
M Q 4 - 9 1 7
4th NASA Symposium on VLSI Design 1992 ' ** ** A 7.1.1

A Mean Field Neural Network
for Hierarchical Module Placement

M. Kemal Unaltuna and Vijay Pitchumani
Department of Electrical and Computer Engineering

Syracuse University, Syracuse, NY 13244

Abstract - This paper proposes a mean field neural network for the two-dimensional
module placement problem. An efficient coding scheme with only 0(N log N) neu-
rons is employed where N is the number of modules. The neurons are evolved
in groups of N in log TV iteration steps such that the circuit is recursively parti-
tioned in alternating vertical and horizontal directions. In our simulations, the
network was able to find optimal solutions to all test problems with up to 128
modules.

1 Introduction

Since Hopfield and Tank published their seminal paper [6], Hopfieldrtype neural nets have
been used for solving many combinatorial optimization problems. One major problem with
such solutions is scaleability. With increasing problem size two things happen: first, the
network becomes so big that simulation times are excessively long; and second, finding good
parameters becomes increasingly hard that either the network converges to invalid solutions,
or the quality of the solutions is poor [14], [2].

Two-dimensional module placement is an NP-hard combinatorial optimization problem
which is very important in VLSI layout synthesis. In most of the previous attempts to
solve this problem with Hopfield-type networks, researchers have concentrated on small-sized
problems [8], [15], [7], [1], [4]. Unfortunately, most of the interesting placement problems in
VLSI are very large, with more than 20,000 modules in some cases.

To overcome the difficulty with scaleability, we propose a neural network with O(N log TV)
neurons (instead of O(N2) neurons used in most of the previous applications) which solves
the placement problem hierarchically, in a similar way to recursive min-cut bipartitioning
methods. According to a recent survey [11], min-cut based algorithms are still very popular
in solving large problems and the results obtained are second only to simulated annealing.

It has been independently shown [5], [9], [13] that the neuron update equations Hopfield
used can be interpreted as one way of solving the mean field equations which arise from
the mean field approximation to simulated annealing. We call our network a mean field
neural network, because we use the straightforward update method of solving the mean field
equations [9]. This kind of update is much faster than Hopfield's update, and generally
produces better solutions.

https://ntrs.nasa.gov/search.jsp?R=19940017247 2020-06-16T19:07:05+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7.1.2

2 Mean Field Neural Network for Hierarchical Place-
ment

2.1 Problem Formulation and Mapping

We start with an n x m array of slots and N = nm equal-sized modules. We also assume
two-point connectivities between the modules, given by the N x N connectivity matrix [c,-,-].
Thus, multi-pin nets have to be preprocessed and mapped to two-point connectivities. The
objective is to assign the modules to slots such that the estimated wiring length is minimized
and the resulting placement is routable.

In [5], Fox and Furmanski formulated the load balancing problem on hypercubes in terms
of optimal partitioning of a computational graph into subgraphs, and solved it using a neural
network. Here, we modify and expand their ideas to the problem at hand.

Let the two-tuple (rp, sp) represent the position of the slot to which module p is assigned.
The row number rp, and the column number sp are e = logn and d = logm bit binary
numbers, respectively, and are given by

r" = £>P2''
«=o
d-l

«=o

Bits rp and sp are mapped to neural variables j/f and zp such that t/f = 2rp — 1 and xp =
2sp — 1. Thus, yf (zp) represents the iih bit of the row number (column number) of p's
slot. All neural variables can have continuous values between ±1. The neural variables
will be evolved in groups of N in log N steps. First, x,°d-nx]i-\i • • -ix$~i representing the
highest bits of the column numbers of the modules are evolved. After this step, the circuit is
effectively bipartitioned in the vertical direction. Next, j/g-i> J/l-n • • • > J/e^i1 representing the
highest bits of the row numbers of the modules are evolved. This means bipartitioning the
circuit in the horizontal direction. After this, we return to the vertical direction and evolve
variables z°_2, zj_2, • • • , ̂ -2- This way, the recursive bipartitioning of the circuit continues
in alternating vertical and horizontal directions until all neural variables are evolved.

