the same speech recogniser after

application of the linguistic processor to the speech recogniser's output.

The word recognition accuracy improves with training, peaking at

93.11 % for 15 trainings. Further training causes performance to drop.

With the exception of the word 'Three', all the other words in the

word-set are recognised with atleast 80% accuracy. These results are

comparable with those obtained by Badii & Binstead for recognition of

the word-set by the 'whole word' recognition approach.

Although the word recognition accuracy of the speech recogniser

designs proposed in this work are similar, the advantage of the

proposed speech recognisers over that of Badii & Binstead is that
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words other than those in the Badii & Binstead word-set, that are

combinations of the phoneme-like segments recognised by these speech

recognisers may also be recognised by simply including them in the

linguistic processor. In comparison, the Badii & Binstead speech

recogniser would require an extra discriminator for each new word

added to the recogniser's lexicon. Also, the total memory requirement

for all class discriminators in the proposed recogniser designs is below

1 Mbit, whereas the Badii & Binstead recogniser requirement is more

than 3 Mbits.



Table 6.3 Word Recognition for Recogniser based on the

'Separate Segmentation and Labelling' Approach
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Accuracy (%)

Trainings:

Word

5 10 15 20

One 100.0 100.0 100.0 100.0

Run 100.0 100.0 100.0 100.0

Want 100.0 100.0 100.0 100.0

Begun 95.8 95.8 95.8 100.0

Wonder 92.0 96.0 96.0 100.0

Rudder 88.0 96.0 100.0 100.0

Win 100.0 96.0 96.0 96.0

Two 100.0 100.0 96.0 96.0

Shoe 96.0 96.0 100.0 96.0

Toot 100.0 100.0 100.0 88.0

Tattoo 76.0 88.0 88.0 88.0

Toothache 83.3 95.8 100.0 100.0

Cooler 96.0 100.0 100.0 92.0

Tee 96.0 92.0 80.0 84.0

Three 28.0 36.0 50.0 44.0

See 88.0 88.0 88.0 84.0

Average: 89.94 92.48 93.11 91.75
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Application of the Linguistic Processor to the Output

from Speech Recogniser Based on the 'Sliding Window'
Approach

The choices for class label replacements and the associated

weights for the speech recogniser based on the 'Sliding Window'

approach are given in Table 6.4. The weights were calculated using the

formula defined in (6.1) in Section 6.2.3. Appendix B gives the data

from which the weights were calculated. The configuration of the

speech recogniser is as follows :

(i) Gray encoder for the Data Reduction stage.

(ii) Direct mapping of spectral frame store to 'retina'.

(iii) n-tuple size of 8.

(iv) Random mapping of 'retina' to n-tuples.

(v) Segment Length Threshold of 24 frames.

The speech recogmser with this configuration was selected for

experimentation with the linguistic processor because experiments in

Chapter 5 show that it offered the best results. The best word

recognition accuracy of this speech recogniser for the word-set of Badii

& Binstead is 40.49% achieved with 20 trainings (Table 5.24, Chapter

5). Table 6.5 gives the word recognition accuracy of the same speech

recogniser after application of the linguistic processor to the speech

recogniser's output. The word recognition accuracy improves with

training, peaking at 93.49% for 10 trainings. Further training causes

performance to drop. This speech recogniser has improved the

recognition accuracy for the word 'Three' (80% with 15 trainings) which

was difficult to recognise with the SS&L based speech recogniser.
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Table 6.4 Class label substitutions and associated weights

fbI --> b (0)
re (0.81)
t (0.92)
t (0.94)
u (0.94)

Or (0.96)
k (0.98)
A(1)

IAI --> A (0)
A (1)

101 --> n (0)
w (0.93)
u (0.97)
i (0.98)
r (0.98)
o (0.99)
A(1)

lsi --> S (0)
A(1)

Iwl --> w (0)
A(1)

III --> I (0)
A(I)

lri/ --> ri (0)
i (0.96)
1 (0.97)
u (0.97)
t (0.99)
A(1)

It I --> t(O)
U (0.95)
re (0.95)
i (0.96)
g (0.98)
ri (0.98)
A (1)

/k/ --> k (0)
8r (0.93)
t (0.99)
i (0.99)
8 (0.99)
A (1)

PI --> ~ (0)
A (0.82)
w (0.85)
J (0.86)
r (0.89)
ei (0.99)
k (0.99)
A (1)

letl --> et (0)
re (0.95)
g (0.97)
1 (0.97)
t (0.99)
~ (0.99)
u (0.99)
A(1)

181 --> 8 (0)
g (0.99)
A (1)

Ig/ --> g (0)
8 (0.97)
d (0.99)
A (1)

