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Chapter 1 

PART 'A' 

DIGITAL RECEIVERS 

Introduction 

In a data receiver, timing must be synchronized to the symbols of the incoming data 

signal. In analog modems, synchronization can be performed by two ways. It can be 

perfonned by a feedback loop that adjusts the phase of a local clock, or by a feedforward 

arrangement that regenerates a timing wave from the incoming signal. The local clock or 

the timing wave is used to sample or strobe the filtered output, of the modem, once per 

symbol interval, message data are then recovered from the strobes. 

Using digital techniques to implement modems introduces sampling of the signal. In 

some occasions, the sampling can be synchronized to the symbol rate of the incoming 

signal (synchronously sampled modems). In this case, timing can be recovered in the 

same ways that are familiar from analog practice. 

In other occasions, the sampling cannot be synchron~sed to the incoming signal. The 

sampling ef the received signal is perfonned by a fixed sampling clock and thus sampling 

is not synchronized to the incoming symbols. The sampling clock must remain 

independent of the symbol timing. In that case, timing adjustment must be done by digital 

methods after sampling. This can be done by calculating the value of the signal at the 

desired time instants by interpolation. Interpolation is used to interpolate among the 

nonsynchronized samples so as to produce the correct and the same strobe values at the 

modem output as if the original sampling bad been syochronized to the symbols. In other 

words the value of the received continuous-time signal is approximated at the desired 

time instant by interpolation. The error resulting from this approximativn is considered as 
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additive notsc which degrades the quality of the overall communication system and 

should be limited to sufficiently low level. 

Interpolation is a timing adjustment operation on the signal itself and not on the local 

clock or the timing wave. Thus interpolation is different from timing adjustment in analog 

modems. Although the process of timing adjustment includes much more than 

interpolation alone and rate conversion is a more accurate label, interpolation is used to 

denote all of the processes that are involved in timing adjustment. 

Page 2 



Chapter 2 

The Model 

Figure 2-1 shows a block diagram of the feedback timing recovery as in [I] Floyd M. 

Gardner (Mar. 1993 p. 502). The received signal x(t) is a time-continuous PAM signal in 

which the symbol pulses are uniformly spaced at intervals T. The received signal x(l) is 

assumed to be real for simplicity, but this assumption can be easily removed without any 

difficulty. It is also assumed to be bandlimited and thus can be sampled at a rate of liT, 

without aliasing. If x(t) is not adequately bandlimited then distortion is introduced by 

aliasing causing a performance penalty. Samples x(mT.1) = x(m) are taken at uniform 

intervals T.f· Since the symbol timing is derived from source, which is independent of the 

sampling clock, then the ratio Tfl'..1 is typically irrational. This is true in most practical 

situations. The signal samples are applied to the interpolator and interpolants, y(kT;) ;;; 

y(k) are computed at intervals T1• 

SAMPLE 
SIGNAL IN 

"" 
SIGNAL OUT 

INTER PO LA TOR DATA ~ X(t) x(mT,) y(kT1) FILTER 

TIMING 
ERROR 

FIXED CLOCK DETECTOR 

,...., 
LOOP 

CONTROLLER FILTER 

Figure 2-1 Elements of digital timing recovery. 

The data filter employs the interpolants to compute the strobes that are used for data and 

timing recovery. Its placement is not essential. It could be after the interpolator or it could 

be outside the feedback loop prior to the interpolator. Placing it inside the loop, 

introduces delay, while with post placement, the data filter can decimate its output to the 
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required strobe rate saving on computing burden. Post placement is not really necessary 

since quite modest sampling rates provide excellent resulls even with very simple 

intcrpolutors. 

The feedback loop elements contribute to the synchronization process. The timing error 

detector measures the timing error, which is then filtered in the loop filter. The output of 

the loop tilter drives the controller from which the interpolator obtains instructions for its 

computations. 
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Chapter 3 

Interpolation 

The task of the interpolator is to compute intermediate values between signal samples. 

Figure 3- t is a fictitious hybrid analog/digital method of rate conversion as shown in [I] 

Gardner (1993 p. 503). 

Signal Analog 
Samples Impulses 

.I DAC I 
x{mTs) 

Time 
Conti 

FillcrMtJ 

Analog 
Interpolated 

Signals .J "'aL_ I lntcrpolants 

y{t) yCkTi) 

Resample at 
t=kTi 

Figure 3·1 Rate conversion with time·continuous filter. 

The samples are converted to a sequence of weighted analog impulses. These impulses 

are then applied to a time-continuous analog filter with impulse response h,(t). An ideal 

linear interpolator filter, according to [4] Meyr el at, (1998 p. 238) has an impulse 

response: 

(3-1) 

and frequency response 

(3-2) 

where Ht(ro, t) is the Fourier transform of si[7tfl', (t + t)]: 
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{

T,cxp(jwr) 
H;(w,r) = 

0 

The time continuous output. of the filter as in [I J is: 

y(t) = 'L,x(m)lu(t -mT.). 

" -<-
211' 21:~ 

elsewhere 

(3-3) 

(3-4) 

In that case y(t) * x(t) and there is no need to recover the original signal by this type of 

interpolation. Then y(t) is resampled at time instants t = kTi. Ti is synchronised with the 

signal symbols and in general T/fs is irrational since the sampling and symbol rates are 

incommensurate. The interpolants (new samples) are represented according to [I] 

Gardner (1993 p. 503) by: 

y(kTi) = 'L,x(mT,)hi(kT; -mT,). (3-5) 

From equation (3-5), the interpolants can be computed by the knowledge of: 

• the input sequence { x(m)) 

• the impulse response h1(t) of the interpolating filter 

• and the time instants mTs and kT; of the input and output samples. 

The digitally computed interpolants have identically the same values as if the analog 

operations had been performed. 

The indexing in equation (3-5) above can be rearranged to obtain a more useful format by 

defining new parameters as follows: 

Filter index (i): 

i = int[kTifl"s]- m (3-6) 
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Basepoilll index ( m,.): 

,, = int[kT,(f,j (3-7) 

Fractional imervtll (piJ: 

(3-8) 

The relation between these parameters is shown in Figure 3-2. 

Input Sample Times r-- Interpolant 

---~-~--~--,_ _ _L ___ L_r-------Time 

(k-1)1; (k+I)T; 

Outpu ample Ti s 
Basepoint Fractional 

Index Interval 

Figure 3·2 Sample time relations. 

Equation (3-5) above can be rewritten as: 

y(kT;) = y[(m, + p,) T,j 

12 

y(kT;) = LX/(m•- i)T,]ht/(i + 1-U)T,]. (3-9) 
i=ll 

Equation (3-9) is the foundation of digital interpolation in modems. The sequence of 

signal samples {x(m)}are taken at intervals T, and hJ(t) is the finite-duration impulse 

response of a fictitious, time-continuous, analog interpolating filter. lnterpolants y(k) are 
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delivered ut adjustable intervals Ti· The Jihcr index I= l1to 12,the buscpoint index mk 

identilics the I= 12 - 11 + I signul samples to be used for the kth interpolant .and the 

Fractional interval Ilk identilics the I filter coefficients to be employed for the kth 

interpolant. 

When Ti is incommensurate with Ts. the fractional interval J.lk is irrational and thus wi!I 

change for each interpolant, taking on an infinite number or values which never repeat 

exactly if f.lk is detennined to infinite precision. On the other hand, if Ti is assumed to be 

very close toT, (sampling in almost synchronized), then f.Jk changes very slowly and if 

quantized it might remain constant over many interpolants. And when T s were 

commensurate with Ti but not equal, then Jlk would cyclicly repeat a finite set of values. 

3.1.3 Methods oflnterpolation 

An important task is to approximate a complicated function fix) by another function a(x) 

which is simpler. One way of solving this problem is by interpolating/ at discrete values. 

A function fin one or more variables can be given is by table as follows: 

Yo Ym 
Xo fo.o fo,m 

1n order to obtain the intennediate values off, which are not tabulated, interpolation 

between neighbouring values of the table is required. 
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3.1.1 Interpolating Polynomials 

Figure 3-3 illustrates the interpolation problem geometrically in one variable. If N + I 

distinct points are given with the coordinates (x;, [;),a curve p(x) that pa"iscs through these 

points <md can evaluate the curve for any argument x is to be found. The X; arc called 

abscissue. the Ji are called the interpolation ordinates and the points (xit f;J arc the 

interpolation points. 

f,, I 

x, 

it 
i 

X 

Figure 3~3 Interpolating polynomials. 

p(x) 

x, 

This concept can be summarised in the following theorem as in [6] (Boehm & Prautzsch 

p. 89): 

Theorem 1: If Xa, ... ,xn are 11 + 1 distinct argumems with corresponding ordinates 

J0 , ... J1, then there exists a unique polynomial pol(x) of degree at most n 

with the property that: 

pol(x,) = f;, i = 0, ... ,11. 

3.1.2 Lagrange Polynomials 

Lagrange polynomial is the unique polynomial of degree n passing through N + I points. 

This polynomial interpolant can be thought of as an approximation of some other 

function passing through these N + 1 points. Therefore, the more data points are used, the 

better the approximation to the original function should be. Unfortunately, this is not the 
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case. Increasing the number of points simply increao;es the degree of polynomial since the 

degree of the Lagrange polynomial is one less than the number of data points. This results 

in increasing the amount of computations required. Also with higher degree polynomials, 

it can oscillate between the points. Therefore, polynomials of lesser degree passing 

through several consecutive points can be combined. The only problem with this is that 

the overall curve is not smooth at the joints. But smoothness conditions at the data points 

can be applied and thus obtaining a polynomial having these properties. This process of 

obtaining a smooth curve especially at the joints is called "Blending". 

Lagrange classical formula is: 

P( ) 
(x-xz)(x-xJ) ... (x-x,) (X-Xl)(x-x,) ... (x-x.) 

x= y1+ y2+ 
(XI- .n)(x1- X3) ... (Xl- Xo) (xz- Xl)(xz- X3) ... (xz- Xo) 

(x- Xl)(x- X2) ... (x- X• -1) 
... + ~ 

(Xn- Xl)(Xn- X2) ... (Xn- Xn -l) 
(3-10) 

There are N terms, a polynomial of degree N- I and constructed to be zero for all of the 

x1, except one which is constructed to be y;. The resulting algorithm gives no error 

estimate and is also awkward to program. A much better algorithm is derived using a 

blending function and the above equation can be rewritten as: 

" y(t) = L C1x(!J +h-i) (3 -II) 
i=/1 

where the blending function C; is: 

h t-(j 
c= II-

i=ll,j~/ t;- (j 
(3 -12) 

There must be an even number N of samples in the basepoint set. Interpolation is 

performed in the central interval of the basepoint set. Thus the interpolating polynomial 

must be of odd degree N -1. So for cubic interpolation, the number of points required is 

four. 
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3.1.3 Cubic Splines 

A cubic spline has the property that the three coordinate functions, x(u). y(u) and z(u), arc 

each cubic polynomials in the variable u: 

0:$;u:::;J (3-13) 

The domain of H is finite and is assumed that 0 :::; u :::; 1. If we haveN + 1 control points, 

then we have N curve sections between those control points, defined by the above 

equations. For each of these three equations, the values of the four coefficients a, b, c and 

d should be determined. 

A spline passes through two points and satisfies a differentiability condition at each of 

these endpoints. So there are four conditions that require a polynomial degree of at least 

3. That is why cubic splines are so popular. N cubic splines are blended together if N+ I 

data points are given. Equal derivatives at the end points of each spline ensure 

smoothness at the joints. 

p 
Po k+t 

p, 
p, ... 

Figure 3-4 A piecewise continuous cubic-spline interpolation of n + 1 control points. 

Compared to higher-order polynomials, cubic splines require less calculations and 

memory and are more stable. Compared to lower-order polynomials, they are more 

flexible for modeling arbitrary curve shapes. 
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There o1re different types of cubic splines, some of them arc summarised in the following 

sections. 

3.1.3.1 Natural Cubic Splines 

A natural cubic spline is formulated by requiring that two adjacent curve sections have 

the same first and second parametric derivatives at their common boundary. 

For 11 + 1 control points to fit as in Figure 3-4, there are n curve sections with a total of 4n 

polynomial coefficients to be calculated. 

The problem with the natural cubic spline is that if the position of any control point is 

altered, the entire curve is affected. So the major disadvantage is that it allows for no 

"local control", so that we cannot restructure part of the curve without specifying an 

entirely new set of control points. 

3.1.3.2 Hermite Interpolation 

A Hermite spline as an interpolating piecewise cubic polynomial with a specified tangent 

at each control point. Unlike the natural cubic splines, Hermite splines can be adjusted 

locally because each curve section is only dependent on its endpoint constraints. The 

boundary conditions that define the Hermite curve section, between control points Pk and 

Pk+l represented by a parametric cubic point function P(u) are: 

P(O) = p, 
P(l) = Pk+l 
P'(O) =Dp, 
P'(l) = Dp,., (3-14) 

where Dp, and Dpk+J specify the values for the parametric derivatives at control points Pk 

and Pk+l• respectively. 
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The Hermite curve section can be expressed according to equation 3-13, in matrix form 

as: 

' ' P(u) = [u· u· u I]. 
a 
b 
c 
d 

and the derivative of the point function can be expressed a'i: 

a 
P'(u) = [3u2 2u I 0] . b 

c 
d 

(3- I 5) 

(3- I 6) 

Substituting endpoint values 0 and I for parameter u into equations 3-15 and 3-!6, the 

Hermit boundary conditions 3-14 can be expressed in matrix form as: 

pk 0 0 0 I a 
pk+l I I I I b 
Dpk 0 0 I 0 c (3-17) 
Dpk+l 3 2 I 0 d 

Equation 3-17 can be solved for the polynomial coefficients as: 

a 0 0 0 I -I pk 
b I I I I pk+l 
c = 0 0 I 0 Dpk 
d 3 2 I 0 Dpk+l 

2 -2 I I pk 
-3 3 -2 -I pk+l 

= 0 0 I 0 Dpk (3-18) 
I 0 0 0 Dpk+l 

pk 
pk+l 

= MH. Dpk 
Dpk+l 
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where MH, the Hermite matrix, is the inverse of the boundary matrix. So equation 3-15 can be rewritten in terms of the boundary conditions as: 
[ pk J Pk+1 P(u) = [u3 u2 u 1] . MH . Dpk DPk+ I 

(3-19) 
By expanding equation 3-19 amd collecting coefficients for the boundary constraints, expressions for the Hermite blending functions can be determined. The following polynomial is then obtained as in [5] Hearne & Bal<:er (1997): 

P(u) = Pk(2u3 
- 3u2 

+ 1) + Pk+1(-2u3 
+ 3u2

) + Dpk(u3 
- 2u2 

+ u) + DPk+1Cu3 
- u2

) 

(3-20) 
where Hk(u) for k = 0, 1, 2, 3 are the blending functions that blend the boundary constraint values to obtain each coordinate position along the curve. 
The disadvantages of Hermite cubic splines are: • It is often created in an interactive environment and the user has no idea as to the value at the joints of the three derivatives x'(t), y'(t) and z'(t), unlike Bezier curves which allow the user to describe these smoothness conditions easily. • Hermite polynomials suffer from one major defect where the values of the coefficients depend on having derivative information at the endpoints. In most applications, data are given as values at control points rather than as derivatives. 
Cardinal splines and Kochanek-Bartels splines are variations on the Hermite splines that do not require input values for curve derivatives at the control points. 
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3.1.4 BEZIER POLYNOMIALS: 

Bezier curves were developed by a French engineer called Pierre Bezier while working for the Renault automobile company in France. They have the properties that make them highly useful and convenient for curve and surface design. They are also very easy to implement. The same as with cubic splines, Bezier curves are blended at the joints. 
A Bezier curve can be fitted to any number of control points. The degree of the Bezier polynomial is determined by the number of control points, as well as their relative position. As with cubic splines, the Bezier curve can be specified with boundary conditions, with a characterizing matrix, or with blending functions. 
The position vector P(u), that is produced by blending n + 1 control points is: 

P(u)= LPk BEZk,n(u), 
k=O 

where the blending functions BEZk,n (u) are the Brenstein polynomials: 

and the C(n,k) are the binomial coefficients: 
C(n k) = n! 