2.2 Bipartitioning Neural Network

For the first vertical bipartitioning step we will use the following energy function:

The first term has its minimum when the sum of the connections between modules in separate
partitions is minimized, and the second term is minimized when the partitions are balanced.
The mean field equations can be derived from (1) as

«5_, = tanhf%) (2)

4th NASA Symposium on VLSI Design 1992 7.1.3

y-partitio:

Figure 1: The situation after two vertical and two horizontal partitioning steps. The circuit
is currently bipartitioned for the third time in the vertical direction. The arrows indicate
attractive forces acting on module p.

(3)

The first term in equation (3) is an attractive force where each module q connected to p
tries to bring p to its side of the partition, and the second term tries to keep the partitions
balanced.

2.3 Placement by Recursive Bipartitioning
In order to extend equations (2) and (3) to subsequent horizontal and vertical bipartition-
ing steps, it is not sufficient to consider only internal connections. We have to consider
connections to modules in other partitions (at a higher level) as well.

Figure 1 shows the situation after two vertical and two horizontal bipartitioning steps
when the resulting partitions are being partitioned for the third time in the vertical direction.
At this stage, the modules can be grouped in the following way according to their locations
relative to module p, prior to the current partitioning process:

1. Modules in the same x- and y-partition as p,

2. Modules in the same x-partition as p but not in the same y-partition,

3. Modules not in the same x-partition as p.

The balance force in the update equation for Xj_3 should cover modules in the first group
only. For the attractive forces, we need to consider two cases:

7.1.4

• Attractive forces from modules in the third group. Such a module q is in an x-partition
either to the left or to the right of p and should bias p accordingly. However, the location
of q with respect to the current bipartitioning process is irrelevant.

• Attractive forces from modules in the first or second group. Since such a module q
is in the same x-partition as p, its location with respect to the current bipartitioning
process should influence Xj_3.

To incorporate these different forces in the update equations, we need to make some
definitions. We define X^ to be one if modules p and q are in the same x-partition after
d — i — 1 vertical partitioning steps, and zero otherwise. In terms of neural variables this can
be expressed as

Similarly, Y£q is defined to be one if modules p and q are in the same y-partition after e—j — l
horizontal partitioning steps, and zero otherwise:

(i + yfyfij (5)

Now consider the generalized situation where we have evolved neural variables xp
k and yj",

for all k > i, / > j, and for all p. This means that the problem has been partitioned d — i — I
times in the vertical direction and e—j — l times in the horizontal direction. Suppose we
are evolving variables X?, i.e. we are at the (d — i)th vertical partitioning step. With the help
of the above definitions for X^q, and Y£L, we propose the following update equations for x?:

(6)

(7)

where
d-i

Of =
d-\

x> 0;
sign(x] = { -1, x < 0;

otherwise

and A, #, (7, D are constants.
The first term in equation (7) represents the attractive force from modules q with X* = 1,

i.e., from modules in the same x-partition as p. The second term is the balance force. This

4th NASA Symposium on VLSI Design 1992 7.1.5

term covers modules q for which X*pqYjq = 1, i.e., modules in the same x- and y-partition as
P-

The third term represents the attractive force from modules outside the x-partition of p.
Here, Qf and Pf uniquely code the x-partitions of q and p, respectively. If module q is in an
x-partition to the left (right) of p, then sign(Q* — P?} will be -1 (+1) and the force exerted
on p by q will be proportional to — Cp, (+Cp9) which has the effect of bringing p closer to q.
Note also that the definition of the sign function above ensures that the effect of modules
in the same x-partition as p will be zero.

Finally, the fourth term in equation (7) is a computationally inexpensive way to add
random noise to the neuron input uf, suggested by Fox and Furmanski in [5]. Such a term
with the wrong sign tries to flip the neuron currently being updated. The effect is negligible
if the neuron output has already converged to its final value, whereas it helps the network
to climb out of local minima in the early stages.