/11 --> 1 (0)
i (0.94)
u (0.99)
A (1)

I r I --> r (0)
w (0.98)
A (0.99)
A (1)

lrel --> ee (0)
et (0.99)
A (1)

18rl --> 8r (0)
t (0.99)
A (1)

Iii --> i (0)
u (0.92)
ei (0.96)
t (0.98)
g (0.99)
1 (0.99)
0(0.99)

re (0.99)
A (1)

IJ I --> J (0)
A (0.82)
A (1)

lui --> U (0)
ri (0.67)
t (0.71)
i (0.83)

re (0.90)
1(0.95)
w (0.96)
d (0.98)

ei (0.99)
t (0.99)
0(0.99)
A (1)

I t I --> t (0)
8 (0.33)
er (0.44)
d (0.86)
g (0.87)
re (0.87)
k (0.92)
ri (0.96)
t (0.98)
A (0.99)
A (1)

Id/ --> d (0)
re (0.65)
w (0.77)
A (0.79)
1 (0.85)
r (0.86)
o (0.88)
et (0.89)
b (0.92)
t (0.92)
t (0.96)
g (0.97)
u (0.97)
i (0.97)
J (0.98)
A(1)



Table 6.5 Word Recognition for Recogniser based on the

'Sliding Window' Approach
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Accuracy (%)

Trainings:

Word

5 10 15 20

One 100.0 100.0 100.0 95.8

Run 92.0 80.0 80.0 80.0

Want 92.0 100.0 100.0 100.0

Begun 91.7 100.0 100.0 91.7

Wonder 100.0 100.0 100.0 100.0

Rudder 100.0 100.0 100.0 100.0

Win 96.0 100.0 88.0 92.0

Two 80.0 92.0 88.0 96.0

Shoe 96.0 100.0 100.0 100.0

Toot 100.0 100.0 100.0 100.0

Tattoo 80.0 84.0 76.0 80.0

Toothache 58.3 95.8 95.8 91.7

Cooler 96.0 100.0 100.0 100.0

Tee 96.0 88.0 80.0 72.0

Three 36.0 64.0 80.0 60.0

See 60.0 92.0 100.0 96.0

Average: 85.88 93.49 92.99 90.95
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6.3 An Alternative Linguistic Processor

A disadvantage of the linguistic processor design due to Kashyap

& Mittal is that the class labels replacement weight is calculated from

the recognition performance statistics of the speech recogniser and is

therefore dependent on the particular speech recogniser the linguistic

processor is being used with. This weight calculation is a laborious

process since acquiring satisfactory performance statistics requires that

a large number of samples be considered in the measurements. A

modification to the linguistic processor of Kashyap & Mittal IS

suggested which overcomes this problem and makes it portable (ie.

independent of the speech recogniser it is being used with).

The Kashyap & Mittal linguistic processor assumes that when a

word is input to the speech recogniser, the speech recogniser outputs a

single class label corresponding to each phoneme-like segment in that

word. A priori information regarding class label substitution IS

therefore required to perform correction of errors due to

misclassification of one or more phoneme-like segments by the

recogniser. However, this information may be obtained from the speech

recogniser itself if instead of making a single decision as to the

identity of a phoneme-like segment, the recogniser outputs alternative

choices in decreasing order of likelihood ie. a lattice of class labels.

Each column of the lattice gives the choice of alternative class labels

for the corresponding phoneme-like segment in the word input to the

recogniser (there are as many columns in the lattice as there are

phoneme-like segments in the word). The 'lattice depth' determines the

number of class labels in the lattice column. Thus for example, if the

'lattice depth' is set to 5, the recogniser outputs a choice of 5 class

labels for each phoneme-like segment in the input word. The maximum

lattice depth is 22 since there are a total of 22 classes in the speech
.

recogmser.
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The linguistic processor suggested in this section is based on the

same concept as the Kashyap & Mittal linguistic processor, but it

differs in the manner in which the string distance is obtained.

To illustrate how this linguistic processor functions, let z be the

output of the speech recogniser for a word consisting of three phoneme­

like segments. Then z = S1S:P3 where

, Wile = k k = O,l, .... ,n

z is therefore a lattice with lattice depth n, and S, is the column

in the lattice corresponding to the ith phoneme-like segment. Sile is the

class label that the recogniser assigns to that phoneme-like segment. Sw

is the label of the class discriminator in the speech recogniser that

gave the highest recognition score for that phoneme-like segment. Sj1 is

the label of the class discriminator with the next highest score, and so

on.L is the segment deletion SYmbol. The weight Wile is assigned to the

class label aile and is numerically equal to its position in the lattice

column. The deletion symbol ,t , has the highest weight (as in the

Kashyap & Mittal linguistic processor). Treating 8 i as a vector, where

Sik(Wik) are the components of Si,

(i) Combine lattice columns (or vectors) 8 1 and 8 2 to form a single

vector S12' Each component of 8 12 consists of a string with

associated weight, formed by combining each element s1iw i) in 8 1

with all elements in 8 2 as given below:

J - 1 2 n' k = 1,2.....n- , ...., ,



(ii)

(iii)
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From all elements S IP2k(W1j + W 2k) in 8 delete s if _

12, 2k S2k - Slj so
that no two adjacent symbols in the string S Ifl2k are identical.