' 
k!(n-k)! 

(3- 21) 

(3- 22) 

(3- 23) 
Bezier blending functions can be defined equivalently with the recursive calculations as: 

BEZk .n (u) = (1-u) BEZ k .n-i (u) + uBEZk -I,n-i (u), n > k �1 (3- 24) 
with: and BEZo,k = (1 - uf. 
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Many graphics packages provide only cubic spline functions, which gives reasonable 

design flexibility while avoiding the increased calculations needed with higher-order 

polynomials. Cubic Bezier curves, are generated with four control points. The curve 

passes only through the first and fourth data points, while the two intermediate points are 

used to define the slope of the curve at the endpoints. Substituting n = 3 in equation (3-

22), we obtain the four blending functions for the cubic Bezier curves as: 

BEZo,3 (u) = (1 - u/ 
BEZ1,3 (u) = Ju(] - u)2 

BEZ2,3 (u) = 3u2(1 - u) 
BEZJ,3 ( u) = u3 

(3-25) 

The polynomial expressions for the blending functions can be expanded and the cubic 

Bezier point function can be written according to [5] Heam et. al (1997) as: 

Po 

P(u) = 
[u3 u 2 u 1]. M Bez • P, 

P2 

where the Bezier matrix MBez, is: 

-1 3 -3 1 

3 -6 3 0 
MBez = 

-3 3 0 0 

1 0 0 0 

p3 

(3-26) 

(3-27) 

The advantage of Bezier splines over Cubic splines is that the direction of the curve (the 

derivatives) at the joints can be defined and changed simply by specifying the second 

(initial slope) and third (final slope) data points. They are widely used because they are 

easy to implement and stable. One disadvantage of Bezier curves is that they do not allow 

for local control, changing a control point not only affects the shape of the curve near that 
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point, but it affects the entire span of the curve. B-spline curves have this local shape 

property. 

3.1.5 B-spline Curves 

B-spline curves are the most widely used class of approximating splines. Given n + 1 

control points of an input set Pk, the calculation of coordinate positions along a B-spline 

curve in a blending-function formulation can be expressed according to [5] Hearn et. al 

(1997) as: 

P(u) = LPk Bk.d (u), 2:s;d:s;n+l (3-28) 
k=O 

where Bk.dare polynomial blending functions of degreed - J, where dis any integer value 

between 2 and n + 1. If d is set to 1, then the curve is just a point plot of control points. 

Blending functions for B-spline curves are defined by Cox-deBoor recursion formulas as 

in [5] Hearn et. al (1997) as: 

{1
, 

Bk.1 (u) = 0, 
if Uk :s; U < Uk+I 

otherwise (3-29a) 

(3-29b) 

where each blending function is defined over d subintervals of the total range of u, and it 

is assumed that any terms evaluated as 0/0 are to be assigned the value of 0. 

Properties of B-spline curves are: 

1) The polynomial curve has a degreed - 1 and C d·
2 continuity over the range of u. 

2)  If we have n + 1 control points, the curve is then described with n + 1 blending 

functions. 
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3) Each blending function Bk,d is defined over d subintervals of the total range of u, 

starting at knot value uk. 

4) The range of parameter u is divided into n + d subintervals by the n + d + 1 

values specified in the knot vector. 

5) With knot values labeled {u0, u1, ••• ,Un+dl. the resulting B-spline curve is defined 

only in the interval from knot value UJ.J up to knot value Un+I· 

6) Each section of the spline curve is influenced by d control points. 

7) Any one control point can affect the shape of at most d curve sections. 

8) Changes to a conrtol point only affects the curve in that locality. 

9) Any number of points can be added without increasing the degree of polynomial. 

10) As with Bezier curves, adding multiple points at or near a single position draws 

the curve towards that position. 

11) Closed curves can be created, by making the first and last points the same, though 

continuity will not be maintained automatically. 

B-splines are generally described according to the selected knot-vector class: uni form, 

open uni form and nonuni form. 

3.1.5.1 Uniform, Periodic B-splines: 

A uni form B-spline curve results when the spacing between knot values is constant. 

Uni form B-splines have periodic blending functions. All blending functions are the same 

and each successive blending function is a shifted version of the previous function as in 

[5] Hearn et. al (1997): 

Bk,d (u) = Bk+t,d (u + l}.u) = Bk+Z,d (u + 2 l}.u) (3- 30) 

where l}.u is the interval between adjacent knot values. 
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Given d = n = 3, the knot vector must contain n + d + 1 = 7 knot values: 
{O, 1, 2, 3, 4, 5, 6} 

and the range of parameter u is from O to 6, with n + d = 6 subintervals. Often knot values are normalized to the range between O and 1 as: 
{ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. 

There are n + 1 = 4 blending functions, each spanning d = 3 subintervals in the range of 
u. 

3.1.5.2 Open Uniform B-splines: 

Open uniform B-splines are cross between uniform and nonuniform B-splines, in which the knot spacing is uniform except at the ends where the knot values are repeated d times, examples are: 
{ 0, 0, 1, 2, 3, 3}, { 0, 0, 0, 0, 1, 2, 2, 2, 2}, for d = 2 and n = 3 for d = 4 and n = 4. 

These knot vectors can also be noramalized to the unit interval from O to 1. An open uniform knot vector with integer values can be calculated for any values of d and n, according to [5] Heam et. al (1997) as: 

{
O, 

u
j 

= j-d + 1, n-d + 2, 
where j ranges from O to n + d. 

forO � j < d ford� j � n for j > n 
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Open uniform B-splines are very similar to Bezier splines. When d = n + 1 ( degree of polynamial is n ), open B-spline reduce to Bezier splines, with all knot values are either 0 or 1. For example, with a cubic open B-spline, where d = 4 and four control points, the knot vector is: 
{O, 0, 0, 0, 1, 1, 1, 1} 

Figure 3-5 is a C program that prompts the user for the number of control points and the degree of polynomial. It then prompts for the x-coordinates of the control points and calculates the corresponding sine values. It then generates an open uniform knot vector with integer values using (3-31) and calculates the coordinate positions along a B-spline curve in a blending-function formulation. 
The open B-spline curve passes through the first and last control points. The slope of the parametric curves at the first control point is parallel to the line connecting the first two control points, and the parametric slope at the last control point is parallel to the line connecting the last two control points. These geometric constraints for matching curve sections are the same as for Bezier curves. 

I* 

A general expression for the calculation of coordinate positions 
along a B-spline curve ( open uniform) in a blending function formulation. 
Here k is the knot number, vector is the knot vector, degree of d-1,n+l 
control points and u is the value at which the function is evaluated. 

*I 

#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include <float.h> 

float P; 
float b, blend(), div(); 

#define SIZE_ 12 

typedef float vector _type[SJZE]; 

vector _type knot_x, knot_y; 
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float blend ( int k, int d, float u, float *knot_x); 

main() 
{ 

int i, k, d, degree, n, points_num; 
float u; 
printf(''\ri\n Enter number of control points: "); 
scanf("o/od", &(points_num)); 
n = points_num - I; 
printf(" Enter degree of polynomial: "); 
scanf("o/od", & degree); 
d = degree + I; 
printf(''\ri"); 

for (k=O, i=O; k<=n+d; k++, i++) 
{ 

if (k < d-1) 
knot_x{k] = O; 

else if (k <= n+d-1) 
{ 

} 

printf('' Enter x coordinate of control point number o/od: ", (k+2-d)); 
scanf("%f', &(knot_x{k] )); 

else 
knot_x{k] = knot_x{k-1 ]; 

} 

print!( ''\Ji"); 

for(k=O, i=O; k<=n+d, i<=n; k++) 
{ 

if (knot_x{k] != 0) 
{ 

knot_y{i] = sin (knot_x[k]); 
i++; 

} 

} 
print!(" The knots are: \n"); 
for (k=O ; k <= n+d; k++) 

printf (" %fe", knot_x[k]); 
print!( ''\ri\n The y coordinates are : \n "); 

for(i=O; i<=n; i++) 
print!(" %fe", knot_y[i]); 

while (u!= 0) 
{ 

printf( ''\ri\n Enter a value for u between %f and %f :\J ", 
knot_x[d-1], knot_x[n+d-1]); 

scanf("%f', & u); 

p = O; 
for(k=O; k<=n; k++) 

P = P + knot_y[k] * blend (k, d, u, knot_x); 
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} 
} 

I* 

This function is to calculate the blending functions for B-spline 
curves, defined by the Cox-deBoor recursion formulas. 

*I 

float blend (int k, int d, float u, float *knot_x) 
{ 

float div (float a, float b ); 
if(d==J) 

else 

{ 
if (knot_x[k] <= u && u < knot_x[k+l]) 

return ((float) I); 
else 

return ((float) 0); 
} 

return ((float) div ((u-knot_x[k])*blend(k, d-1, u, knot_x), 
(knot_x[k+d-1 ]-knot_x[k] )) 

+ div (( knot_x[k+d]-u)*blend(k+l, d-1, u, knot_x), 
(knot_x[k+d]-knot_x[k+ I]))); 

} 

I* 

This function is to assign a value of O to any blending function 
in case we get 0/0. 

*I 

float div ( float a, float b) 
{ 

} 

if (a == 0 && b == 0) return (0); 
if (a!= 0 && b == 0) return (DBL_MAX); 
return (alb); 

Figure 3-5 A general expression for the calculation of coordinate positions along a B-spline curve. 

A sample output of the program in Figure 3-5 is shown in Figure 3-6. 
Enter .number of control points: 3 
Enter degree of polynomial: 3 

Enter x coordinate of control point number 1 : .35 
Enter x coordinate of control point number 2 : .6 

Enter x coordinate of control point number 3 : .8 

The knots are: 

0.000000 0.000000 

0.800000 0.800000 

The y coordinates are : 

0.342898 0.564642 

0.000000 0.350000 

0.717356 
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Enter a value for u between 0.350000 and 0.800000 : .5 
Enter a value for u between 0.350000 and 0.800000 : 0 

Type EXIT to return to Turbo C ... 

Figure 3-6 Sample output of the program in Figure 3-5. 

3.1.5.3 Nonuniform B-splines 

Any values and intervals for the knot vector can be specified in nonuniform B-splines, with multiple internal knot values and unequal spacing between the knot values, such as: 
{O, 1, 2, 3, 3, 4} 

{O, 2, 2, 3, 3, 6} 

{O, 0, 0, 1, 1, 3, 3, 3} 

{O, 0.2, 0.6, 0.9, 1.0} 

Different shapes for the blending functions in different intervals, which can be used to adjust spline shapes, can be obtained with unequally spaced intervals in the knot vector, and stable variations can be produced with increasing knot multiplicity. To reduce computations, the knot intervals are often restricted to be either O or 1. 
In general B-spline curves have two advantages over Bezier splines: 1) The degree of a B-spline polynomial can be set independently of the number of control points (with certain limitations). 2) They allow local control over the shape of a spline curve. 
Some of the advantages also are that any number of control points can be added or modified to manupilate curve shapes, and the number values in the knot vector can be increased to aid in the curve design. However, to do this, we need to add control points, since the size of the knot vector depends on parameter n. The tradeoff is that B-splines are more complex than Bezier splines. 
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3.1.6 Newton Form 

This has been introduced by Newton. It depends on the interpolation abscissae, namely 

the n + 1 monic polynomial n;(x) of degree i which vanish at the first i interpolation 

abscissae: 

n;(x) = (x- xo) ... (x- X;-1) (3-32) 

Then the interpolation polynomial can be represented as in [6] Boehm & Prautzsch 

(1991) as: 

P(x) = fono (x) + fo.1n1 (x) + ... + fo .... ,nnn (x) (3 - 33). 

The fo .... ,i are called divided differences and satisfy the recurrence relation: 

J, _ J;, ... ,k-1 - !;+1, ... ,k 
i, ... ,k -

X; -Xk 
(3-34) 

Figure 3-7 shows Newton's Scheme in which the calculation of fo .... ,i using equation (3-

34) is effected best. The underlined values in the figure are the ones involved in the 

computation of fi,2,3. The advantage of Newton representation is that the degree of the 

interpolation polynomial can be easily increased or decreased. 

Xo 

k 
Xn 

Jo 

Ji fo.1 
" 

fi.2 fo.1,2 
" 

h __ h.L_fi.2.J fo.1,2,J 

fn-1,n 

·•···•···· ..... 

Figure 3-7 Newton's Scheme. 
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Example 1: 

As an example, suppose we have the points: 

At X= 3: no::: I, 

So the divided difference table is: 

0 
I 
2 

8 
5 
4 

-3 
-I 

11}(3) = (3-0) = 3, 

I. 

And Jl3) = (8.1)- (3.3) + (1.6) = 5. 

,,(3) = (3-0)(3-1) = 6. 

A program written inC to evaluate the interpolation polynomial using Newton's method 

is shown in Figure 3-8. 

I' 
A general expression for the calculation of coordinate positions 
along curve using Newton's Method. 

'I 

#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include <jloat.h> 

#define SIZE 8 
typedeffloat vector _type[ SIZE}; 
vector _type knot_x, knot_ _ _y: 

I' 
This function is to assign a value ofO to any blending function 
in case we get 0/0. 

'I 

float div (float a, float b) 
I 

if(a == 0 && b == 0) return (0); 
if(a != 0 && b == 0) return (DBL_MAX); 
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rerum (alb); 
I 

I' 
Thisfimctirm iJ 1o calculate the di1•ided differences. 

'I 

float di.ffer(int i, int k, float x, float *knot_x, float *knot_y) 
I 

I 

I' 

float div (jlom a, floar b): 

if(i==k) 
retllm((jloat) knot...)'/i}): 

if(i==k+l) 
rerum ((float) div((knot..s/ i]-knot_yf k/ ), (knot_x[ i] -knot_xf k} ))); 

ij(i<k+l) 
retllrn ((jloat) div((differ(i, k-1, x, knot_x, knot_)•)­

differ(i+1, k, x, knot_x, kllot_y)),(knot_xfi]-knot_x[k/))); 

This function is to introduce the n+ 1 polynomials of degree i. 
'I 

float pol(int k, float x,float *knot_x) 
I 

I 

illfi; 
float 11; 

if(k==0) 
return ((float) 1 ); 

if(k==/) 
return (x-knot_x{k-1} ): 

if(k>l) 
n = 1.0,· 
for(i=O; i<=k-1; i++) 

fl = n * (x-knot_x[i}); 
return n; 

main() 
I 

im points_num, n, k, i=O; 
jloatx, P; 
printf(''\n\n Enter number of control poims: "); 
scanft''%d", &(points_num)); 
n = points_num - 1 ,· 
for(k=O; k<=n; k++) 
I 

I 

printf(''\n Enter x coordinate ofpoim number %d: ", (k+1 )); 
scanf("%f', &(knot_xlk])); 
printf(" Enter y-coordinate of point number o/od: ", (k+l )); 
scanf("%f', &(knot~lk])); 

printf(''\n The knots are: \n"}; 
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for(k=O ; k<=n; k++) 
printf ("1,n%f\J%f', knot_x[k], knot_y[k] ); 

printf("l,n Enter a point at which the function is to be evaluated: "); 
scanfi"%f', &x); 

p = O; 

for(i=O; i<=n; i++) 
P = P + differ(O, i, x, knot_x, knot_y) * pol(i, x, knot_x); 

printf(''\n The function at %f = %f', x, P); 

Figure 3-8 A C program to calculate the coordinate positions along a curve by Newton's Method. 