2.4 Corresponding Energy Functions
Since update equation (7) was not developed from an energy function, it is not clear if
the network possesses the convergence and energy minimizing properties of Hopfield-type
networks. However, a corresponding energy function can be derived from equations (6) and
(7).

Let Tpq denote the connection weight between neurons (i,p) and (i,q), and /£ denote the
bias term for neuron (t,p). The update equation for a neuron input in a mean field neural
net in terms of Tpq and /£ is

«? = E ?>? + /;, (8)
g^p

and the corresponding energy function for a symmetric weight matrix is given by

* (9)
By equating equations (7) and (8) (disregarding the noise term) we get for our network

) (10)

(11)
9^P

Since [T^] is symmetric, an energy function corresponding to equations (6) and (7) is

-cEE <*«*»(<?* -W (12)
Note that energy function (12) is very similar to the bipartitioning energy function (1),

except for the last term which is the sum of the individual bias terms (11). Actually, EXi

7.1.6

Figure 2: The 128-module example solved

Figure 3: This 64-module test problem is the largest one in the literature, to our knowledge,
solved by a Hopfield type neural network. The neural network of Sriram and Kang was able
to find a solution with a cost of 182, whereas the optimal solution shown has a cost of 168.
This solution was easily found by our network.

consists of 2ci~'~1 individual (and independent) energy functions, one for each x-partition.
If we limit p and q to a specific x-partition, say XPo, then the energy function for XPo is
given by

'p,~.~t

-c (13)

Our simulations show that the network indeed converges to local minima of the energy
functions given in (13).

3 Simulation Results

The above described neural network algorithm was implemented in C on SUN4 SPARCsta-
tions and was tested on several hand-constructed examples with known optimal solutions

4th NASA Symposium on VLSI Design 1992 7.1.7

with up to 128 modules. In all cases, optimal solutions were found. Figure 2 shows the
128-module test problem.

We also tested the algorithm on the biggest example in the literature to our knowledge,
solved with a Hopfield type neural network. This 64-module example, shown in Figure 3, is
taken from [12], where the optimal solution couldn't be found. Our hierarchical algorithm
needed log 64 = 6 recursive partitioning steps to solve this problem. The number of iterations
it took to converge at each step are: 12, 12, 24, 11, 40, and 30, respectively, where in one
iteration we update all participating neurons exactly once (asynchronously). The optimal
solution shown in the figure was easily obtained. The whole process took less than 10 CPU
seconds.

In the simulations, we used a straightforward implementation of equation (7). This is
not a very efficient way of implementing the algorithm on serial computers. The simulation
algorithm can be speeded up considerably if we consider the following:

• X^Yjq, and Qf are independent of the states of the neurons at the current level.
They can be calculated before the (d — i)th vertical partitioning step. Thus, they can
be treated as constants in equation (7).

• The connection matrix [cij] can be stored as an array of linked lists where the ith list
consists of modules connected to module i. Thus, the first and third sums in equation
(7) cover only modules q connected to p, instead of all q. This will achieve substantial
speedup since the connection matrix is usually very sparse.

• The sum for the balance force stays constant from one update to the next, except for
the term involving the last updated neuron. Thus, only the change in the balance force
due to the change in the output of this neuron has to be calculated from one update
to the next, which can be done in constant time.

These speedup techniques were incorporated in the first vertical bipartitioning step and a
more than 10-fold speedup was observed. They will be implemented fully in the future
versions of the algorithm.

4 Discussion and Conclusion

In this paper, we proposed a 0(N log N) mean field neural network for the module placement
problem. The problem is solved in a divide-and-conquer fashion by recursive bipartitioning
where at each bipartitioning step exactly N neurons are evolved. The neural algorithm is
similar to min-cut methods, yet maintains a level of globality, since all participating neurons
evolve simultaneously.