Apply the linguistic rules (Section 6.2.1) to the elements in 8
12

and delete those elements, S Ifl2/t(W I} + W2/t), that are not allowed

by the linguistic rules.

(iv) For strings S1P2k from the elements in 8 12 that are identical,

delete the elements with the larger weight.

(v) Combine 8 12 with 8 3 to form a new vector 8 123 by repeating steps

(i) to (iv) but with 8 12 in place of 8 1 and 8 3 in place of 8
2

•

(vi) For all elements in 8 123 , from all strings containing the symbol A,

delete A.

(vii) The string from the elements in 8 123 with the lowest weight that

matches an entry in the systems lexicon, L, is taken to be the

identity of the word input to the speech recogniser.

This linguistic processor was applied to the output from the

speech recognisers based on the 'Separate Segmentation and Labelling'

and 'Sliding Window' approaches. The speech recognisers are the same

as those used in the experiments in Sections 6.2.3 and 6.2.4

respectively. The following two sections give the results for these

experiments. Results are given for the linguistic processor with lattice

depths of 5, 10, 15 and 20 to investigate how word recognition

accuracy improves with increasing lattice depth.
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6.3.1 Application of the Linguistic Processor to the Output

from Speech Recogniser Based on the SS&L Approach

Tables 6.6 and 6.7 give the word recognition results. The results

are given for lattice depths of 5 and 10 only. The nature of the errors

showed that increasing lattice depth further will not improve the

results significantly. The idea of outputting the recognition results as a

phonetic lattice is that in the case that the speech recogniser

misclassifies a phoneme-like segment, the correct class will at least be

included in the lattice and hence offering the chance of recovering from

this error. Increasing the lattice depth increases the chance of finding

the correct class within the lattice, but this also increases the

branching factor ie. the number of alternative words that will be

generated by the error correction process. If a phoneme-like segment is

misclassified such that the correct class is quite low down the lattice,

hence increasing the overall weight of the correct word, this may result

in one or more of the alternative words generated by the linguistic

processor having a lower weight than the correct word causing the

linguistic processor to err. In such cases, increasing the lattice depth

will not improve the word recognition accuracy. From tables 6.6 and

6.7 it can be seen that this has been the case for the words 'Shoe',

'Tattoo', 'Tee', 'Three' and 'See'. Other words like 'Wonder' and 'Rudder'

have benefitted from the increase in lattice depth.

Best results are obtained for 5 trainings. Increasing training

causes an initial drop in word recognition accuracy which improves

with further training but does not improve upon that for 5 trainings.

Increasing the lattice depth from 5 to 10 has improved that word

recognition accuracy from 85.99% to 87%.



Table 6.6 Word Recognition for Recogniser based on the Table 6.7 Word Recognition for Recogniser based on the

'Separate Segmentation and Labelling' Approach 'Separate Segmentation and Labelling' Approach

Lattice Depth = 5 Lattice Depth = 10

Trainings: 5 10 15 20 Trainings: 5 10 15 20

Word Accuracy (%) Word Accuracy (%)

One 100.0 100.0 100.0 100.0 One 100.0 100.0 100.0 100.0

Run 100.0 100.0 100.0 100.0 Run 100.0 100.0 100.0 100.0

Want 100.0 100.0 100.0 100.0 Want 100.0 100.0 100.0 100.0

Begun 100.0 100.0 100.0 100.0 Begun 100.0 100.0 100.0 100.0

Wonder 96.0 96.0 100.0 100.0 Wonder 100.0 100.0 100.0 100.0

Rudder 96.0 96.0 96.0 88.0 Rudder 100.0 100.0 100.0 100.0

Win 96.0 96.0 88.0 92.0 Win 100.0 100.0 96.0 96.0

Two 100.0 100.0 100.0 100.0 Two 100.0 100.0 100.0 100.0

Shoe 96.0 96.0 100.0 100.0 Shoe 96.0 96.0 100.0 100.0

Toot 100.0 100.0 100.0 100.0 Toot 100.0 100.0 100.0 100.0

Tattoo 44.0 40.0 40.0 48.0 Tattoo 44.0 40.0 40.0 48.0

Toothache 95.8 95.8 100.0 100.0 Toothache 100.0 100.0 100.0 100.0

Cooler 100.0 100.0 96.0 96.0 Cooler 100.0 100.0 100.0 100.0

Tee 80.0 68.0 80.0 80.0 Tee 80.0 68.0 80.0 80.0

Three 16.0 4.0 24.0 24.0 Three 16.0 4.0 24.0 24.0

See 56.0 36.0 40.0 44.0 See 56.0 36.0 40.0 44.0

Average: 85.99 82.99 85.25 85.75 Average: 87.00 84.00 86.25 87.00

......
~
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6.3.2 Application of the Linguistic Processor to the Output