The program in Figure 3-8 used to solve the problem in 

Example I above and the outcome is shown in Figure 3-9. 

Enter number of control points: 3 

Enter x coordinate of point number 1 : 0 
Enter y-coordinate of point number 1 : 8 

Enter x coordinate of point number 2 : 1 
Enter y-coordinate of point number 2 : 5 

Enter x coordinate of point number 3 : 2 
Enter y-coordinate of point number 3 : 4 

The knots are: 

0.000000 
1.000000 
2.000000 

8.000000 
5.000000 
4.000000 

Enter a point at which the function is to be evaluated: 3 

The function at 3.000000 = 5.000000 

Figure 3-9 Solution of example (1) using the C program of Figure 3-8. 

The program in Figure 3-8 can be modified a bit so as to calculate the sine function of the 

control points. Then to approximate the function of a point keyed in by the user by 

interpolation. It keeps prompting for points to be evaluated until the user key in zero. 

Then the program exits. This program is shown in Figure 3-10. 
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I* 
A general expression for the calculation of coordinate positions 
along curve using Newton's Method. It evaluates the sine value of 
the control points, then prompts the user for the point at which 
the function is to be evaluated, and exits when O is entered for 
that point. 

*I 

#include <stdio.h> 
#include <string. h> 
#include <math.h> 
#include <jloat.h> 

#define SIZE 8 

I* 

typedef float vector _type/SIZE]; 
vector _type knot_x, knot_y; 

This function is to assign a value of Oto any blending function 
in case we get 0/0. 

*I 

float div ( float a, float b) 
{ 

} 

I* 

if (a== 0 && b == 0) return (0); 
if (a!= 0 && b == 0) return (DBL_MAX); 
return (alb); 

This function is to calculate the divided differences. 
*I 

float differ(int i, int k, float x, float *knot_x, float *knot_y) 
{ 

float div (float a, float b ); 

if (i==k) 
return((jloat) knot_y[i]); 

if(i== k+J) 
return ((float) div((knot_y[i]-knot_y[k]), (knot_x{i]-knot_x{k]))); 

if(i<k+J) 
return ((float) div((differ(i, k-I,  x, knot_x, knot_y)­

differ(i+I, k, x, knot_x, knot_y)),(knot_x{i]-knot_x{k]))); 
} 

I* 
This function is to introduce the n+ I polynomials of degree i. 

*I 

float pol(int k,float x,float *knot_x) 
{ 

int i; 
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b 

} 

} 

float n; 

if (k==O) 
return ((float) 1); 

if (k==l) 
return (x-knot_x[k-1 J ); 

if(k>l) 
n = 1.0; 
for(i=O; i<=k-1; i++) 

n = n * (x-knot_x[i]); 
return n; 

main() 
{ 

int points_num, n, k, i=O; 
float x = 1.0, P; 
printf('\n\n Enter number of control points: "); 
scanf("o/od", &(points_num)); 
n = points_num - 1; 
for(k=O; k<=n; k++) 
{ 

} 

print!(" Enter x coordinate of point number o/od: ", (k+J)); 
scanf("o/of', &(knot_x{k] )); 
knot_y[k] = sin (knot_x{k]); 

printf('\n The knots are: "); 
for(k=O ; k<=n; k++) 

printf ('\no/of\to/of', knot_x[k], knot_y[k] ); 
while (x != 0) 
{ 
printf('\n Enter a point at which the function is to be evaluated: "); 
scanf("o/of', &x); 

p = O; 
for(i=O; i<=n; i++) 

P = P + differ(O, i, x, knot_x, knot_y) * pol(i, x, knot_x); 
printf(" The function at o/of = o/of', x, P); 
} 

Figure 3-10 Evaluating sine function using Newton's Method. 

The previous program is executed to approximate the sine function for a number of points 

and the results are shown in Figure 3-11. 
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Enter number of control points: 4 
Enter x coordinate of point number I : 0.2 
Enter x coordinate of point number 2 : 0.6 
Enter x coordinate of point number 3 : 1.0 
Enter x coordinate of point number 4 : 1.4 

The knots are: 
0.200000 0.198669 
0.600000 0.564642 
1.000000 0.841471 
1.400000 0.985450 
Enter a point at which the function is to be evaluated: 0.2 
The function at 0.200000 = 0.198669 
Enter a point at which the function is to be evaluated: 0.3 
The function at 0.300000 = 0.296130 
Enter a point at which the function is to be evaluated: 0.4 
The function at 0.400000 = 0.390067 
Enter a point at which the function is to be evaluated: 0.5 
The function at 0.500000 = 0.479799 
Enter a point at which the function is to be evaluated: 0.6 
The function at 0.600000 = 0.564642 
Enter a point at which the function is to be evaluated: 0.7 
The function at 0.700000 = 0.643914 
Enter a point at which the function is to be evaluated: 0.8 
The function at 0.800000 = 0.716931 
Enter a point at which the function is to be evaluated: 0.9 
The function at 0.900000 = 0.783011 
Enter a point at which the function is to be evaluated: 1.0 
The function at 1.000000 = 0.841471 
Enter a point at which the function is to be evaluated: 1.1 
The function at 1.100000 = 0.891628 
Enter a point at which the function is to be evaluated: 1.2 
The function at 1.200000 = 0.932798 
Enter a point at which the function is to be evaluated: 1.3 
The function at 1.300000 = 0.964300 
Enter a point at which the function is to be evaluated: 1.4 
The function at 1.400000 = 0.985450 
Enter a point at which the function is to be evaluated: 0 

Figure 3-11 The results of executing the program in Figure 3-10. 
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A graph showing the expected and Interpolated 

l(x) 
values of x. 

r

--
--sin (x) 

Interpolated 

X 

Figure 3-12 Expected and Interpolated values versus X. 

The previous results are graphed in Figure 3-12, in which the accuracy of the 

approximation can be noticed. 

3.1.7 The Chosen Interpolating Method 

From the preceding sections we can conclude that most of the methods introduced can 

give good approximations. Each one of them has advantages as well as disadvantages 

over the others. In general, cubic splines compared to higher-order polynomials, require 

less calculations and memory and are more stabie, while compared to lower-order 

polynomials, they are more flexible for modeling arbitrary curve shapes. 

The advantage of Bezier splines over Cubic splines is that the direction of the curve at the 

joints can be defined and changed simply by specifying the second and third data points. 

They are widely used because they are easy to implement and stable. One disadvantage of 

Bezier curves is that they do not allow for local control, changing a control point not only 
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affects the shape of the curve near that point, but it affect!\ the entire span of the curve. 8-

spline curves have this local shape property. 

The main advantages of 8-splinc curves over Bezier splines: 

The degree of a B-spline polynomial can be set independently of the number of control 

points (with certain limitations). They allow local control over the shape of a spline 

curve. Any number of control points can be added or modified to manupilate curve 

shapes, and the number values in the knot vector can be increased to aid in the curve 

design. However~ to do this, we need to add control points, since the size of the knot 

vector depends on parameter 11. The tradeoff is that B-splines are more complex than 

Bezier splines. 

Finally, Lagrange and Newton polynomials proved to be accurate and the easiest to 

implement. For the purpose of simulation, Lagrange interpolation was used as shown in 

Appendix A. 
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Chapter 4 

The Controller 

The controller provides the interpolator with information needed to perform the 

computations according to equation (3-9). The controller in Figure 2-1 is shown with 

expanded details in Figure 4-1. It is responsible for determining and providing the 

basepoint index mk. and the fractional interval Jlt. based on the output of a timing 

estimator or a timing error estimator, to the interpolator. Once these have been identified, 

the selected signal and impulse response samples are loaded into the interpolation filter 

structure for computations. 

A number of controlled oscillator (NCO) can provide the necessary control assuming that 

the signal samples are uniformly clocked through a shift register at a rate liT, and the 

NCO is clocked at a rate synchronized to liT.,. The NCO clock period is T, and its 

average period is T;. The basepoint index is identified by flagging the correct set of signal 

samples rather than explicitly computing mk. 

SAMPLE 
SIGNAL IN 

"" 
SIGNAL OUT 

INlERPOLA TOR DATA + x(t) x(mT.) y(kH FILTER I or 2 s/symb. 

1' •• (Iff,) 

OVERFLO+ 

Timing 

Compute Em' 
FIXEDCU fcK(lffi) Fractional Detector 

Interval 
' 

"' 
NCOPERIOF 
=T1=T/K. i 

W{m) I RESAMPLE J4(n) LOOP 

~ FILTER 
(lffs) NCO 

(Iff) 
CONTROLLER 

Figure 4-1 The controller with expanded detail. 
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4.1 Fractional Interval"' 

Upon recycling, the contents of NCO's register arc used to calculate the fractional 

interval J.lk· At the mth clock tick, the NCO register contents computed are designated a'i 

'l(m) and the control word as W(m). the NCO difference equation a< in [I] is: 

'1(111) = [ry(m -I)-W(m -l)]mod-1. (4-1) 

Under loop equilibrium conditions, W(m) is nearly constant. The contents of the NCO 

register is decremented by W(m) every T.~ seconds, and on average the register underflows 

every 1/W{m) clock ticks. So the NCO period is Ti = T>IW(m) and in the absence of any 

disturbance the control word assumes its correct value: 

T 
W(m) = -·' . 

'f; 
(4-2) 

W(m) is the synchronizer's estimate of the average frequency of interpolation 1/Ti. 

expressed relative to the sampling frequency liT.~- It is an estimate because it is produced 

from filtering of multiple, noisy measurements of timing error. 

The fractional interval as given in [I] is: 

f.l 17(m,) _ ry(m,) 
' 1-17(m, + 1)+ 17(m,)- W(m, )' 

(4-3) 

Equation (4-3) is an estimate of the exact fractional interval because its constituents 

W(m,) and 'l(m,) are both estimates of the true frequency and phase. 
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4.2 Alternative Control Method 

[4] Moeneclaey. Meyr & Fechtel (1998) suggested an alternative control method without 

using an NCO. Two successive intcrpolants arc performed for time instants: 

kT; =(mk +f.ltTr, 
(k + 1)7; = (m,., + fltot Jr. 

(4-4) 

(4-5) 

Subtracting and rearranging the two equations in (4·4) and (4-5) yields the recursion for 

the estimates as in [1]: 

(4-6) 

where as in [41 TilT'.~ is approximated by w(m~,). The increment in sample count from one 

interpolation to the next is: 

(4-7) 

and flk+J = [p, + w(m,Jlmoot (4-8) 

A program written in C that can do the computation of the controller and provide the 

increments of mk+J - mk and Ilk for different ratios of T;IT.f. using this method is shown in 

Figure 4-2. 
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#include <stdio.h> 
#include <math.h> 

main() 

{ 
float frac_delay; 
int base_point, next_base, base_diff; 
float tme, Ts, Ti; 
float control_word; 
int count; 

printf(." Enter Ti, Ts, mu and m: \n"); 
scan!("%! %f %f %d", &Ti, &Ts, &frac_delay, &base_point); 

control_word = Ti I Ts; 
printft." Wis %.f,n", control_word); 

for ( count = 0; count < 8; count++) 

{ 
next_base = (int) (base_point + frac_delay + control_word); 
base_diff = next_base - base_point; 
base_point = next_base; 

frac_delay =frac_delay + control_word - (int) (frac_delay + control_word); 

printft." Base dijf = %d", base_dijf); 
printf(." Frac delay= %.f,n",frac_delay); 

} 

} 

Figure 4-2 A C program to do the calculations of the controller. 

The previous program was executed twice and the results were as follows: 

a) For Ti I Ts = 1.575, µo = 0, the output is shown in Figure 4- 3. 

Enter Ti, Ts, mu and m: 

1.575 10 0 

W is 1.575000 

Base diff = 1 Frac delay= 0.575000 

Base diff = 2 Frac delay= 0.150000 

Base diff = 1 Frac delay= 0.725000 

Base diff = 2 Frac delay= 0.300000 

Base diff = 1 Frac delay= 0.875000 

Base diff = 2 Frac delay= 0.450000 

Base diff = 2 Frac delay= 0.025000 

Base diff = 1 Frac delay= 0.600000 

Figure 4- 3 The result for Tiffs = 1.575. 
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b) ForT1/ T,= I- I0-5,p0 =4.1*10'5, the results arc shown in Figure 4-4. 

Enter Ti, Ts, mu and m: 
0.99999 I 0.000041 0 
W is 0.999990 
Base diiT == I Frac delay= 0.000031 
Base diff =I Fmc delay= 0.000021 
Base diff =I Frac delay= 0.000011 
Base diff = l Frac delay= 0.000001 
Base diff = 0 Frac delay= 0.999991 
Base diff = I Frac delay= 0.999981 
Base diff = I Frac delay= 0.999971 
Bnsc difr =I Frac delay= 0.999961 

Figure 4-4 The result for Till's = 0.99999 

When the designated value of T/Ts is an exact integer, the actual value in practice will be 

slightly different due to clock tolerances. In this case, the fractional delay changes very 

slowly as a function of time. On the other hand, if the design of the value is not an 

integer, then the fractional delay varies more rapidly with time. In a hardware 

implementation, it can be dept constant over a large number of symbols which simplifies 

the hardware. This control method is most useful in systems where the data are consumed 

at the same location as the data receiver, without reclocking. 

4.3 System Description 

The block diagram of the digital receiver system considered for simulation results is 

shown in Figure 4-5. 
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Figure 4-5 Digital Interpolating Receiver. 
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The transmitted signal s(t) passes through an additive white Gaussian noise (AWGN) 

channel before it is sampled by the fixed clock at uniform intervals of Ts seconds. The 

number of samples per symbol is assumed to be an integer. The samples pass through a 

digital matched filter whose continuous time impulse response is described as: 

{
ks(T -t); 

lz(t)~ 
0 ; 

O:>t:>T 

elsewhere 
(4-9) 

Signal-to-noise ratio of the received signal is maximised by the digital matched filter at 

the filter output. The interpolator then uses the samples from the matched filter to 

calculate the interpolated point. The mth sample from the filter output is denoted by 

x(mT,). 

Cubic interpolation, based on the Lagrange formula is used by the interpolator. The 

interpolator provides an approximation of the output sample of the matched filter, at the 

optimal decision instant. The controller calculates the fractional delay and passes it to the 

interpolator. The fractional delay is varied to simulate the situation where the controller 

calculates an incorrect value of p~ The output of the interpolator is fed to a detection 

device and is used to calculate the bit error rate (BER). 
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The transmiucd signal s(l) considered in this paper is a bipolar baseband pulse amplitude 

modulutcd (PAM) signal with raised cosine pulse shape of the form 14]: 

, m I s(l)=cos·-, lt<T 
2T 

(4-10) 

where Tis the symbol period. 

4.4 Simulation Results 

A program written in C++ mainly by Ms. Vis Ramakonar is included in appendix A. The 

number of samples per symbol is assumed to be an integer and sampling begins at t = 0. 

Simulations were carried out for a sampling rate of 5 samples per symbol for I million 

symbols. The signal to noise ratio was varied between 2dB and 14dB, and the fractional 

delay. Jik· was varied from 0 to 0.95. The correct value of ;..tk in this case is 0, which is the 

case for ideal interpolation, when one of the existing samples is the interpolated point. 