The performance of the algorithm in our simulations has been very encouraging and
merits further investigation. With the speedup techniques discussed in the previous section
implemented, we can expect that the algorithm will take less than one CPU second to solve
the 64-module problem shown in Figure 3 on a SUN4 SPARCstation. Since the speeded up
version of the algorithm will be very fast, we will tackle larger and more realistic placement
problems, including benchmark circuits.

7.1.8

The algorithm can be extended to popular layout styles like standard cell and sea-of-gates
by integrating the area constraints. For example, the balance term in the update equation
(7) can be modified to

(14)

such that the bisection process produces partitions of approximately equal area.
One very important aspect of the algorithm is finding good parameters, and a good

simulation temperature for each bipartitioning step. It is well known that mean field nets
posses a critical temperature, Tc, [10], [5], [13], [4], where the bulk of the optimization occurs.
Estimating Tc, and annealing the network around it not only shortens the running times,
but also improves the solutions. In our simulations so far, we used a single temperature
and empirically determined parameters. Future research will include the estimation of the
parameters, the critical temperature, and the use of annealing.

Acknowledgement
We would like to thank Dr. G. C. Fox and Dr. W. Furmanski for useful discussions.

References

[1] H. Date, M. Seki, and T. Hayashi, "LSI module placement methods using neural com-
putation networks" , Proceedings of the IEEE International Joint Conference on Neural
Networks, Vol. Ill, pp. 831-836, Jun. 1990.

[2] Gerald W. Davis, Jr., "Sensitivity analysis in neural net solutions", IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 1078-1082, 1989.

[3] A. E. Dunlop and B. W. Kernighan, "A procedure for placement for standard cell VLSI
circuits", IEEE Transactions on Computer Aided Design CAD-4, Vol. 1, pp. 92-98,
1985.

[4] L. Fang, W. H. Wilson, and T. Li, "Mean field annealing neural net for quadratic
assignment", International Neural Networks Conference, INNC 90 Paris, pp. 282-286,
1990.

[5] G. C. Fox and W. Furmanski, "Load balancing loosely synchronous problems with a
neural net work", Caltech Concurrent Computation Project, Report No. C3P-363b, 1988.

[6] J. J. Hopfield and D. W. Tank, "Neural computation of decisions in optimization prob-
lems", Biological Cybernetics, Vol. 52, pp. 141-152, 1985.

[7] J. Naft, "NEUROPT: Neurocomputing for multiobjective design optimization for
printed circuit board component placement", Proceedings of the IEEE International
Joint Conference on Neural Networks, Vol. I, pp. 503-506, 1989.

[8] G. Persky, "Experiments in cell placement with a simulated network", Proceedings of
International Workshop on Placement and Routing, Research Triangle Park, North Car-
olina, May 10-13, 1987.

4th NASA Symposium on VLSI Design 1992 7.1.9

[9] C. Peterson, J. Anderson, "Neural networks and NP-complete optimization problems",
Complex Systems, Vol. 2, pp. 59-89, 1988.

[10] C. Peterson, B. Soederberg, "A new method for mapping optimization problems onto
neural networks", International Journal of Neural Systems, Vol. 1, No. 1, pp. 3-22, 1989.

[11] K. Shahookar and P. Mazumder, "VLSI Cell Placement Techniques", ACM Computing
Surveys, Vol. 23, No.2, 1991.

[12] M. Sriram and S. M. Rang, "A modified Hopfield network for the two-dimensional
module placement", IEEE International Symposium on Circuits and Systems, pp. 1664-
1667, 1990.

[13] D. E. Van den Bout and T. K. Miller, "Graph partitioning using annealed neural net-
works", IEEE Transactions on Neural Networks, Vol. 1, No. 2, 1990.

[14] G. V. Wilson and G. S. Pawley, "On the stability of the traveling salesman problem of
Hopfield and Tank", Biological Cybernetics, Vol. 58, pp. 63-70, 1988.

[15] M. L. Yu, "A study of the applicability of Hopfield decision neural nets to VLSI CAD",
26th ACM/IEEE Design Automation Conference, pp. 412-417, 1989.