from Speech Recogniser Based on the 'Sliding Window'

Approach

Tables 6.8 - 6.11 grve the results for increasing lattice depth

from 5 to 20 in steps of 5. With a lattice depth of 5, the word

recognition accuracy is seen to improve with training until 10

trainings. Increasing training initially lowers the word recognition

accuracy (15 trainings) which then improves with further training.

65.51 % word recognition accuracy with 20 trainings is the best

performance for this lattice depth. This compares with 85.99% achieved

with 5 trainings for the SS&L based speech recogniser (Table 6.6).

Word recognition accuracy improves with increasing lattice

depth. Whereas for the results obtained with lattice depth of 5 showed

the average word recognition accuracy to dip at 15 trainings, the

results obtained with increasing lattice depth show that the

performance peaks at 15 trainings. The highest word recognition

accuracy is 87.48% obtained for lattice depth of 20.

For lattice depths greater than 10, it is seen that no further

improvements were achieved for the recognition of words as 'See',

'Three', 'Tee', 'Two', 'Shoe', 'Win' and 'One'. This is because in the case

of errors in the recognition of the phoneme-like segments in these

words, the class labels of these segments were too low down the lattice

enabling other words to have a lower weight hence it was not possible

to correct this error. In the case of 'Wonder' and 'Rudder', it was

possible to achieve improvements with a lattice depth of 20 since these

are long words.



Table 6.8 Word Recognition for Recogniser based on the

'Sliding Window' Approach

Lattice Depth =5

Table 6.9
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Word Recognition for Recocnl8er hued on the

'Sliding Window' Approach

Lattice Depth =10

Trainings:

Word

5 10 15

Accurncy ('To)

20
Trainings:

Word

5 10 15

Accuracy (%)

20

One

Run

Want

Begun

Wonder

Rudder

Win

Two

Shoe

Toot

Tattoo

Toothache

Cooler

Tee

Three

See

Average:

79.2

80.0

32.0

100.0

12.0

8.0

16.0

88.0

96.0

92.0

16.0

12.5

84.0

80.0

24.0

40.0

53.73

91.7

80.0

96.0

95.8

12.0

12.0

48.0

92.0

100.0

92.0

16.0

20.8

80.0

80.0

44.0

84.0

65.27

91.7

80.0

100.0

100.0

4.0

8.0

8.0

88.0

100.0

92.0

20.0

12.5

84.0

80.0

56.0

84.0

63.01

91.7

80.0

100.0

91.7

16.0

12.0

60.0

96.0

92.0

88.0

20.0

16.7

88.0

76.0

44.0

76.0

65.51

One

Run

Want

Begun

Wonder

Rudder

Win

Two

Shoe

Toot

Tattoo

Toothache

Cooler

Tee

Three

See

Average:

79.2

80.0

40.0

100.0

12.0

12.0

28.0

88.0

96.0

96.0

20.0

95.8

88.0

84.0

24.0

40.0

61.44

91.7

80.0

100.0

100.0

12.0

12.0

64.0

92.0

100.0

96.0

20.0

83.3

84.0

80.0

44.0

84.0

71.44

91.7

80.0

100.0

100.0

12.0

12.0

84.0

88.0

100.0

96.0

32.0

87.5

84.0

80.0

56.0

84.0

74.20

91.7

80.0

100.0

100.0

16.0

12.0

72.0

96.0

92.0

96.0

20.0

87.5

88.0

76.0

44.0

76.0

71.70

Table 6.10 Word Recognition for Recogniser based on the

'Sliding Window' Approach

Lattice Depth =15

Table 6.11 Word Recognition for RecocnUer bued on the

'Sliding Window' Approach

Lattice Depth =20

Trainings :

Word

5 10 15

Accuracy ('To)

20 Trainings :

Word

5 10 15

Accuracy (~)

20

One

Run

Want

Begun

Wonder

Rudder

Win

Two

Shoe

Toot

Tattoo

Toothache

Cooler

Tee

Three

See

Average:

79.2

80.0

40.0

100.0

12.0

12.0

28.0

88.0

96.0

96.0

20.0

95.8

92.0

84.0

28.0

40.0

61.94

91.7

80.0

100.0

100.0

12.0

16.0

64.0

92.0

100.0

96.0

20.0

95.8

92.0

80.0

48.0

84.0

73.22

91.7

80.0

100.0

100.0

12.0

16.0

84.0

88.0

100.0

100.0

88.0

100.0

92.0

80.0

56.0

84.0

79,48

91.7

80.0

100.0

100.0

16.0

12.0

72.0

96.0

92.0

100.0

84.0

100.0

96.0

76.0

44.0

76.0

77.23

One

Run

Want

Begun

Wonder

Rudder

Win

Two

Shoe

Toot

Tattoo

Toothache

Cooler

Tee

Three

See

Average:

79.2

84.0

100.0

100.0

96.0

64.0

28.0

88.0

96.0

100.0

84.0

100.0

96.0

84.0

28.0

40.0

79.20

91.7

84.0

100.0

100.0

100.0

64.0

64.0

92.0

100.0

100.0

80.0

100.0

100.0

80.0

48.0

84.0

86.73

91.7

88.0

100.0

100.0

96.0

40.0

84.0

8lI.0

100.0

100.0

92.0

100.0

100.0

80.0

56.0

84.0

87.48

91.7

84.0

100.0

100.0

96.0

32.0

72.0

96.0

92.0

100.0

88.0

100.0

96.0

76.0

44.0

76.0

83.98
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6.4 Conclusion

The work presented in this chapter shows that the linguistic

processor enables the word recognition accuracy of the speech

recogniser to be improved significantly, ego the highest word recognition

accuracy of the SS&L based speech recogniser is improved from 57.2%

to 93.11% by the Kashyap & Mittal liguistic processor. The linguistic

processor is an essential part of the speech recognition system based

on the sub-word approach.

Comparing the Kashyap & Mittal linguistic processor with the

modified linguistic processor of Section 6.3, the former must be adapted

(a priori determination of the class label substitution weights) to the

particular speech recogniser it is to be used with, whereas this

procedure is eliminated in the latter design, hence making it easier to

use. The Kashyap & Mittal linguistic processor gives the better results

(by about 7%) but the design is not portable. Although the phoneme­

like segment recognition accuracy of the speech recogniser affects the

performance of both linguistic processors, this affects the modified

linguistic processor more than that of Kashyap & Mittal. For example,

the 'Sliding Window' based speech recogniser is better at recognising

ISrl, lri/ and Iii than the SS&L based speech recogniser. This is

reflected in the accuracy of the recognition of 'Three' and 'See' for the

two recognisers (Tables 6.2 and 6.1 respectively for the Kashyap &

Mittal linguistic processor, and Tables 6.8 and 6.4 respectively for the

modified linguistic processor).
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6.5 Summary

Although the speech recogniser's recognition accuracy at the

phoneme-like segment level may be between 70% and 80% (Chapters 4

and 5), it is possible to achieve higher word recognition accuracy from

the speech recogniser by applying a linguistic processor to its output.

This chapter demonstrates how the word recognition accuracy (for the

word-set of Badii & Binstead) of the SS&L and 'Sliding Window'

speech recognisers proposed in Chapters 4 and 5 respectively, may be

improved, for example, with a linguistic processor due to Kashyap &

Mittal, word recognition accuracies of 93.11% and 93.49% were

achieved for the SS&L and 'Sliding Window' based speech recognisers

respectively. Prior to application of the linguistic processor, these

speech recognisers had word recognition accuracy of 57.2% and 40.49%

respectively.

The implementation of the Kashyap & Mittal linguistic processor

uses linguistic rules specifying valid concatenations of the class labels

(or phonemes) derived from the words from the Badii & Binstead word­

set, together with a procedure for substitution of class labels in the

string of class labels output by the speech recogniser, to perform error

correction.

An alternative linguistic processor is also suggested. This

linguistic processor is a modification of the Kashyap & Mittal linguistic

processor. The Kashyap & Mittal linguistic processor needs to be

adapted to the particular speech recogniser it is to be used with since

the class label substitution weights used in the error correction process

need to be determined from the recognition performance statistics of

that speech recogniser. The modification to the Kashyap & Mittal

linguistic processor is to eliminate this requirement hence making it

easy to implement with any speech recogniser. Applying the modified

linguistic processor to the SS&L and 'Sliding Window' based speech
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recognisers, word recognition accuracy of 87% and 87.48% respectively

are achieved for the word-set of Badii & Binstead.