A timing error reduces the useful signal component at the input of the decision device, 

and also introduces intersymbol interference (lSI). The sample at the input of the decision 

device consists of a useful signal term, an lSI term and an additive noise term, Vk( pJ, 

which is according to Bucket & Moeneclaey (1994), sited in[8]: 

v, (p,) = ..[E,(a,s(p,) + ISI(p, )) + ~ N,. 12a(p, )m, (4-11) 

where v1(Jik) is the sample at the input of the decision device, Eb is the energy per bit, a1 is 

the data symbol, s(f.J•) is the useful signal amplitude, ISI(p1) is the intersymbol 

interference term, N0 is the Gaussian noise with mk being a zero-mean univariate 

Gaussian random variable, and cl(pJ is the noise variance. 
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L 

The useful signal amplitude, s(µk) as in [8]: 

N2 

s(µk ) = Lh/i;µk )g(-µk Ts -iT,) 
i=-N1 

where g(t) is the output of the matched filter. 

The ISi term as in [8] is: 

N2 

IS/(µk ) = Lak-p Lh/i; µk )g(-µk Ts + pTs -iT.) 
ps<O i=-N1 

and the noise variance is given by: 

N2 

a 2 (µk )= Lh1 (i;µk )h1 (j;µk )g(-iT_, + jT.) 
i,j=-N1 

The BER corresponding to given values of E,IN0 and K is given by: 

where 

f(µ) = (s(µ) + /Sl(µ))la(µ) 

(4-12) 

(4-13) 

(4-14) 

(4-15) 

(4-16) 

and K is the carrier-to-multipath ratio. When K = oo the A WGN channel is obtained. The 

quantity E,IN0 is the signal-to-noise ratio (SNR). For ideal interpolation, s(µk) = d(µk) = 

1 and ISi( µk) = 0. 

For binary PAM, the theoretical expression for the BER in the case of ideal interpolation 

according to Haykin (1994) sited in [8] is: 
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(4-17) 

where 

Q(x) = ~ J exp - '!___ d11 1 • ( 
1

) 

"'2tr .r 2 
( 4- I 8) 

Figure 4-6 shows a plot of the BER versus SNR for different values of 11 for 5 samples 

per symbol as in [8]. Obviously variations in p can affect the performance of the system 

significantly. For an SNR of 5dB, when 11 = 0.25, BER is increa•ed by a factor of I 0 dB, 

and when ,u = 0.75, BER is increased by a factor of about 100 dB. 

BER with variation in u 

I 1.E+00 -~· 

1.E-01 '-L FF1 --+--u = 0 

~ 
1.E-02 

---u = 0.1 

" u = 0.25 
a: ~ ~ w 1.E-03 -•-U=0.5 
"' 1\ "\ -- -u = 0.75 1.E-04 

i\ \ --o----- u = 0.95 
1.E-05 Ideal BER 

\ 
1.E-06 

1 3 5 7 9 11 13 

SNR dB 

Figure 4·6 BER with Variation in J.Jk for S samples per symbol. 

The theoretical BER for ideal interpolation is also plotted in the figure. It can be observed 

that the simulated results have a close match to the theoretical BER values for ideal 

interpolation. 
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The same simulations were performed again with I 0 samples per symbol. The results are 

plotted in Figure 4-7 as in (9]. They indicate that increasing the number of samples per 

symbol improves the BER more visibly when the estimation of J1 is less accurate, and for 

higher signal to noise ratios. But even so, the improvement is not very large. 

2 4 6 a 10 12 14 

SNR (dB) 

u- 0 

~-u = 0.1 

---u= 0.25 

-x-u= 0.5 

----u=0.75 

---u = 0.95 

........ Ideal BER 

Figure 4M7 BER with Variation in }Jk for 10 samples per symbol. 
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Chapter 5 

Conclusion 

In a digital receiver, if sampling is not synchronized with the data symbols, timing must 

be adjusted by interpolating new samples among the original ones. Interpolation in that 

case actually combines interpolation and subsequent decimation by resampling. 

Interpolants can be computed digitally from the input samples and the knowledge of the 

sampled impulse response of the fictitious analog filter. Equation (3-9) underlies 

interpolation operations in digital modems. 

A number controlled oscillator NCO provides the interpolator with the values of 

basepoint index mk and the fractional interval fJk· 

In this research, it has been shown that the performance of a fixed clock digital receiver is 

highly dependent on accurate calculation of the fractional interval, p_, which estimates the 

position of the ideal samoling instance with respect to the actual samples taken by the 

fixed clock sampler. For a typical set of system parameters it was found that the errors of 

up to about 10% in the value of f1 does not degrade the performance of the system 

significantly. Errors greater than I 0% in the estimation of f1 can increase the BER of the 

system to unacceptable levels, in the order of several hundred to several thousand times 

greater than the BER corresponding to accurate calculation of fl. 

It has also been shown that increasing the sampling rate does not improve the BER 

dramatically. Therefore it is not a good design practice to opt for a higher sampling rate 

to compensate for performance degradation resulting from inaccurate estimation of 11· 

Conclusions found out through out this research are useful in setting the perfonnance 
criteria for the design of the timing error detector and the controller in a fixed clock 
digital receiver. 
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Appendix A 

Figure A-l and Figure A-2 show the header file and the program file written in C++ that 
are used for simulations. 

#define 
#define 
#define 

#define 

RAN_THRESf/OW 0.5 
BIT_?OS I 
BIT_NEG -I 

P/3.141592654 

II Do not change tltese valaes unless you are a better programmer 
//than Donald E. Knuth.'!! 

cmtst long MBIG = 1000000000; 
canst long MSEED = 161803398; 
canst inr MZ = 0; 
canst double FAC = (1.0/MB/G); 

cfass RAN_GEN 
{ 
int inext,inextp; 
long ma[ 56]; 
long mj,mk; 
im i,ii,k; 

public: 
float output(); II will return a value behVeen 0 ami/ II 
void initialise(int idum); 
int bit(); 
//void test(int numher_tests); 

}: 

double process(double numsymb,RAN_GEN ran_num_gen, double SNR, double samp_symb, double 
trans_symb, int bits); 
int genrand(void); 
dotlble quantbits(double num, int bits); 
double raisedcos(double t, int T),· 
double scale (int samp_symb, double basef2]{4], int numbase, int SNR); 
void noisegen(double sigma, double nawgn/2], RAN_GEN noise_ran); 
void interpolate( double match/ [2}{4/, double match2{2}[4J, double illfer_time, double y[2J); 

//Interpolation 
void interpolate( double match/ {2/14/, double match2[2/f4/, double inter_time, double y{2]) 
{ 

int i,j; 
int II, /2,· 
double Cil, Ci2,· 
double til, ti2: 
double tjl, tj2; 

II= 1: 

Page 44 

I 



} 

12 = 4; 

y[OJ = 0.0; 
y[l] = 0.0; 
inter _time = inter _time ; 

for (i= Il-1; i<l2; i++) 
{ 

} 

til = matchl[OJ[i]; 
Cil = 1; 
ti2 = match2[0J[i]; 
Ci2 = I; 

for (j=ll-1; j< /2; j++) 
{ 

tjl = matchl[O][j]; 
tj2 = match2[0][j]; 
if(j!= i) 
{ 

} 
} 

1/numtime is the time at which we 
/!calculate the interpolated point 
Ci] *= (((inter_time) - tjl)l(til - tjl)) ; 
Ci2 *= (((inter_time) - tj2)/(ti2 - tj2)) ; 

y[OJ += (Ci] * matchl[l][i}); 
y[l J += (Ci2 * match2[1 J[i}); 

//Quantises a value to a certain number of bits 
double quantbits(double num, int bits) 
{ 

} 

double mum; 
double bit_pow; 
double step_size; 
double step_num; 

if(num >= 1.0) 
rnum = 1; 

else if(num <= -1.0) 
rnum = -1; 

else 
{ 

} 

step_size = 2.0lpow(2,bits); 
step_num = ceil(numlstep_size); 
mum = step_num*step_size; 

1/bit_pow = pow(2,(bits-l.O)); 
//mum= (jloor(bit_pow*num)lbit_pow) + (1.0lpow(2,bits)); 

return (mum); 

//Calculates the raised cosine of a time point 
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double raisedcos( double t, int T) 
{ 

} 

double rcos; 
double x; 
double pi; 

pi = 3.141592654; 
x = (pi*(t))/(2.0*T); 
rcos = cos(x)*cos(x); 
return (rcos); 

I/ This routine was modified from the one presented in 
II Numerical Algorithms in C, p213., The modification makes it conform to OOP. 
II Author W.H. Press ( et.al), Modified by Joseph Austin-Crowe 9/3/97 
II 
II 
float RAN_GEN::output() 
{ 

if(++inext == 56) inext = l; 
if ( ++inextp == 56) inextp = 1; 
mj = ma[inext] - ma[inextp]; 
if(mj < MZ) 
{ 
mj += MBlG; 

} 
ma[inext] = mj; 

return(mj*FAC); 
}; 

void RAN_GEN::initialise(int idum) 
{ 

mj = MSEED -(idum < 0 ? -idum : idum); 
mj%=MB1G; 
ma/55] = mj; 
mk = l; 
for (i=l ; i<=54 ; i++) 
{ 
ii = (21 * i) % 55; 
ma[ii] = mk; 
mk = mj - mk; 
if(mk < MZ) 
{ 
mk += MBlG; 

} 
mj=ma[ii]; 

} 
for (k = 1 ;  k <= 4 ;  k++) 
{ 

for (i = 1 ; i <= 55 ; i++) 
{ 
ma[i] -= ma[ 1 + (i + 30) % 55]; 
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} 
}; 

if (ma[i] < MZ) 
{ 

} 
} 

ma[i] += MBIG; 

inext = O; 
inextp = 31; 
idum = I; 

//This function generates the random bits (either +I or -1) 

int RAN_GEN::bit() 
{ 

if(output()> RAN_THRESHOLD) 
return(BJT_POS); 

else 
return( BIT _NEG); 

}; 

//Scales the A WGN noise 
double scale (int samp_symb, double base[2][4], int numbase, int SNR) 
{ 

} 

double power; 
int scale_loop; 
double sigma; 
double ssig; 

power= O; 

for ( scale_loop = O; scale_loop < numbase; scale_loop++) 
{ 

//power += O.; 
//power += (base[ I J[scale_loop])*(base[ J][scale_loop]); 

} 
power = power I numbase; 
ssig = (samp_symb/(2.0 * SNR)) * power; 
sigma= sqrt(ssig); 
return ( sigma); 

/IA WGN noise generator 
I/transforms uniform to gaussian 

void noisegen(double sigma, double nawgn[2], RAN_GEN noise_ran) 
{ 

double lambdal,lambda2, VJ, V2,S; 

lambda] = noise_ran.output( ); 
lambda2 = noise_ran.output(); 
VJ = 2 * lambda] - 1.0; 
V2 = 2 * lambda2 - 1.0; 
S = (Vl*VJ) + (V2*V2); 
while (S >= 1.0) 
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} 

{ 
S=O; 

lambda] = noise_ran.output(); 
lambda2 = noise_ran.output(); 
VJ = 2.0 * lambda] - 1.0; 
V2 = 2.0 * lambda2 - 1.0; 
S = (Vl*Vl) + (V2*V2); 
} 
1/printf("sigma is %.fvi",sigma); 
nawgn[OJ = (VJ *sqrt((-2.0*log(S)YS))*sigma; 
nawgn[ I J = (V2 *sqrt((-2.0*log(S))/S))*sigma; 

Figure A-1 The Header File main_includes.h 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include "main2_includes.h" 

main(int argc, char *argv[]) 
{ 

double numsymb; 
double Bit_Err; 
double sim_SNR2; 
int sim_SNR; 
double sim_samp_symb; //fixed sampling clock rate 
double sim_trans_symb; !!transmitter symbol rate 
int numbits; 

RAN_GEN ran_num_gen; 
numsymb = atof( argv[J ]); 
sim_SNR = atof(argv[4]); 
sim_trans_symb = atof(argv[3]); 
sim_samp_symb = atof(argv[2]); 

ran_num_gen.initialise(-2); I/ The one and only random number generator!! 
numbits=3; 
for (sim_SNR = 2; sim_SNR < 15; sim_SNR++) 

{ 
printf(''for a SNR of%d ", sim_SNR); 
sim_SNR2 = pow( 10.0 , (sim_SNR/10.0)); II convert SNRfrom dB 

Bit_Err = process(numsymb, ran_num_gen, sim_SNR2, sim_samp_symb, 
sim_trans_symb,numbits); 

printf("the BER is %f%vz",Bit_Err);l/*100.0)); 
} 

retum(O); 
} 

II Interpolation 
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double process(double numsymb, RAN_GEN ran_num_gen, double SNR, double samp_symb, 
double trans_symb, int bits) 
{ 

double inter _loop; 
double numtime; 
int base_loop; 
int present_bit; 
double leftmost_sample, leftmost_sample 1; 
double tme, tme2; 
double bawgn/2]; 

double base/2][4], match_basel/2][4], match_base2[2][4],coeff1[5], coeff2[5J; 
double sigma.Eb; 
int numbase; 
int period; 
int error, signal; 
double Z/2], BER; 
double total_noise, noise_bandwidth; 
double total_signal; 
double hit, h2t; 
double interval; 
double integral; 
int match_loopl, coeff_loop, match_loop2, match_loop3, match_loop4; 
int noise_index; 
double constl, const2, const3, const4; 
double const5, const6, const7, const8, const9; 
double signall, signal2; 
double frac_delay; 
double mk; 
double Ti, Ts; 

numbase = 4; 
period = 1; 
noise_bandwidth = O; 
constl = -3.01(8.0*Pl); 
const2 = 1.01(2.0*Pl); 
const3 = 1.01(16.0*Pl); 
const4 = 2.0*Pl; 
const5 = 3.018.0; 
const8 = 1.018.0; 

error= 0; 
total_signal =0; 
total_noise = 0; 
integral = 0; 
frac_delay = O; 
Ts = periodlsamp_symb; 
Ti = trans_symb; 

II set up the 'queue' of three bits .. 
llpresent_bit = ran_num_gen.bit(); 
1/future_bit = ran_num_gen.bit(); 

for (inter _loop = O; inter _loop<numsymb; inter _loop++) 
{ 
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present_bit = ran_num_gen.bit(); 
numtime = inter _loop; 

leftmost_samplel = (jloor(numtime * samp_symb) - ])*period; 
leftmost_sample = (- 1 *period); 
for (base_loop = O; base_loop < numbase; base_loop++) 
{ 
integral = O; 

tme = (leftmost_sample + base_loop) I samp_symb; 
tme2 = (leftmost_samplel + base_loop) I samp _symb; 
const6 = PJ-(Pl*tme2); 
const7 = 2.0*Pl*tme2; 
const9 = sin( const6 ); 

hit = ( constl *const6 )-( const2 *const9 )-( const3 *sin( const4-const7)); 
h2t = ( (-const6-const9 )I( const4) ); 

noise_bandwidth = hltl(h2t*h2t); 
Eb= ( const5*tme2)+ ( l/(2*Pl))*sin(Pl*tme2)+( JI( 16*Pl))*sin(2*Pl*tme2); 

sigma = sqrt((samp_symb*numsymb*l.29)/(2.0*numsymb*samp_symb*SNR)); 

} 

base[OJ[base_loop] = tme2; 
match_basel[O][base_loop] = base[OJ[base_loop]; 
match_base2[0J[base_loop] = base[OJ[base_loop]; 

I/for the matched filter integration step size 
interval = tme/10.0; 