The word recognition accuracy of the speech recogmsers after

error correction by the linguistic processors is comparable to that

achieved by Badii & Binstead using the 'whole word' based recognition

approach.
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CHAPTER SEVEN

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

7.1 Conclusion

Two designs for isolated word recognition systems based on the

sub-word approach have been proposed in this work ('Separate

Segmentation & Labelling' (SS&L) recogniser in Chapter 4, and 'Sliding

Window' recogniser in Chapter 5). These systems recognise isolated

words as concatenations of phoneme-like segments. The basis for both

designs is the single layer WISARD net. Earlier work by Badii &

Binstead [11], [12], demonstrated the effectiveness of the N-tuple

pattern matching technique for isolated word recognition. The proposed

designs are aimed at achieving a more flexible system.

The 'whole word' matching approach of the Badii & Binstead

recogniser places increasing memory requirements with increase in the

size of the lexicon as each additional word requires a separate

discriminator. The sub-word approach adopted for the proposed

recognisers overcomes this problem since each word is recognised in

terms of the phoneme-like segments in the word. Thus other words

(besides those in the word-set used to evaluate the recogniser designs)

that are combinations from the set of phoneme-like segments

recognised by these speech recognisers may also be recognised by

simply allowing for them in the linguistic processor section of the

recognition system. No additional discriminators are required to

accomodate these words. Furthermore, although the word recognition
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accuracy IS similar to that reported for the Badii & Binstead speech

recogniser, this performance has been achieved at a significantly lower

memory cost (less than 1 Mbit memory is needed for the proposed

designs whereas the Badii & Binstead recogniser requires over 3 Mbit).

At the phoneme-like segment level, recognition accuracy between

70% to 80% was achieved with both recogniser designs. Similar figures

have been reported for recognition systems based on other approaches

(eg, template matching). This suggests that the N-tuple method using

single layer WISARD nets is at least as good as other existing

approaches for designing speech recognisers.

Of the two proposed recogniser designs, the SS&L recogniser has

a higher phoneme-like segment recognition accuracy. It also has a

faster response time since it time-normalises the spectral data for the

whole phoneme-like segment in to a single window and classification is

performed on this window only, whereas the 'Sliding Window'

recogniser bases its decision on the overall result of classifying data in

a short duration window sliding one spectral frame at a time from the

begining to the end of the phoneme-like segment. The response time of

the 'Sliding Window' recogniser may be improved by sliding the

window more than a single spectral frame at time. At the word

recognition level, both recogniser designs have similar performances.

However, convergence was achieved with a lower lattice depth for the

SS&L recogniser when the modified Kashyap & Mittal linguistic

processor (Chapter 6, Section 6.3) was used.

Since the proposed recogniser designs were evaluated using

software simulation, a measure of the response time was not obtained.

It is however felt that at least the SS&L recogniser should be capable

of near real time response. This optimism is borne out of the fact that

other systems with far greater computational overheads have been
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implemented in hardware giving near real time response (eg, the

Kohonen "Neural" Phonetic Typewriter [99] has a mean delay on the

order of 250 ms per word). Furthermore, a WISARD net based image

recognition system has been shown to recognise a 512 x 512 bit image

in around 0.25 second, whereas the maximum bit array size processed

by the proposed recognisers is 64 x 19. The preprocessor and linguistic

processor sections of the recognisers require simple computation. For

example, segmentation of the input utterance into phoneme-like

segments only requires the computation of the sum of difference in

channel energies over successive spectral frames and its comparison to

a preset threshold (Chapter 3). Error correction by the linguistic

processor requrres simple addition of phoneme substitution weights

(Chapter 6). Also, the 16-channel filterbank IC enables the spectral

representation of an input utterance to be obtained without any

computation.

Accuracy of segmenting the input utterance into phoneme-like

segments is essential to the performance of both proposed recogniser

designs. The sum of the difference in the filterbank channel energies

over successive spectral frames was suggested in Chapter 3 for

performing segmentation of isolated utterances. Although the

segmentation accuracy compares favourably with other reported

methods [52], further improvement is needed to enable its use m a

practical recognition system. Another problem was in the segmentation

of the word 'Three' from the Badii & Binstead word-set. The segments

indicated for this word contained parts from following phonemes in the

utterance and were therfore not phoneme-like (all other words in the

word-set were segmented into phoneme-like segments). Supplementing

the segmentation process with more information from the speech signal

such as zero-crossing rate and energy measurements, and the use of an
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adjustable threshold (as in Itahashi et al [36]) could help to at least

reduce some of these problems.

A linguistic processor plays an important role in improving the

word recognition accuracy of a recognition system based on the sub­

word approach. Without the linguistic processor, the proposed

recognition systems have a word recognition accuracy around 50%. The

linguistic processor is able to improve this to around 90%. Two designs

for linguistic processor were experimented with (Chapter 6). The first

is an implementation of a design proposed by Kashyap & Mittal [84].

This design needs to be adapted to the recognition system it is to be

used with. Modification to this design is suggested to overcome this

requirement hence making the design portable (Chapter 6, Section 6.3).

There is however an important shortcoming in both designs in that

they cannot correct for segment deletion errors in the segmentation

process (they can correct substitution errors and segment insertion

errors). The effects of this can be reduced somewhat if the

segmentation process could be adjusted such that segment deletion

errors are minimized (for the segmentation method suggested in this

work, this could be achieved by using a lower threshold).

WISARD nets require supervised training ie. training samples

must be labelled so that they can be trained into the correct

discriminators. This process can be time consuming as it is necessary

to ensure that the training samples are properly segmented and are

representative of the recognition set. A self organising network like

that of Kohonen is easier to train in this respect since training is

unsupervised.
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7.2 Suggestions for Future Work

The objective of this work was to investigate if the proposed

recogniser designs could be used as the basis for a large vocabulary

isolated word recogniser. The results obtained for the recognition of the

16 words in the word-set of Badii & Binstead demonstrate that such a

goal can be achieved using the proposed designs. In the present state,

only 20 phonemes in the English Language (which is slightly less than

half the total number of phonemes in English) are represented in the

recognisers. It is recommended that further work be done to extend the

designs to cover all English phonemes. The following areas of the

design need attention :

(i) Improvement in segmentation accuracy and also that the

segments detected by the segmentation process are phoneme-like.

(ii) Linguistic processor should be able to correct segment deletion

errors.

(iii) The words used to train the recogmser should be carefully

selected so that the phoneme-like segments in these words are

representative of those in all words in the word-set (to account

for contextual variations of each phoneme-like segment in the

word-set).

The proposed recogniser designs could be implemented as a plug­

In card for the IBM PC AT. The plug-in card would contain the

filterbank, AID circuit and the WISARD net classifier. The
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segmentation and linguistic processor functions would be performed by

the PC.

Another approach to large vocabulary isolated word recognition is

suggested. The need for accurate segmentation of the utterance into

phoneme-like segments is essential for the success of the proposed

recogniser designs. The self organising Kohonen net does not require

prior segmentation. Activations of different areas of the net correspond

to different phonemes. Kohonen has reported about 90% phoneme

recognition for the Finnish Language [99]. A two layer structure with a

2-dimensional Kohonen net as the first layer and the WISARD net as

the second layer is suggested. The Kohonen net will act as the 'retina'

for the WISARD net. Each phoneme discriminator in the WISARD net

windows the area on the Kohonen net that gets activated by the

corresponding phoneme. Thus the WISARD net acts as the labeller for

each spectral frame input to the Kohonen net.
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APPENDIX A

The segment labels and the corresponding sound in an utterance

Table 'A' shows the class labels of the sub-word segments
recognised by the speech recogniser designs presented in this
dissertation and the corresponding sound in an utterance that they
represent.

Table A

fbi Begun

Il.l wIn

Igj beGun

IAI begUn

Inl beguN

/kl Cooler

lui tOOt

/II cooLer

tal coolER

Irl Run

lsi See

Iii sEE

It! Tee

/wl Win

II I SHoe

01 wAnt

lrel tAttoo

18 I tooTHache

/dl wonDer

Iev! toothAche

JJr/ THRee

Iril thREE
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APPENDIX B

Data for calculating the class label substitution weights

Table 'B' gives the total nu b f
(Chapter 6, Section 6.2.3, page 152)ers~b s~rwe~ of each class ie. n;
recognition over tests with 5, 10, 15 and 2~r~nin~s:he recogmser for

Table B

Class nb

/hI 96

ItI 196

Ig/ 96

/AI 492

Inl 592

/kl 196

luI 724

/II 100

fal 444

Irl 200

lsI 100

IV 384

ItI 796

/wI 396

tIl 100

PI 100

lrel 92

/91 96

Idl 200

letI 148

!3rl 100

Iri/ 48

Sections B.l and B.2 tabulate data for na b ie. the number of
times that any given class a is observed at the output of the recogniser
but the actual class input to the recogniser was some other class b
(Chapter 6, Section 6.2.3, page 152), for the SS&L based recogniser
and the 'Sliding Window' recogniser respectively. In formulating Tables
6.2 and 6.4, cases for which p(a, b) IS less than 0.005 have been
ignored.



B.l 'Separate Segmentation & Labelling' Based Recogniser

Table B.1 gives data for na,b for the SS&L based recogniser.