I/Matched Filter coefficients 
for ( coeff_loop = 0; coeff_loop < samp_symb; coeff_loop+ +) 
{ 

coeffl [ coeff_loop J = raisedcos((2- coeff_loop Ysamp_symb,period); 
coefj2[ coejf_loop J = raisedcos((2- coeff_loop Ysamp_symb,period) *-1; 

} 

//Get first sample (t = -0.2) 
match_basel [ 1 J[O] = O; 
match_base2[ 1 J [OJ = O; 
signal]= O; 

noisegen( sigma, bawgn , ran_num_gen); 
for (match_loopl = 0; match_loopl < 2; match_loopl++) 

{ 
noise_index = match_loopl; 
/lsignall = raisedcos((-1-match_loopl)/samp_symb,period) * present_bit; 
signall = quantbits( ( ( raisedcos( (-1-match_loop 1 )lsamp _symb,period) * 

+bawgn[noise_index]),bits); 
/lsignall = raisedcos((-1-match_loopl )lsamp_symb,period) 

+bawgn[noise_index]; 
match_basel [ ]] [O] += signal] * coeffl [ match_loopl ]; 
match_base2[1][0] += signall * coefj2[match_loopl]; 
} 

//Get second sample (t = 0) 
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match_basel [ 1 ][ 1] = O; 
match_base2[ 1] [ 1] = O; 
signall = O; 
signal2 =0; 
noise gen( sigma, bawgn , ran_num_gen); 

for (match_loop2 = O; match_loop2 < 3; match_loop2++) 
{ 

if(match_loop2 <= ]) 
noise_index = match_loop2; 
else 
{ 

} 

noisegen( sigma, bawgn , ran_num_gen); 
noise_index = match_loop2 - 2; 

1/signall = raisedcos(- match_loop2/samp_symb,period)*present_bit; 
signall = quantbits((( raisedcos(- match_loop2/samp _symb,period) *present_bit) 

+bawgn[noise_index]),bits); 
1/signall = raisedcos(- match_loop2/samp_symb,period)*present_bit 

+bawgn[ noise_index]; 
match_basel [I]{ 1] += signall * coeffl [match_loop2]; 
match_base2[ 1 ]{ 1 J += signall * coeff2{match_loop2]; 

} 

I/Get third sample (t= 0.2) 
match_basel[l][2] = O; 
match_base2{1][2] = 0; 
signal]= 0; 
signal2 =0; 
noisegen(sigma, bawgn , ran_num_gen); 

for (match_loop3 = O; match_loop3 < 4; match_loop3++) 
{ 

if ( match_loop3 < = ]) 
noise_index = match_loop3; 
else 
{ 

} 

noisegen(sigma, bawgn , ran_num_gen); 
noise_index = match_loop3 - 2; 

1/signall = raisedcos( 1- match_loop3/samp_symb,period)*present_bit*present_bit; 
signall = quantbits( ( ( raisedcos( 1-

match_loop3/samp _symb,period) *present_bit*present_bit) +bawgn[ noise_index] ), bits); 
1/signall = raisedcos( 1- match_loop3/samp_symb,period)*present_bit*present_bit 

+bawgn[noise_index]; 
match_basel[l]{2] += signall * coeffl[match_loop3]; 
match_base2[ 1]{2] += signall * coeff2{match_loop3]; 

} 

I/Get fourth sample ( t=0.4) 
match_basel [ 1 ][3] = 0; 
match_base2[1][3] = O; 
signall = O; 
signal2 =0; 
noisegen(sigma, bawgn , ran_num_gen); 
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for (match_loop4 = O; match_loop4 < 5; match_loop4++) 
( 

if (match_loop4 <= 1) 
noise_index = match_loop4; 
else if((match_loop4 > 1) && (match_loop4 <= 3)) 
( 

) 

noisegen(sigma, bawgn , ran_num_gen); 
noise_index = match_loop4 - 2; 

else 
( 

) 

noisegen(sigma, bawgn , ran_num_gen); 
noise_index = match_loop4 - 4; 

llsignall = raisedcos(2- match_loop4lsamp_symb,period)*present_bit; 
signall = quantbits(((raisedcos(2- match_loop4lsamp_symb,period)*present_bit) + 

bawgn[noise_index]),bits); 

) 

match_basel [ 1 J [ 3] += signall * coejfl [ match_loop4]; 
match_base2 [ 1 J [ 3] + = signall * coefj2 [ match_loop4 J; 

) 
mk = int((inter_loop*Ti) I Ts); 
frac_delay = (((inter_loop)*Ti) I Ts)- mk; 
numtime = (mk + frac_delay)*Ts; 

interpolate(match_basel,match_base2,numtime,Z); 

II matched filter 
if(Z[OJ >= Z[J]) 

signal = 1; 
else 

signal = -1; 

if (signal! =  present_bit) 
error++; 

BER = errorlnumsymb; 

) 
return (BER); 

Figure A-2 The C++ program used for Simulations. 
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Abstract: 

PART B: AN OVERVIEW OF THE VARIOUS MODULATION 

CLASSIFICATION SCHI,MES A V AILAIILE 

Modulation recognizers that automatically report modulation types of received signals in 

general become to play an important role nowadays. Some modulation recognizers utilize 

analog modulations only, some utilize digital modulations only and some utilize both 

analog and digital modulations. The following sections give an overview for some of the 

most recently published algorithms for the modulation recognition. 

1. Introduction: 

An automatic modulation classifier is a system that automatically identifies the 

modulation type of the received radio signal given that the signal exists and its 

parameters lie in a known range. Modulation classification is a branch of non-cooperative 

theory that exploits several classical communication disciplines such as detection and 

estimation among others. It has recently attracted increasingly growing interest from both 

the military and commercial sectors due to its capability of placing several receivers in 

one universal receiver. This has practical utility for example in a network environment 

where it is required for an incoming signal to be routed to an appropriate processor. 

Modulation classification algorithms play an important role in some communication 

applications such as signal confirmation, interference identification, monitoring, 

spectrum management, surveillance, electronic warfare, military threat analysis and 

electronic counter-counter measure. 

Generally, modulation classification can be approached either from a decision-theoretic 

or a statistical pattern recognition framework. In a decision theoretic framework, 

probabilistic and hypothesis-testing arguments are employed to formulate the 

classification problem. The resultant classifier is optimum in the sense that it minimizes 
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the average cost function. The complexity of this approach depends on the number of 

unknown parameters. ussociated with the received waveform and the classifier 

performance is expressed in terms of the probability of making a correct decision. In a 

statistical pattern recognition approach, the classification system is composed of two 

subsystems: the feature extraction and the pattern recognition subsystems. The role of the 

feature extraction subsystem is to extract useful information from the raw data and can be 

viewed as a mapping of the set of incoming signals into a chosen feature space. The 

function of the pattern recognizer subsystem is to indicate the membership of the 

modulation type class. In this paper, an overview of the different classification schemes 

using any or both of those approaches are explored. 

2. Automatic Modulation Classification using Zero Crossing 

A modulation recognizer using zero-crossing sampler as a signal conditioner is proposed 

by Hsue & Soliman [I] & [2], to classify constant-envelope signals of modulation types 

such as CW, MPSK and MFSK. This algorithm uses a combination of the two 

approaches mentioned in section (l). The phase difference and other related parameters 

are used as features. The density functions of these parameters are derived and then 

hypothesis testing is applied to fonnulate the classification rule. The zero-crossing 

sampling has wide applications and is an attractive tool in modem modulation 

recognition. The zero-crossing sampling records the sampling time, as the input signal 

crosses the zero voltage level. Its advantages include providing useful information related 

to the phase transitions of the received wavefonn and operating in a wide frequency 

dynamic range. 

The classification strategy consists of two steps. The algorithm first separates single-tone 

(CW and MPSK) from multitone (MFSK) signals. Then it makes a final decision based 

on the number of states detected. 
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2.1 Problem Fomulation 

The received waveform is modeled as: 

r(t)=s(t)+v(t) O$t$T0 (2-1) 

where s(t) is a constant-envelope modulated signal with unknown modulation type. To is 

the length of the observation interval, v(t) is an additive band-limited Gaussian noise with 

zero mean and autocorrelation function IJI( r). The signal r(t) is sampled using the zero 

crossing sampler and a zero crossing sequence {x(i), i;:::; I, 2, ... , N} is formed. Two other 

sequences y(i) and z(i) are necessary to extract the phase and frequency information from 

{x(i)}. The zero-crossing interval sequence {y(i)} is a measure of the instantaneous 

frequency (y(i) = 1/2/;) and is defined as: 

y(i) =x(i+l)-x(i) i =I, 2, ... ,N -1 (2-2) 

The zero-crossing interval sequence {z(i)} is a measure of the variation in y(i) and is 

defined as: 

z(i) = y(i +I)- y(l) i = I, 2, ... , N- 2 (2- 3). 

A wavefonn consisting of sinusoid and noise is represented by: 

r(t)=Acos2;if,t+v(t) O$t:>T0 (2-4) 

where A andfo are the amplitude and frequency of the sinusoidal wave, respectively. The 

ith zero-crossing point can be written as: 

( ') i-0.5 (') x z = +a r 
2/, 

i=l,2, ... ,N (2-5) 

where a(i) are independent and identically destributed (liD) random variables that 

represent the variation due to v(t) and any measurement errors. At high carrier-to-noise 
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ratio (CNR). the density function of a(i) is Gau.sian, RiceS. cited in 121 Hsue ct al., with 

zero mean variance: 

• I 
0',; = -c:-2(:-::2-'1/:-;. )-;-' y- (2-6) 

where y is the CNR and is defined as y = A2/(21j1(0)). 

Similarly, the y(i) is given by: 

y(i) = ___!__ + e(i) 
2J. 

(2-7) 

where e (i) = u(i + I) -a(i) and its value depends on the pha>e of the carrier. 

The conditional PDFs of the interval variations s (i), conditioned on the knowledge of fc 

can be approximated by the Gaussian density function with zero mean and variance as in 

[1]: 

(2-8) 

where p(t) = \jl(t)/\)1(0) is the normalized autocorrelation function of the noise. Similarly, 

it can be shown that z(i) is conditionally Gaussian with zero mean and variance [1]: 

(2-9) 

The signal parameters,fc, y and the symbol rate in the above equations, are assumed to be 

known. The information-bearing parameter is assumed to remain constant for almost all 

the symbol duration, except for short transitions between steady states that take place 

occasionally. This event is referred to as the intersymbol transition (IST) and it affects the 

accuracy in estimating the carrier frequency and symbol rate. 

Page 57 



2.2 Discrimination between Single·Tone and Multitonc Signals 

Figure (2-1) shows a now chart of a proposed algorithm used by Hsue el at. as in [I j, to 

separate single-tone (CW and MPSK) from multi tone (MFSK) signals. 

A received signal of unknown type 

Obtain {x(ill. {y(i)lllnd {z(iJI 

Detect 1ST samples in {z(i) }; estimate cr,l 

I Estimate/c. CNR; compute G _I 
j_ 

~''""'" MFSK7 

~ 

Choose K. detecl 1ST Choose K, deccct 1ST 
samples in {y{i)} samples in { x(i)} 

Generate histogram Generate histogram 

qF(i) qp{i) 

Number of states NF Panem similarity lk 

Type report; BFSK, Typen:pon: CW, 
4FSKor8FSK BPSK. QPSK, SPSK 

Figure 2.1 Functional flow chart for automatic classificationof digitally modulated signals. 
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As the received signal is sampled, the !x(i)j sequence is formed and (y(i)j and !z(i)j arc 

obtained. The (y.,(i)) sequence is obtained by discarding those y(i) samples whose Iz(l + 

I) exceed 3.034 cr,,, (a factor of 1/100 between samples). The length of the resultant 

{yii)} sequence is denoted by N., .. Signal parameters including carrier frequency, symbol 

rate, CNR and variances arc estimated. Single~tonc or multitonc signals are then 

separated on the ba..;is of the variance of y1li). A phase histogram qp(i) is used for a 

single-tone signal to as a feature to identify CW and MPSK signals. A frequency 

histogram qF{i) is used to identify MFSK signals for a multitone signal. 

2.3 Single Tone and FSK signals 

The variance of y,(i) in the case of an MFSK signal can be written as in [I]: 

~ 1/lf~ IM., 
a;<Ml = -Ia;(MJ+-I,u;(Ml 

M m"l M m=l 

1 M M 

--, LL,u,(m),u,(M) 
M i=l k=l 

(2-10) 

where 

'(M) I 
a. = [21!f, +(2m -1- M);if,J'r 

(2-11) 

(M)- I 
,u. - 2/,+(Zm-1-M)f, 

(2-12) 

and/d is the frequency deviation. Equation (2-12) can be used as a classification feature 

since it is monotonic increasing function in M for given values of fd and fc· Thus, 

separating single-tone signals from multitone signals can be reduced to discrimination 

between single-tone signals (M=l) and BFSK signals (M=2). 
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Equation (2-10) is only valid for infinite observation interval. In case of finite observation 

interval, the variance of y 11(i) is estimated in [I J: 

[ ]

2 I N, I N, 

G = -L; y,(i)--L;y,(i) 
N_, ,- .. t N_,l•t 

(2-13) 

To discriminate between single-tone and BFSK signals, a hypothesis test is formulated 

based on the PDF of the variance Gin a finite observation interval. 

2.4 CW and PSK signals 

For a reference continuous sine wave with zero initial phase, the nth zero-crossing point 

is n/2f,. An unbiased estimate of the phase of the mth symbol $m. relative to the reference 

sine wave as in [1]: 

[ 
( k+L,( 11 )] 

¢. = 2tif, L. + 1 ~ x(n)- 2/, (2 -14) 

where the identified beginning sample and end sample of the mth symbol is x(k) and x(k 

+ Lm). respectively. This symbol phase estimate is meaningless since the initial phase of a 

received signal is not known. Symbol phase difference 8,11 , the difference between the 

phases of the (m-l)th and mth symbols, is computed as: 

(2-15) 

A nonnalized phase difference histogram qp(i) generated by using the distribution of 

symbol phase differences Bm is used as a feature for signal recognition. 
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2.5 FSK signal recognition 

At high CNR, :.1 zero crossing interval histogram q,.{i) is obtained from the sample 

distribution of (y,.(i)}. The number NF of hills in the histogram represents the number of 

states. Choosing the smallest integer D such that NF,; zl'. a modulation type MFSK is 

reported with M = 2°. 

2.6 The Zero Crossing Classifier 

Simulation results have shown that single-tone signa1s and multitone signals are 

separated successfully at a CNR of 15 dB or above. At lower CNR. the fluctuations in the 

variances yield an unsteady ratio between them, which causes difficulty in discriminating 

between single-tone and FSK signals. 

The performance in discriminating between single-tone and MFSK signals, is dominated 

by the ratio, ftft. .. For fife below certain value the receiver cannot distinguish between 

single-tone and FSK. The performance in discriminating between CW and MPSK. is 

dominated by the estimation accuracy of the carrier frequency. The computer simulation 

results demonstrated that the classification scheme provides successful modulation 

recognition for CNR <: 15 dB. A parallel processing scheme is recommended since the 

process of extracting the information from the three sequences {x(i)}, {y(i)} and 

{z(i)}can be accomplished in parallel. 