Table B.1

190

Observed Class Actual Class

Ig/ /1/ Irl lrel lri/ Iii luI lSI IkJ I';}I

No. of errors 1 1 6 2 5 9 4 3 2

Observed Class Actual Class

Itl /1/ Iii lrel luI lri/ Inl

No. of errors 4 17 9 63 2 1

Observed Class Actual Class

IAI I';} I

No. of errors 1

Observed Class Actual Class

fbI Itl Irei lui

No. of errors 2 9 4

Observed Class Actual Class

Inl I';}I Iii luI let I Iwl Id/

No. of errors 6 30 27 7 2 8

Observed Class Actual Class

/kI Ibl IAI /t/ lrel ISrl

No. of errors 3 1 6 4 2

Observed Class Actual Class

luI N Inl IV Irl Iii /t/ IreI lri/ letl /kI Iwl I';}I

No. of errors 11 10 23 1 158 12 23 29 19 1 57 1

Observed Class Actual Class

/t/ Ibl Ig/ /kI IAI lsI IfI lrel ISrl lSI luI It! Id/

No. of errors 1 2 11 13 15 3 12 77 21 3 3 4

Observed Class Actual Class

Irl Iwl

No. of errors 9

Observed Class Actual Class

I';}I IAI Inl lrel PI Iwl

No. of errors 45 1 1 7 2

Observed Class Actual Class

/11 /1/

No. of errors

Observed Class Actual Class

lsI lsi

No. of errors



Table B.1 (contd.)

Observed Class Actual Class

Iwl Irl

No. of errors 1

Observed Class Actual Class

PI IAI
No. of errors 57

Observed Class Actual Class

lrel pI IAI Irl letl PI

No. of errors 5 3 2 2 1

Observed Class Actual Class

III III
No. of errors

Observed Class Actual Class

191 Ig/

No. of errors 1

Observed Class Actual Class

19r1 /tI

No. of errors 1

191

Observed Class Actual Class

Id/ Ig/ Inl pI Irl IAI lrel It/ lri/ 191 letl Iwl N

No. of errors 1 2 1 3 2 6 1 7 1 1 8 1

Observed Class Actual Class

let! letl

No. of errors

Observed Class Actual Class

lri/ Iii

No. of errors 3

Observed Class Actual Class

Iii Itl lui let!

No. of errors 2 26 2



192

B.2 'Sliding Window' Recogniser

Table B.2 gives data for na,b for the 'Sliding Window' based
recogmser.

Table B.2

Observed Class Actual Class

Ig/ 191 Idl

No. of errors 3 1

Observed Class Actual Class

III Ig/ iii luI lrel lri/

No. of errors 2 14 35 5 1

Observed Class Actual Class

In! I~I Iwl Irl luI Iii

No. of errors 3 27 4 21 7

Observed Class Actual Class

IAI I'JI

No. of errors 1

Observed Class Actual Class

Ibl N /tI lrel 19r1 lui /k/

No. of errors 15 48 17 4 46 4

Observed Class Actual Class

/k/ lui /tI Iii 19r1 191

No. of errors 3 4 3 7 1

Observed Class Actual Class

luI Inl IV Iwl Iii It/ lrel lril let! N Id/

No. of errors 4 5 17 65 5 9 16 1 56 3

Observed Class Actual Class

It/ Ig/ IAI /k/ Id/ lui lrel Iii 191 19r1 lri/ Itl

No. of errors 12 7 15 28 1 12 1 74 66 2 3

Observed Class Actual Class

Irl IAI Iwl

No. of errors 6 6

Observed Class Actual Class

I'JI IAI Iwl Irl let! /k/ PI

No. of errors 89 59 21 1 1 14

Observed Class Actual Class

N Iii lui /tI

No. of errors 23 10 1

Observed Class Actual Class

lsi lsi

No. of errors



Table B.2 (contd.)

Observed Class Actual Class

Iwl luI

No. of errors 2

Observed Class Actual Class

PI IAI

No. of errors 90

Observed Class Actual Class

lrel letl /';)/

No. of errors 2 1

Observed Class Actual Class

III III
No. of errors

Observed Class Actual Class

191 /g/

No. of errors 1

Observed Class Actual Class

lri/ N Iii luI N

No. of errors 3 14 22 2
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Observed Class Actual Class

Id/ fbI N Ig/ luI N pI Iwl IAI Irl iii /t/ lrel letl PI

No. of errors 8 15 3 24 15 53 90 101 27 13 32 32 16 2

Observed Class Actual Class

letl N Ig/ N pI lrel iii luI

No. of errors 2 3 3 2 5 1 6

Observed Class Actual Class

Iii Ig/ N Inl luI /t/ lrel let! /t/

No. of errors 1 1 6 55 2 1 6 4

Observed Class Actual Class

19r1 /t/

No. of errors 4
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