3. Detection and Classification using the 

Quasi-Log-Likelihood Ratio (qLLR) Rule 

A classifier proposed by [3] Polydoros & Kim (1990) derived by approximating the 

likelihood-ratio functionals of phase-modulated digital signals in white Gaussian noise, 

hence named a quasi-log-likelihood ratio (qLLR) rule. 
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3.1 Detector Structures 

Let the received waveform be described a"i: 

r(t) = s(t) + n(t) o,;,r,;,T 

where n(t) is the standard AWGN with a two-sided power spectral density (PSD) of Nof2 

W/Hz. The signal part s(t) described in [3] as: 

s(t) = s,(t) cos(OJ,t + 61,)- s,(t) sin(wJ + 61,) (3 -Ia) 

= .J2S a(t) cos(wJ + B(t) + 61,) (3 -!b) 

(3-lc) 

where sc(t) and sit) are the cosine and the sine coefficient functions respectively, 

(2S) 112a(t) and ~t) are the amplitude and phase processes of the polar representation with 

a( I);, 0. For constant-envelope modulation, a( I)= I. 

To derive detector structure for different modulations and to evaluate the associated 

perfonnance, consider the standard noise complex envelope: 

where the white Gaussian noise processes nJ(t),nQ(t) are independent, each with a two­

sided PSD of Nof2 W/Hz. The derivation of optimal LR (likelihood-ratio) detector can be 

perfonned for the synchronous or asynchronous, coherent or noncoherent cases as 

summarized below: 

A. Coherent Case ( 61, known) 

The LR A(r(t)) for QPSK in the synchronous coherent case as in [3]: 

A(r(t))=e ''fJcosh --r1,, cosh --rQ,, -N N (Fs ) [Fs ) 
n"'l No No 

(3-2) 
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where N=TIT, is the number of observed symbols, ys = ST./No is the symbol or input 

SNR, and 

" = r(t) dt rr, [cos llJ ,t] 
[~J~~ 1-nr, sin tvJ 

(3-3) 

are the appropriate in-phase and quadrature matched-filter outputs during the nth symbol 

interval. lf staggered observables are introduced: 

, !"''""' ( Ts)[COSllJJ] "[·',"'] = r(t)p t-nTs-- . dt 
n-I/2)TJ 2 Sin OJ I . ' 

Q 

(3 -4) 

then the theory can be extended to an the other modulations, with the resulting statistics, 

Y = In A, to be used in the standard threshold comparison. 

B. Bit-Noncoherent Case (Staggered Mod.) 

The staggered modulation can be extended to the bit-noncoherent case [3]: 

Y =-Nr, + L)nl, --1?, 1 2N (..fiS ) 
k=l N0 

(3-5) 

where 10(.) is the zeroth-order modified Bessel function, and r, = ru + jrQ.k-

The bit noncoherent case is not realistic but can be useful for approximation the 

perfonnance of any other detector and provide a lower bound on such performance. 

C. Symbol-Noncoherent Case 
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The resulting detector statistics for this class arc significantly more complicated in the 

case of staggered modulation. For the BPSK case [3]: 

Y = -Nr, +LIn /0 -I;; I N [2.JS J 
,=t No 

(3-6) 

D. Carrier-Noncoherent Case 

The optimal structures for the carrier-noncoherent models are too complicated. With 

certain simplifying approximations, we can arrive at some quasi-optimal detector 

statistics, which for the BPSK case as in [3] is: 

where 

N 

La= Lra~n' L:"ll = '£~:,';sy; a=I,Q 
n=l 

N 

LIQ = L,rr,nrQ,n' 
n=l 

S ~ ~.Tiag 

J,QSl =.t...J+,{..,Q' 

n=l 

a =i,Q 

S _ ~3/ag ~ 

J"',Q-.c...l +LtQ. 

For staggered modulation, the cross product tenn lis1• Q.u is negligible. 
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3.2 A qLLR Decision-Theoretic Classifier 

In this section, a novel quasi-optimal classifier is derived. The carrier frequency and 

symbol timing are assumed to be known to the receiver. Let the complex envelope of the 

matched-filter output at the end of the nth symbol interval be: 

The LR for an MPSK signal with known carrier frequency and unknown carrier phase 

can be written [3] as: 

A(r(t)) ~ e·N~"E"' 

(3-8) 

where Eq denotes expectation with respect to the random variable q, and rn is the 

aforementioned complex envelope at the nth symbol interval. 

To distinguish between theM~ 2 hyppthesis (BPSK) versus any other M ~ 2"' ~ 4, then 

the LR [3] is: 

A(r(t)l BPSK) 
,[ - I: -I: +4I: [ s ~( y 2 ] 

A(r(t)l MPSK) M>< 
0 N5 1 

Q IQ 

(3-9) 

And the statistic qLLR can be utilized as a classification module between, say, BPSK and 

QPSK, where qLLR [3]: 

(3-10) 
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The phase-based rule is actuully an approximate version of the qLLR. 

3.3 q LLR Classilier Performance 

The standard measure of performance in this problem is the probability of correct 

classification Pc. Assuming that the prior probability of occurrence of BPSK and QPSK 

is the same, then for a BPSK/QPSK classifier, we have [3]: 

[ J 
Pr[212]+Pr[414] J:. = Pr correct class. = ==::L:-=-:.L'-" 

2 
(3-11) 

where Pr [M!M]; M = 2, 4 is the probability that the classifier will declare MPSK 

modulation given that this indeed is the correct modulation embedded in noise. Typically 

Pr[2/2] > Pr (4/4]. 

Since the qLLR is not a function of the carrier phase Be and the rotational phase 80, but 

only a function of phase differences, we can assume that Bo = Be ::: 0. Let G[x; mx, a/] be 

the one-dimensional Gaussian density function with mean mx and variance a/, then the 

Gaussian-mixture probability density function (pdt) [3]: 

(3-12) 

ForM= 2, 4, the Gaussian random variables r1,n and rQ,n are uncorrelated, and their joint 

density function as in [3] is: 

G.;,k,, ;.J2m"u2 Ph.,;O,u'] 
( ) 

(BPSK) 
pr,,,,rQ,, = [ ln [ ] 

Gmu r1,,;m,.a
2 

Pmix rQ,,;mQ,a
2 
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where 

The pdf expression for q = qLLR as in [3]: 

I ..! +q (FriX) fmK(q)=-exp-1,- ;q<:0(3-14a) 
2V -2V V 

where 

, 4N( I) ..t=N-;V=- 1+-
Y., Ys 

(3-14b) 

and forQPSK 

JQ,,K(q)= ~exp[-(! +i)~}o[G <)~} 
q<:O (3-15a) 

where 

(3 -15b) 

For small input SNR (y, « 1), (3-15a) can be approximated as in [3] by: 

I (-q) fQPSK(q) "'-;;exp ---;; ; q<:O (3-16) 

It is possible to predict perfonnance analytically from the density functions derived. 
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3.4 The qLLR Approach 

The LR approach is conceptually straightforward and systematic, it provides insight into 

the problem, and more significantly, it suggests structures that operate directly on the 

sampled outputs of the quadrature matched filters. It is of theoretical a"i well m; practical 

significance. It assumes a perfect knowledge of the symbol pulse shape at the receiver's 

front end so that perfect matched filtering and sampling can be performed. So pulse 

shapes other than rectangular can also be accommodated. LR methods are well equipped 

to address MPSK classification forM~ 4, whereas spectral~correlation methods are not. 

Page 68 



4. Signal Classification using Statistical Momenl• 

In this section, a moments-based algorithm to classify general M-ary PSK signals (M;2(\ 

a=O, I, 2 ... ) is introduced. Soliman & Hsue developed this algorithm in [4]. 

4.1 Developernent 

The signal component of the received signal s(t) is assumed to be either CW or MPSK, 

and it contains the phase information. The noise component is an additive white Gaussian 

noise, w(t), with zero-mean and power spectral density. The phase information can be 

extracted and represented as in [4]: 

¢.(i) = B .(i) +v(i) -oo < i < oo. -Jr < ¢.(;),;; Jr (4-1) 

where Ba(i) is the sampled phase component of the transmitted MPSK signal s(t) and v(t) 

is the random phase attributed to the received noise w(t) and any other measurement 

errors. Also ( ¢a(i)] and ( Ba(i)] are assumed to be independent and identically destributed 

with zero-means. 

4.1.1 Probability Density Functions 

The probability density function of the phase ¢o for a CW signal of amplitude A, in which 

a= 0, is given by Bennett (1956), cited in [4] is: 

where 
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Q[x] = -
1 j e-.>'"cly 

2,-
' 

A' r=--, 
2a~. 

(4-3) 

(4 -4) 

Assuming that crw2 ~ 0, equation (4-2) above can be approximated by Tikhonov 

probability density function according to Leib & Pasupathy ( 1988) cited in [4] as: 

(4-5) 

where /0[.] is the zero-order modified Bessel function of the first kind. This 

approximation is good for y > 6 dB and fair for values of y around 0 dB. For values above 

6 dB, then equation (4-2) can be approximated by a Gaussian pdf a> in [4]: 

(4-6) 

This approximation is quite accurate and simple and thus would be used here. Then for 

equally likely M phases, the pdf of lia as in [4]: 

I 2" 

f 0(y:a) = 
2

" L;o(y- 'l,(a)) 
k=l 

(4-7) 

where 17,( a) is the phase of kth phase states and can be expressed as [4]: 

(2k-2"-!) a 
'l,(a) = 

2
• k =I, 2, ... , 2 a=O, ... ,Iog, M. (4-8) 

The pdf of the ¢a is then as in [ 4]: 
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l 2" 

f,(.v:a) =---;;-Lf,(y- q(a)) 
2 k"l 

=-1 fexp[2ycos(y-q,(a))] 

2" ,., 2tri,[2r] 
- tr ~ y < tr. (4-9) 

If pdf is plotted against the phase angle, there would be some peaks in the graph 

indicating the number of signal phase states. Those peaks are related to the CNR, 

decreasing CNR causes the peaks to smear off until finally the pdf reaches that of a 

uniformly distributed random variable, and fly: a) approaches l/2tr as CNR goes to -oo 

dB or a goes to oo. 

4.1.2 Ensemble Moments 

Let !,[.] be the modified Bessel function of the first kind and order k, then the nth 

moment of ¢a. in the presence of noise can be expressed as [4]: 

( ) _ {....:::.__+ . 1 
[ ] f:t1,[2y]. f y" cos(k(y -1]1(a)))dy, 11 eve11 

mn a - n + 1 2 Jd 0 2y i=l k=l -rr 

~ ~~~ 

(4-10) 

Even moments of ¢w is a monotonic increasing function with respect to a. according to 

[4]. They can be used as a feature to classify CW and general MPSK signals. Signals with 

large M may require higher order moments to discriminate between. 

4.1.3 Measured Moments 

Page 71 



Input Signal 
r(t) 

Phase frh T,, Ou 

Extraction 

¢, 

Moments 
Moments 

Number or 

order n Computation samples L 

m'~(a) 

Theshold Set of 
Comparison "t,reshold 

Decision 

Figure 4·1 Block diagram of the MPSK classifier using moments. 

The unbiased sample averages of even powers of the extracted phase is given my [4] as: 

(4 -II) 

where Lis the number of observed samples in a finite intervaL 

Let the pdf of m,.(a) be a N(!l,(u), cr,(u)) where as in [4]: 

,u, (a)= E{m,(a)} =_I_± E{¢;(i)} = m, (a) 
L /=I 

(4-12) 

and 
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(4 -13) 

This suggests that since the random variables in the pdf have means that are monotonic 

increasing functions of a, then they can be used as a discriminating feature to cla"isify 

MPSK signals. Figure 4-1 shows a block diagram of the MPSK classifier using moments, 

[4]. 

4.2 Statistical Moments Classifier Performance 

Based on the densities of the phase moments, a hypothesis testing problem may be 

formulated so as to evaluate the performance of the statistical moments classifier 

performance. This hypothesis testing problem can be formulated [4] as: 

H0 :pdf of 1n,(O) = N(,u,(O),O',(O}) 

H,: pdf of m, (1) = N(,u. (1), a" (1}) 

H. :pdf of m, (a)= N(,u, (a),a, (a)) 

A simple test can be made as [4]: 

m,(a)<Tl 

Ta <r1zn(a)<Ta+l 

CW signaling. 

MPSK signal, 

T a is given in equation ( 4-16) as in [ 4]. 
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Jl,(a-l)a;(a)- p,(a)a;(a-1) 
T. = '( ) '( ) + a,a-a,a-1 

[ 
2 ]"' a;(a-l)a.,(a) (p,(a)- p,(a-1)} +(a;(a)-a;(a -l))ln(a;(a)la;(a -1)) 

a;(a)-a;(a-1) 
(4 -16) 

The quality of the classifier can be measured using the nth moment, in terms of two 

probabilities ofmisclassification as in [4]: 

Pe(n,O) = Prob{ misclassificationl H0 } 

= ], N(p,(O),a ,(O))dy = f; ~ J~iO)] (4-17) 

and 

Pe(n,a) = Prob{misclassificationiH.} 
T, • 

= J N(p,(a),a,(a))dy+ J N(p,(a),a,(a))dy 
-oo To+! 

= Q[p,(a)- T.] + Q[T••' - p,(a)]· 
a,(a) a,(a) 

(4-18) 

For each value of L, there is an optimum value of 11. Increasing n would result in 

increasing the variance and the probability of classification. 

4.3 The Statistical Moments Classifier 

The statistical moments classifier has been developed to classify CW and MPSK signal 

with M = 2a. The nth moment is a monotonic increasing function of a, and there is an 

optimum value of n for the best performance. The performance of this classifier is not 
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better than that of qLLR, but the qLLR is limited to in a way that it is only valid for low 

CNR less than zero, and can discriminate between BPSK ami QPSK signals only. The 

statistical moments classifier is better th.an the Square Law Classifier (SLC) for positive 

values of CNR, and also better than Phase-Based Classifier (PBC) for all values of CNR. 
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S. Classification of Signals in Unknown lSI Environmenl'i using 

the Average and Generalized Likelihood Ratio Test 

Lay & Polydoros have developed two classification techniques for digitally modulated 

signals affected by intersymbol interference (lSI) in [5]. In an lSI environment, the 

received signal is degraded by intersymbol interference because of a finite impulse 

response (FIR) channel and AWGN. The carrier phase and channel coefficients are 

assumed to be known or can be obtained. For a transmitted sequence a, the structure of 

the observed receive sequence is then as in [5]: 

L-1 

rk = Ltz,.ak-n +nk 
•• o 

(5 -I) 

For a known channel impulse response, two different likelihood based tests are 

developed, the Average Likelihood Ratio Test (ALRT) and the Generalized Likelihood 

Ratio Test (GLRT). 

5.1 Average Likelihood Ratio Test 

The lSI channel is assumed to be known. An N symbol long sequence is received from 

one of two constellations, Co and CJ. whose occurrences are assumed to be equiprobable. 

The a priori probabilities are given by the inverse of the constellation size. By averaging 

over unknown parameters, the average posteriori densities should be found so as to form 

a likelihood ratio test as in [5]: 

pr(riC,) = f,pr(rla,C, )p(aiC, )da 

= (pr(rla,C,)p(aiC, )) "c 
' 

where, 

(5-2) 
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,.._ .. _·. ,, ___ -

{ ) .ac: = average over all data sequences bz Ci. 
' 

The standard maximum a posteriori decision rule is given by [5] as: 

H, 

A(r)= pr(riC,) > I]= P(C,) 
pr(riC,) < P(C,) 

(5-3) 

H, 

The joint density of a received sequence which has been corrupted by an lSI channel of 

length L [ 5]: 

pr(ria) = p(rN ,rN-i' ... ,r,ia N, .... a,) 

= n:.,p(r,la,, ... ,a,_,,,) 
where, ak = 0, k:::;; 0. 

(5-4) 

In order to compute the average likelihood, the likelihood function for the IC;IN data 

sequences for each constellation must be calculated. Then it can be calculated as in [5]: 

(5-5) 

where, 
J 2 -Np.r,-£.1.Dh1.uJ.1-l 

( )

! 1 [ "<"''' ]' 
p(rklaJ.k''"'aJ,k-L+I)= trNo .e 
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5.2 Generali1.ed Likelihood Ratio Test 

A generalized likelihood ratio test (GLRT) is given by [5] as: 

(5-6) 

max 
where, pr(rlo ML(C,)'C') =a e C, pr(rla,C,) and, ~"threshold 
aML(Cj) =Max. Likelihood Data Sequence Estimate of ome/lation C; 

To calculate the test statistic, the maximum likelihood estimate of the data sequence is 

required. This estimate can be obtained using the Viterbi algorithm for known channels. 

For two modulations, Co and C1, and an L length channel, the GLRT is given by [5] as: 

(5-7) 

The simplified log generalized likelihood ratio appears as given by [5]: 

(5-8) 

The performance of the GLRT is suboptimal compared to ALRT, but it has some 

implementation advantages over it. Computational and numerical precision problems are 

avoided and the knowledge of the noise variance is not required. 
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5.3 ALR'f and GLRT 

Two classification techniques for digitally modulated signals affected by intersymbol 

interference have been developed, the Average Likelihood Ratio Test (ALR'f) and the 

Generalized Likelihood Ratio Test (GLR'f). The initial development of the cla>Sification 

tests is derived assuming a known-channel impulse response. In an unknown lSI 

environment, per-survivor processing (PSP) is employed. " PSP is a technique for 

estimating both the data sequence and the unknown parameter of a communications 

signal which exhibits memory" [5]. Both likelihood based classification tests indicate 

substantial potential in discriminating between three different 16-ary symbol 

contellations. The ALRT produces better performance than GLRT. ALRT requires 

knowledge of the signal power and the noise variance of the channel. Through the use of 

the Viterbi algorithm in GLRT, the decision statistics computation is reduced. 
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6. Digital Quadrature and Offset Modulation Classification 

by LF and Mth-law Classifiers 

Hwang & Polydoros developed two approaches for the classification of QAM and 

OQPSK signals in [6], the likelihood functionals (LF) and the M'"-Iaw cla,.ifiers. 

Optimal solutions to a variety of classification problems can be provided by the 

likelihood-ratio tests. The M'h·law, M = 2. 4, 8, ... , is based on the signal's properties to 

classify between MPSK and M'PSK, where M' > M, by detecting the presence or 

absence of a spectral line around the M1
h multiple of carrier frequency. Some assumptions 

are made as follows: 

• An A WGN channel with a two sided PSD of (Nr/2) W /Hz. 

• Symbol timing is known. 

• The carrier frequency is known. 

• An observation time of NTs seconds (T~ is the sample time). 

6.1 Likelihood Approaches 

A two dimensional modulation scheme whose constellation S' k can be any set on the 

complex plane, is represented in [6] as: 

(6-1) 

The power of the signal is adjusted to S by a normalizing factor [ 6]: 

The carrier phase B" is modeled as a r.v. uniformly distributed in [0, 21!"], and ur,(tJ is the 

standard unit pulse of duration T, seconds. 
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The log-likelihhod functional (LLF) of the observation r(t) with respect to the signal st) in 

AWGN is given in [6] us: 

where,< > St : averaging w. r. t signal constellation 

< >8 :averaging w.r.t carrier phase. 
' 

For specific cases, the following results can be obtained [6]: 

6.1.1 MPSK 

An approximate version of the LLF for MPSK is given as [6]: 

'p ( M M/2 J rs - N 2 rs N 

/MPSK ~I-( ')' (N) Iji;,j'' + M' -N ) Diil" 
p=l p. 0 k=l . 0 k=l 

- . J,"' () "' -}2~· where, rk = r1 k + Jr.Qk = r t ."'/2e 'dt. 
' ' (k-l)Ts 

MPSK and M'PSK can be distinguished by the statistic as in [6]: 

(6- 2) 

(6- 3) 

(6-4) 

A BPSK signal can be distinguished from MPSK signals (M 2: 4) with q2• A recursive 

algorithm for calculating the statistic qM is [6]: 

A -A' B2 ·A -M,k - M/2,1:- Ml2,k • l,k - rl,k 

BM.fc = 2AMI2,k'BMI2.k; B~,~, = rQ,k (6-5) 
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For large N, the arguments of equation (6-4), can he approximated by jointly Gaussian 

random variables. For small SNR (ys « I), then the pdf for q = qM2.(T/syM12 is given in 

[6]: 

J::,'SK(q) = o I exp( N' +q )1,(../q) 
-NV., -2NV., VM 

where 
M (M!)' -1 

V,~~ = L, , .y$ 
1-1 21!((M -/)!]" 

These pdfs can be used to express the probability of correct classification. 

6.1.2 QAM 

An approximate version of the LLF for QAM is given as [6]: 

1-121(-)'-21 I l;e ~-~21(-)r-21 where, S1 S1 =- . S1 S,. . Q r=l 

The recursive algorithm (6-5), is generalized when M is odd as [6]: 

AM,k = AM-U:'J,k - BM_l,k,Q,k 

BM,k = AM-I,Jo/Q,k + BM-I,krl,k 
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The pdf expressions (6-6), can also be generalized for all QAM signals, and the correct 

probability of classifying QAM1 and QAMi by the lJM rule is [6]: 

(6-9) 

(s,( 
a!1,,1N ~0 
V , t;,, = ; aM.,= (is-.i')M"; 

M.l/ NVM.q --., 
'7=i,j 

6.1.3 OQPSK 

Similarly, an approximate version of the LLF of OQPSK given by [6] is: 

~ (.JS)2

p ~ 8m f ~-~2(p-m)(_ )'" ( )"I- 12(p-m)(_ )''" 
IQPSK ~~( No ~((p-m)!(p+m)!.lf,;t(r, r, + -1 '""'·' r,"'·' )I]} 

= :g {~[lr.l' +lr;'"'··l} ~(i';)' -(r;,",..)' }+... (6-10) 

J(k+112)T> ( ) r;; .,.,. 
where, ;:;tag k = r t . ..y 2e- 1 c/ dt. 

' (k-112)Ts 

For classifying OQPSK versus QPSK, the statistic is used as [6]: 

N 

q.,, = L(r; )'- (r;,,..)' (6-11) 
k=l 
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And the correct probability of classifying OQPSK and QPSK by the q·""' rule [6] is: 

p 0
Qm =_1_[1-exp(- T, )+Q( fN, [T,;)] 

'! ... ~·' 2 2NVQ V4Yo VNv; (6-12) 

6.2 M'h -law Approaches 

According to Hwang& Polydoros (1991), a sufficient and necessary condition for 

generating a spectral line around Mfc after an M111-law transform for a QAM signal is that 

the expectation (Si)M is not zero, which becomes part of the coefficient of the qM term in 

the LLF of QAM. This result is summarized in the following lemma [6]: 

"When applying a QAM signal to an Mh -law device, a spectra/line is present around the 

Mfc-band iff the LLF of this QAM signal contains the qM tenn. " 

To classify between two QAM signals, more than one M can be found, by choosing the 

smallest value of M so as to reduce the variance of the qM statistic. 

The correct classification probability is [6]: 

M lsr- (s,tj' ~M 2'-'(M!)'(o.9o3sa,r.J'u, 
VM =a { + 2 }, TJ=i,j 

'' ' 2 ,., k![(M-k)!] 
(6-13) 

where, 
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- 2(M-k) - M-A ""; M-* 
U, = ls,,l - (s,,) P, + (s,,) S, ( 'J 2 

[ ( )]' ( ' t sin 21Z}' 1 "' sin x 
P, = 2J (1-jyl)dy; s, = -f -) dx. 

-1 2ny 1r -"' X 

6.3 qM·Iype and M''·law Classifiers 

Both methods share some similarities in tenus of implementation and performance. The 

qu classifier could be interpreted as a synchronous, pulse-shape matched-filter, M111-law 

classifier. 

The correct classification probability can be approximated by the Gaussian-tail integral 

(Q-finction) in a low SNR environment as [6]: 

(6-14) 

where, (b, c)= (2, I) for qM and (b, c)= (SM, 0.452) for M11'-law. 

The gain of the qM classifier over the M11'-law classifier, which is the additional SNR 

required by the M'h -law classifier to achieve the same performance as the qu classifier is 

[6]: 

10 ( 2 ) G,,=3.45-Miog SM 

The qM theory is reasonable at low input SNR and can be extended to medium SNR. 
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7. Modulation Classification of MFSK Signals using 

the Higher-Order Correlation Domain 

In this section, a class of classifiers that use higher-domain correlation (HOC) proposed 

by Beidas & Weber, [7] & [8], are discussed. Different cases that exhaust all possible 

relations between symbol duration and bandwidth are considered. These classifiers are of 

the synchronous kind that they assume perfect knowledge of the signal arrival. 

7.1 Same Symbol Duration 

Comparing the difference between the associated log-ALF rules can classify between 

MoFSK and M1FSK. The optimal statistic to be compared to a theshold is given by [8] as: 

N ( ).1;1 + ).1;1 J 
zopl:::: Lin 1+ I. (i) u 

i=l AM 
(7 -I) 

where, 

M, 

).(;) = I: I ( .J2S IRUI 1) (7 -2) L 0 N 2m-J 

m=-~+1 ° 
2 

M, 

).1•1 - t I ( .J2SIRUI 1) (7 -3) M- 0 N 2m-J 
m=- Mn+l 0 

2 

M, 

).UI = t I ( .J2S IR1'1 1) (7 -4) U 0 N 2m-1 
m=Mo+l 0 

2 

m 

R(il:::: f-r. r(t)e -i
2
" 2r.'dr (7 -5) 

m (H)T, 
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and N = rn:,(number of observed symbols). 

The optimal classifier is in the frequency domain, and requires the evaluation of the 

Fourier spectrum of the received waveform at a set of candidate frequencies, that are then 

separated into two sets. A set of those used by the M0FSK and those that are not. 

In a non-channelized approach, the signal frequency band is divided into three sub­

bands., lower, middle and upper sub-bands. Three parallel streams of data is extracted 

from the received waveform r(t) labeled r'L(t), r'M(t) and r'ult), each having its spectral 

content solely within on of the sub-bands. 

Defining: 

i)Ul(t)=ij(t+(i-1)7;); j=L,M,U (7 -6) 

as given by [8], then the resultant per-branch per-symbol discrete-time sequence, [8], is: 

j=L,U (7 -7) 

-(;)[k]- -(1)( k ) ru -rM -
B, 

(7 -8) 

where, (B 1-B0)12 is the sampling rate for the lower ami upper sub-bands, and B0 is for the 

middle sub-band in complex-valued samples I sccc"ct. The per-symbol correlators 

through which each branch is processed [8]: 

Mt-Mo_1_
1 

cfl[i]= B =B 'L: r}'l[k]'rLI'l[k+l]; 
I 0 k .. O 

l 0 
M,-M0 == ,1, ... , -1 

2 
(7 -9) 
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I Mo-l-l 

c<•l (I]=- "' pi'1(k]' r1'1(k +I]; 1,.11 B L... M ,\1 I=O,I, ... ,M0 -I (7- 10) 
o k"O 

M 1 -M0 I= 0,1, ... ,----- I 
2 

Classification which utilizes 2""-order correlation domain, another correlator on the 1st 

order correlation sequences is used to generate c0>2J[l] fori; l, 2, ... , N andj = L, M, U. 

The family members of the HOC-based procedure are: 

• The l 51-order correlation-based classifier Z1 given by [8] a-;: 

N ( 28 rlil + .rli) J z ="In l+ o '='I.L Si.u 
I L...J (i) 

i=l Bl - Bo Su.t 
(7 -12) 

where 

<•I "'I ('I[ ll' r;,,1 = L.., c,,1 I . 
I 

(7 -13) 

is the energy of the I "-order correlation of the ith symbol in the jth branch. 

• The 2"' -order correlation-based classifier of the first kind [8]: 

zj•l =Lin I+ 28, ",,L ~" w N ( rl'l rliJ J 
1=1 Bt - Bo .si.M 

(7 -14) 

where, 
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(7-15) 

• The 211u -order correlation-based classifier of the second kind [8]: 

z,<'l = 'V In I+ 0 .,,, -·" 
N ( 28 n(;) + 17~) ) 

~ {i) 
i=t Bt - Bo '12.111 

(7 -16) 

where, 

(7 - 17) 

is the energy contained in the 2"d-order correlation domain of the ith symbol in the jth 

branch. 

The energy-based classifier is used for comparative purposes and is given by [8] as: 

(7 -18) 

It ensemble mean and variance are [8]: 

E{Z.IH0 } = -Ny ,( ~o - ~,) (7 -19) 

VAR{Z IH }= )~o- ~,) 
• 0 ( )' +2y, _I ___ I_ 

M0 M, 

(7- 20) 
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E{Z,IH,} = 0 (7- 21) 

( ( )

2 
I I I I M 

VAR{Z,IH,}= N[ ---)+(2r, +r;)x --- " I 
Mo Mt Mo Ml Ml- Mo 

(7- 22) 

7.2 Same Bandwidths 

Assuming that M, = 2Mo, and Ts.I = 2T.r.o = 2T.r. and letT= NT.1, then the optimal statistic 

is [8]: 

(7- 23) 

where, 

Mu 

ri;J =-1 ~ I (.fiSIRI•I 1) 
~ M L...J o N o.2m-t 

0 m= -Mo+l 0 
2 

(7- 24) 

(7- 25) 

II) J,iT.r _()-j211'2;rdt 
R = rte ' O,m {H)T, (7- 26) 

m 
(,1 J2i1;. ... ( ) -J21Ta'd' R = rte • 
l,m 2(H)T, 

(7- 27) 
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In a non-channelized approach, the tone gent:rated by the signal under hypothesis f/1 is 

twice as thin and four times as tall in the spectral domain than that under the llo 

hypothesis. A pre-processor is used to demodulate the olJservation down to baseband and 

then it is put through on ideal low-pass filter of bandwidth B/2. The resultant is sampled 

at B (complex-valued samples/second), and processed through a per-symbol corr'.:!lator 

operating at the ith symbol to produce as in [8]: 

1 M0-l 

ci'i[l] = _ "' ;lil[k]' fl'i[k + 1]· 
1,<1 B L..J II <I ' 

where, 

k=O 

;;;i'l[k] = r[k + (i -l)M,] 
r,lil[k] = r[k + (i -i)M,] 

l=O,l, ... ,M0 -l 

I= O,l, ... ,M, -1 

(7- 30) 

(7- 31) 

A family of HOC-based procedures is obtained as [8]: 

• The 1 s1-order correlation-based classifier Z1: 

zl =-Lin ~[,II i) Si,a 
N/2 (r(2

i-1) X y{2i) J 
i=l ~.a 

(7- 32) 

where, 
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M,-1 .., 

ri•l = l+a ci'i[O]+ a, " jci'1[t]j" (7-33) 
., '·" I ],,, B L..J 1.<1 

/ .. -(Mn-1) 

where a1 and a2 are some constants. 

• The 2nd-order correlation-based classifier of the first kind: 

z~~~ = _ Ltn s i.a i) s i." 
N/1 ( ,.(21-1) X ,.(21)) 
i=l ~2.1> 

(7- 35) 

where, 

i = l,2, ... ,N,and aJ is a constant. (7- 36) 

I M -J • 
,.{i) ,.{i) ~ i'i[ ( i•l [ l) ~i.h=r,l,;,+-a 3 L c1;,l]c1.;,l 

B / .. -(M,-1) 

(7- 37) 

• The 2"' -order correlation-based classifier of the second kind: 

N/2 ( ni21-l) X ni21)) z<2l =_"In .,2,1l 't2.a 
2 £...J - (1) 

i=l 'h.b 
(7- 38) 

where, 

l 2(M0-J) 2 
nil) = ;{i) +-a " lei') [z"d 
't2,a ':7i,a B 4 .L..J 2,a Jl 

1=-2(Mo-1) 

i = 1,2, ... , N, and a 4 is a constant. (7- 39) 
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(7 -40) 

The energy-based rule cannot be used in this case (same bandwidths case) as a 

classification alternative. One more correlation computer stage needs to be employed to 

produce 3rtl_order correlation-based statistic ZJ. 

7.3 The HOC-based Method 

The HOC-based method delivers a performance which tightly lowerbounds that of the 

optimal likelihood-ratio test and it posses an immunity to imperfect knowledge of exact 

frequency locations. The perfonnance of Z3 is very close to that of Zopt and thus using 

HOC of higher than the third degree will not be commensurate with the effort. 
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8. Modulation Classilication using a Neural Tree Network 

In this section the Neural Tree Network (NTN) classitier for estimating modulation type 

for digitally modulated signals is considered. This classifier implements a sequential 

linear decision strategy and does not require statistical analysis of the features. The 

features are obtained from an autoregressive model of the signal. The modulation types 

considered here are continuous wave (CW), phase shift keying (PSK), and frequency 

shift keying (FSK). Farrell & Mammone proposed the NTN classifier in [9]. 

8.1 Feature Extraction 

The modulation types considered have the general fonn of: 

(8-1) 

where A is the amplitude, m, is the carrier frequency, Bis the phase, and 1/{k) corresponds 

to the modulation type as follows [9]: 

¢(k)= 

0 

O,n: 

11: 
0,±2,1r 

±m dk 

w, 
±-k,±w,k 

2 

cw 
BPSK 

QPSK. 

BFSK 

QFSK 

(8-2) 

where, md is the frequency deviation for the FSK modulation type. 

The instantaneous frequency is derived using the autoregressive approach so as to 

determine the modulation types in equation (8-2). The autoregressive method used here is 

Page 94 



I 
the autocorrelation method, an alternative to Fourier analysis for obtaining the frequency 

spectrum of a signal. Estimates of the autocorrelation terms of an input signal of x(k) can 

be found by [9]: 

M 

Ru(k)= 2;x(n)x(n+k) (8- 3) 
••• 

where M is the number of samples in the analysis frame. The parametric model of the 

spectrum is obtained from solving [9]: 

k .. (o) k"(!) R .. (N-1) a, k,.(!) 

k .. (l) R.,(o) R.,(N -2) 
. 

a, 
= 

Ru(2) 
(8 -4) 

. 

R (N-1) R (N-2) ... .u .u k.,(o) aN k.,(N) 

where the vector a represents the polynomial coefficients whose inverse best fits the 

frequency spectrum, and whose Z-domain expression given by [9] is: 

and the corresponding factored form is: 

n""(l- . -')(!- ~ -'). i=l z,z z, z 

The frequency F1 and the bandwidth BW1 for a sampling frequency of F., within an 

analysis frame are given as [9]: 

F, = F, tan-' [Im(Z, )] 
27Z' Re(Z,) 

(8-5) 
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F ( I ] BW, = --' !Olog 10 , , • (8- 6) 
" tm(z,) +Re(z,r 

The statistics of these features can be used for cla~sification of modulation type. The 

standard deviation· of the instantaneous frequency (IF) for example can be used to 

distinguish between FSK and non-FSK signals. The standard deviation of the 

instantaneous bandwidth (!B) can be used to separate CW and PSK signals. The first 

order difference of the instantaneous frequency can be used to distinguish between BPSK 

and QPSK, and also BFSK and QFSK signals and it is given in [8] as: 

M(k)= F(k)- F(k -l) (8-7) 

The feature vector to be used by the classifier is: 

(8-8) 

8.2 NTN Algorithm 

NTN uses a tree architecture to implement a sequential linear decision strategy. Each 

level has some nodes. Each node corresponds to a decision and uses an exclusive subset 

of the training data. Each node consists of a maximum of five neurons corresponding to 

the five modulation types in this ca•e. 

The feature vector is applied to the root node of the trained NTN. The output of each 

neuron is computed, and the selected path corresponds to the neuron with the largest 

output. This process goes on until the feature vector arrives at a leaf node where it is 

assigned the label of that node. 
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An M-class NTN is trained by training a neuron for each class in a binary fashion, in 

which the data for the class corresponding to that neuron is labeled 'I' and for other 

classes as u '0'. For the training a gradient descent algorithm is used where the neuron 

output is found by [8]: 

y, =!((< w.x, >)) (8-9) 

where, 

(8-10) 

is the sigmoid function. An error mea"iure is [9]: 

(8- II) 

where t1 is the target label(' I' or '0'). 

The gradient of an error function is evaluated with respect to the weights to obtain the 

weight update according to [9]: 

W''' = w• -A. aE, 
aw• 

where A. is a scaling parameter and 

E, =It,- y,j 

(8 -12) 

(8- 13) 

The update equation for the weight vector is [9]: 

W"' =W' -A.y1{1-y1)sgn(c1)X1 (8 -14) 
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where for a positive E, sgn(E) outputs a (+I) and a (-I) otherwise. 

8.3 NTN Classilicalion 

The neural tree network is a self-organizing, hierarchical classifier that implements a 

sequential linear decision strategy. It has several advantages over the traditional statistical 

and decision tree based approaches. It does not require information regarding the 

statistical properties of the features. According to Farrell & Mammone (1993), both the 

NTN and decision tree are applied to several experiments for classifying the modulation 

type of digitally modulated signals. The NTN performs well for CNRs as low as I 0 dB 

besides consistently outperfonning the decision tree. 
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9. Automatic Modulation Recognition using Neural Networks 

Automatic Modulation Recognition (AMR) approach using back-error propagation neural 

networks are introduced in this section. This approach is ba~ed on the characteristics of 

modulated signals that have the general form as in [ 10] of: 

s(t) = A,.A(t )co~27ifJ + q>(t) + 1}0 ), (9 -1) 

where A(T) is the signal envelope, q(t) is the zero phase, A, controls the carrier power, f, 

is the carrier frequency and 80 is the initial phase angle. The baseband message 

determines A( I) and q(t) according to the modulation type. 

9.1 Classification Algorithm 

Preprocessing is used first to remove noise and irrelevant infonnation from the signals. 

Spectral techniques were chosen for preprocessing due to the nature of the signals 

considered. 

Inspired from the biological neural system, an artificial neural network is a set of 

interconnected computing units (neurons), organized in a layer structure. Two layers are 

usually sufficient, and the first layer is called hidden as it is in between the inputs and 

outputs. Typically, the network is fully connected, each unit in any layer is connected to 

all units in all layers before and after. In backpropagation networks, an input vector is 

presented to the network, the output is computed and then compared to the desired output 

generating an error signal. This error signal is propagated backwards updating the 

weights. The aim of this is to minimize the squared error between the generated and 

desired outputs. 

Choosing the right number of hidden layer units is very important in successfully 

applying the backpropagation networks to a problem. This can be achieved by a pruning 
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network technique devised by Cun, Dender & Solla ( 1990) cited in ( 10], called the 

Optimal Brain Damage (OBD), and is based on the second derivative of the error 

function. OBD works a.< follows: 

Let u,(n) be a weight in the network (10]: 

u,(n)=wi1(n) forall(j,i)EV., 

(V, is a complete set of index pairs). 

Haykin cited in [10] defined a1,(n) as the perturbation in the value of parameter u,(n). 

The Taylor series expansion of the network error E(n) given by [10] is: 

oE(n) I , I 'I;" 
oE(n)= I ( )u,(n)+-L;h,.(n)ou;(n)+-L:L.."J,(n)ouj(n)Su,(n)+ ... 

Jt. Ouk n 2 k 2 1 kJ;<k 

(9-2) 

where hi,(n) is the jk-th element of the Hessian matrix of E(n) given in [10] as: 

(9-3) 

If E(n) is quadratic around the minimum and the weights are detected after the network 

has converged, then (9-2) can be simplified (10] as: 

I oE(n) =-L;h.,(n)oui(n) 
2 k 

(9-4) 

A "saliency" measure is proposed for the weights whose saliency is below a certain 

thershold are deleted until a satisfactory perforroance level in attained. The saliency is 

given in (10] as: 
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(9 -5) 

Extensive experimentations are required to determine the saliency threshold. A small 

value results in a limited gain while a large value results in a sharp decrcac,;e in 

perfonnance. 

9.2 Backpropagation Neural Network Classifiers 

Backpropagation neural network classifiers were implemented for the AMR problem 

according to [10] with 10 signal classes. Regular periodogram, Welch's periodogram and 

bispectrum preprocessing paradigms were investigated. The best performance wa.;; that of 

the truncated scaled-log Welch periodogram spectrum estimator of 98.6%. 

This technique was compared with the k-nearest neighbour classifier (k-NN), which is a 

modification of the Parzen-window estimator for arbitrary density functions. It 

determines which density is larger than the others at a given point. It can be concluded 

from the comparison between the two methods that the optimum backpropagation 

networks gave lower error rates on a test set over most classes and a lower overall error. 

The disadvantage however is that the training time is 3 times of that required to compute 

!-nearest neighbour in the k-NN method for 10000 test points. Once a network is trained, 

forward passes for strict classification is faster. 
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10. A Decision-Theoretic Approach and Artificial Neural 

Algorithmli for Modulations Recognition 

Two algorithms for analog and digital modulations recognition are introduced in this 

section, a decision-theoretic approach and an artificial neural network approach (ANN). 

Both algorithms were introduced by Nandi & Azzouz (1998), in [II]. 

10.1 The Decision-Theoretic Approach 

In this method, the intercepted signal frame of length K is divided into M (= Kf.IN, where 

fs is the sampling rate) successive segments of Ns = 2048 samples in length each. This is 

equivalent of 1.76 ms. 

10.1.1 Classification of Each Segment 

Key features extraction and modulation classification are required to discriminate 

between different types of modulation from each of the segments available. 

A) Key Features Extraction: 

Only the signal spectrum symmetry feature is derived from the RF signal spectrum, while 

all the other key features are derived from the instantaneous amplitude, phase, and 

frequency of the intercepted signal. The key features used in the proposed modulation 

recognizer are: 

I. The maximum value of the spectral power density of the normalized-centered 

instantaneous amplitude Ym"'' given by [II] as: 
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r ""' ~max DFr( A'" (i)J' IN, (10-1) 

where, AruOJ is the value of the normalizedwcentered instantaneous amplitude at time 

instants t ~ ilj;, in which the i ~ I, 2, ... , N,, f, is the sampling rate (1200kHz), as 

given in [12]: 

(10- 2) 

where, 

(10- 3) 

is the normalized instantaneous amplitude at time instants t = i!f~, and ma is the 

average value of the instantaneous amplitude over one frame given in [12] as: 

(10-4) 

2. The standard deviation of the absolute of the nonlinear component of the 

instantaneous phase in the nonweak segments of a signal fTop· 

(10-5) 

where ¢Ndi) is the value of the non-linear component of the instantaneous phase at 

time instants t= i/f, and Cis the number of samples in { ¢Ndi)} for whichA,(i) >a,. 
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3. The standard deviation of the direct value of the nonlinear component of the 

instantaneous phase in the non weak segments of a signal (jdp· 

(10-6) 

4. The ratio P, which measures the spectrum symmetry of the RF signal, given in [llj 

as: 

(10 -7) 

where, 

p = -vJ .. X (')' 
L L.Ji=l cl • 

and lfc, +I) is the sample number corresponding to a carrier frequency of !50 kHz). 

5. The standard deviation of the absolute value of the normalized-centered instantaneous 

amplitude of a signal "'""' given by [ 13] as: 

(10-8) 

6. The standard deviation of the absolute value of the normalized instantaneous 

frequency of a signal a,1or Ojo given by [13] as: 

(10- 9) 

where 
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J.,(i)=[,.(i)lr,, 

J,(i)=J(i)-m1 : m1 =-
1 

±J(i), 
N; .. 1 

and n, is the bit rate. 

7. The standard deviation of the normali7cd-centered instantaneous amplitude in the 

nonweak segment of a signal defined a< in [II]: 

(10-10) 

where Lis the number of samples in {C.,(i)}for which the band-limitation is more 

affected on the intantaneous 

amplitude of the band-limited PSK2 and the band-limited PSK4 signals. 

s. The kurtosis of the normalized instantaneous amplitude 

given in [I I] as: 

9. The kurtosis of the normalized instantaneous frequency as in [II]: 

(10-ll) 

(10- 12) 

where, f,(t) is the normalized instantaneous frequency defined as: f,(t) = f(t) I max 

{f(t) ], and fit) is the instantaneous frequency of the intercepted signal 

B) Modulation Classification Procedure 
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In the decision theoretic approach, a group of modulations is compared with a threshold 

by every key feature and is then divided into two possible sets. The modulation 

classification procedure is shown a~ a now chart in Figure 10-1 as in [II j. 

10.1.2 Classification of a Signal Frame 

Different classifications can be obtained from these M-segments and thus the majority 

logic rule, in which the classification with the largest number of repetitions is selected, is 

used. When more than one classification have the same number of repetitions, then all of 

those are regarded as candidates for optimal decision. The procedure then works as 

follows: 

• Segments corresponding to each of the candidate decisions are grouped together. 

• For every frame within a group, the number of samples of instantaneous amplitude 

falling below the threshold a, is determined, and the total numbers of these samples 

over the group. 

• The decision whose corresponding group has minimum number of samples below the 

threshold a1 is adopted. 

10.2 Artificial Neural Network Approach 

As shown in Figure 10-2, the ANN recognizer is composed of three blocks: 

1. The preprocessing in which the key features are extracted. 

2. The training and learning phase to adjust the classifier structure. 

3. The test phase to obtain the modulation type. 
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Figure 10-1 Functional Flowchart for the Decision· Theoretic Approach.Functional Flowchart for 
the Decision-Theoretic Approach. 

Page 107 



Y1mx 

cr,, 

cr,, 
p 

cr, 

fl42a 

~42 
r 

Pre- Training 'fest 
Processing Phase Phase 

(a) 

AM 

DSB 

VSB 

LSB 

""' USB -~ Combined -" z - FM ~ 

·" ~ 
PSK2 

PSK4 

MASK 

MFSK Third Network 

cr,r 
(b) 

Figure 10-2 Functional blocks of the ANN algorithm. 
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Part (b) of shows that the algorithm requires three ANNs. One network is required to 

discriminate between all of the modulation types except for MASK and MFSK, which 

require an additional network. So one more network is required for the discrimination 

between ASK2 and ASK4, and another one for FSK2 and FSK4. 

I) The First Nenvork 

The first network structure contains a seven-node input layer, eleven-node output layer 

and two hidden layers. 

2! The Second Nenvork 

This network is used when the output decision of the first network is MASK. It contains 

one-node input layer and two-node output layer with no hidden layers. 

3) The Third Nenvork 

This network is used when the output decision of the first network is MFSK. It contains 

one-node input layer and two-node output layer with no hidden layers, the same as the 

second network. 

10.3 Both Recognizers 

The optimum values for the key features were obtained in [11]. Extensive simulations has 

been canied outout different SNR's in [11]. Results for both algorithm are found to be 

encouraging. The overall success rate in the decision-theoretic algorithm is found to be 

over 94% at SNR of 15 dB while that of the ANN algorithm is over 96%. 
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